1
|
Fang Y, Wang L, Zheng X, Ni P, Xu Z, Wang Z, Weng Y, Chen Q, Liu H. Blood-triggered self-sealing and tissue adhesive hemostatic nanofabric. Nat Commun 2025; 16:4910. [PMID: 40425558 PMCID: PMC12116861 DOI: 10.1038/s41467-025-60244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Current hemostatic fabric often encounters the issue of blood seeping or leaking through the fabric and at the junctions between the fabric and tissue, leading to extra blood loss. Herein, we report a hemostatic nanofabric composed of anionic and cationic nanofibers. Upon contact with wound, the porous nanofabric can absorb the interfacial blood and self-seal to form a compact physical barrier through interfiber bonding, preventing blood from longitudinally penetrating the fabric. This process results in the encapsulation of blood components within the electrostatically crosslinked nanofiber network, creating a robust thrombus that reinforces the physical barrier. Moreover, this nanofabric exhibits strong tissue adhesiveness, inhibiting blood seeping out at the seam of the fabric and tissue. Its hemostatic performance in animal injuries surpasses that of standard cotton gauze and Combat GauzeTM. In the pig femoral artery injury, the blood loss from the nanofabric is only ca. 8% of that from Combat GauzeTM. The nanofabric exhibits excellent biodegradability, hemocompatibility, cytocompatibility, antibacterial activity, and wound healing promotion.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Xinwei Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Peng Ni
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Zhibo Xu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Ziying Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China.
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China.
| |
Collapse
|
2
|
Jiang SY, Shen KW, Brandón MG, Lu SB, Tomberlin JK, Tang XT, Wang H, Xiang FM, Chen XX, Zhang ZJ. Using black soldier fly larval frass to restore soil health. BIORESOURCE TECHNOLOGY 2025; 432:132701. [PMID: 40398567 DOI: 10.1016/j.biortech.2025.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
The importance of sustainable solutions for restoring soil health amidst increasing soil degradation and organic waste accumulation has gained significant attention. Black soldier fly larval (BSFL) bioconversion offers a promising solution by converting organic wastes into value-added products, such as larval biomass and frass. BSFL frass, the main output of the bioconversion, is increasingly recognized for its potential to restore soil health. Here, this paper provides a comprehensive synthesis of BSFL frass production and properties, and explores its role in mitigating multiple problems related to soil degradation. Finally, this paper further discusses the challenges and future directions for the effective, safe, and sustainable use of BSFL frass. In summary, this paper revealed that BSFL frass, with its unique physicochemical properties and a variety of beneficial bioactive compounds and microorganisms, holds the potential to address problems such as soil acidification, fertility degradation, microbial dysbiosis, and soil-borne diseases, thereby restoring soil health.
Collapse
Affiliation(s)
- Shuo-Yun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Ke-Wei Shen
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | | | - Sheng-Biao Lu
- Yangtze River Delta Health Agriculture Research Institute, Tongxiang Economic HiTech Zone, Tongxiang 314500, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Xiao-Tian Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology Zhejiang University, Hangzhou, China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conversion, Restoration and Ecological Services, National Plateau Wetland Research Center, Southwest Forestry University, Kunming 650224, China
| | - Fang-Ming Xiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Xue-Xin Chen
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Zhi-Jian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Yan X, Lin Z, Shen H, Chen Y, Chen L. Photo-responsive antibacterial metal organic frameworks. J Mater Chem B 2025. [PMID: 40370037 DOI: 10.1039/d5tb00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The misuse and overuse of antibiotics have caused the emergence of antibiotic-resistant bacteria, making bacterial infections more challenging. The increasing prevalence of multidrug-resistant pathogens has driven researchers to explore novel therapeutic strategies. Phototherapy strategies that utilize photo-responsive biomaterials for their antibacterial properties have gained widespread attention due to their capability of precisely controlling bacterial inactivation with minimal side effects. Despite their potential, photodynamic therapies suffer from phototoxicity and low efficiency of photosensitizers, while photothermal therapy risks overheating, which may harm healthy tissues, thus restricting its broader application. Metal organic frameworks (MOFs) have unique physicochemical properties, which provide a promising way to deal with these challenges. MOFs can function as reservoirs, loading and releasing antibacterial agents, such as antibiotics or metal ions, upon light illumination by virtue of their metastable coordination bonds. Their porous structures enable controlled drug release and encapsulation of photosensitizers. Furthermore, MOFs' tunable composition and pore structure allow for the light-triggered generation of heat and reactive oxygen species, enhancing their antibacterial effectiveness. By doping MOFs with functional materials, it is possible to achieve multi-mode antibacterial effects. In this review, we will outline recent advancements of photo-responsive antibacterial MOFs, categorize their underlying mechanisms of action and highlight their prospects in addressing bacterial resistance.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Zhengzheng Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - He Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Liang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
4
|
He M, Huang Y, Wang J, Chen Z, Xie J, Cui Z, Xu D, Zhang X, Yao W. Advances in polysaccharide-based antibacterial materials. Int J Biol Macromol 2025; 308:142598. [PMID: 40158563 DOI: 10.1016/j.ijbiomac.2025.142598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Microbial contamination is a major threat to the public health and a primary cause of food spoilage, leading to significant economic losses worldwide. Various materials have been used to combat microbes, including inorganic materials, metals and polymers. Among these, natural polymers have attracted much attention in both academic and industrial research due to their abundance, renewability, biocompatibility, biodegradability and ease of processing. Polysaccharides, such as cellulose and chitosan (chitin), are a crucial category of natural polymers. However, most polysaccharides lack inherent antibacterial activity, limiting their applications in fields like antibacterial packaging and wound dressing etc. Therefore, it is crucial to increase their antibacterial property to expand their application as green antibacterial materials. Various methods, including blending, grafting and in-situ synthesis, have been used to fabricate polysaccharide-based antibacterial materials. This review highlights the major advancements and potential of novel polysaccharide-based antibacterial materials, primarily used in antibacterial food packaging or wound dressings. Moreover, the future prospects and challenges of polysaccharide-based antibacterial materials and the incorporated antimicrobial compounds are also discussed.
Collapse
Affiliation(s)
- Meng He
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yujia Huang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinhua Wang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zitong Chen
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinshuo Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhicheng Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Xinjiang Zhang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wei Yao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
5
|
Li Y, Huang N, Sun Y, Peng K, Min T, Jiang X, Yi Y. Development of multifunctional quaternary ammonium cellulose coating for fruit preservation. Int J Biol Macromol 2025; 305:141126. [PMID: 39961572 DOI: 10.1016/j.ijbiomac.2025.141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Due to the lack of preservation technology and cold chain logistics, the decay loss rate of fruits and vegetables is surprisingly high. To meet the demands of environmental protection and food preservation, sustainable coating materials that fabricated by biowaste to wealth approach can efficiently cover the challenges. Hence, quaternary ammonium lotus root residue celluloses (QACs) were homogeneously synthesized by reacting cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride for 24 h. In terms of the chemical structure, morphology, rheological property and biocompatibility as well as antimicrobial ability, QACs were characterized. The antibacterial mechanism was investigated at cellular level via disruption of membrane integrity, metabolic inactivation, destruction of antioxidant system. Meanwhile, due to the nature source of cellulose, QACs exhibited inherent outstanding biocompatibility. QACs could extend preservation time of strawberry for least 3 d by decreasing the weight loss and maintaining the hardness and springiness, as well as inhibit the growth of pathogenic bacteria. The residual amount of QACs coating on the surface of strawberries was <0.1 mg kg-1, featuring with easy cleaning and safety. This biowaste-derived coating for strawberry preservation not only provides a new strategy for fruit preservation platforms but also expands the high-value application of biowaste resources in the agro-industry.
Collapse
Affiliation(s)
- Yajie Li
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nan Huang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ying Sun
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Kaidi Peng
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Ting Min
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Xueyu Jiang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| | - Yang Yi
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| |
Collapse
|
6
|
Xie F, Liu N, Liu X, Feng X, Yang Z, He Z, Cai J. Insights into folic acid functionalization of self-assembled octenyl succinic anhydride starch micelles towards targeted delivery of selenium nanoparticles. Int J Biol Macromol 2025; 308:142352. [PMID: 40120899 DOI: 10.1016/j.ijbiomac.2025.142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Selenium nanoparticles (SeNPs) exhibit significant potential in antitumor therapy. However, challenges such as aggregation and lack of targeting capability limit their application. Herein, we developed selenium-loaded octenyl succinic anhydride starch (OSAS) micelles functionalized with folic acid (FA) for targeted tumor delivery. The FA-OSAS-SeNPs were synthesized through self-assembly, incorporating SeNPs into FA-conjugated OSAS micelles. Fourier Transform Infrared (FTIR) spectroscopy and UV-visible spectrophotometry confirmed the successful synthesis of FA-OSAS-SeNPs. The nanoparticles exhibited an average size of 131.66 ± 7.88 nm and a zeta potential of -19.54 ± 0.33 mV, with encapsulation efficiency and drug loading capacity of approximately 87.28 % and 8.96 %, respectively. FA-OSAS-SeNPs demonstrated good stability across various conditions, including different dilution ratios, temperatures, pH levels, and ionic strengths. In vitro studies showed that FA-OSAS-SeNPs exhibited significant targeted inhibitory effects on cervical cancer (HeLa) cells and markedly increased intracellular ROS levels, inducing apoptosis. This study presents a novel and effective strategy for targeted SeNPs delivery systems in tumor therapy, offering a valuable reference for future development of nanomaterials for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Nian Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaofang Feng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhaoxing Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
7
|
Long S, Ding F, Huang X, Shi J, Povey M, Zou X. Environmentally friendly pretreatment of chitin using relatively low concentration KOH/urea mixture for enhanced nanofiber preparation. Int J Biol Macromol 2025; 306:141520. [PMID: 40020818 DOI: 10.1016/j.ijbiomac.2025.141520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Traditional methods to prepare chitin nanofibers require circular chemical treatment to further purify the chitin from the seller and the morphology of the prepared nanofibers is commonly rod-like one. This study introduces an approach utilizing low-temperature freeze pretreatment of chitin in a relatively low concentration KOH/urea mixture. The crystallinity of β-chitin reduced as the concentration of KOH increased in the pretreatment solvent. The concentration of urea had little effect on the crystallinity of chitin. The pretreated chitin was then oxidized in a 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)/NaBr/NaClO system to prepare nanofibers. The morphologies of the nanofibers can be regulated by oxidizing the chitin pretreated with different concentration of KOH. The nanofibers obtained by oxidizing chitin pretreated by 3 wt% KOH/ 1 wt% urea mixture showed rod-like morphologies with length about 150 nm. The carboxyl content of nanofibers prepared with KOH/urea mixture freeze treated chitin increased compared to that of nanofibers prepared with solely freeze treated chitin. In addition, the pretreatment solvent can be used to treat α-chitin and can be reused. The freeze KOH/urea mixture pretreatment methods can be extended to treat other biomasses for nanofiberization.
Collapse
Affiliation(s)
- Siman Long
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuyuan Ding
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaowei Huang
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Li H, Wang Y, Kang Y, He Y, Nie J, Ma C, Yang X, Chen Z, Lu C. Novel injectable self-healing bifunctionalized chitosan hydrogel with cell proliferation and antibacterial activity for promoting wound healing. Int J Biol Macromol 2025; 306:141259. [PMID: 39978512 DOI: 10.1016/j.ijbiomac.2025.141259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Wound healing is a complex and continuous process and there is an urgent need to develop effective, functional wound dressings to accelerate wound healing. In this study, we developed an injectable self-healing dual-modified chitosan composite hydrogel, referred to as CSTA@Gel. This hydrogel exhibits good properties, including effective tissue adhesion, rapid hemostatic ability, and good cytocompatibility and hemocompatibility. Additionally, the incorporation of modified adenine and thymine enhances its cell proliferation-promoting and antimicrobial properties, demonstrating significant antibacterial activity against Staphylococcus aureus and Escherichia coli. Histological and immunohistochemical analyses reveal that treatment with CSTA@Gel significantly promotes wound healing, increases collagen deposition, and accelerates angiogenesis. These findings indicate that this hydrogel design presents a promising strategy for developing of novel wound dressings.
Collapse
Affiliation(s)
- Hua Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie He
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Junqi Nie
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Chao Ma
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cuifen Lu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Lu Y, Geng W, Li L, Xie F, Zhang M, Xie H, Cai J. Enhanced antibacterial and antibiofilm activities of quaternized ultra-highly deacetylated chitosan against multidrug-resistant bacteria. Int J Biol Macromol 2025; 298:140052. [PMID: 39832600 DOI: 10.1016/j.ijbiomac.2025.140052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant (MDR) bacterial infections pose a severe threat to global public health and present significant challenges in the treatment of bacterial keratitis. The escalation of antimicrobial resistance (AMR) underscores the urgent need for alternative therapeutic strategies. In this study, we report the homogeneous synthesis of quaternized ultra-highly deacetylated chitosan (QUDCS) using a sequential acid-base combination approach. The optimized QUDCS-2 exhibits broad-spectrum antibacterial activity through a membrane-disruption mechanism driven by electrostatic, hydrogen bonding, and hydrophobic interactions, while maintaining low cytotoxicity and high selectivity. Compared to less deacetylated counterparts, QUDCS-2 demonstrates superior stability in enzyme-rich environments and effectively inhibits and eradicates mature biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, QUDCS-2 exhibits a remarkable ability to prevent the development of antimicrobial resistance. In a mouse keratitis model, QUDCS-2 shows excellent biocompatibility and significant antibacterial efficacy, providing strong support for its potential as a long-term, effective antimicrobial agent.
Collapse
Affiliation(s)
- Yiwen Lu
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Li
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Xie
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jie Cai
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Luo H, Xu H, Zhang H, Li X, Wu Q, Gao T. Photodynamic therapy combined with quaternized chitosan antibacterial strategy for instant and prolonged bacterial infection treatment. Carbohydr Polym 2025; 352:123147. [PMID: 39843052 DOI: 10.1016/j.carbpol.2024.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6. These nano-micelles promoted the solubility and stability of chlorin e6 while maintaining robust singlet oxygen generation under 660 nm laser irradiation. The positively charged nano-micelles facilitated strong electrostatic interactions with bacterial surfaces, promoting efficient adhesion and enabling effective photodynamic antibacterial activity mediated by singlet oxygen. In vitro experiments revealed that the nano-micelles exhibited instant and prolonged antibacterial effects, effectively suppressing bacterial proliferation without inducing resistance and disrupting mature biofilms. Furthermore, in conjunction with laser treatment, nano-micelles exhibited remarkable in vivo antibacterial efficacy, significantly accelerating the healing of skin wounds infected with Methicillin-resistant Staphylococcus aureus while maintaining favorable biocompatibility. These findings highlight the potential of the nano-micelles as a promising non-antibiotic antibacterial formulation, offering a powerful strategy to combat drug-resistant bacterial infections and paving the way for their clinical application in infection management.
Collapse
Affiliation(s)
- Haihua Luo
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangming Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiong Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Tian Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Chen S, Zheng Y, Fang Y, Weng Y, Liu H, Chen Q. Unilateral antibacterial Janus hydrogel hemostatic dressing prepared by the dragging effect of a brush. Colloids Surf B Biointerfaces 2025; 247:114453. [PMID: 39675061 DOI: 10.1016/j.colsurfb.2024.114453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Hemostasis and subsequent anti-inflammatory measures are essential for wound healing in the human body following trauma or surgical procedures. Here, we try to use the dragging effect of a brush to prepare a Janus hydrogel with the least amount of bacteriostatic agent. The synthesized suspension of polyvinylbenzene-silica@quaternary ammonium salt (PDVB-SiO2@NR4+) Janus particles (JNPs) was selected as ink and brush coated onto one side of a polyacrylic acid (PAA) hydrogel, resulting in Janus hydrogel (JNPs≌PAA). The anisotropic chemical composition, wetting properties, adhesion capabilities, and the obtained hemostatic performance of the Janus hydrogel were studied thoroughly. The hydrophilic PAA side promoted tissue adhesion, while the hydrophobic JNPs side exhibited antibacterial effects. The Janus hydrogel presented perfect hemostatic effect in vivo, owing to the procoagulant effect of the adhesive layer, negative charges, and blood-blocking properties of the hydrophobic layer. The presence of quaternary ammonium groups in the Janus hydrogel imparted strong antibacterial activity against E. coli and S. aureus. Furthermore, the Janus hydrogel showed a low hemolysis rate and high cell safety. This multifunctional hydrogel material holds great promise for wound treatment and expands the applications of hydrogel materials in the biomedical field.
Collapse
Affiliation(s)
- Siqi Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Yanyan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China.
| |
Collapse
|
12
|
Ashurbekova K, Alonso-Lerma B, Ashurbekova K, Muriqi A, Barandiaran L, Janković IŠ, Modin E, Santos JI, Perez-Jimenez R, Petravić M, Nolan M, Knez M. Growing Hybrid Cuticles: Metallochitins as an Emerging Family of Bioactive Mimics of Chitin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10118-10128. [PMID: 39885658 DOI: 10.1021/acsami.4c19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates. In vitro testing confirmed that the MLD-grown metallochitins not only promote the growth of various cell lines but also prevent adhesion of both Gram-negative and Gram-positive bacteria. The choice of the metal in the hybrid enables selective antimicrobial activity against Gram-negative bacteria or comprehensive antibacterial effects, which can be controlled as desired.
Collapse
Affiliation(s)
| | | | | | - Arbresha Muriqi
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | | | - Iva Šarić Janković
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Evgeny Modin
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
| | - José I Santos
- NMR Facility, SGIker, University of the Basque Country (UPV/EHU), Avenida Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Raul Perez-Jimenez
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
- CIC bioGUNE, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Mladen Petravić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Mato Knez
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
13
|
Bai Y, Liu Z, Niu T, Yi Y, Dou H, Song L, Ren L, Zhao J. Intelligent Microneedles Patch with Wireless Self-Sensing and Anti-Infective Actions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411125. [PMID: 39719660 DOI: 10.1002/smll.202411125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Indexed: 12/26/2024]
Abstract
Traditional microneedle (MN) technology offers unique advantages in treating wound infections; however, its single-function design lacks the capability for real-time monitoring of wound conditions, often resulting in uncontrolled drug release. Herein, an anti-infective and intelligent MN patch (SP-CSMN) integrating three functional modules is developed, including temperature monitoring, Bluetooth wireless communication, and responsive drug release. The patch employed chitosan (CS) as a porous substrate, filled with temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) to encapsulate and release the antibiotic rifampicin. With the integrated sensing chip, SP-CSMN enabled continuous temperature monitoring and real-time feedback via smartphone Bluetooth communication. When the wound temperature exceeds 36.5 °C for 6 h, the system can automatically identify the infection occurrence and activate the heating module to trigger PNIPAM contraction, triggering rifampicin release. This self-sensing and intelligent release cycles can repeat throughout its life-cycle. The SP-CSMN demonstrated precisely temperature-induced drug release and enhanced antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. Furthermore, it sensitively monitored wound temperature changes in infected mice and significantly accelerated wound healing via controlled drug delivery. This advanced MN system offers a promising solution for efficient management of bacterial wound infections.
Collapse
Affiliation(s)
- Yutong Bai
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Ziting Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Tianmu Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Lingjie Song
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
14
|
Yu J, Huang X, Wu F, Feng S, Cheng R, Xu J, Cui T, Li J. 3D-Printed Hydrogel Scaffolds Loaded with Flavanone@ZIF-8 Nanoparticles for Promoting Bacteria-Infected Wound Healing. Gels 2024; 10:835. [PMID: 39727592 DOI: 10.3390/gels10120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing. This work reports the development of a 3D-printed hydrogel scaffold incorporating flavanone (FLA)-loaded ZIF-8 nanoparticles (FLA@ZIF-8 NPs) within a composite matrix of κ-carrageenan (KC) and konjac glucomannan (KGM). The scaffold forms a stable dual-network structure through the chelation of KC with potassium ions and intermolecular hydrogen bonding between KC and KGM. This dual-network structure not only enhances the mechanical stability of the scaffold but also improves its adaptability to complex wound environments. In mildly acidic wound conditions, FLA@ZIF-8 NPs release Zn2+ and flavanone in a controlled manner, providing sustained antibacterial effects and promoting wound healing. In vivo studies using a rat full-thickness infected wound model demonstrated that the FLA@ZIF-8/KC@KGM hydrogel scaffold significantly accelerated wound healing, showcasing its superior performance in the treatment of infected wounds.
Collapse
Affiliation(s)
- Jian Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Fangying Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Tingting Cui
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| |
Collapse
|
15
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk‐Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403729. [PMID: 39246220 PMCID: PMC11618742 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Felipe P. Perona Martínez
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Romana Schirhagl
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Małgorzata K. Włodarczyk‐Biegun
- Polymer ScienceZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Biotechnology CentreThe Silesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| |
Collapse
|
16
|
Yang P, Xie F, Zhu L, Selvaraj JN, Zhang D, Cai J. Fabrication of chitin-fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering. J Biomed Mater Res A 2024; 112:2257-2272. [PMID: 39007419 DOI: 10.1002/jbm.a.37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Wang W, Fu C, Du Y, Zheng H, Zhang Y, Song Y, Sun W, Wang X, Ma Q. Aqueous-Aqueous Triboelectric Nanogenerators Empowered Multifunctional Wound Healing System with Intensified Current Output for Accelerating Infected Wound Repair. Adv Healthc Mater 2024; 13:e2401676. [PMID: 38896055 DOI: 10.1002/adhm.202401676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy. The A-A TENGs are founded on a principle of 100% contact interface and efficient post-contact separation of the immiscible interface within the aqueous two-phase system (ATPS), enhancing charge transfer and subsequently increasing current performance. Leveraging this intensified current output, this system demonstrates efficient therapeutic efficacies over infected wounds both in vitro and in vivo, including stimulating fibroblast migration and proliferation, boosting angiogenesis, enhancing collagen deposition, eradicating bacteria, and reducing inflammatory cells. Moreover, the conductive hydrogel ensures the uniformity and integrity of the electric field covering the wound site, and exhibits multiple synergistic therapeutic effects. With the capability to realize accelerated wound healing, the developed "A-A TENGs empowered multifunctional wound healing system" presenting an excellent prospect in clinical wound therapy.
Collapse
Affiliation(s)
- Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Chongyang Fu
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yanfeng Du
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yage Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xiaoxiong Wang
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
18
|
Wang X, Ren M, Wang N, Ling J, He Y, Huang S, Ouyang XK. Zeolitic imidazolate framework-8@polydopamine decorated carboxylated chitosan hydrogel with photocatalytic and photothermal antibacterial activity for infected wound healing. J Colloid Interface Sci 2024; 675:1040-1051. [PMID: 39008922 DOI: 10.1016/j.jcis.2024.07.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Open wounds are susceptible to bacterial infections, and antibiotics are commonly used to treat these infections. However, widespread use of antibiotics will easily induce bacterial resistance. Green antibacterial agents serve as excellent alternative for antibiotics in infection therapy. In this work, polydopamine (PDA) was used to modify the surface of ZIF-8, which not only enhances the water stability of Zeolitic imidazolate framework-8(ZIF-8) but also improves its photocatalytic and photothermal capabilities. ZIF-8@PDA was incorporated into carboxylated chitosan (CCS) films as an antibacterial agent, the resulting ZIF-8@PDA-CCS films exhibit excellent ionic/photocatalytic/photothermal antibacterial performance. The film exhibited an impressive 99% in vitro bacterial inhibition rate. After treatment with ZIF-8@PDA-CCS, the bacteria in infected wounds can be completely suppressed. These findings suggest that ZIF-8@PDA-CCS could serve as a potentional antibacterial dressing.
Collapse
Affiliation(s)
- Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Miaoyan Ren
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yuhuan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shuyi Huang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
19
|
Yang Y, He S, Wang W, Lu Y, Ren B, Dan C, Ji Y, Yu R, Ju X, Qiao X, Xiao Y, Cai J, Hong X. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Macromol Rapid Commun 2024; 45:e2400528. [PMID: 39422630 DOI: 10.1002/marc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Hypoxic diabetic foot ulcers (HDFUs) pose a challenging chronic condition characterized by oxidative stress damage, bacterial infection, and persistent inflammation. This study introduces a novel therapeutic approach combining ergothioneine (EGT), luteolin (LUT), and quaternized chitosan oxidized dextran (QCOD) to address these challenges and facilitate wound healing in hypoxic DFUs. In vitro, assessments have validated the biosafety, antioxidant, and antimicrobial properties of the ergothioneine-luteolin-chitin (QCOD@EGT-LUT) hydrogel. Furthermore, near-infrared II (NIR-II) fluorescence image-guided the application of QCOD@EGT-LUT hydrogel in simulated HDFUs. Mechanistically, QCOD@EGT-LUT hydrogel modulates the diabetic wound microenvironment by reducing reactive oxygen species (ROS). In vivo studies demonstrated increased expression of angiogenic factors mannose receptor (CD206) and latelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), coupled with decreased inflammatory factors tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), thereby promoting diabetic wound healing through up-regulation of transforming growth factor β-1 (TGF-β1).
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Shengnan He
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Wumei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yiwen Lu
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bingtao Ren
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Ci Dan
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yang Ji
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Rui Yu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xinpeng Ju
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xue Qiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuling Xiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuechuan Hong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| |
Collapse
|
20
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
21
|
Santinon C, de Vargas Brião G, da Costa TB, de Moura Junior CF, Beppu MM, Vieira MGA. Development of quaternized agar-based materials for the coronavirus inactivation. Int J Biol Macromol 2024; 278:134865. [PMID: 39163951 DOI: 10.1016/j.ijbiomac.2024.134865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.
Collapse
Affiliation(s)
- Caroline Santinon
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Giani de Vargas Brião
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Talles Barcelos da Costa
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Celso Fidelis de Moura Junior
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Melissa Gurgel Adeodado Vieira
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil.
| |
Collapse
|
22
|
Hu D, Long D, Xia T, Wang Y, Zhang S, Wang J, Shi X, Wang Y. Accelerated healing of intractable biofilm-infected diabetic wounds by trypsin-loaded quaternized chitosan hydrogels that disrupt extracellular polymeric substances and eradicate bacteria. Int J Biol Macromol 2024; 278:134677. [PMID: 39142478 DOI: 10.1016/j.ijbiomac.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Complex and stubborn bacterial biofilm infections significantly hinder diabetic wound healing and threaten public health. Therefore, a dressing material that effectively clears biofilms and promotes wound healing is urgently required. Herein, we introduce a novel strategy for simultaneously dispersing extracellular polymeric substances and eradicating drug-resistant bacteria. We prepared an ultrabroad-spectrum and injectable quaternized chitosan (QCS) hydrogel loaded with trypsin, which degrades biofilm extracellular proteins. Increased temperature initiated QCS gelation to form the hydrogel, enabling the sustained release of trypsin and effective adherence of the hydrogel to irregularly shaped wounds. To reproduce clinical scenarios, biofilms formed by a mixture of Staphylococcus aureus (S. aureus), Methicillin-resistant S. aureus, and Pseudomonas aeruginosa were administered to the wounds of rats with streptozotocin-induced diabetes. Under these severe infection conditions, the hydrogel efficiently suppressed inflammation, promoted angiogenesis, and enhanced collagen deposition, resulting in accelerated healing of diabetic wounds. Notably, the hydrogel demonstrates excellent biocompatibility without cytotoxicity. In summary, we present a trypsin-loaded QCS hydrogel with tremendous clinical applications potential for the treatment of chronic infected wounds.
Collapse
Affiliation(s)
- Di Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Tian Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunhao Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Shicheng Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Jianjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China.
| |
Collapse
|
23
|
Zhou L, Shi W, Zhang X, Liu M, Zhang L, Jiang X, Chen Z. Injectable Tannin-Containing Hydroxypropyl Chitin Hydrogel as Novel Bioactive Pulp Capping Material Accelerates Repair of Inflamed Dental Pulp. Biomolecules 2024; 14:1129. [PMID: 39334895 PMCID: PMC11430630 DOI: 10.3390/biom14091129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Conventional pulp capping materials have limited anti-inflammatory capacity. It is necessary to develop more effective pulp capping material for the treatment of inflamed pulps. Tannic acid (TA) is a natural, water-soluble polyphenol with antimicrobial and anti-inflammatory properties. This study aimed to investigate the effects of a tannin-containing hydroxypropyl chitin hydrogel (HPCH/TA hydrogel) as an innovative pulp capping material. The physicochemical properties of the composite hydrogels were characterized. The effects of HPCH/TA hydrogel as a pulp capping material were evaluated in vitro and in vivo. The underlying mechanism of the anti-inflammatory effects of HPCH/TA hydrogel was explored. The HPCH/TA hydrogel demonstrated favorable temperature sensitivity, injectability, and antibacterial properties. In vitro, the HPCH/TA hydrogel effectively promoted the proliferation of human dental pulp cells and inhibited interleukin-1β, interleukin-6, and tumor necrosis factor-α expression, possibly by suppressing the nuclear factor kappa-B pathway. In vivo, on the fourth day after capping, the HPCH/TA hydrogel group showed lower inflammatory scores compared to the control and iRoot BP Plus (commercial pulp capping material) group. By the sixth week, complete reparative dentin formation was observed in the HPCH/TA hydrogel group, with no difference in thickness compared to the iRoot BP Plus group. Collectively, the HPCH/TA hydrogel holds promise as a bioactive pulp capping material for promoting the repair of inflamed pulp in vital pulp therapy.
Collapse
Affiliation(s)
- Linfang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.Z.); (X.Z.); (M.L.); (L.Z.)
| | - Wenjie Shi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China;
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.Z.); (X.Z.); (M.L.); (L.Z.)
| | - Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.Z.); (X.Z.); (M.L.); (L.Z.)
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.Z.); (X.Z.); (M.L.); (L.Z.)
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China;
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.Z.); (X.Z.); (M.L.); (L.Z.)
| |
Collapse
|
24
|
Sun S, Cao L, Wu J, Sun B, El-Newehy M, Moydeen Abdulhameed M, Mo X, Yang X, Zheng H. A novel antibiotic: the antimicrobial effects of CFBSA and its application on electronspun wound dressing. Biomed Mater 2024; 19:055010. [PMID: 38917818 DOI: 10.1088/1748-605x/ad5ba4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
N-chloro-N-fluorobenzenesulfonylamide (CFBSA), was a novel chlorinating reagent, which exhibits potential antibacterial activities. In this study, CFBSA was confirmed as a wide-broad antimicrobial and bactericidal drug against different gram-negative bacteria, gram-positive bacteria and fungi, while it was found to have low cytotoxicity for eukaryotic cells. In addition, microorganism morphology assay and oxidative stress test was used to determine the antimicrobial mechanisms of CFBSA. According to the results, CFBSA probably had a target on cell membrane and killed microorganism by disrupting its cell membrane. Then, CFBSA was first combined with poly(L-lactide-co-caprolactone) (PLCL)/SF via electrospinning and applied in wound dressings. The characterization of different PLCL/SF of CFBSA-loaded nanofibrous mats was investigated by SEM, water contact angle, Fourier transform infrared spectroscopy, cell compatibility and antimicrobial test. CFBSA-loaded PLCL/SF nanofibrous mats showed excellent antimicrobial activities. In order to balance of the biocompatibility and antibacterial efficiency, SP-2.5 was selected as the ideal loading concentration for further application of CFBSA-loaded PLCL/SF. In conclusion, the electrospun CFBSA-loaded PLCL/SF nanofibrous mat with its broad-spectrum antimicrobial and bactericidal activity and good biocompatibility showed enormous potential for wound dressing.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lei Cao
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianjin Yang
- Key Lab for Advanced Material & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200231, People's Republic of China
| | - Hao Zheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
25
|
Fang Y, Lin Y, Wang L, Weng Y, Chen Q, Liu H. Clotting Blood into an Adhesive Gel by Hemostatic Powder Based on Cationic/Anionic Polysaccharides and Laponite. Biomacromolecules 2024; 25:3335-3344. [PMID: 38717974 DOI: 10.1021/acs.biomac.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hemostatic powder is widely employed for emergency bleeding control due to its ability to conform to irregularly shaped wounds, ease of use, and stable storage. However, current powders exhibit limited tissue adhesion and insufficient support for thrombus formation, making them easily washed away by blood. In this study, a hybrid powder (QAL) was produced by mixing quaternized chitosan (QCS) powder, catechol-modified alginate (Cat-SA) powder, and laponite (Lap) powder. Upon addition of QAL, the blood quickly transformed to a robust and adhesive blood gel. The adhesion strength of the blood gel was up to 31.33 ± 1.56 kPa. When compared with Celox, QAL showed superior performance in promoting hemostasis. Additionally, QAL exhibited effectiveness in eliminating bacteria while also demonstrating outstanding biocompatibility with cells and blood. These favorable properties, including strong coagulation, adhesion to wet tissue, antibacterial activity, biosafety, ease of use, and stable storage, make QAL a promising emergency hemostatic agent.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| |
Collapse
|
26
|
Fang Y, Lin Y, Wang L, Zheng X, Chen Q, Weng Y, Liu H. Coagulating blood into adhesive gel by hybrid powder based on oppositely charged polysaccharide/tannic acid-modified mesoporous bioactive glass. Int J Biol Macromol 2024; 270:132440. [PMID: 38761899 DOI: 10.1016/j.ijbiomac.2024.132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Hemostatic powder is widely utilized in emergency situations to control bleeding due to its ability to work well on wounds with irregular shapes, ease of application, and long-term stability. However, traditional powder often suffers from limited tissue adhesion and insufficient support for blood clot formation, leaving it susceptible to displacement by the flow of blood. This study introduces a hemostatic powder composed of tannic modified mesoporous bioactive glass (TMBG), cationic quaternized chitosan (QCS), and anionic hyaluronic acid modified with catechol group (HADA). The resulting TMBG/QCS/HADA based hemostatic powder (TMQH) rapidly absorbs plasma, concentrating blood coagulation factors. Simultaneously, the water-soluble QCS and HADA interact to form a 3D network structure, which can be strengthened by crosslinking with TMBG. This network effectively captures clustered blood coagulation factors, leading to a strong and adhesive thrombus that resists disruption from blood flow. TMQH exhibits superior efficacy in promoting hemostasis compared to Celox™ both in rat arterial injuries and non-compressible liver puncture wounds. TMQH demonstrates excellent antibacterial activity, cytocompatibility, and blood compatibility. These outstanding superiorities in blood clotting capability, wet tissue adhesion, antibacterial activity, safety for living organisms, ease of application, and long-term stability, make TMQH highly suitable for emergency hemostasis.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Xinwei Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
27
|
Lin X, Long H, Zhong Z, Ye Q, Duan B. Biodegradable chitin nanofiber-alginate dialdehyde hydrogel: An injectable, self-healing scaffold for anti-tumor drug delivery. Int J Biol Macromol 2024; 270:132187. [PMID: 38723827 DOI: 10.1016/j.ijbiomac.2024.132187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Injectable hydrogels fabricated from natural polymers have attracted increasing attentions for their potential in biomedical application owing to the biocompatibility and biodegradability. A new class of natural polymer based self-healing hydrogel is constructed through dynamic covalent bonds. The injectable self-healing hydrogels are fabricated by introducing alginate aldehyde to form Schiff base bonds with the chitin nanofibers. These hydrogels demonstrate excellent self-healing properties, injectability, and pH-responsive sol-gel transition behaviors. As a result, they can serve as carriers to allow an effective encapsulation of doxorubicin (DOX) for drug delivery. Furthermore, these hydrogels exhibit excellent biocompatibility and degradability in vitro and in vivo. The sustained release of DOX from the hydrogels effectively suppresses tumor growth in animal models without causing significant systemic toxicity, suggesting their potential application in anti-tumor therapies.
Collapse
Affiliation(s)
- Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haitao Long
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China
| | - Zibiao Zhong
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China.
| | - Qifa Ye
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China.
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
28
|
Fang Y, Lin Y, Wang L, Chen Q, Weng Y, Liu H. Gluing blood into adhesive gel by oppositely charged polysaccharide dry powder inspired by fibrin fibers coagulation mediator. Carbohydr Polym 2024; 333:121998. [PMID: 38494208 DOI: 10.1016/j.carbpol.2024.121998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
29
|
Wu X, Li W, Herlah L, Koch M, Wang H, Schirhagl R, Włodarczyk-Biegun MK. Melt electrowritten poly-lactic acid /nanodiamond scaffolds towards wound-healing patches. Mater Today Bio 2024; 26:101112. [PMID: 38873104 PMCID: PMC11170272 DOI: 10.1016/j.mtbio.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Multifunctional wound dressings, enriched with biologically active agents for preventing or treating infections and promoting wound healing, along with cell delivery capability, are highly needed. To address this issue, composite scaffolds with potential in wound dressing applications were fabricated in this study. The poly-lactic acid/nanodiamonds (PLA/ND) scaffolds were first printed using melt electrowriting (MEW) and then coated with quaternized β-chitin (QβC). The NDs were well-dispersed in the printed filaments and worked as fillers and bioactive additions to PLA material. Additionally, they improved coating effectiveness due to the interaction between their negative charges (from NDs) and positive charges (from QβC). NDs not only increased the thermal stability of PLA but also benefitted cellular behavior and inhibited the growth of bacteria. Scaffolds coated with QβC increased the effect of bacteria growth inhibition and facilitated the proliferation of human dermal fibroblasts. Additionally, we have observed rapid extracellular matrix (ECM) remodeling on QβC-coated PLA/NDs scaffolds. The scaffolds provided support for cell adhesion and could serve as a valuable tool for delivering cells to chronic wound sites. The proposed PLA/ND scaffold coated with QβC holds great potential for achieving fast healing in various types of wounds.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical Engineering, University Medical Centre, Ant. Deusinglaan 1, 9713, AW, Groningen, the Netherlands
- Polymer Science, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Wenjian Li
- Advanced Production Engineering, Engineering and Technology Institute of Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Lara Herlah
- Department of Biomedical Engineering, University Medical Centre, Ant. Deusinglaan 1, 9713, AW, Groningen, the Netherlands
| | - Marcus Koch
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hui Wang
- Nanostructured Materials and Interfaces, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Centre, Ant. Deusinglaan 1, 9713, AW, Groningen, the Netherlands
| | - Małgorzata K. Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
30
|
Lin X, Peng N, Huang P, Xiong Q, Lin H, Tang C, Tsauo C, Peng L. Potential of quaternized chitins in peri-implantitis treatment: In vitro evaluation of antibacterial, anti-inflammatory, and antioxidant properties. Int J Biol Macromol 2024; 272:132612. [PMID: 38795897 DOI: 10.1016/j.ijbiomac.2024.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Xiqiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huishan Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
31
|
Cai M, Huang L, Lv S, Jiang X. Synthesis and characterization of thermosensitive 2-hydroxypropyl-trimethylammonium chitin and its antibacterial sponge for noncompressible hemostasis and tissue regeneration. Carbohydr Polym 2024; 331:121879. [PMID: 38388062 DOI: 10.1016/j.carbpol.2024.121879] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Noncompressible hemorrhage is a leading cause of preventable death in battlefield/civilian trauma. The development of novel injectable and biodegradable hemostatic sponges, with rapid shape recovery and excellent antibacterial activity that can control hemorrhage in noncompressible bleeding sites and promote in situ tissue regeneration is still urgently needed. In this study, thermo/pH sensitive 2-hydroxypropyl-trimethylammonium chitins (QCHs) with low degree of quaternization substitution (DS: 0.07-0.23) and high degree of acetylation (DA: 0.91-0.94) were synthesized homogeneously for the first time. Their chemical compositions including DS and DA were characterized accurately by proton NMR for the first time. High strength QCH based sponges with good water/blood absorbency, rapid shape recovery and good antibacterial activity were prepared without using any crosslinkers but only due to their thermosensitive property, since they are soluble at low temperature but insoluble at high temperature. Compared with commercial products, the QCH sponges with cationic groups had the stronger pro-coagulant ability, better hemostatic effect in normal/heparinized liver perforation and femoral artery models in rats and porcine subclavian arteriovenous resection model. Moreover, the porous structure and biodegradability of the QCH sponges could promote in situ tissue regeneration. Overall, the QCH sponges show great clinical translational potential for noncompressible hemorrhage and tissue regeneration.
Collapse
Affiliation(s)
- Mingzhen Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
32
|
Yang Y, Ma Y, Wu M, Wang X, Zhao Y, Zhong S, Gao Y, Cui X. Fe 3+-induced coordination cross-linking gallic acid-carboxymethyl cellulose self-healing hydrogel. Int J Biol Macromol 2024; 267:131626. [PMID: 38631590 DOI: 10.1016/j.ijbiomac.2024.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Meiliang Wu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xueping Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
33
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
34
|
Ma X, Lin X, Chang C, Duan B. Chitinous Bioplastic Enabled by Noncovalent Assembly. ACS NANO 2024; 18:8906-8918. [PMID: 38483090 DOI: 10.1021/acsnano.3c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Natural polymeric-based bioplastics usually lack good mechanical or processing performance. It is still challenging to achieve simultaneous improvement for these two usual trade-off features. Here, we demonstrate a full noncovalent mediated self-assembly design for simultaneously improving the chitinous bioplastic processing and mechanical properties via plane hot-pressing. Tannic acid (TA) is chosen as the noncovalent mediator to (i) increase the noncovalent cross-link intensity for obtaining the tough noncovalent network and (ii) afford the dynamic noncovalent cross-links to enable the mobility of chitin molecular chains for benefiting chitinous bioplastic nanostructure rearrangement during the shaping procedure. The multiple noncovalent mediated network (chitin-TA and chitin-chitin cross-links) and the pressure-induced orientation nanofibers structure endow the chitinous bioplastics with robust mechanical properties. The relatively weak chitin-TA noncovalent interactions serve as water mediation switches to enhance the molecular mobility for endowing the chitin/TA bioplastic with hydroplastic processing properties, rendering them readily programmable into versatile 2D/3D shapes. Moreover, the fully natural resourced chitinous bioplastic exhibits superior weld, solvent resistance, and biodegradability, enabling the potential for diverse applications. The full physical cross-linking mechanism highlights an effective design concept for balancing the trade-off of the mechanical properties and processability for the polymeric materials.
Collapse
Affiliation(s)
- Xiao Ma
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
35
|
Tian Y, Chen L, He M, Du H, Qiu X, Lai X, Bao S, Jiang W, Ren J, Zhang A. Repurposing Disulfiram to Combat Acute Respiratory Distress Syndrome with Targeted Delivery by LET-Functionalized Nanoplatforms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12244-12262. [PMID: 38421312 DOI: 10.1021/acsami.3c17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious respiratory condition characterized by a damaged pulmonary endothelial barrier that causes protein-rich lung edema, an influx of proinflammatory cells, and treatment-resistant hypoxemia. Damage to pulmonary endothelial cells and inflammation are pivotal in ARDS development with a key role played by endothelial cell pyroptosis. Disulfiram (DSF), a drug that has long been used to treat alcohol addiction, has recently been identified as a potent inhibitor of gasdermin D (GSDMD)-induced pore formation and can thus prevent pyroptosis and inflammatory cytokine release. These findings indicate that DSF is a promising treatment for inflammatory disorders. However, addressing the challenge posed by its intrinsic physicochemical properties, which hinder intravenous administration, and effective delivery to pulmonary vascular endothelial cells are crucial. Herein, we used biocompatible liposomes incorporating a lung endothelial cell-targeted peptide (CGSPGWVRC) to produce DSF-loaded nanoparticles (DTP-LET@DSF NPs) for targeted delivery and reactive oxygen species-responsive release facilitated by the inclusion of thioketal (TK) within the liposomal structure. After intravenous administration, DTP-LET@DSF NPs exhibited excellent cytocompatibility and minor systemic toxicity, effectively inhibited pyroptosis, mitigated lipopolysaccharide (LPS)-induced ARDS, and prevented cytokine storms resulting from excessive immune reactions in ARDS mice. This study presents a straightforward nanoplatform for ARDS treatment that potentially paves the way for the clinical use of this nanomedicine.
Collapse
Affiliation(s)
- Yu Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ming He
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Hu Du
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinwu Lai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Suya Bao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Weixi Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - An Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
36
|
Fang Y, Lin Y, Wang L, Chen Q, Weng Y, Sun C, Liu H. Cohering Plasma into Adhesive Gel by Natural Biopolymer-Nanoparticle Hybrid Powder for Efficient Hemostasis and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11263-11274. [PMID: 38404067 DOI: 10.1021/acsami.3c17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hemostatic powder is commonly used in emergency bleeding control due to its suitability for irregularly shaped wounds, ease of use, and stable storage. However, traditional powder often has limited tissue adhesion and weak thrombus support, which makes it vulnerable to displacement by blood flow. Herein, we have developed a tricomponent hemostatic powder (MQS) composed of mesoporous bioactive glass nanoparticle (MBG), positively charged quaternized chitosan (QCS), and negatively charged catechol-modified alginate (SADA). Upon application to the wound, MBG with its high specific surface area quickly absorbs plasma, concentrating the blood coagulation factor. Simultaneously, the water-soluble QCS and SADA interact with each other and form a net, which can be further cross-linked by MBG. This network efficiently binds and entraps clustered blood coagulation factors, ultimately resulting in the formation of a durable and robust thrombus. Furthermore, the formed net adheres to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from the synergistic effect of these three components, MQS demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox in both arterial injuries and noncompressible liver puncture wounds. Furthermore, MQS can effectively accelerate wound healing. In addition, MQS exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of MQS, including strong blood clotting, wet tissue adherence, antibacterial activity, wound healing ability, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| | - Caixia Sun
- Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou,Fujian 350007, China
| |
Collapse
|
37
|
Xu J, Huang H, Sun C, Yu J, Wang M, Dong T, Wang S, Chen X, Cui T, Li J. Flexible Accelerated-Wound-Healing Antibacterial Hydrogel-Nanofiber Scaffold for Intelligent Wearable Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5438-5450. [PMID: 38112719 DOI: 10.1021/acsami.3c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible epidermal sensors hold significant potential in personalized healthcare and multifunctional electronic skins. Nonetheless, achieving both robust sensing performance and efficient antibacterial protection, especially in medical paradigms involving electrophysiological signals for wound healing and intelligent health monitoring, remains a substantial challenge. Herein, we introduce a novel flexible accelerated-wound-healing biomaterial based on a hydrogel-nanofiber scaffold (HNFS) via electrostatic spinning and gel cross-linking. We effectively engineer a multifunctional tissue nanoengineered skin scaffold for wound treatment and health monitoring. Key features of HNFS include high tensile strength (24.06 MPa) and elasticity (214.67%), flexibility, biodegradability, and antibacterial properties, enabling assembly into versatile sensors for monitoring human motion and electrophysiological signals. Moreover, in vitro and in vivo experiments demonstrate that HNFS significantly enhances cell proliferation and skin wound healing, provide a comprehensive therapeutic strategy for smart sensing and tissue repair, and guide the development of high-performance "wound healing-health monitoring" bioelectronic skin scaffolds. Therefore, this study provides insights into crafting flexible and repairable skin sensors, holding potential for multifunctional health diagnostics and intelligent medical applications in intelligent wearable health monitoring and next-generation artificial skin fields.
Collapse
Affiliation(s)
- Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Hui Huang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Cheng Sun
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Jiafei Yu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Mingming Wang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Ting Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Shiheng Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Xinhao Chen
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Tingting Cui
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| |
Collapse
|
38
|
Zhang J, Yuan X, Li H, Yu L, Zhang Y, Pang K, Sun C, Liu Z, Li J, Ma L, Song J, Chen L. Novel porphyrin derivative containing cations as new photodynamic antimicrobial agent with high efficiency. RSC Adv 2024; 14:3122-3134. [PMID: 38249670 PMCID: PMC10797330 DOI: 10.1039/d3ra07743h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Bacterial infections from chronic wounds affect about 175 million people each year and are a significant clinical problem. Through the integration of photodynamic therapy (PDT) and chemotherapy, a new photosensitizer consisting of ammonium salt N,N-bis-(2-hydroxyethyl)-N-(6-(4-(10,15,20-trimesitylporphyrin-5-yl) phenoxy) hexane)-N-methanaminium bromide, TMP(+) was successfully synthesized with a total reaction yield of 10%. The novel photosensitizer consists of two parts, a porphyrin photosensitizer part and a quaternary ammonium salt part, to achieve the synergistic effect of photodynamic and chemical antibacterial activity. With the increase of TMP(+) concentration, the diameter of the PCT fiber membranes (POL/COL/TMP(+); POL, polycaprolactone; COL, collagen) gradually increased, which was caused by the charge of the quaternary ammonium salt. At the same time, the antibacterial properties were gradually improved. We finally selected the PCT 0.5% group for the antibacterial experiment, with excellent performance in fiber uniformity, hydrophobicity and biosafety. The antibacterial experiment showed that the modified porphyrin TMP(+) had a better antibacterial effect than others. In vivo chronic wound healing experiments proved that the antibacterial and anti-inflammatory effect of the PCTL group was the best, further confirmed by H&E histological analysis, immunofluorescence and immunohistochemistry mechanism experiments. This research lays the foundation for the manufacture of novel molecules that combine chemical and photodynamic strategies.
Collapse
Affiliation(s)
- Jiajing Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Xiaoqian Yuan
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Hongsen Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Yulong Zhang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Keyi Pang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Chaoyue Sun
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Zhongyang Liu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jie Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liying Ma
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| |
Collapse
|
39
|
Fang Y, Lin Y, Ou Y, Wang L, Chen J, Sun C, Wen Y, Liu H. Antibacterial and hemostatic chitin sponge directly constructed from Pleurotus Eryngii via top-down approach. Int J Biol Macromol 2024; 254:127902. [PMID: 37939752 DOI: 10.1016/j.ijbiomac.2023.127902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Chitin, the second most abundant polysaccharide on earth, possesses unique characteristics, including biosafety, biodegradability, and procoagulant activity, making it an attractive material for hemostasis. However, the conventional bottom-up construction of chitin-based materials is intricate and time-consuming. In this study, we have developed a top-down strategy to prepare a 3D porous chitin-based hemostatic sponge with exceptional hemostatic properties and antibacterial activity, directly from the spongy Pleurotus eryngii. The top-down method involves deproteinization, in situ quaternization, and tannin acid crosslinking. The obtained sponge has an interconnected microporous structure with high porosity (89.7 ± 3.2 %), endowing it with high water absorption (2047 ± 105 %) and rapid water-triggered shape-memory behavior (< 2 s). The sponge exhibits superior blood coagulant activity and outperforms standard medical gauze, gelatin sponge, and chitosan sponge in both topical artery and non-compressive liver puncture wound. In addition, the sponge exhibited significant antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. In summary, this study provides a straightforward and practical approach for constructing an antibacterial and hemostatic chitin sponge that could be a valuable option for treating bleeding wounds.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China.
| | - Caixia Sun
- Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yunxiang Wen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
40
|
Shi W, Zhang D, Han L, Shao W, Liu Q, Song B, Yan G, Tang R, Yang X. Supramolecular chitin-based hydrogels with self-adapting and fast-degradation properties for enhancing wound healing. Carbohydr Polym 2024; 323:121374. [PMID: 37940271 DOI: 10.1016/j.carbpol.2023.121374] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Due to the features of high porosity, high water content, and tunable viscoelasticity, hydrogels have attracted numerous attentions in the promotion of wound closure. However, the lack of abilities to adapt the wounds of complex shapes and prevent postoperative adhesion limits their therapeutic outcomes in wound healing. To address the above challenges, the supramolecular chitin-based (SMCT) hydrogels are created via the host-guest pre-assembly strategy of β-cyclodextrin (βCD) and adamantane (Ad). The reversible host-guest crosslinks endow the SMCT hydrogels with highly dynamic networks, which can better accommodate irregularly shaped wounds compared with the covalent chitin-based hydrogels with similar mechanical properties. In addition, the SMCT hydrogels show rapid in vivo degradability (degradation time ≈ 2 days) due to the enzyme-triggered degradability of chitin, which do not need to be removed from the wounds after service and thus avoid the secondary damage to skin during dressing change. Owing to the hydrophobic cavity of βCD, the SMCT hydrogels can facilitate the load and release of curcumin with anti-inflammatory, antibacterial, and antioxidative activities, thereby significantly improving the wound healing efficiency. This work provides valuable guidance to the design of self-adaptive and fast-degradable hydrogels that hold great potential for enhancing the wound healing in skin and other tissues.
Collapse
Affiliation(s)
- Wenwen Shi
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Dongqin Zhang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Luyao Han
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Wanting Shao
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Qimeng Liu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Bangyu Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xuefeng Yang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China.
| |
Collapse
|
41
|
Rajendran S, Muthusamy M. Exploring the purity of chitin from crustacean sources using deep eutectic solvents: A machine learning approach. J Appl Biomater Funct Mater 2024; 22:22808000241248887. [PMID: 38742818 DOI: 10.1177/22808000241248887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE Chitin a natural polymer is abundant in several sources such as shells of crustaceans, mollusks, insects, and fungi. Several possible attempts have been made to recover chitin because of its importance in biomedical applications in various forms such as hydrogel, nanoparticles, nanosheets, nanowires, etc. Among them, deep eutectic solvents have gained much consideration because of their eco-friendly and recyclable nature. However, several factors need to be addressed to obtain a pure form of chitin with a high yield. The development of an innovative system for the production of quality chitin is of prime importance and is still challenging. METHODS The present study intended to develop a novel and robust approach to investigate chitin purity from various crustacean shell wastes using deep eutectic solvents. This investigation will assist in envisaging the important influencing parameters to obtain a pure form of chitin via a machine learning approach. Different machine learning algorithms have been proposed to model chitin purity by considering the enormous experimental dataset retrieved from previously conducted experiments. Several input variables have been selected to assess chitin purity as the output variable. RESULTS The statistical criteria of the proposed model have been critically investigated and it was observed that the results indicate XGBoost has the maximum predictive accuracy of 0.95 compared with other selected models. The RMSE and MAE values were also minimal in the XGBoost model. In addition, it revealed better input variables to obtain pure chitin with minimal processing time. CONCLUSION This study validates that machine learning paves the way for complex problems with substantial datasets and can be an inexpensive and time-saving model for analyzing chitin purity from crustacean shells.
Collapse
Affiliation(s)
- Sasireka Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | |
Collapse
|
42
|
Liu H, Jiang X. Structure and properties of sulfopropyl chitins prepared in NaOH/urea aqueous solutions. Carbohydr Res 2023; 534:108982. [PMID: 37976957 DOI: 10.1016/j.carres.2023.108982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A series of sulfopropyl chitins (SCs) with the degree of substitution (DS) ranging from 0.11 to 0.40 and high degree of acetylation (DA ≥ 0.82) were homogeneously synthesized by reacting chitin with sodium 3-chloro-2-hydroxypropanesulfonate (SCHPS) in NaOH/urea aqueous solutions under mild conditions. The structure and properties of SCs were characterized with 1H NMR, CP/MAS 13C NMR, FT-IR, XPS, XRD, elemental analysis, GPC, AFM, ζ-potential and rheological measurements. The mild reaction conditions resulted in less N-deacetylation and uniform structures with substitution occurring predominantly at the hydroxyl groups at C6 of the chitin backbone. The DS value for SC soluble in dilute alkali solution is as low as 0.16. SC exhibited good solubility in distilled water when its DS value reached 0.28. Water-soluble SCs self-assembled in water into micelles by the attractive hydrophobic and hydrogen-bonding interactions between polymer chains. The water-insoluble SC-2 with lower DS could thermally form smart hydrogels at body temperature (37 °C) in physiological condition. Moreover, the SCs exhibited good biocompatibility, making them suitable for biomedical applications.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
43
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
44
|
Ruan H, Bek M, Pandit S, Aulova A, Zhang J, Bjellheim P, Lovmar M, Mijakovic I, Kádár R. Biomimetic Antibacterial Gelatin Hydrogels with Multifunctional Properties for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54249-54265. [PMID: 37975260 PMCID: PMC10694820 DOI: 10.1021/acsami.3c10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Marko Bek
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Jian Zhang
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | | | - Martin Lovmar
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- Welspect
AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roland Kádár
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
45
|
Sun Y, Liu M, Tang X, Zhou Y, Zhang J, Yang B. Culture-Delivery Live Probiotics Dressing for Accelerated Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53283-53296. [PMID: 37948751 DOI: 10.1021/acsami.3c12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
46
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
47
|
Hu W, Chen Z, Chen X, Feng K, Hu T, Huang B, Tang J, Wang G, Liu S, Yang G, Wang Z. Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing. Carbohydr Polym 2023; 319:121193. [PMID: 37567698 DOI: 10.1016/j.carbpol.2023.121193] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.
Collapse
Affiliation(s)
- Weikang Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xi Chen
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Feng
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bohan Huang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinlan Tang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shiyu Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China.
| | - Zijian Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
48
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
49
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
50
|
Lu HT, Lin C, Wang YJ, Hsu FY, Hsu JT, Tsai ML, Mi FL. Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release. Carbohydr Polym 2023; 315:121002. [PMID: 37230625 DOI: 10.1016/j.carbpol.2023.121002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated β-chitin (DAC-β-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of β-chitin to DAC-β-chitin leads to the formation of self-gelling DAC-β-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-β-chitin and increased the pore size and porosity of the DAC-β-chitin scaffold. The DAC-β-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with β-chitin scaffolds, FD-functionalized DAC-β-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan, ROC
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Yi-Ju Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Ju-Ting Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, ROC.
| |
Collapse
|