1
|
Ameslon Y, Liu H, Harting J, Ronsin OJJ, Wodo O. Taxonomy of amorphous ternary phase diagrams: the importance of interaction parameters. Phys Chem Chem Phys 2025; 27:9998-10010. [PMID: 40296763 DOI: 10.1039/d5cp00335k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Understanding phase diagrams is essential for material selection and design, as they provide a comprehensive representation of the thermodynamics of mixtures. This work delivers a broad and systematic overview of possible ternary phase diagrams for amorphous systems representative of polymers, small organic molecules, and solvents. Thanks to computationally efficient methods, an unprecedented library of >80 000 ternary phase diagrams is generated based on a systematic screening of interaction parameters. Twenty-one phase diagram types, including unreported ones, are identified. They are classified according to simple rules related to the number of immiscible material pairs, of miscibility gaps, and of three-phase regions. They are mapped onto the three-dimensional interaction parameters space, providing a clear picture of their likelihood and existence conditions. Four well-known phase-diagram types with 0, 1, 2, or 3 immiscible pairs are found to be the most likely. The numerous uncommon phase diagrams are mostly observed within a small parameter window around the critical interaction parameter values. For the most common phase diagram types, we show that the size of the processability window becomes sensitive to interaction parameter variations close to critical values. The sensitivity decreases for materials with increasing molar size. Finally, successful comparisons of simulated and experimental phase diagrams showcase the real-world relevance of this theoretical analysis. The presented results lay a robust foundation for rational design of solution processing conditions and for blend morphology control. Immediate applications include organic thin films and the identification of green solvents for sustainable processing.
Collapse
Affiliation(s)
- Yasin Ameslon
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Hao Liu
- Department of Materials Design and Innovation, University at Buffalo, NY, USA.
| | - Jens Harting
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 1, 91058, Erlangen, Germany
| | - Olivier J J Ronsin
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058, Erlangen, Germany
| | - Olga Wodo
- Department of Materials Design and Innovation, University at Buffalo, NY, USA.
| |
Collapse
|
2
|
Zhang P, Gao N, Du B, Xu Z, Wu S, Zhu K, Ma X, Bin H, Li Y. Highly Ordered Polymorphism of Small Molecule Acceptor Delivering Efficient and Stable Binary Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202424430. [PMID: 40013853 DOI: 10.1002/anie.202424430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Advancements in narrow bandgap organic small molecule acceptors (SMAs) has promoted organic solar cell (OSC) efficiencies beyond 20%. Achieving this milestone necessitates precise control over the active layer morphology, particularly its crystallinity and phase distribution, to optimize light absorption, charge transport, and suppress charge recombination. However, controlling SMA morphology remains a significant challenge due to their strong aggregation tendency. Existing methods, including high-temperature annealing, and introducing high boiling point additives, frequently yield disordered polymorphs with limited scalability. Here, we report a novel approach of utilizing 4-bromochlorobenzene as a volatile solid additive to induce the formation of a highly ordered polymorph of BTP-eC9 through mild annealing at 60 °C. This marks the first demonstration of such an ordered SMA polymorph, exhibiting optical properties comparable to ideal crystals, including enhanced anisotropy, refractive index, and extinction coefficients. The specific polymorph further enables the formation of a well-organized PM6 donor arrangement, establishing an optimal bicontinuous network morphology. Consequently, the OSCs based on PM6:BTP-eC9 achieve a power conversion efficiency of 19.53%, which further increases to 20.32% with the addition of an antireflection layer. This work provides a scalable and effective strategy for enhancing OSC performance and highlights the critical role of polymorphism in optimizing photovoltaic performance.
Collapse
Affiliation(s)
- Panpan Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Ni Gao
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Bo Du
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Zhigang Xu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Shangrong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Keteng Zhu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xiao Ma
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
| | - Haijun Bin
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
3
|
Liu L, Li H, Xie J, Yang Z, Bai Y, Li M, Huang Z, Zhang K, Huang F. Organic Solar Cell with Efficiency of 20.49% Enabled by Solid Additive and Non-Halogenated Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500352. [PMID: 40285593 DOI: 10.1002/adma.202500352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Recently, benzene-based solid additives (BSAs) have emerged as pivotal components in modulating the morphology of the blend film in organic solar cells (OSCs). However, since almost all substituents on BSAs are weak electron-withdrawing groups and contain halogen atoms, the study of BSAs with non-halogenated strong electron-withdrawing groups has received little attention. Herein, an additive strategy is proposed, involving the incorporation of non-halogenated strong electron-withdrawing groups on the benzene ring. An effective BSA, 4-nitro-benzonitrile (NBN), is selected to boost the efficiency of devices. The results demonstrate that the NBN-treated device exhibits enhanced light absorption, superior charge transport performance, mitigated charge recombination, and more optimal morphology compared to the additive-free OSC. Consequently, the D18:BTP-eC9+NBN-based binary device and D18:L8-BO:BTP-eC9+NBN-based ternary OSC processed by non-halogenated solvent achieved outstanding efficiencies of 20.22% and 20.49%, respectively. Furthermore, the universality of NBN is also confirmed in different active layer systems. In conclusion, this work demonstrates that the introduction of non-halogenated strong electron-absorbing moieties on the benzene ring is a promising approach to design BSAs, which can tune the film morphology and achieve highly efficient devices, and has certain guiding significance for the development of BSAs.
Collapse
Affiliation(s)
- Longfei Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Hui Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Juxuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Zhiyuan Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Mingke Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zixin Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Wu Y, Dai X, Liao C, Xu X, Peng Q. Achieving Finely Optimized Morphology and Highly Efficient Layer-by-Layer Organic Solar Cells via Fluorinated Quinoxaline-Based Polymer Additives. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22760-22769. [PMID: 40194313 DOI: 10.1021/acsami.5c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Vertical phase-separated active layer morphology is essential for organic solar cells (OSCs), which can be effectively achieved through layer-by-layer (LbL) processing, enabling independent optimization of donor and acceptor layers. Here, we present a novel strategy to optimize the active layer morphology of D18/L8-BO-based OSCs by incorporating polyfluoroquinoxaline-type polymer additives. Three quinoxaline-based polymers with varying fluorination contents, namely, P2FQx, P3FQx, and P4FQx, were synthesized and evaluated. Although these polymers showed limited performance as standalone donor materials in bulk heterojunction (BHJ) devices, their use as additives in LbL-OSCs significantly enhanced device efficiency. These polymers promoted D18 aggregation, enhanced L8-BO penetration, and facilitated the formation of a vertically phase-separated interpenetrating donor/acceptor network. Among these additives, P2FQx demonstrated the best performance, enabling an optimized morphology and achieving a champion power conversion efficiency (PCE) of 20.13% as well as a high fill factor (FF) of 80.13%. Our results highlight the potential of rationally designed polymer additives to address morphology-related challenges in LbL-OSCs and provide a potential pathway for further development of high-performance and scalable organic photovoltaic devices.
Collapse
Affiliation(s)
- Yujie Wu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingjian Dai
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chentong Liao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
5
|
Wang Y, Zhu Y, Lai H, Luo Y, Yang X, Ding Y, Wu J, He F. Optimizing Branching Linkers in Dimerized Acceptors for Enhanced Efficiency and Stability in Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500818. [PMID: 40059587 DOI: 10.1002/smll.202500818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Indexed: 04/25/2025]
Abstract
Most high-performing dimerized acceptors are based on Y-series precursors with superior conjugated π-backbones. The utilization of branch-connected dimerized acceptors can fully leverage the four end groups to enhance molecular packing, thereby potentially improving both the stability of organic solar cells (OSCs) while maintaining high power conversion efficiency (PCE). Therefore, optimizing the linker is critical to fully realizing their potential in improving device performance. In this study, three dimerized acceptors are synthesized with conjugated and conjugation-break linkers in the branching direction to systematically investigate the effects of different linker structures on molecular properties and device performance. By introducing an appropriate flexible chain, favorable solubility, and superior morphology are achieved, which facilitates charge generation and transport while suppressing recombination. As a result, the OSC based on dYTAT-C6-F exhibits a significantly improved PCE of 18.08%, the highest among dimerized acceptors with linkers in the branching direction. Additionally, the OSC based on dYTAT-C6-F demonstrates a T80 lifetime of 1840 h. These results indicate that conjugation breakages can tune molecular solubility, aggregation, and carrier mobility and that optimizing the linker length further improves these characteristics. The findings highlight the significant potential of engineering linkers in the branching direction to achieve outstanding OSC performance.
Collapse
Affiliation(s)
- Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongmin Luo
- Function Hub, Advanced Materials Thrust, Nansha, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| | - Xuechun Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, Nansha, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Ma K, Wu ZF, Chen KZ, Qiao SL. Application of silk fibroin-based composite films in biomedicine and biotechnology. J Mater Chem B 2025; 13:3494-3515. [PMID: 39950994 DOI: 10.1039/d4tb02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Silk fibroin has garnered significant attention as a natural biomaterial due to its exceptional biocompatibility, tunable water solubility, optical transparency and high thermal stability. In recent years, silk fibroin films have gained prominence for their ease of fabrication and unique properties. However, their intrinsic brittleness limits broader applicability in certain fields. To overcome this challenge, researchers have developed various strategies, including physical blending, chemical modification, and genetic engineering, to improve key attributes such as mechanical strength, antimicrobial activity, and electrical conductivity. These advancements have significantly broadened the utility of silk fibroin films in diverse biomedical applications. This review provides an in-depth analysis of recent progress in silk fibroin-based composite films, emphasizing their applications in bone regeneration, wound healing, and health monitoring. Modified silk fibroin composites are highlighted for their superior material properties and enhanced functional potential in these domains. Additionally, this review discusses future research directions, offering valuable insights into pathways for further innovation and practical implementation. With continued advancements, silk fibroin composite films are poised to make transformative contributions to the fields of biomedicine and biotechnology.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Zhi-Feng Wu
- Suzhou Haider New Material Technology Co., Ltd., No. 59, Jinmen Road, ChangshuNew and Hi-tech Industrial Development Zone, Suzhou, Jiangsu Province, China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
- Suzhou Haider New Material Technology Co., Ltd., No. 59, Jinmen Road, ChangshuNew and Hi-tech Industrial Development Zone, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Li Z, Vagin S, Zhang J, Guo R, Sun K, Jiang X, Guan T, Schwartzkopf M, Rieger B, Ma CQ, Müller-Buschbaum P. Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9475-9484. [PMID: 39883833 PMCID: PMC11826503 DOI: 10.1021/acsami.4c21699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance. For the reference solar cell without any additive, we find that device degradation is not caused by chemical redox reactions but by changes in crystallinity and microstructure evolution during aging in air under illumination. Operando GIWAXS and GISAXS are used to investigate the structure evolution. We discover a four-stage degradation process for the reference cell. In general, the lattice spacing and crystallite coherence length decrease, while the domain sizes increase, which causes the loss of shirt-circuit current JSC and fill factor FF. Furthermore, a decomposition component is detected in GIWAXS and GISAXS, corresponding to the loss of the open-circuit voltage VOC. Atums Green doping effectively suppresses the evolution of crystallinity and domain sizes as well as the continuous decomposition, thereby enhancing the device stability under illumination in air. This finding reveals the kinetic degradation process of organic solar cells, establishes a correlation between the morphological properties and device performance, and further demonstrates the promising potential of Atums Green doping in organic solar cells.
Collapse
Affiliation(s)
- Zerui Li
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Sergei Vagin
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jinsheng Zhang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Renjun Guo
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Kun Sun
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiongzhuo Jiang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tianfu Guan
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Bernhard Rieger
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Chang-Qi Ma
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Peter Müller-Buschbaum
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
8
|
Wu X, Gong Y, Li X, Qin S, He H, Chen Z, Liang T, Wang C, Deng D, Bi Z, Ma W, Meng L, Li Y. Inner Side Chain Modification of Small Molecule Acceptors Enables Lower Energy Loss and High Efficiency of Organic Solar Cells Processed with Non-halogenated Solvents. Angew Chem Int Ed Engl 2025; 64:e202416016. [PMID: 39320167 DOI: 10.1002/anie.202416016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Regulating the intermolecular interaction to disperse the aggregation and further improve the molecular packing order of SMAs would be an effective strategy to solve this problem. Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of the inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. Through single crystal analysis and theoretical calculations, it is found that compared with L8-PhF, which possesses strong and abundant intermolecular interactions but downgraded molecular packing order, L8-PhMe with the methyl substituent possesses more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with polymer donor PM6, the differences in intermolecular interactions of the SMAs influenced the film formation process and phase separation of the blend films. The L8-PhMe based blend film exhibits shorten film formation and more homogeneous phase separation than those of the L8-PhF and L8-Ph based ones. Especially, the OSCs based on L8-PhMe show reduced non-radiative energy loss and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene (o-XY) and using 2PACz as the hole transport layer (HTL) shows an outstanding PCE of 19.27 %. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification, and also emphasize the importance of effectivity rather than intensity of non-covalent interactions introduced in SMAs on the molecular packing, morphology and PCE of OSCs.
Collapse
Affiliation(s)
- Xiangxi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haozhe He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zekun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caixuan Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
9
|
Jing X, Li X, Zhao Y, Wang Q, Kang X, Liu X, Saparbaev A, Li F, Sun M. Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells. Polymers (Basel) 2025; 17:248. [PMID: 39861321 PMCID: PMC11769530 DOI: 10.3390/polym17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance. The material and quantum chemical property investigations show that the selection and design of the blocks are important for the properties of the terpolymers, and the resulting polymer:Y6 devices achieve improvements in performance from 13.85% to 15.66% (especially for fill factors from 63.37% up to 69.81%). This result contributes to designing and optimizing efficient polymers.
Collapse
Affiliation(s)
- Xin Jing
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao 266042, China;
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
- Chemistry Department, Paderborn University, 33098 Paderborn, Germany;
| | - Xuebing Li
- Chemistry Department, Paderborn University, 33098 Paderborn, Germany;
| | - Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
| | - Quanliang Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
| | - Xiao Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
| | - Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
| | - Aziz Saparbaev
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33, Durmon yuli, Tashkent 100125, Uzbekistan;
| | - Feng Li
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Q.W.); (X.K.); (X.L.)
| |
Collapse
|
10
|
Lee Y, Jeong J, Jung K, Lee J, Youn Y, Park S, Lee H, Yi Y. Vacuum electrospray deposition for face-on orientation and interface preservation in organic photovoltaics. Sci Rep 2025; 15:745. [PMID: 39755709 DOI: 10.1038/s41598-024-84313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films. Unlike conventional spin-coated (SC) P3HT: PCBM BHJ films, which predominantly exhibit an edge-on orientation, VESD facilitates a beneficial face-on orientation, improving vertical charge transport through enhanced π-π stacking interactions. Furthermore, VESD effectively eliminates residual solvents during film formation, ensuring well-defined interfaces between the layers in the OPV devices. As a result, the VESD OPVs demonstrated enhanced PCE and extended operational lifetimes compared to their SC counterparts. Impedance spectroscopy analysis confirmed that the VESD OPVs possessed significantly higher electron mobility and longer electron lifetimes, indicating reduced charge traps and improved charge dynamics. These results highlight the potential of VESD as a versatile technique for controlling molecular orientation in solution-processable organic semiconductors, enabling the development of highly efficient devices with fewer charge traps without relying on synthetic or epitaxial methods.
Collapse
Affiliation(s)
- Younjoo Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junkyeong Jeong
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwanwook Jung
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeihyun Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yungsik Youn
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soohyung Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hyunbok Lee
- Department of Semiconductor Physics, Institute of Forest Science, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, 24341, Gangwon-do, Republic of Korea.
| | - Yeonjin Yi
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Chen T, Zhong Y, Duan T, Tang X, Zhao W, Wang J, Lu G, Long G, Zhang J, Han K, Wan X, Kan B, Chen Y. Asymmetrified Benzothiadiazole-Based Solid Additives Enable All-Polymer Solar Cells with Efficiency Over 19 . Angew Chem Int Ed Engl 2025; 64:e202412983. [PMID: 39180516 DOI: 10.1002/anie.202412983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Disordered polymer chain entanglements within all-polymer blends limit the formation of optimal donor-acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all-polymer organic solar cells (APSCs). In this study, two isomers, 4,5-difluorobenzo-c-1,2,5-thiadiazole (SF-1) and 5,6-difluorobenzo-c-1,2,5-thiadiazole (SF-2), were designed as solid additives based on the widely-used electron-deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF-1 or SF-2 into PM6 : PY-DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase-separation and vertical distribution. Furthermore, after treatment with SF-1 and SF-2, the exciton diffusion lengths for PY-DT films are extended to over 40 nm, favoring exciton diffusion and charge transport. The asymmetrical SF-2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6 : PY-DT-based device to 18.83 % due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF-2-treated APSC to over 19 %. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all-polymer blends using rational-designed solid additives.
Collapse
Affiliation(s)
- Tianqi Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yanyi Zhong
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Xian Tang
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Jiaying Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Guanghao Lu
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Jiangbin Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
- Nanhu Laser Laboratory, National University of Defense Technology, 410073, Changsha, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, 410073, Changsha, China
| | - Kai Han
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
- Nanhu Laser Laboratory, National University of Defense Technology, 410073, Changsha, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
12
|
Xu H, Han J, Sharma A, Paleti SHK, Hultmark S, Yazmaciyan A, Müller C, Baran D. Progress in the Stability of Small Molecule Acceptor-Based Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407119. [PMID: 39639382 DOI: 10.1002/adma.202407119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Significant advancements in power conversion efficiency have been achieved in organic solar cells with small molecule acceptors. However, stability remains a primary challenge, impeding their widespread adoption in renewable energy applications. This review summarizes the degradation of different layers within the device structure in organic solar cells under varying conditions, including light, heat, moisture, and oxygen. For the photoactive layers, the chemical degradation pathways of polymer donors and small molecule acceptors are examined in detail, alongside the morphological stability of the bulk heterojunction structure, which plays a crucial role in device performance. The degradation mechanisms of commonly used anode and cathode interlayers and electrodes are addressed, as these layers significantly influence overall device efficiency and stability. Mitigation methods for the identified degradation mechanisms are provided in each section to offer practical insights for improving device longevity. Finally, an outlook presents the remaining challenges in achieving long-term stability, emphasizing research directions that require further investigation to enhance the reliability and performance of organic solar cells in real-world applications.
Collapse
Affiliation(s)
- Han Xu
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julies-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Sandra Hultmark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Aren Yazmaciyan
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Meng K, Zheng R, Gu X, Zhang R, Guo L, Qin Y, Yang T, Li M, Hu S, Zhang C, Wu M, Guo A, Yang X, Zhang J, Sun X. In-Device Ballistic-Electron-Emission Spectroscopy for Accurately In Situ Mapping Energy Level Alignment at Metal-Organic Semiconductors Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412758. [PMID: 39523742 DOI: 10.1002/adma.202412758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Energy level alignment at metal/organic semiconductors (OSCs) interface governs electronic processes in organic electronics devices, making its precise determination essential for understanding carrier transport behaviors and optimizing device performance. However, it is proven that accurately characterizing the energy barrier at metal/OSC interface under operational conditions remains challenging due to the technical limitations of traditional methods. Herein, through integrating highly-improved device constructions with an ingenious derivative-assisted data processing method, this study demonstrates an in-device ballistic-electron-emission spectroscopy using hot-electron transistors to accurately characterize the energy barrier at metal/OSC interface under in-operando conditions. This technique is found that a remarkable improvement in measurement accuracy, reaching up to ±0.03 eV, can be achieved-surpassing previous techniques (±0.1-0.2 eV). The high accuracy allows us to monitor subtle changes in energy barriers at metal/OSC interface caused by variations in the aggregation state of OSCs, a phenomenon that is theoretically possible but failed to be directly demonstrated through conventional methods. Moreover, this study makes demonstration that this technology is universally applicable to various metal/OSC interfaces consisting of electron-transporting, hole-transporting, and ambipolar OSCs. These findings manifest the great potential of this method to advance both theoretical exploration and technical applications in organic electronics.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruiheng Zheng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Rui Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Qin
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tingting Yang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Min Li
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, 102249, P. R. China
| | - Meng Wu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ankang Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueli Yang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Hu D, Tang H, Chen C, Lee DJ, Lu S, Li G, Hsu HY, Laquai F. Solid Additive Engineering for Next-generation Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406949. [PMID: 39439131 DOI: 10.1002/adma.202406949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solution-processed bulk heterojunction (BHJ) organic solar cells (OSCs) have emerged as a promising next-generation photovoltaic technology. In this emerging field, there is a growing trend of employing solid additives (SAs) to fine-tune the BHJ morphology and unlock the full potential of OSCs. SA engineering offers several significant benefits for commercialization, including the ability to i) control film-forming kinetics to expedite high-throughput fabrication, ii) leverage weak noncovalent interactions between SA and BHJ materials to enhance the efficiency and stability of OSCs, and iii) simplify procedures to facilitate cost-effective production and scaling-up. These features make SA engineering a key catalyst for accelerating the development of OSCs. Recent breakthroughs have shown that SA engineering can achieve an efficiency of 19.67% in single-junction OSCs, demonstrating its effectiveness in promoting the commercialization of organic photovoltaic devices. This review provides a comprehensive overview of significant breakthroughs and pivotal contributions of emerging SAs, focusing on their roles in governing film-forming dynamics, stabilizing phase separation, and addressing other crucial aspects. The rationale and design rules for SAs in highly efficient and stable OSCs are also discussed. Finally, the remaining challenges are summarized, and perspectives on future advances in SA engineering are offered.
Collapse
Affiliation(s)
- Dingqin Hu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Hua Tang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chen Chen
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, 999077, Hong Kong
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Park J, Jeong S, Sun Z, Mai TLH, Jeong S, Yang S, Yang C. Triadic Halobenzene Processing Additive Combined Advantages of Both Solvent and Solid Types for Efficient and Stable Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405415. [PMID: 39225371 DOI: 10.1002/smll.202405415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Solvent additives with a high boiling point (BP) and low vapor pressure (VP) have formed a key handle for improving the performance of organic solar cells (OSCs). However, it is not always clear whether they remain in the active-layer film after deposition, which can negatively affect the reproducibility and stability of OSCs. In this study, an easily removable solvent additive (4-chloro-2-fluoroiodobenzene (CFIB)) with a low BP and high VP is introduced, behaving like volatile solid additives that can be completely removed during the device fabrication process. In-depth studies of CFIB addition into the D18-Cl donor and N3 acceptor validate its dominant non-covalent intermolecular interactions with N3 through effective electrostatic interactions. Such phenomena improve charge dynamics and kinetics by optimizing the morphology, leading to enhanced performance of D18-Cl:N3-based devices with a power conversion efficiency of 18.54%. The CFIB-treated device exhibits exceptional thermal stability (T80 lifetime = 120 h) at 85 °C compared with the CFIB-free device, because of its morphological robustness by evolving no residual CFIB in the film. The CFIB features a combination of advantages of solvent (easy application) and solid (high volatility) additives, demonstrating its great potential use in the commercial mass production of OSCs.
Collapse
Affiliation(s)
- Jaeyeong Park
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Zhe Sun
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Thi Le Huyen Mai
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Seokhwan Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Sangjin Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
16
|
Xu J, Xiao C, Zhang Z, Zhang J, Wang B, McNeill CR, Li W. Utilization of Polycyclic Aromatic Solid Additives for Morphology and Thermal Stability Enhancement in Photoactive Layers of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405573. [PMID: 39104295 DOI: 10.1002/smll.202405573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.
Collapse
Affiliation(s)
- Jianing Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
17
|
Wang Y, Sun K, Li C, Zhao C, Gao C, Zhu L, Bai Q, Xie C, You P, Lv J, Sun X, Hu H, Wang Z, Hu H, Tang Z, He B, Qiu M, Li S, Zhang G. A Novel Upside-Down Thermal Annealing Method Toward High-Quality Active Layers Enables Organic Solar Cells with Efficiency Approaching 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411957. [PMID: 39380380 DOI: 10.1002/adma.202411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The emerging non-fullerene acceptors with low voltage losses have pushed the power conversion efficiency of organic solar cells (OSCs) to ≈20% with auxiliary morphology optimization. Thermal annealing (TA), as the most widely adopted post-treatment method, has been playing an essential role in realizing the potential of various material systems. However, the procedure of TA, i.e., the way that TA is performed, is almost identical among thousands of OSC papers since ≈30 years ago other than changes in temperature and annealing time. Herein, a reverse thermal annealing (RTA) technique is developed, which can enhance the dielectric constant of active layer film, thereby producing a smaller Coulomb capture radius (14.93 nm), meanwhile, forming a moderate nano-scale phase aggregation and a more favorable face-on molecular stacking orientation. Thus, this method can reduce the decline in open circuit voltage of the conventional TA method by achieving decreased radiative (0.334 eV) and non-radiative (0.215 eV) recombination loss. The power conversion efficiency of the RTA PM6:L8-BO-X device increases to 19.91% (certified 19.42%) compared to the TA device (18.98%). It is shown that this method exhibits a superb universality in 4 other material systems, revealing its dramatic potential to be employed in a wide range of OSCs.
Collapse
Affiliation(s)
- Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kangbo Sun
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qing Bai
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Peng You
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jie Lv
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zeguo Tang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
18
|
Kilbride RC, Spooner ELK, Cassella EJ, O’Kane ME, Doudin K, Lidzey DG, Jones R, Parnell AJ. Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics. ACS APPLIED ENERGY MATERIALS 2024; 7:8401-8411. [PMID: 39421274 PMCID: PMC11480932 DOI: 10.1021/acsaem.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Improving the photostability of the light-harvesting blend film in organic photovoltaics is crucial to achieving long-term operational lifetimes that are required for commercialization. However, understanding the degradation factors which drive instabilities is complex, with many variables such as film morphology, residual solvents, and acceptor or donor design all influencing how light and oxygen interact with the blend film. In this work, we show how blend films comprising a donor polymer (PBDB-T) and small molecule acceptor (PC71BM or ITIC) processed with solvent additive (DIO) yield very different film morphologies, device performance, and photostability. We show that DIO is retained approximately 10 times more effectively in ITIC based films compared to PC71BM. Unexpectedly, we see that while high volumes of DIO reduce photostability for encapsulated ITIC devices, when oxygen is introduced DIO can improve the lifetime of PBDB-T:ITIC based cells. Here, the addition of 3% DIO doubles the T 80 compared to ITIC based devices without DIO, suggesting that DIO-induced morphological changes interfere with or reduce photo-oxidative reactions.
Collapse
Affiliation(s)
- Rachel C. Kilbride
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Emma L. K. Spooner
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
- The
Photon Science Institute, The University of Manchester, Manchester M13 9PY, U.K.
| | - Elena J. Cassella
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Mary E. O’Kane
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Khalid Doudin
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - David G. Lidzey
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Richard Jones
- Department
of Materials, The University of Manchester, Sackville Street Building, Manchester M1 3BB, U.K.
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
19
|
Pallikara I, Skelton JM, Hatcher LE, Pallipurath AR. Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design. CRYSTAL GROWTH & DESIGN 2024; 24:6911-6930. [PMID: 39247224 PMCID: PMC11378158 DOI: 10.1021/acs.cgd.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas, focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be addressed with existing capabilities or through new capabilities with varying levels of development effort.
Collapse
Affiliation(s)
- Ioanna Pallikara
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | | | | |
Collapse
|
20
|
Kilbride RC, Spooner ELK, Burg SL, Oliveira BL, Charas A, Bernardo G, Dalgliesh R, King S, Lidzey DG, Jones RAL, Parnell AJ. The Nanoscale Structure and Stability of Organic Photovoltaic Blends Processed with Solvent Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311109. [PMID: 38597752 DOI: 10.1002/smll.202311109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Controlling the nanomorphology in bulk heterojunction photoactive blends is crucial for optimizing the performance and stability of organic photovoltaic (OPV) technologies. A promising approach is to alter the drying dynamics and consequently, the nanostructure of the blend film using solvent additives such as 1,8-diiodooctane (DIO). Although this approach is demonstrated extensively for OPV systems incorporating fullerene-based acceptors, it is unclear how solvent additive processing influences the morphology and stability of nonfullerene acceptor (NFA) systems. Here, small angle neutron scattering (SANS) is used to probe the nanomorphology of two model OPV systems processed with DIO: a fullerene-based system (PBDB-T:PC71BM) and an NFA-based system (PBDB-T:ITIC). To overcome the low intrinsic neutron scattering length density contrast in polymer:NFA blend films, the synthesis of a deuterated NFA analog (ITIC-d52) is reported. Using SANS, new insights into the nanoscale evolution of fullerene and NFA-based systems are provided by characterizing films immediately after fabrication, after thermal annealing, and after aging for 1 year. It is found that DIO processing influences fullerene and NFA-based systems differently with NFA-based systems characterized by more phase-separated domains. After long-term aging, SANS reveals both systems demonstrate some level of thermodynamic induced domain coarsening.
Collapse
Affiliation(s)
- Rachel C Kilbride
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, United Kingdom
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Emma L K Spooner
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
- The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PY, United Kingdom
| | - Stephanie L Burg
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Bárbara L Oliveira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, P-1049-001, Portugal
| | - Ana Charas
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, P-1049-001, Portugal
| | - Gabriel Bernardo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Robert Dalgliesh
- ISIS Neutron and Muon Spallation Source, Rutherford Appleton Laboratories, Oxfordshire, OX11 0QX, United Kingdom
| | - Stephen King
- ISIS Neutron and Muon Spallation Source, Rutherford Appleton Laboratories, Oxfordshire, OX11 0QX, United Kingdom
| | - David G Lidzey
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Richard A L Jones
- Department of Materials, The University of Manchester, Sackville Street Building, Manchester, M1 3BB, United Kingdom
| | - Andrew J Parnell
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| |
Collapse
|
21
|
Xu L, Li S, Zhao W, Xiong Y, Yu J, Qin J, Wang G, Zhang R, Zhang T, Mu Z, Zhao J, Zhang Y, Zhang S, Kuvondikov V, Zakhidov E, Peng Q, Wang N, Xing G, Gao F, Hou J, Huang W, Wang J. The Role of Solution Aggregation Property toward High-Efficiency Non-Fullerene Organic Photovoltaic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403476. [PMID: 38666554 DOI: 10.1002/adma.202403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/07/2024]
Abstract
In organic photovoltaic cells, the solution-aggregation effect (SAE) is long considered a critical factor in achieving high power-conversion efficiencies for polymer donor (PD)/non-fullerene acceptor (NFA) blend systems. However, the underlying mechanism has yet to be fully understood. Herein, based on an extensive study of blends consisting of the representative 2D-benzodithiophene-based PDs and acceptor-donor-acceptor-type NFAs, it is demonstrated that SAE shows a strong correlation with the aggregation kinetics during solidification, and the aggregation competition between PD and NFA determines the phase separation of blend film and thus the photovoltaic performance. PDs with strong SAEs enable earlier aggregation evolutions than NFAs, resulting in well-known polymer-templated fibrillar network structures and superior PCEs. With the weakening of PDs' aggregation effects, NFAs, showing stronger tendencies to aggregate, tend to form oversized domains, leading to significantly reduced external quantum efficiencies and fill factors. These trends reveal the importance of matching SAE between PD and NFA. The aggregation abilities of various materials are further evaluated and the aggregation ability/photovoltaic parameter diagrams of 64 PD/NFA combinations are provided. This work proposes a guiding criteria and facile approach to match efficient PD/NFA systems.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaomeng Xiong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinfeng Yu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinzhao Qin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Mu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Jingjing Zhao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yuyang Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Shaoqing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Vakhobjon Kuvondikov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33 Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Erkin Zakhidov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33 Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
22
|
Wu Y, Li P, Yu S, Min Y, Xiao L. Layer-by-Layer-Processed All-Polymer Solar Cells with Enhanced Performance Enabled by Regulating the Microstructure of Upper Layer. Molecules 2024; 29:2879. [PMID: 38930944 PMCID: PMC11206570 DOI: 10.3390/molecules29122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The layer-by-layer (LBL) fabrication method allows for controlled microstructure morphology and vertical component distribution, and also offers a reproducible and efficient technique for fabricating large-scale organic solar cells (OSCs). In this study, the polymers D18 and PYIT-OD are employed to fabricate all-polymer solar cells (all-PSCs) using the LBL method. Morphological studies reveal that the use of additives optimizes the microstructure of the active layer, enhancing the cells' crystallinity and charge transport capability. The optimized device with 2% CN additive significantly reduces bimolecular recombination and trap-assisted recombination. All-PSCs fabricated by the LBL method based on D18/PYIT-OD deliver a power conversion efficiency (PCE) of 15.07%. Our study demonstrates the great potential of additive engineering via the LBL fabrication method in regulating the microstructure of active layers, suppressing charge recombination, and enhancing the photovoltaic performance of devices.
Collapse
Affiliation(s)
| | | | | | | | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Zhou T, Jin W, Li Y, Xu X, Duan Y, Li R, Yu L, Peng Q. Crossbreeding Effect of Chalcogenation and Iodination on Benzene Additives Enables Optimized Morphology and 19.68% Efficiency of Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401405. [PMID: 38528662 PMCID: PMC11186042 DOI: 10.1002/advs.202401405] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Wenwen Jin
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National LabSuffolkUptonNY11973USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| |
Collapse
|
24
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
25
|
Mei L, Xia X, Sun R, Pan Y, Min J, Lu X, Jen AKY, Chen XK. Molecular-Level Insight into Impact of Additives on Film Formation and Molecular Packing in Y6-based Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305977. [PMID: 37919095 DOI: 10.1002/smll.202305977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.
Collapse
Affiliation(s)
- Le Mei
- Department of Chemistry, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuyu Pan
- Department of Chemistry, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang, 111003, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xian-Kai Chen
- Department of Chemistry, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
26
|
de Bruijn R, Michels JJ, van der Schoot P. Transient nucleation driven by solvent evaporation. J Chem Phys 2024; 160:084505. [PMID: 38415833 DOI: 10.1063/5.0186395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
We theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices. Our model is based on classical nucleation theory, taking the solvent to be a source of the transient conditions in which the solute drops out of the solution. Other than that, the solvent is not directly involved in the nucleation process itself. We approximately solve the kinetic master equations using a combination of Laplace transforms and singular perturbation theory, providing an analytical expression for the nucleation flux. Our results predict that (i) the nucleation flux lags slightly behind a commonly used quasi-steady-state approximation. This effect is governed by two counteracting effects originating from solvent evaporation: while a faster evaporation rate results in an increasingly larger influence of the lag time on the nucleation flux, this lag time itself is found to decrease with increasing evaporation rate. Moreover, we find that (ii) the nucleation flux and the quasi-steady-state nucleation flux are never identical, except trivially in the stationary limit, and (iii) the initial induction period of the nucleation flux, which we characterize as a generalized induction time, decreases weakly with the evaporation rate. This indicates that the relevant time scale for nucleation also decreases with an increasing evaporation rate. Our analytical theory compares favorably with results from a numerical evaluation of the governing kinetic equations.
Collapse
Affiliation(s)
- René de Bruijn
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jasper J Michels
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
27
|
He X, Liu ZX, Chen H, Li CZ. Selectively Modulating Componential Morphologies of Bulk Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306681. [PMID: 37805706 DOI: 10.1002/adma.202306681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Achieving precise control over the nanoscale morphology of bulk heterojunction films presents a significant challenge for the conventional post-treatments employed in organic solar cells (OSCs). In this study, a near-infrared photon-assisted annealing (NPA) strategy is developed for fabricating high-performance OSCs under mild processing conditions. It is revealed a top NIR light illumination, together with the bottom heating, enables the selective tuning of the molecular arrangement and assembly of narrow bandgap acceptors in polymer networks to achieve optimal morphologies, as well as the acceptor-rich top surface of active layers. The derived OSCs exhibit a remarkable power conversion efficiency (PCE) of 19.25%, representing one of the highest PCEs for the reported binary OSCs so far. Moreover, via the NPA strategy, it has succeeded in accessing top-illuminated flexible OSCs using thermolabile polyethylene terephthalate from mineral water bottles, displaying excellent mechanical stabilities. Overall, this work will hold the potential to develop organic solar cells under mild processing with various substrates.
Collapse
Affiliation(s)
- Xinyu He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhi-Xi Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
28
|
He D, Li Y, Zhao F, Lin Y. Trap suppression in ordered organic photovoltaic heterojunctions. Chem Commun (Camb) 2024; 60:364-373. [PMID: 38099599 DOI: 10.1039/d3cc05559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.
Collapse
Affiliation(s)
- Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuwen Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Du Z, Luong HM, Sabury S, Therdkatanyuphong P, Chae S, Welton C, Jones AL, Zhang J, Peng Z, Zhu Z, Nanayakkara S, Coropceanu V, Choi DG, Xiao S, Yi A, Kim HJ, Bredas JL, Ade H, Reddy GNM, Marder SR, Reynolds JR, Nguyen TQ. Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiency. MATERIALS HORIZONS 2023; 10:5564-5576. [PMID: 37872787 DOI: 10.1039/d3mh01133j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.
Collapse
Affiliation(s)
- Zhifang Du
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Hoang Mai Luong
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | - Sangmin Chae
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Austin L Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Junxiang Zhang
- University of Colorado Boulder, Renewable and Sustainable Energy Institute, Boulder, CO 80303, USA.
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC 27695, USA
| | - Ziyue Zhu
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Sadisha Nanayakkara
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Dylan G Choi
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Steven Xiao
- 1-Material Inc, 2290 Chemin St-Francois, Dorval, Quebec, H9P 1K2, Canada
| | - Ahra Yi
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyo Jung Kim
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC 27695, USA
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Seth R Marder
- University of Colorado Boulder, Renewable and Sustainable Energy Institute, Boulder, CO 80303, USA.
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
30
|
Zhang W, Wu Y, Ma R, Fan H, Li X, Yang H, Cui C, Li Y. Molecular Stacking and Aggregation Optimization of Photoactive Layer through Solid Additive Enables High-Performance Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202309713. [PMID: 37698185 DOI: 10.1002/anie.202309713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Regulating molecular packing and aggregation of photoactive layer is a critical but challenging issue in developing high-performance organic solar cells. Herein, two structurally similar analogues of anthra[2,3-b : 6,7-b']dithiophene (ADT) and naphtho[1,2-b : 5,6-b']dithiophene (NDT) are developed as solid additive to exploit their effect in regulating the molecular aggregation and π-stacking of photoactive layer. We clarify that the perpendicular arrangements of NDT can enlarge the molecular packing space and improve the face-on stacking of Y6 during the film formation, favoring a more compact and ordered long-range π-π stacking in the out-of-plane direction after the removal of NDT under thermal annealing. The edge-to-face stacked herringbone-arrangement of ADT along with its non-volatilization under thermal annealing can induce the coexistence of face-on and edge-on stacking of blend film. As a result, the NDT treatment shows encouraging effect in improving the photovoltaic performance of devices based on various systems. Particularly, a remarkable PCE of 18.85 % is achieved in the PM6 : L8-BO-based device treated by NDT additive, which is a significant improvement with regard to the PCE of 16.41 % for the control device. This work offers a promising strategy to regulate the molecular packing and aggregation of photoactive layer towards significantly improved performance and stability of organic solar cells.
Collapse
Affiliation(s)
- Wenjing Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
| | - Ruijie Ma
- Department of Electronic and Information Engineering Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hongyu Fan
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
| | - Hang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Jiangsu, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University Jiangsu, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Jiangsu, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Zhong L, Jeong S, Lee S, Mai TLH, Park J, Park J, Kim W, Yang C. Octafluoronaphthalene as a thermal-annealing-free volatile solid additive enables high-performance organic solar cells. Chem Commun (Camb) 2023; 59:12108-12111. [PMID: 37740305 DOI: 10.1039/d3cc03827k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A thermal annealing-free solid additive octafluoronaphthalene was developed for high-performance organic solar cells. In an additive-modified device, an impressive power conversion efficiency of 18.59% from 17.27% was achieved with simultaneously enhanced current density from 26.86 to 27.53 mA cm-2 and fill factor from 74.34% to 78.85%.
Collapse
Affiliation(s)
- Lian Zhong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Seunglok Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Thi Le Huyen Mai
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Jaeyeong Park
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Jeewon Park
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Wonjun Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
32
|
Yu R, Shi R, He Z, Zhang T, Li S, Lv Q, Sha S, Yang C, Hou J, Tan Z. Thermodynamic Phase Transition of Three-Dimensional Solid Additives Guiding Molecular Assembly for Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308367. [PMID: 37581342 DOI: 10.1002/anie.202308367] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives.
Collapse
Affiliation(s)
- Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuang Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihao Sha
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chunhe Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
33
|
Jeon SJ, Yang NG, Kim JY, Kim YC, Lee HS, Moon DK. A 3-Fluoropyridine Manipulating the Aggregation and Fibril Network of Donor Polymers for Eco-Friendly Solution-Processed Versatile Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301803. [PMID: 37222123 DOI: 10.1002/smll.202301803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Indexed: 05/25/2023]
Abstract
The development of eco-friendly solvent-processed organic solar cells (OSCs) suitable for industrial-scale production should be now considered the imperative research. Herein, asymmetric 3-fluoropyridine (FPy) unit is used to control the aggregation and fibril network of polymer blends. Notably, terpolymer PM6(FPy = 0.2) incorporating 20% FPy in a well-known donor polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PM6) can reduce the regioregularity of the polymer backbone and endow them with much-enhanced solubility in eco-friendly solvents. Accordingly, the excellent adaptability for fabricating versatile devices based on PM6(FPy = 0.2) by toluene processing is demonstrated. The resulting OSCs exhibit a high power conversion efficiency (PCE) of 16.1% (17.0% by processed with chloroform) and low batch-to-batch variation. Moreover, by controlling the donor-to-acceptor weight ratio at 0.5:1.0 and 0.25:1.0, semi-transparent OSCs (ST-OSCs) yield significant light utilization efficiencies of 3.61% and 3.67%, respectively. For large-area (1.0 cm2 ) indoor OSC (I-OSC), a high PCE of 20.6% is achieved with an appropriate energy loss of 0.61 eV under a warm white light-emitting diode (3,000 K) with the illumination of 958 lux. Finally, the long-term stability of the devices is evaluated by investigating their structure-performance-stability relationship. This work provides an effective approach to realizing eco-friendly, efficient, and stable OSCs/ST-OSCs/I-OSCs.
Collapse
Affiliation(s)
- Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Nam Gyu Yang
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ji Youn Kim
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ye Chan Kim
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyoung Seok Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| |
Collapse
|
34
|
Wu G, Xu X, Liao C, Yu L, Li R, Peng Q. Improving Cooperative Interactions Between Halogenated Aromatic Additives and Aromatic Side Chain Acceptors for Realizing 19.22% Efficiency Polymer Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302127. [PMID: 37116119 DOI: 10.1002/smll.202302127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Processing additive plays an important role in the standard operation procedures for fabricating top performing polymer solar cells (PSCs) through efficient interactions with key photovoltaic materials. However, improving interaction study of acceptor materials to high performance halogenated aromatic additives such as diiodobenzene (DIB) is a widely neglected route for molecular engineering toward more efficient device performances. In this work, two novel Y-type acceptor molecules of BTP-TT and BTP-TTS with different aromatic side chains on the outer positions are designed and synthesized. The resulting aromatic side chains significantly enhanced the interactions between the acceptor molecules and DIB through an arene/halogenated arene interaction, which improved the crystallinity of the acceptor molecules and induced a polymorph with better photovoltaic performances. Thus, high power conversion efficiencies (PCEs) of 18.04% and 19.22% are achieved in binary and ternary blend devices using BTP-TTS as acceptor and DIB as additive. Aromatic side chain engineering for improving additive interactions is proved to be an effective strategy for achieving much higher performance photovoltaic materials and devices.
Collapse
Affiliation(s)
- Guowei Wu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
35
|
Fynbo C, Huss-Hansen MK, Bikondoa O, Gangadharappa C, da Silva Filho DA, Patil S, Knaapila M, Kjelstrup-Hansen J. Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12099-12109. [PMID: 37587409 DOI: 10.1021/acs.langmuir.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
We report the morphology and microstructure of n-dialkyl side-chain-substituted thiophene DPP end-capped with phenyl groups (Ph-TDPP-Ph) thin films and compare the influence of deposition method and substrate surface using thermally oxidized Si and graphene substrates as well as monolayer graphene surfaces with an underlying self-assembled octadecyltrichlorosilane monolayer, complemented by an aging study of spin-coated films over a 2 weeks aging period. A distinct difference in morphology was observed between spin-coated and vacuum-deposited thin films, which formed a fiber-like morphology and a continuous layer of terraced grains, respectively. After an initial film evolution, all combinations of deposition method and substrate type result in well-ordered thin films with almost identical crystalline phases with slight variations in crystallinity and mosaicity. These findings point toward strong intermolecular forces dominating during growth, and the templating effect observed for other oligomer films formed on graphene is consequently ineffective for this material type. Upon aging of spin-coated films, a noticeable evolution involving two different morphologies and crystalline phases were observed. After several days, the thin film evolved into a more stable crystal phase and a fiber-like morphology. Moreover, slight variation in optical spectra were elucidated on the basis on density functional theory calculations. These results demonstrate that thin-film properties of DPP derivatives can be tailored by manipulating the film formation process.
Collapse
Affiliation(s)
- Cecilie Fynbo
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Mathias K Huss-Hansen
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Oier Bikondoa
- XMaS UK CRG Beamline, European Synchrotron Radiation Facility, 38043 Grenoble Cedex 09, France
- Department of Physics, University of Warwick, CV4 7AL Coventry, U.K
| | | | - Demetrio Antonio da Silva Filho
- Grupo de Semicondutores Orgânicos, Instituto de Física, Campus Darcy Ribeiro, Universidade de Brasília, CP 4478, Brasília 70919-970, DF, Brazil
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Matti Knaapila
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jakob Kjelstrup-Hansen
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark
| |
Collapse
|
36
|
Kebede T, Abebe M, Mani D, Paduvilan JK, Thottathi L, Thankappan A, Thomas S, Kamangar S, Shaik AS, Badruddin IA, Aga FG, Kim JY. Phase Behavior and Role of Organic Additives for Self-Doped CsPbI 3 Perovskite Semiconductor Thin Films. MICROMACHINES 2023; 14:1601. [PMID: 37630137 PMCID: PMC10456489 DOI: 10.3390/mi14081601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
The phase change of all-inorganic cesium lead halide (CsPbI3) thin film from yellow δ-phase to black γ-/α-phase has been a topic of interest in the perovskite optoelectronics field. Here, the main focus is how to secure a black perovskite phase by avoiding a yellow one. In this work, we fabricated a self-doped CsPbI3 thin film by incorporating an excess cesium iodide (CsI) into the perovskite precursor solution. Then, we studied the effect of organic additive such as 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) on the optical, structural, and morphological properties. Specifically, for elucidating the binary additive-solvent solution thermodynamics, we employed the Flory-Huggins theory based on the oligomer level of additives' molar mass. Resultantly, we found that the miscibility of additive-solvent displaying an upper critical solution temperature (UCST) behavior is in the sequence CN:DMF > ODT:DMF > DIO:DMF, the trends of which could be similarly applied to DMSO. Finally, the self-doping strategy with additive engineering should help fabricate a black γ-phase perovskite although the mixed phases of δ-CsPbI3, γ-CsPbI3, and Cs4PbI6 were observed under ambient conditions. However, the results may provide insight for the stability of metastable γ-phase CsPbI3 at room temperature.
Collapse
Affiliation(s)
- Tamiru Kebede
- Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.K.); (M.A.); (D.M.)
- Department of Physics, College of Natural and Computational Science, Bonga University, Bonga P.O. Box 334, Ethiopia
| | - Mulualem Abebe
- Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.K.); (M.A.); (D.M.)
| | - Dhakshnamoorthy Mani
- Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.K.); (M.A.); (D.M.)
| | | | - Lishin Thottathi
- Department of Physics and Mathematics, Università Cattolica del Sacro Cuore, Via della Garzetta, 48, 25133 Brescia, BS, Italy;
| | | | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India;
| | - Sarfaraz Kamangar
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (S.K.); (A.S.S.); (I.A.B.)
| | - Abdul Saddique Shaik
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (S.K.); (A.S.S.); (I.A.B.)
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (S.K.); (A.S.S.); (I.A.B.)
| | - Fekadu Gochole Aga
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| |
Collapse
|
37
|
Hong S, Park B, Balamurugan C, Lee J, Kwon S. Impact of solvents on doctor blade coatings and bathocuproine cathode interlayer for large-area organic solar cell modules. Heliyon 2023; 9:e18209. [PMID: 37519700 PMCID: PMC10372324 DOI: 10.1016/j.heliyon.2023.e18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Efforts to commercialize organic solar cells (OSCs) by developing roll-to-roll compatible modules have encountered challenges in optimizing printing processes to attain laboratory-level performance in fully printable OSC architectures. In this study, we present efficient OSC modules fabricated solely through printing methods. We systematically evaluated the impact of processing solvents on the morphology of crucial layers, such as the hole transport, photoactive, and electron transport layers, applied using the doctor blade coating method, with a particular focus on processability. Notably, deposition of charge transport layer using printing techniques is still a challenging task, mainly due to the hydrophobic characteristic of the organic photoactive layer. To overcome this issue, we investigated the solvent effect of a well-studied cathode interlayer, bathocuproine (BCP). We were able to form a uniform thin BCP film (∼10 nm) on a non-fullerene based organic photoactive layer using the doctor bladed coating method. Our results showed that the use of volatile alcohols in the BCP processing required a delicate balance between wettability and vaporization, which contrasted with the results for spin-coated films. These findings provide important insights into improving the efficiency of printing techniques for depositing charge transport layers. The fully printed OSC modules, featuring uniform and continuous BCP layer formation, achieved an impressive power conversion efficiency of 10.8% with a total area of 10.0 cm2 and a geometrical fill factor of 86.5%.
Collapse
Affiliation(s)
- Soonil Hong
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Byoungwook Park
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Chandran Balamurugan
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jinho Lee
- Department of Physics, Incheon National University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Sooncheol Kwon
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
38
|
Yang X, Li B, Zhang X, Li S, Zhang Q, Yuan L, Ko DH, Ma W, Yuan J. Intrinsic Role of Volatile Solid Additive in High-Efficiency PM6:Y6 Series Nonfullerene Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301604. [PMID: 36929606 DOI: 10.1002/adma.202301604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/09/2023] [Indexed: 06/16/2023]
Abstract
Organic nonfullerene solar cells (ONSCs) have made unprecedented progress; however, morphology optimization of ONSCs is proven to be particularly challenging relative to classical fullerene-based devices. Here, a novel volatile solid additive (VSA), 2-hydroxy-4-methoxybenzophenone (2-HM), is reported for achieving high-efficiency ONSCs. 2-HM functions as a universal morphology-directing agent for several well-known PM6:Y6 series nonfullerene blends, viz. PM6:Y6, PM6:BTP-eC9, PM6:L8-BO, leading to a best efficiency of 18.85% at the forefront of reported binary ONSCs. VSAs have recently emerged, while the intrinsic kinetics is still unclear. Herein, a set of in situ and ex situ characterizations is employed to first illustrate the molecule-aggregate-domain transition dynamic process assisted by the VSA. More specifically, the role of 2-HM in individual donor PM6 and acceptor Y6 systems is unlocked, and the function of 2-HM in altering the PM6:Y6 bulk heterojunction blends is further revealed for enhanced photovoltaic performance. It is believed that the achievement brings not only a deep insight into emerging volatile solid additive, but also a new hope to further improve the molecular ordering, film microstructure, and relevant performance of ONSCs.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Siying Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qilin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Doo-Hyun Ko
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
39
|
Chen L, Yi J, Ma R, Ding L, Dela Peña TA, Liu H, Chen J, Zhang C, Zhao C, Lu W, Wei Q, Zhao B, Hu H, Wu J, Ma Z, Lu X, Li M, Zhang G, Li G, Yan H. An Isomeric Solid Additive Enables High-Efficiency Polymer Solar Cells Developed Using a Benzo-Difuran-Based Donor Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301231. [PMID: 37044383 DOI: 10.1002/adma.202301231] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Indexed: 05/23/2023]
Abstract
Currently, nearly all high-efficiency organic photovoltaic devices use donor polymers based on the benzo-dithiophene (BDT) unit. To diversify the choices of building blocks for high-performance donor polymers, the use of benzo-difuran (BDF) units is explored, which can achieve reduced steric hindrance, stronger molecular packing, and tunable energy levels. In previous research, the performance of BDF-based devices lagged behind those of BDT-based devices. In this study, a high efficiency (18.4%) is achieved using a BDF-based polymer donor, which is the highest efficiency reported for BDF donor materials to date. The high efficiency is enabled by a donor polymer (D18-Fu) and the aid of a solid additive (2-chloronaphthalene), which is the isomer of the commonly used additive 1-chloronaphthalene. These results revealed the significant effect of 2-chloronaphthalene in optimizing the morphology and enhancing the device parameters. This work not only provides a new building block that can achieve an efficiency comparable to dominant BDT units but also proposes a new solid additive that can replace the widely used 1-chloronaphthalene additive.
Collapse
Affiliation(s)
- Lu Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Jicheng Yi
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lu Ding
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Jian Chen
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Cuifen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Wen Lu
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Bin Zhao
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
- eFlexPV Limited (Foshan), Guicheng Street, Nanhai District, Foshan, 528200, P. R. China
| |
Collapse
|
40
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Bi P, Wang J, Cui Y, Zhang J, Zhang T, Chen Z, Qiao J, Dai J, Zhang S, Hao X, Wei Z, Hou J. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210865. [PMID: 36715105 DOI: 10.1002/adma.202210865] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Efficient photon utilization is key to achieving high-performance organic photovoltaic (OPV) cells. In this study, a multiscale fibril network morphology in a PBQx-TCl:PBDB-TF:eC9-2Cl-based system is constructed by regulating donor and acceptor phase-transition kinetics. The distinctive phase-transition process and crystal size are systematically investigated. PBQx-TCl and eC9-2Cl form fibril structures with diameters of ≈25 nm in ternary films. Additionally, fine fibrils assembled by PBDB-TF are uniformly distributed over the fibril networks of PBQx-TCl and eC9-2Cl. The ideal multiscale fibril network morphology enables the ternary system to achieve superior charge transfer and transport processes compared to binary systems; these improvements promote enhanced photon utilization efficiency. Finally, a high power conversion efficiency of 19.51% in a single-junction OPV cell is achieved. The external quantum efficiency of the optimized ternary cell exceeds 85% over a wide range of 500-800 nm. A tandem OPV cell is also fabricated to increase solar photon absorption. The tandem cell has an excellent PCE of more than 20%. This study provides guidance for constructing an ideal multiscale fibril network morphology and improving the photon utilization efficiency of OPV cells.
Collapse
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiangbo Dai
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Fu J, Fong PWK, Liu H, Huang CS, Lu X, Lu S, Abdelsamie M, Kodalle T, Sutter-Fella CM, Yang Y, Li G. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat Commun 2023; 14:1760. [PMID: 36997533 PMCID: PMC10063688 DOI: 10.1038/s41467-023-37526-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Non-fullerene acceptors based organic solar cells represent the frontier of the field, owing to both the materials and morphology manipulation innovations. Non-radiative recombination loss suppression and performance boosting are in the center of organic solar cell research. Here, we developed a non-monotonic intermediate state manipulation strategy for state-of-the-art organic solar cells by employing 1,3,5-trichlorobenzene as crystallization regulator, which optimizes the film crystallization process, regulates the self-organization of bulk-heterojunction in a non-monotonic manner, i.e., first enhancing and then relaxing the molecular aggregation. As a result, the excessive aggregation of non-fullerene acceptors is avoided and we have achieved efficient organic solar cells with reduced non-radiative recombination loss. In PM6:BTP-eC9 organic solar cell, our strategy successfully offers a record binary organic solar cell efficiency of 19.31% (18.93% certified) with very low non-radiative recombination loss of 0.190 eV. And lower non-radiative recombination loss of 0.168 eV is further achieved in PM1:BTP-eC9 organic solar cell (19.10% efficiency), giving great promise to future organic solar cell research.
Collapse
Affiliation(s)
- Jiehao Fu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Patrick W K Fong
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Chieh-Szu Huang
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Shirong Lu
- School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, China
| | - Maged Abdelsamie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Tim Kodalle
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Yang Yang
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
43
|
Pang S, Chen Z, Li J, Chen Y, Liu Z, Wu H, Duan C, Huang F, Cao Y. High-efficiency organic solar cells processed from a real green solvent. MATERIALS HORIZONS 2023; 10:473-482. [PMID: 36468609 DOI: 10.1039/d2mh01314b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fabrication of organic solar cells (OSCs) depends heavily on the use of highly toxic chlorinated solvents, which are incompatible with industrial manufacturing. The reported alternative solvents such as non-halogenated aromatic hydrocarbons and cyclic ethers are also not really "green" according to the "Globally Harmonized System of Classification and Labelling of Chemicals" of the United Nations. Therefore, processing from real green solvents such as water, alcohols, or anisole will constitute a big breakthrough for OSCs. However, it is fundamentally challenging to obtain high-performance photovoltaic materials processable from these solvents. Herein, we propose the incorporation of a B-N covalent bond, which has a dipole moment of 1.84 Debye, into the conjugated backbone of polymer donors to fabricate high-efficiency OSCs from anisole, a real green and eco-compatible solvent recommended by the United Nations. Based on a newly developed B-N-based polymer, the OSCs with a record-high efficiency of 15.65% in the 0.04 cm2 device and 14.01% in the 1.10 cm2 device have thus been realized via real green processing.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhili Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yuting Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhitian Liu
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
44
|
Yang H, Bao S, Cui N, Fan H, Hu K, Cui C, Li Y. Morphology Optimization of the Photoactive Layer through Crystallinity and Miscibility Regulation for High-performance Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216338. [PMID: 36478504 DOI: 10.1002/anie.202216338] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
On the premise of strongly crystalline materials involved, it is a challenge to control the phase separation of bulk-heterojunction donor/acceptor active layer to fabricate high-performance polymer solar cells (PSCs). Herein, we develop a molecular design strategy of the third component to synthesize three guest materials (namely BTPT, BTP-Th, and BTP-2Th) to address this issue. We investigate and reveal the effect of crystallinity and miscibility of the third component in controlling the phase separation of Y6-derivatives-based blend film. As a result, a remarkable power-conversion efficiency of 18.53 % is obtained in the ternary PSC based on PTQ10 : m-BTP-PhC6 with BTP-Th as the third component, which is a significant improvement with regard to the efficiency of 17.22 % for the control binary device. Our study offers a molecular design strategy to develop a third component for building ternary PSCs in terms of crystallinity and miscibility regulation.
Collapse
Affiliation(s)
- Hang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunan Bao
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Naizhe Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hongyu Fan
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kewei Hu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
45
|
Di Mario L, Garcia Romero D, Pieters MJ, Eller F, Zhu C, Bongiovanni G, Herzig EM, Mura A, Loi MA. Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:2419-2430. [PMID: 36744007 PMCID: PMC9890494 DOI: 10.1039/d2ta08603d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The development of an environmentally friendly fabrication process for non-fullerene acceptor organic solar cells is an essential condition for their commercialization. However, devices fabricated by processing the active layer with green solvents still struggle to reach, in terms of efficiency, the same performance as those fabricated with halogenated solvents. The reason behind this is the non-optimal nanostructure of the active layer obtained with green solvents. Additives in solution have been used to fine-tune the nanostructure and improve the performance of organic solar cells. Therefore, the identification of non-halogenated additives and the study of their effects on the device performance and stability are of primary importance. In this work, we propose the use of diphenyl ether (DPE) as additive, in combination with the non-halogenated solvent o-xylene, to fabricate organic solar cells with a completely halogen-free process. Thanks to the addition of DPE, a best efficiency of 11.7% have been obtained for the system TPD-3F:IT-4F, an increase over 15% with respect to the efficiency of devices fabricated without additive. Remarkably, the stability under illumination of the solar cells is also improved when DPE is used. The addition of DPE has effects on the molecular organization in the active layer, with an enhancement in the donor polymer ordering, showing a higher domain purity. The resulting structure improves the charge carrier collection, leading to a superior short-circuit current and fill factor. Furthermore, a reduction of the non-radiative recombination losses and an improved exciton diffusion, are the results of the superior molecular ordering. With a comprehensive insight of the effects of DPE when used in combination with a non-halogenated solvent, our study provides an approach to make the fabrication of organic solar cell environmentally friendlier and more suitable for large scale production.
Collapse
Affiliation(s)
- Lorenzo Di Mario
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - David Garcia Romero
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Meike J Pieters
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Fabian Eller
- Dynamics and Structure Formation - Herzig Group, Institute of Physics, University of Bayreuth Universitätsstraße 30 Bayreuth 95447 Germany
| | - Chenhui Zhu
- Lawrence Berkeley National Laboratory, Advanced Light Source Berkeley CA 94720 USA
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari Monserrato I-09042 Italy
| | - Eva M Herzig
- Dynamics and Structure Formation - Herzig Group, Institute of Physics, University of Bayreuth Universitätsstraße 30 Bayreuth 95447 Germany
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari Monserrato I-09042 Italy
| | - Maria A Loi
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| |
Collapse
|
46
|
Socol M, Preda N, Breazu C, Petre G, Stanculescu A, Stavarache I, Popescu-Pelin G, Stochioiu A, Socol G, Iftimie S, Thanner C, Rasoga O. Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE. MATERIALS (BASEL, SWITZERLAND) 2022; 16:144. [PMID: 36614483 PMCID: PMC9821753 DOI: 10.3390/ma16010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Lately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials' properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e., electrode micron/nanostructuring, synthesis of new organic materials, use of additives) to improve their performances are still being sought. In this context, we studied the behavior of the common organic bulk heterojunction (P3HT:PC70BM) deposited by matrix-assisted pulsed laser evaporation (MAPLE) with/without 0.3% of 1,8-diiodooctane (DIO) additive on flat and micro-patterned ITO substrates. The obtained results showed that in the MAPLE process, a small quantity of additive can modify the morphology of the organic films and decrease their roughness. Besides the use of the additive, the micro-patterning of the electrode leads to a greater increase in the absorption of the studied photovoltaic structures. The inferred values of the filling factors for the measured cells in ambient conditions range from 19% for the photovoltaic structures with no additive and without substrate patterning to 27% for the counterpart structures with patterning and a small quantity of additive.
Collapse
Affiliation(s)
- Marcela Socol
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Carmen Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Gabriela Petre
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Anca Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Ionel Stavarache
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Andrei Stochioiu
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Sorina Iftimie
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Christine Thanner
- EVGroup, DI Erich Thallner Strasse 1, 4782 St. Florian am Inn, Austria
| | - Oana Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
47
|
Singh AK, Kavungathodi MFM, Mozer AJ, Krishnamoorthy K, Nithyanandhan J. Solvent-Dependent Functional Aggregates of Unsymmetrical Squaraine Dyes on TiO 2 Surface for Dye-Sensitized Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14808-14818. [PMID: 36417560 DOI: 10.1021/acs.langmuir.2c02469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alkyl group wrapped donor-acceptor-donor (D-A-D) based unsymmetrical squaraine dyes SQ1, SQ5, and SQS4 were used to evaluate the effect of sensitizing solvents on dye-sensitized solar cell (DSSC) efficiency. A drastic change in DSSC efficiency was observed when the photo-anodes were sensitized in acetonitrile (bad solvent when considering dye solubility) and chloroform (good solvent) with an Iodolyte (I-/I3-) electrolyte. The DSSC device sensitized with squaraine dyes in acetonitrile showed better photovoltaic performance with enhanced photocurrent generation and photovoltage compared to the device sensitized in chloroform. In a good sensitizing solvent, dyes with long hydrophobic alkyl chains are deleterious forming aggregates on the TiO2 surface, which results in an incident photon-to-current conversion efficiency (IPCE) response mostly from monomeric and dimeric structures. Meanwhile, a bad sensitizing solvent facilitates the formation of well-packed self-assembled structures on the TiO2 surface, which are responsible for a broad IPCE response and high device efficiencies. The photoanode sensitized in the bad sensitizing solvent showed enhanced VOC values of 642, 675, and 699 mV; JSC values of 6.38, 11.1, and 11.69 mA/cm2; and DSSC device efficiencies of 3.0, 5.63, and 6.13% for the SQ1, SQ5, and SQS4 dyes in the absence of a coadsorbent (chenodeoxycholic acid (CDCA)), respectively, which were further enhanced by CDCA addition. Meanwhile, the photoanode sensitized in the good sensitizing solvent showed relatively low photovoltaic VOC values of 640, 652, and 650 mV; JSC values of 5.78, 6.79, and 6.24 mA/cm2; and device efficiencies of 2.73, 3.35, and 3.20% for SQ1, SQ5, and SQS4 in the absence of CDCA, respectively, which were further varied with equivalents of CDCA. The best DSSC device efficiencies of 6.13 and 3.20% were obtained for SQS4 without CDCA, where the dye was sensitized in acetonitrile (bad) and chloroform (good) sensitizing solvents, respectively.
Collapse
Affiliation(s)
- Ambarish Kumar Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munavvar Fairoos Mele Kavungathodi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Attila J Mozer
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
The principles of selecting green solvent additives for optimizing the phase separation structure of polymer solar cells based on PTB7:PC71BM. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Xu X, Li Y, Peng Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107476. [PMID: 34796991 DOI: 10.1002/adma.202107476] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ternary blend organic solar cells (TB-OSCs) incorporating multiple donor and/or acceptor materials into the active layer have emerged as a promising strategy to simultaneously improve the overall device parameters for realizing higher performances than binary devices. Whereas introducing multiple materials also results in a more complicated morphology than their binary blend counterparts. Understanding the morphology is crucially important for further improving the device performance of TB-OSC. This review introduces the solubility and miscibility parameters that affect the morphology of ternary blends. Then, this review summarizes the recent processes of morphology study on ternary blends from the aspects of molecular crystallinity, molecular packing orientation, domain size and purity, directly observation of morphology, vertical phase separation as well as morphological stability. Finally, summary and prospects of TB-OSCs are concluded.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Li
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
50
|
Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|