1
|
Liu Y, Lin X, Li B, He H, Xing H, Zhang Y, Song Y, Zhang S, Deng C. Bio-assisted synthesis of cobalt-based heterostructures in carbon nanobelts for enhanced oxygen catalysis in Zn-air battery. J Colloid Interface Sci 2025; 687:303-313. [PMID: 39955932 DOI: 10.1016/j.jcis.2025.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The delicate design and fabrication of transition metal-based heterostructures with abundant active sites are a crucial issue for achieving superior electrocatalytic properties. In this work, we introduce a novel bio-assisted strategy for assembling cobalt-based heterostructures on nitrogen and phosphorus codoped carbon nanobelts, which serve as highly efficient bifunctional oxygen catalysts. The fungus of Rhizopus is utilized to encapsulate the Co-CoTe within the in-situ formed nitrogen and phosphorus codoped carbon nanotubes (NPCNT), resulting in hairy nanobelts with a porous structure and excellent flexibility. Both experimental and theoretical analyses results reveal the superior geometric configuration, electronic structure, and the low energy barrier of the bio-Co-CoTe@NPCNT nanobelts. Benefitting from these advantages, the bio-Co-CoTe@NPCNT nanobelts demonstrate rapid kinetics, impressive catalytic performance, and high durability in both oxygen evolution and reduction (OER/ORR) reactions. The aqueous zinc-air batteries (ZAB) employing the prepared bio-Co-CoTe@NPCNT nanobelt cathode exhibit the stable cycling properties and good reliability. Furthermore, the solid-state ZAB demonstrates high reliability, pliability, and durability under various deformations.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Xinshuang Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Bing Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hanwen He
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hangyuan Xing
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Yuqing Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Yang Song
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Sen Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China.
| | - Chao Deng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| |
Collapse
|
2
|
Qu H, Liu K, Li Q, Cao T, Chen G, Guan H, Dong C, Yin Z. MOF-on-MOF Derived Co 2P/Ni 2P Heterostructures for High-Performance Supercapacitors. J Phys Chem Lett 2024; 15:10181-10189. [PMID: 39352374 DOI: 10.1021/acs.jpclett.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely used as versatile precursors to fabricate functional nanomaterials with well-defined structures for various applications. Herein, the presynthesized Ni-MOF nanosheets were grown on a Ni foam (NF) substrate, which then guided the nucleation and further growth of Prussian blue analogues (PBA) nanocubes to form MOF-on-MOF of the PBA/Ni-MOF film. This film was subsequently converted into a Co2P/Ni2P heterostructure. The NF-supported Co2P/Ni2P composites exhibited excellent supercapacitor performance, delivering a high specific capacity of 5124.2 mF cm-2 at 1 mA cm-2 and a remarkable capacity retention of 80.69% after 3000 cycles at 10 mA cm-2. An asymmetric supercapacitor assembled using Co2P/Ni2P/NF as the cathode and activated carbon as the anode yielded a maximum energy density of 0.34 mWh cm-2 at a power density of 1.50 mW cm-2. The enhanced supercapacitor performance is attributed to the synergistic effects of the Ni2P and Co2P components with multiple valence states as well as the unique hierarchical structure, which provides efficient pathways for electron and ion transport while mitigating volume expansion during energy storage. This synthetic strategy demonstrates an effective approach to fabricate phosphide-based hybrid materials for high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Honglong Qu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Kaili Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Qiaolin Li
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tiantian Cao
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Gang Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hongtao Guan
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Xian BC, Shen S, Yang T, Qiu Z, Zhang Y, Cao F, Liang X, Chen M, He X, Xia Y, Wang C, Wan W, Zhang W, Xia X, Tu J, Zhou J. Roller-like Spore Carbon Sphere-Orientated Graphene Fibers Prepared via Rheological Engineering for Lithium Sulfur Batteries. ACS NANO 2024; 18:27451-27464. [PMID: 39313355 DOI: 10.1021/acsnano.4c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Flexible batteries with large energy densities, lightweight nature, and high mechanical strength are considered as an eager goal for portable electronics. Herein, we first propose free-standing graphene fiber electrodes containing roller-like orientated spore carbon spheres via rheological engineering. With the help of the orientated microfluidic cospinning technology and the plasma reduction method, spore carbon spheres are self-assembled and orientedly dispersed into numerous graphene flakes, forming graphene fiber electrodes enriched with internal rolling woven structures, which cannot only enhance the electrical contact between active materials but also effectively improve the mechanical strength and structure stability of graphene fiber electrodes. When the designed graphene fibers are combined with the active sulfur cathode and lithium metal anode, the assembled flexible lithium sulfur batteries possess superior electrochemical performance with high capacity (>1000 mA h g-1) and excellent cycling life as well as good mechanical properties. According to density functional theory and COMSOL simulations, the roller-like spore carbon sphere-orientated graphene fiber hosts provide reinforced trapping-catalytic-conversion behavior to soluble polysulfides and nucleation active sites to lithium metal, thus synergistically suppressing the shuttle effect of polysulfides at the cathode side and lithium dendrite growth at the anode side, thereby boosting the whole electrochemical properties of lithium sulfur batteries.
Collapse
Affiliation(s)
- By Chunxiang Xian
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenghui Shen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianqi Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhong Qiu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Huzhou 313000, P. R. China
| | - Xinqi Liang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Xinping He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Wang
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Wangjun Wan
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Wenkui Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinhui Xia
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangping Tu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
| |
Collapse
|
4
|
Miyar HK, Jathanna NN, Selvaraj R, Vinayagam R, Pugazhendhi A, Goveas LC. Multifunctional hydrophobin-like protein (HFB-NJ1): A versatile solution for wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 255:119139. [PMID: 38750996 DOI: 10.1016/j.envres.2024.119139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
As wastewater contains a variety of contaminating bacteria and oily residues, there is an urgent need for environmentally safe bactericidal agents and surfactants which can be applied for wastewater treatment. The present study emphasizes on the potential of hydrophobin-like protein (HFB-NJ1) extracted from sporulating mycelia of Aspergillus sp. NJ1 for wastewater treatment. The purified HFB-NJ1, depicted the presence of one single protein band of molecular size approximately 11-12 kDa on silver-stained SDS-PAGE gel. HFB-NJ1 also presented properties such as surface modification of glass and stable emulsification of sunflower oil. HFB-NJ1 depicted exceptional antibacterial activity against bacterial pathogens such as Bacillus subtilis and Pseudomonas aeruginosa at low MIC of 0.5 μg/mL and 0.75 μg/mL respectively. Additionally, HFB-NJ1 depicted enhanced emulsification of various vegetable and petroleum-based oils (E24 > 80%). HFB-NJ1 effectively reduced gold ions, producing nanospheres with a size of 15.33 nm - a recognized antimicrobial agent. This study underscores the multifunctional attributes of HFB-NJ1, highlighting its efficacy in removing pathogenic bacteria, emulsifying organic compounds from wastewater, and demonstrating a reduction ability for nanoparticle synthesis.
Collapse
Affiliation(s)
- Harshitha Kamath Miyar
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte, India
| | - Neetha Nirupam Jathanna
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangalore, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - A Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Louella Concepta Goveas
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte, India.
| |
Collapse
|
5
|
Luo Z, Wu Y, Xu X, Ju W, Lei W, Wu D, Pan J, Ouyang X. Surface-coated AlF 3 nanolayers enable polysulfide confinement within biomass-derived nitrogen-doped hierarchical porous carbon microspheres for improved lithium-sulfur batteries. J Colloid Interface Sci 2024; 660:657-668. [PMID: 38271802 DOI: 10.1016/j.jcis.2024.01.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The electrically insulating and volumetric deformation of sulfur and the shuttle effect of the intermediate lithium polysulfide (LiPSs) have severely hindered the development of lithium-sulfur batteries (LSBs). Herein, a synergistic strategy of hierarchical porous nitrogen-doped carbon microspheres (PNCM) derived from low-cost biomass with surface-coated AlF3 nanolayer as a multifunctional sulfur host (denoted as PNCM@S@AlF3) was developed. The PNCM not only possesses an abundant pore structure, large surface area, and high electrical conductivity but also features an intrinsic N-doped and fluorinated framework, which effectively enhances the physical adsorption and chemical anchoring to LiPSs. In addition, the AlF3 nanolayer protects the open surface of the porous carbon to isolate sulfur species from the electrolyte to reduce irreversible losses while accelerating the redox kinetics of LiPSs through strong polar adsorption and bonding. Hence, the PNCM@S@AlF3 cathode exhibits an initial capacity as high as 1176.2 mAh/g at 0.2C, and the cycling stability and rate capability are superior to that of PNCM@S without AlF3 coating. Impressively, the PNCM@S@AlF3 cathode delivers stable long-term cycling performance at a high rate of 2C, with 95.6% capacity retention after 500 cycles. This work presents a facile, sustainable, and efficient synergistic strategy for developing advanced LSBs.
Collapse
Affiliation(s)
- Zhenya Luo
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yaqin Wu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xupeng Xu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Wenqi Ju
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Weixin Lei
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Dazhuan Wu
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Junan Pan
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Xiaoping Ouyang
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| |
Collapse
|
6
|
Wang L, Wang T, Hao R, Wang Y. Synthesis and applications of biomass-derived porous carbon materials in energy utilization and environmental remediation. CHEMOSPHERE 2023; 339:139635. [PMID: 37495055 DOI: 10.1016/j.chemosphere.2023.139635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Renewable biomass and its waste are considered among the most promising applications materials owing to the depletion of fossil fuel and concerns about environmental pollution. Notably, advanced porous carbon materials derived from carbon-rich biomass precursors exhibit controllable pore structures, large surface areas, natural microstructures, and abundant functional groups. In addition, these three-dimensional structures provide sufficient reaction sites and fascinating physicochemical properties that are conducive to heteroatom doping and functional modification. This review systematically summarizes the design methods and related mechanisms of biomass-derived porous carbon materials (BDPCMs), discusses how the synthesis conditions influence the structure and performance of the carbon material, and emphasizes the importance of its use in energy utilization and environmental remediation applications. Current BDPCMs challenges and future development strategies are finally discussed to provide systematic information for further synthesis and performance optimization, which are expected to lead to novel ideas for the future development of bio-based carbon materials.
Collapse
Affiliation(s)
- Lei Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, PR China
| | - Teng Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruidi Hao
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Yamei Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, PR China.
| |
Collapse
|
7
|
Shen S, Chen Y, Zhou J, Zhang H, Xia X, Yang Y, Zhang Y, Noori A, Mousavi MF, Chen M, Xia Y, Zhang W. Microbe‐Mediated Biosynthesis of Multidimensional Carbon‐Based Materials for Energy Storage Applications. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202204259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis methods are considered to be a promising technology for engineering new carbon‐based materials or redesigning the existing ones for specific purposes with the aid of synthetic biology. Lots of biosynthetic processes including metabolism, fermentation, biological mineralization, and gene editing have been adopted to prepare novel carbon‐based materials with exceptional properties that cannot be realized by traditional chemical methods, because microbes evolved to possess special abilities to modulate components/structure of materials. In this review, the recent development on carbon‐based materials prepared via different biosynthesis methods and various microbe factories (such as bacteria, yeasts, fungus, viruses, proteins) are systematically reviewed. The types of biotechniques and the corresponding mechanisms for the synthesis of carbon‐based materials are outlined. This review also focuses on the structural design and compositional engineering of carbon‐based nanostructures (e.g., metals, semiconductors, metal oxides, metal sulfides, phosphates, Mxenes) derived from biotechnology and their applications in electrochemical energy storage devices. Moreover, the relationship of the architecture–composition–electrochemical behavior and performance enhancement mechanism is also deeply discussed and analyzed. Finally, the development perspectives and challenges on the biosynthetic carbons are proposed and may pave a new avenue for rational design of advanced materials for the low‐carbon economy.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yanbin Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Jiancang Zhou
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Haomiao Zhang
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinhui Xia
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yefeng Yang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611371 China
| | - Abolhassan Noori
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Mir F. Mousavi
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yang Xia
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wenkui Zhang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
8
|
Wang K, Lu C, Ren Q, Zhang W, Huang H, Zhang J, Gan Y, He X, Xia X, Fang R, Xia Y. Three-Dimensional Laminated Carbon-Sulfur Composite Cathodes Derived from Trichoderma Spores for Lithium-Sulfur Batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chen X, Lin J, Su Y, Tang S. One-Step Carbonization Synthesis of Magnetic Biochar with 3D Network Structure and Its Application in Organic Pollutant Control. Int J Mol Sci 2022; 23:12579. [PMID: 36293433 PMCID: PMC9604314 DOI: 10.3390/ijms232012579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, a magnetic biochar with a unique 3D network structure was synthesized by using a simple and controllable method. In brief, the microbial filamentous fungus Trichoderma reesei was used as a template, and Fe3+ was added to the culture process, which resulted in uniform recombination through the bio-assembly property of fungal hyphae. Finally, magnetic biochar (BMFH/Fe3O4) was synthesized by controlling different heating conditions in a high temperature process. The adsorption and Fenton-like catalytic performance of BMFH/Fe3O4 were investigated by using the synthetic dye malachite green (MG) and the antibiotic tetracycline hydrochloride (TH) as organic pollutant models. The results showed that the adsorption capacity of BMFH/Fe3O4 for MG and TH was 158.2 and 171.26 mg/g, respectively, which was higher than that of most biochar adsorbents, and the Fenton-like catalytic degradation effect of organic pollutants was also better than that of most catalysts. This study provides a magnetic biochar with excellent performance, but more importantly, the method used can be effective in further improving the performance of biochar for better control of organic pollutants.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiacheng Lin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Highlighting the Implantation of Metal Particles into Hollow Cavity Yeast-Based Carbon for Improved Electrochemical Performance of Lithium–Sulfur Batteries. Catalysts 2022. [DOI: 10.3390/catal12090951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The introduction of metal particles into microbe-based carbon materials for application to lithium–sulfur (Li–S) batteries has the three major advantages of pore formation, chemisorption for polysulfides, and catalysis of electrochemical reactions. Metal particles and high specific surface area are often considered to enhance the properties of Li–S batteries. However, there are few data to support the claim that metal particles implanted in microbe-based carbon hosts can improve Li–S battery performance without interfering with the specific surface area. In this work, hollow-cavity cobalt-embedded yeast-based carbon (HC–Co–YC) with low specific surface area was successfully produced by impregnating yeast cells with a solution containing 0.075 M CoCl2 (designated as HC–Co–YC–0.075M). Cobalt particles implanted in yeast carbon (YC) could improve the conductive properties, lithium-ion diffusion, and cycling stability of the sulfur cathode. Compared to previously reported counterpart electrodes without metal particles, the HC–Co–YC–0.075M/S electrode in this study had a high initial specific capacity of 1061.9 mAh g−1 at 0.2 C, maintained a reversible specific capacity of 504.9 mAh g−1 after 500 cycles, and showed a capacity fading rate of 0.1049% per cycle. In conclusion, the combination of cobalt particles and YC with low specific surface area exhibited better cycle stability, emphasizing the importance of implantation of metal particles into carbon hosts for improving the electrochemical properties of Li–S batteries.
Collapse
|
11
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
12
|
Self-restriction to form in-situ N,P co-doped carbon-coated LiFePO4 nanocomposites for high-performance lithium ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhou S, Liu S, Chen W, Cheng Y, Fan J, Zhao L, Xiao X, Chen YH, Luo CX, Wang MS, Mei T, Wang X, Liao HG, Zhou Y, Huang L, Sun SG. A "Biconcave-Alleviated" Strategy to Construct Aspergillus niger-Derived Carbon/MoS 2 for Ultrastable Sodium Ion Storage. ACS NANO 2021; 15:13814-13825. [PMID: 34379979 DOI: 10.1021/acsnano.1c05590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional layered materials commonly face hindered electron transfer and poor structure stability, thus limiting their application in high-rate and long-term sodium ion batteries. In the current study, we adopt finite element simulation to guide the rational design of nanostructures. By calculating the von Mises stress distribution of a series of carbon materials, we find that the hollow biconcave structure could effectively alleviate the stress concentration resulting from expansion. Accordingly, we propose a biconcave-alleviated strategy based on the Aspergillus niger-derived carbon (ANDC) to construct ANDC/MoS2 with a hollow biconcave structure. The ANDC/MoS2 is endowed with an excellent long-term cyclability as an anode of sodium ion batteries, delivering a discharge capacity of 496 mAh g-1 after 1000 cycles at 1 A g-1. A capacity retention rate of 94.5% is achieved, an increase of almost seven times compared with the bare MoS2 nanosheets. Even at a high current density of 5 A g-1, a reversible discharge capacity around 400 mAh g-1 is maintained after 300 cycles. ANDC/MoS2 could also be used for efficient lithium storage. By using in situ TEM, we further reveal that the hollow biconcave structure of ANDC/MoS2 has enabled stable and fast sodiation/desodiation.
Collapse
Affiliation(s)
- Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Sangui Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - JingJing Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Longze Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiang Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - You-Hu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
15
|
Li W, Chen K, Xu Q, Li X, Zhang Q, Weng J, Xu J. Mo
2
C/C Hierarchical Double‐Shelled Hollow Spheres as Sulfur Host for Advanced Li‐S Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wanli Li
- Department of Biomaterials, College of Materials Xiamen University Xiamen 361005 China
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Kai Chen
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Qingchi Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Xingyun Li
- Department of Biomaterials, College of Materials Xiamen University Xiamen 361005 China
| | - Qian Zhang
- Department of Biomaterials, College of Materials Xiamen University Xiamen 361005 China
| | - Jian Weng
- Department of Biomaterials, College of Materials Xiamen University Xiamen 361005 China
| | - Jun Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 China
| |
Collapse
|
16
|
Li W, Chen K, Xu Q, Li X, Zhang Q, Weng J, Xu J. Mo2C/C Hierarchical Double-Shelled Hollow Spheres as Sulfur Host for Advanced Li-S Batteries. Angew Chem Int Ed Engl 2021; 60:21512-21520. [PMID: 34309972 DOI: 10.1002/anie.202108343] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/12/2022]
Abstract
One of the major challenges in the sulfur cathode of the Li-S batteries is to achieve high sulfur loading, fast Li ions transfer, and lithium polysulfides (LiPSs) shuttling suppressing simultaneously. This issue can be well solved by the development of molybdenum carbide decorated N-doped carbon hierarchical double-shelled hollow spheres (Mo2C/C HDS-HSs). The mesoporous thick inner shell and the central void of the HDS-HSs achieve the high sulfur loading, facilitate the ion/electrolyte penetration, and accelerate the charge transfer. The microporous thin outer shell suppresses the LiPSs shuttling and reduces the charge/mass diffusion distance. The double-shelled hollow structure accommodates the volume expansion during lithiation. Furthermore, Mo2C/C composition renders the HDS-HSs cathode with improved conductivity, enhanced affinity to LiPSs, and accelerated kinetics of LiPSs conversion. The structural and compositional advantages render the Mo2C/C/S HDS-HSs electrode with the high specific capacity, excellent rate capability, and ultra-long cycling stability in the composed Li-S batteries.
Collapse
Affiliation(s)
- Wanli Li
- Xiamen University, College of Materials, CHINA
| | - Kai Chen
- Xiamen University, Department of Physics, CHINA
| | - Qingchi Xu
- Xiamen University, Department of Physics, CHINA
| | - Xingyun Li
- Xiamen University, Department of Physics, CHINA
| | - Qian Zhang
- Xiamen University, Department of Biomaterials, CHINA
| | - Jian Weng
- Xiamen University, Department of Biomaterials, CHINA
| | - Jun Xu
- Xiamen University, Department of physics, #422 Si Ming Nan Lu, 361005, Xiamen, CHINA
| |
Collapse
|
17
|
Zhao T, Chen J, Dai K, Zhang J, Yuan M, Li X, Zhang K, Zhang J, Li Y, Liu Z, He H, Li B, Zhang G. Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium-sulfur batteries. J Colloid Interface Sci 2021; 605:129-137. [PMID: 34311307 DOI: 10.1016/j.jcis.2021.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries are greatly expected to be the favored alternatives in the next-generation energy-storage technologies due to their exceptional advantages. However, the shuttle effect and sluggish reaction kinetics of polysulfides largely hamper the practical success of Li-S batteries. Herein, a unique iron carbide (Fe3C) nanoparticles-embedded porous biomass-derived carbon (Fe3C-PBC) is reported as the excellent immobilizer and promoter for polysulfides regulation. Such a distinctive composite strongly couples the vast active sites of Fe3C nanoparticles and the conductive network of porous biomass-derived carbon. Therefore, Fe3C-PBC is endowed with outstanding adsorptivity and catalytic effect toward inhibiting the shuttle effect and facilitating the redox kinetics of polysulfides, demonstrated by the detailed experimental demonstrations and theoretical calculation. With these synergistic effects, the Fe3C-PBC/S electrode embraces a superb capacity retention of 82.7% at 2C over 500 cycles and an excellent areal capacity of 4.81 mAh cm-2 under the high-sulfur loading of 5.2 mg cm-2. This work will inspire the design of advanced hosts based on biomass materials for polysulfides regulation in pursuing the superior Li-S batteries.
Collapse
Affiliation(s)
- Tongkun Zhao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwu Chen
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaiqing Dai
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jingxian Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menglei Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Zhang
- Zhengzhou Tobacco Research Institute of CNTC, No 2 Fengyang Street, Zhengzhou High-Tech Development District, Zhengzhou 450001, China
| | - Jitao Zhang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yaling Li
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhanjun Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hongyan He
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Li
- Zhengzhou Tobacco Research Institute of CNTC, No 2 Fengyang Street, Zhengzhou High-Tech Development District, Zhengzhou 450001, China.
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
| |
Collapse
|
18
|
Xie J, Fan W, Cui H, Feng N, Wang G, Wang H, Liu X, Qiu G, Wu H. A novel highly dispersed tetra-metal nano heterogeneous ozone catalyst derived from microbial adsorption and in situ pyrolysis. NANOTECHNOLOGY 2021; 32:065701. [PMID: 33210616 DOI: 10.1088/1361-6528/abb1ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the pyrolysis of microbial biomasses that adsorb various metal ions has enabled the preparation of carbon-based polymetallic nanomaterials with excellent electrocatalytic and electrical energy storage properties. However, the preparation of ozone catalysts by this technique and the corresponding catalytic oxidation mechanism are still unclear. In this study, an Escherichia coli strain (BL21) was used for tetra-metal (Cu, Fe, Mn and Al) absorption and the obtained microbial biomass was pyrolyzed under the protection of a nitrogen flow at 700 °C and activated at 900 °C to prepare a microbial-char-based tetra-metal ozone catalyst (MCOC). This was used to degrade phenol and coking wastewater and exhibited a strong catalytic capability for coking wastewater, whose chemical oxygen demand removal efficiency of 70.86% is 16.7% higher than that of pure ozone and 14.67%, 7.21% and 3.58% higher than that of three commercial catalysts, respectively. It also improved the efficiency of ozonation for phenol by 33%. The MCOC was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive spectroscopy, transmission electron microscopy and other methods. The results demonstrated that the spherical metal nanoparticles had sizes ranging from 3 nm to 7 nm and that crystals of Fe2O3 and Fe3P were observed. The study showed that the MCOC promoted the production of more hydroxyl radicals and superoxides from ozone, which attack organics. The oxygen vacancies of the catalyst were also investigated. It was proved that the Lewis acid sites on the surface of metal oxides are the active centers of ozone decomposition. Therefore, this work provides a new method for the synthesis of multi-metal nanocomposites and expands the application of biosynthetic nanomaterials.
Collapse
Affiliation(s)
- Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Wei Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Hao Cui
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, People's Republic of China
| | - Ningning Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Guozhen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Hui Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Xinxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| |
Collapse
|
19
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
20
|
Zhu R, Liu F, Li W, Fu Z. In‐situ Generated Ultra‐High Dispersion Sulfur 3D‐Graphene Foam for All‐Solid‐State Lithium Sulfur Batteries with High Cell‐Level Energy Density. ChemistrySelect 2020. [DOI: 10.1002/slct.202002150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruichen Zhu
- School of Materials EngineeringShanghai University of Engineering Science 333 Long Teng Road Shanghai 201620 China
| | - Fangchao Liu
- School of Materials EngineeringShanghai University of Engineering Science 333 Long Teng Road Shanghai 201620 China
| | - Wenyan Li
- School of Materials EngineeringShanghai University of Engineering Science 333 Long Teng Road Shanghai 201620 China
| | - Zhengwen Fu
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan University Shanghai 200433 P.R China
| |
Collapse
|
21
|
Liu B, Zhang Y, Wang Z, Ai C, Liu S, Liu P, Zhong Y, Lin S, Deng S, Liu Q, Pan G, Wang X, Xia X, Tu J. Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003657. [PMID: 32686213 DOI: 10.1002/adma.202003657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur batteries (LSBs) are regarded as promising next-generation energy storage systems, however, the uncontrollable dendrite formation and serious polysulfide shuttling severely hinder their commercial success. Herein, a powerful 3D sponge nickel (SN) skeleton plus in situ surface engineering strategy, to address these issues synergistically, is reported, and a high-performance flexible LSB device is constructed. Specifically, the rationally designed spray-quenched lithium metal on the SN matrix (solid electrolyte interface (SEI)@Li/SN), as dendrite inhibitor, combines the merits of the 3D lithiophilic SN skeleton and the in situ formed SEI layer derived from the spray-quenching process, and thereby exhibits a steady overpotential within 75 mV for 1500 h at 5 mA cm-2 /10 mA h cm-2 . Meanwhile, in situ surface sulfurization of the SN skeleton hybridizing with the carbon/sulfur composite (SC@Ni3 S2 /SN) serves as efficient lithium polysulfide adsorbent to catalyze the overall reaction kinetics. COMSOL Multiphysics simulations and density functional theory calculations are further conducted to explore the underlying mechanisms. As a proof of concept, the well-designed SEI@Li/SN||SC@Ni3 S2 /SN full cell shows excellent electrochemical performance with a negative/positive ratio in capacity of ≈2 and capacity retention of 99.82% at 1 C under mechanical deformation. The novel design principles of these materials and electrodes successfully shed new light on the development of flexible LSBs.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zilin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Changzhi Ai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Sufu Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ping Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu Zhong
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Shengjue Deng
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
22
|
Lyu T, Wang R, Liang L, Chen J, Hasan SW, Lyu D, Tian ZQ, Shen PK. Hierarchical porous oviform carbon capsules with double-layer shells derived from mushroom spores for efficient sodium ion storage. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Li G, Yu J, Yu W, Yang L, Zhang X, Liu X, Liu H, Zhou W. Phosphorus-Doped Iron Nitride Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanosheets on Iron Foam In Situ Derived from Saccharomycetes Cerevisiae for Electrocatalytic Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001980. [PMID: 32614517 DOI: 10.1002/smll.202001980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Indexed: 06/11/2023]
Abstract
It is vitally essential to propose a novel, economical, and safe preparation method to design highly efficient electrocatalysts. Herein, phosphorus-doped iron nitride nanoparticles encapsulated by nitrogen-doped carbon nanosheets are grown directly on the iron foam substrate (P-Fe3 N@NC NSs/IF) by in situ deriving from Saccharomycetes cerevisiae (S. cerevisiae), where anion elements of C, N, and P all from S. cerevisiae replace the hazardous CH4 , NH3 , and H3 P. The diffusion pattern of N, P in S. cerevisiae and contact form between metal and S. cerevisiae observably affect the composition and phase of the product during high-temperature calcination. The obtained P-Fe3 N@NC NSs/IF demonstrates superior electrocatalytic performance for the hydrogen evolution reaction and oxygen evolution reaction, also satisfying durability. Theoretical calculation confirms that Fe sites of P-Fe3 N serve as the active center, and N sites and P doping regulate the hydrogen binding strength to enhance catalytic ability. Additionally, the two-electrode electrolyzer assembled by P-Fe3 N@NC NSs/IF as both anode and cathode electrodes needs only 1.61 V to reach 10 mA cm-2 for overall water splitting with a superb stability. The S. cerevisiae-based process presents a feasible approach for synthesis of nitrides, carbides, phosphides, and electrocatalytic applications.
Collapse
Affiliation(s)
- Guixiang Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, Berlin, 12489, Germany
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
| | - Wanqiang Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Linjing Yang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
24
|
In situ fabrication of ultrathin few-layered WSe2 anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. J Colloid Interface Sci 2020; 574:217-228. [DOI: 10.1016/j.jcis.2020.04.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 01/01/2023]
|
25
|
Chen G, Yu H, Lin F, Zhang Z, Yan B, Song Y. Utilization of edible fungi residues towards synthesis of high-performance porous carbon for effective sorption of Cl-VOCs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138475. [PMID: 32334213 DOI: 10.1016/j.scitotenv.2020.138475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Edible fungi residues are natural fungi etching feedstock that provide loose structure with multidimensional framework. These advantages help KOH to penetrate rigid cytoderm into innermost space and attain porous carbon with high porosity. Utilization of edible fungi residue not only avoids artificial operation of fungal inoculation and culture steps, but also provides new method for waste disposal. As expected, carbon derived from three fungi residues attains excellent porosity. The highest surface area reaches 3463.3 m2/g, which is approximately 2 and 6 times higher than original biomass (1630.7 m2/g) and commercial carbon (691.1 m2/g), respectively. Filiform structures derived from hyphae growth contribute to pores formation. Coprinus comatus fungi residue as optimal raw material obtains hierarchical pore channel with dominant micropores (76%) and natural nitrogen doping (1.28 at.%). The highest DCM and CB adsorption capacities attain 716.9 and 641.7 mg/g, respectively, which are 13 and 6 times higher than that of commercial carbon. The positive effects from fungi growth improve DCM adsorption particularly. DCM adsorption over fungi residues derived carbon is twice higher than original biomass carbon. Competitive adsorption, recyclability, surface variations and desorption components after saturated adsorption are fully investigated for practical application. The present study provides a new insight for developing high-value technology for synthesizing Cl-VOCs adsorbents using edible fungi residues.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China.
| | - Zhiman Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
26
|
Hu J, Yuan X, Wang C, Shao X, Yang B, Abdul Razzaq A, Zhao X, Lian Y, Deng Z, Chen M, Peng Y. Self-Phosphorization of MOF-Armored Microbes for Advanced Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000755. [PMID: 32374506 DOI: 10.1002/smll.202000755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of "turning waste into wealth." Challenges remain to preserve the biological structure through the harsh and laborious post-synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal-organic frameworks (MOFs) through in situ assembly to fabricate N, P co-doped porous carbon capsules expressing self-phosphorized metal phosphides. While the MOF coating serves as an armoring layer for facilitating the morphology inheritance from the bio-templates and provides metal sources for generating extra porosity and electrochemically active sites, the P-rich phospholipids and N-rich proteins from the plasma membrane enable carbon matrix doping and further yield metal phosphides. These unique structural and compositional features endow the carbon capsules with great capabilities in suppressing polysulfide shuttling and catalyzing reversible oxygen conversion, ultimately leading to the superb performance of lithium-sulfur batteries and zinc-air batteries. Combining the bio-templating strategy with hierarchical MOF assembly, this work opens a new avenue for the fabrication of highly porous and functional carbon for advanced energy applications.
Collapse
Affiliation(s)
- Jiapeng Hu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Xietao Yuan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Xixi Shao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Baiyu Yang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Amir Abdul Razzaq
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Xiaohui Zhao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yuebin Lian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Muzi Chen
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| |
Collapse
|
27
|
Zheng YQ, Yuan YF, Tong ZW, Yin H, Yin SM, Guo SY. Watermelon-like TiO 2 nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries. NANOTECHNOLOGY 2020; 31:215407. [PMID: 32032007 DOI: 10.1088/1361-6528/ab73be] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To overcome the inferior rate capability and cycling performance of TiO2 nanomaterials as an anode material of lithium-ion batteries, we encapsulate TiO2 nanoparticles (P25) in carbon spheres through a facile pyrrole polymerization and carbonization. Material characterization demonstrates TiO2 nanoparticles are uniformly embedded in microporous amorphous carbon spheres, forming a watermelon-like structure. P25@C exhibits excellent high rate capability with average discharge capacity of 496, 416, 297, 240, 180, 99, 49 and 25 mAh g-1 at current rate of 0.5C, 1C, 5C, 10C, 20C, 50C, 100C and 200C, which shows superior long-term cycling performance with discharge capacity of 106.9 mAh g-1 at 20C after 5000 cycles. The capacity loss rate is only 0.008% per cycle. The outstanding lithium storage performance is ascribed to the watermelon-like composite structure, which remarkably improves electronic conductivity and structure stability of TiO2 nanoparticles. More importantly, the agglomeration of TiO2 nanoparticles is eliminated, and the entire surface of every TiO2 nanoparticle participates in the electrochemical reaction, which brings about an intense capacitive Li storage effect and leads to the high specific capacity and excellent rate capability of P25@C. This is confirmed through qualitative and quantitative analysis of the contributions from surface capacitive storage and bulk intercalation storage to the total capacity of the composite.
Collapse
Affiliation(s)
- Y Q Zheng
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Zhang XT, Yuan YF, Zhu M, Cai GC, Tong ZW, Yang ZY. 3D porous framework of ZnO nanoparticles assembled from double carbon shells consisting of hard and soft carbon networks for high performance lithium ion batteries. NANOTECHNOLOGY 2020; 31:285402. [PMID: 32209746 DOI: 10.1088/1361-6528/ab8328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low electronic conductivity and large volume variation result in inferior lithium storage performance of ZnO. To overcome these shortcomings of ZnO, herein ZnO nanoparticles are encapsulated in resorcinol-formaldehyde resin-derived hard carbon and then further assembled into a 3-dimensional mesoporous framework structure using a polyvinyl pyrrolidone-derived soft carbon network. The synthesis methods include the polymerization of resorcinol-formaldehyde resin and a polyvinyl pyrrolidone-boiling method. ZnO@dual carbon has af large specific surface area (153.7 m2 g-1) and high porosity. It exhibits excellent cycling performance and high rate capability. After 350 cycles at 500 mA g-1, the ZnO@dual carbon still delivers a discharge capacity of 701 mAh g-1 while the actual discharge capacity of ZnO reaches 950.9 mAh g-1. At 2 A g-1, ZnO@dual carbon delivers the average discharge capacity of 469.6 mAh g-1. The electrochemical performance of ZnO@dual carbon is remarkably superior to those of ZnO@single carbon, pure carbon and pure ZnO nanoparticles, demonstrating the superiority of the dual carbon-assembly structure. This composite structure greatly improves the structural stability of ZnO, enhances its electron conductivity and overall electron transport capacity; which facilitates electrolyte penetration and Li ion diffusion, leading to improved cycling stability and good rate capability.
Collapse
Affiliation(s)
- X T Zhang
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Wu Q, Yao Z, Zhou X, Xu J, Cao F, Li C. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries. ACS NANO 2020; 14:3365-3377. [PMID: 32119525 DOI: 10.1021/acsnano.9b09231] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A cathode host with strong sulfur/polysulfide confinement and fast redox kinetics is a challenging demand for high-loading lithium-sulfur batteries. Recently, porous carbon hosts derived from metal-organic frameworks (MOFs) have attracted wide attention due to their unique spatial structure and customizable reaction sites. However, the loading and rate performance of Li-S cells are still restricted by the disordered pore distribution and surface catalysis in these hosts. Here, we propose a concept of built-in catalysis to accelerate lithium polysulfide (LiPSs) conversion in confined nanoreactors, i.e., laterally stacked ordered crevice pores encompassed by MoS2-decorated carbon thin layers. The functions of S-fixability and LiPS catalysis in these mesoporous cavity reactors benefit from the 2D interface contact between ultrathin catalytic MoS2 and conductive C pyrolyzed from Al-MOF. The integrated function of adsorption-catalysis-conversion endows the sulfur-infused C@MoS2 electrode with a high initial capacity of 1240 mAh g-1 at 0.2 C, long life cycle stability of at least 1000 cycles at 2 C, and high rate endurance up to 20 C. This electrode also exhibits commercial potential in view of considerable capacity release and reversibility under high sulfur loading (6 mg cm-2 and ∼80 wt %) and lean electrolyte (E/S ratio of 5 μL mg-1). This study provides a promising design solution of a catalysis-conduction 2D interface in a 3D skeleton for high-loading Li-S batteries.
Collapse
Affiliation(s)
- Qingping Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenguo Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
| | - Jun Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fahai Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chilin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Shen Y, Li Y, Deng S, Pan G, Xiong Q, Ding X, Lu Y, Liu Q, Xia X, Wang X, Tu J. TiC/C core/shell nanowires arrays as advanced anode of sodium ion batteries. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Du Y, Ma W, Li H. In Situ Growth of CoP 3 /Carbon Polyhedron/CoO/NF Nanoarrays as Binder-Free Anode for Lithium-Ion Batteries with Enhanced Specific Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907468. [PMID: 32068961 DOI: 10.1002/smll.201907468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Advanced functional materials enable lithium-ion batteries to reach high specific capacity. To achieve this goal, nickel foam (NF), as current collector, is chosen to in situ form aligned nanoarrays composed of CoP3 /carbon polyhedron (CP)/CoO. The CoO nanowire acts as bridge to link NF and CoP3 /CP which not only reinforces the adhesion between active material and NF but also enhances the capacity of whole electrode. Besides, CoP3 is evenly coupled with CP, which can effectively buffer the volume expansion of CoP3 during the charge/discharge process. Moreover, the novel architecture of CoP3 /CP/CoO/NF is beneficial to improve the electronic conductivity. As a result, the CoP3 /CP/CoO/NF anode delivers an ultrahigh specific capacity of 1715 mAh g-1 at 0.5 A g-1 which can remain at 1150 mAh g-1 after 80 cycles, demonstrating the good durability. Thus, this work develops a facile strategy to design self-supporting electrodes for an enhanced energy storage device.
Collapse
Affiliation(s)
- Yingjie Du
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| | - Wei Ma
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| |
Collapse
|
32
|
Wu J, Pan G, Zhong W, Yang L, Deng S, Xia X. Rational synthesis of Cr0.5Nb24.5O62 microspheres as high-rate electrodes for lithium ion batteries. J Colloid Interface Sci 2020; 562:511-517. [DOI: 10.1016/j.jcis.2019.11.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
|
33
|
Jiang Y, Ba D, Li Y, Liu J. Noninterference Revealing of "Layered to Layered" Zinc Storage Mechanism of δ-MnO 2 toward Neutral Zn-Mn Batteries with Superior Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902795. [PMID: 32195094 PMCID: PMC7080538 DOI: 10.1002/advs.201902795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Indexed: 05/03/2023]
Abstract
MnO2 is one of the most studied cathodes for aqueous neutral zinc-ion batteries. However, the diverse reported crystal structures of MnO2 compared to δ-MnO2 inevitably suffer a structural phase transition from tunneled to layered Zn-buserite during the initial cycles, which is not as kinetically direct as the conventional intercalation electrochemistry in layered materials and thus poses great challenges to the performance and multifunctionality of devices. Here, a binder-free δ-MnO2 cathode is designed and a favorable "layered to layered" Zn2+ storage mechanism is revealed systematically using such a "noninterferencing" electrode platform in combination with ab initio calculation. A flexible quasi-solid-state Zn-Mn battery with an electrodeposited flexible Zn anode is further assembled, exhibiting high energy density (35.11 mWh cm-3; 432.05 Wh kg-1), high power density (676.92 mW cm-3; 8.33 kW kg-1), extremely low self-discharge rate, and ultralong stability up to 10 000 cycles. Even with a relatively high δ-MnO2 mass loading of 5 mg cm-2, significant energy and power densities are still achieved. The device also works well over a broad temperature range (0-40 °C) and can efficiently power different types of small electronics. This work provides an opportunity to develop high-performance multivalent-ion batteries via the design of a kinetically favorable host structure.
Collapse
Affiliation(s)
- Yuqi Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of ChemistryChemical Engineering and Life ScienceWuhan University of TechnologyWuhanHubei430070P. R. China
| | - Deliang Ba
- School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Yuanyuan Li
- School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Jinping Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of ChemistryChemical Engineering and Life ScienceWuhan University of TechnologyWuhanHubei430070P. R. China
- State Center for International Cooperation on Designer Low‐carbon & Environmental Materials and School of Materials Science and EngineeringZhengzhou UniversityZhengzhouHenan450001P. R. China
| |
Collapse
|
34
|
Yu Z, Liu M, Guo D, Wang J, Chen X, Li J, Jin H, Yang Z, Chen X, Wang S. Radially Inwardly Aligned Hierarchical Porous Carbon for Ultra‐Long‐Life Lithium–Sulfur Batteries. Angew Chem Int Ed Engl 2020; 59:6406-6411. [DOI: 10.1002/anie.201914972] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Zhisheng Yu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Menglan Liu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Jiahui Wang
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Xing Chen
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Jun Li
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 China
| |
Collapse
|
35
|
Radially Inwardly Aligned Hierarchical Porous Carbon for Ultra‐Long‐Life Lithium–Sulfur Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Chen Z, Yang X, Qiao X, Zhang N, Zhang C, Ma Z, Wang H. Lithium-Ion-Engineered Interlayers of V 2C MXene as Advanced Host for Flexible Sulfur Cathode with Enhanced Rate Performance. J Phys Chem Lett 2020; 11:885-890. [PMID: 31951137 DOI: 10.1021/acs.jpclett.9b03827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A flexible free-standing S@lithium-ion-intercalated V2C MXene/rGO-CNT (S@V2C-Li/C) electrode was rationally prepared to address the neglected issue of Li-ion transport for high-rate lithium-sulfur batteries. In this unique nanoarchitecture, rGO and CNTs serve as a flexible skeleton with high conductivity, whereas V2C-Li MXene plays a vital role in both the chemical absorption of polysulfides and the enhanced transport of lithium ions due to its high polarity and enlarged interlayer distance. Benefiting from the synergistic effect of strong chemical absorption capability and fast lithium-ion migration and exchange, the as-prepared S@V2C-Li/C electrode demonstrates long-term cycling stability with small capacity decay rates of 0.053 and 0.051% per cycle over 500 cycles at 1 and 2 C, respectively.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Xuebiao Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Xue Qiao
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Na Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Chunfang Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Zhiling Ma
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Hongqiang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- Fengfan Company Limited , Baoding , Hebei 071057 , P. R. China
| |
Collapse
|
37
|
Shao AH, Zhang Z, Xiong DG, Yu J, Cai JX, Yang ZY. Facile Synthesis of a "Two-in-One" Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5968-5978. [PMID: 31927941 DOI: 10.1021/acsami.9b20943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exploration of efficient host materials of sulfur is significant for the practical lithium-sulfur (Li-S) batteries, and the hosts are expected to be highly conductive for high sulfur utilization and exhibit strong interaction toward polysulfides to suppress the shuttle effect for long-lasting cycle stability. Herein, we propose a simple synthesis of metallic cobalt-embedded N-doping carbon nanotubes (Co@NCNT) as a "two-in-one" host of sulfur for efficient Li-S batteries. In the binary host, the N-doped CNTs, cooperating with metallic Co nanoparticles, can serve as 3D conductive networks for fast electron transportation, while the synergetic effect of metallic Co and doping N heteroatoms helps to chemically confine polysulfides, acting as active sites to accelerate electrochemical kinetics. With these advantages, the S/Co@NCNT composite delivers an excellent cycling stability with a capacity decay of 0.08% per cycle averaged within 500 cycles at a current density of 1 A g-1 and a high rate performance of 530 mA h g-1 at 5 A g-1. Further, the superior electrochemical performance of the S/Co@NCNT electrode can be maintained under a high sulfur loading up to 4 mg cm-2. Our work demonstrates a feasible strategy to design promising host materials simultaneously featuring high conductivity and strong confinement toward polysulfides for high-performance Li-S batteries.
Collapse
Affiliation(s)
- A-Hu Shao
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Ze Zhang
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Dong-Gen Xiong
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Ji Yu
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Jian-Xin Cai
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Zhen-Yu Yang
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| |
Collapse
|
38
|
Liu S, Xu C, Yang H, Qian G, Hua S, Liu J, Zheng X, Lu X. Atomic Modulation Triggering Improved Performance of MoO 3 Nanobelts for Fiber-Shaped Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905778. [PMID: 31957981 DOI: 10.1002/smll.201905778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Asymmetric supercapacitors (ASCs) are emerging as a new class of energy storage devices that could potentially meet the increasing power and energy demand for next-generation portable and flexible electronics. Yet, the energy density of ASC is severely limited by the low capacitance of the anode side, which commonly uses the carbon-based nanomaterials. Here, the demonstration of sulfur-doped MoO3- x nanobelts (denoted as S-MoO3- x ) as the anode for high-performance fiber-shaped ASC are reported. The Mo sites in MoO3 are intentionally modulated at the atomic level through sulfur doping, where sulfur could be introduced into the MoO6 octahedron to intrinsically tune the covalency character of bonds around Mo sites and thus boost the charge storage kinetics of S-MoO3- x . Moreover, the oxygen defects are occurring along with sulfur-doping in MoO3 , enabling efficient electron transport. As expected, the fiber-shaped S-MoO3- x achieves outstanding capacitance with good rate capability and long cycling life. More impressively, the fiber-shaped ASC based on S-MoO3- x anode delivers extremely high volumetric capacitance of 6.19 F cm-3 at 0.5 mA cm-1 , which makes it promising as one of the most attractive candidates of anode materials for high-performance fiber-shaped ASCs.
Collapse
Affiliation(s)
- Si Liu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Cuixia Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Hui Yang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Guangsheng Qian
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Shugui Hua
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
39
|
Liang T, Wang H, Fei R, Wang R, He B, Gong Y, Yan C. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode. NANOSCALE 2019; 11:20715-20724. [PMID: 31642836 DOI: 10.1039/c9nr07091e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing advanced lithium-ion hybrid capacitors (LIHCs) has a critical challenge of matching kinetics and capacity between the battery-type anode and the capacitive cathode. In this work, a novel "dual carbon" LIHC configuration is constructed to overcome such a discrepancy. Specifically, hollow nitrogen-doped carbon nanoboxes (HNCNBs) are synthesized by a simple template-assisted strategy. As an anode material (0.01-3 V vs. Li/Li+), the HNCNB electrode exhibits high specific capacity (850 mA h g-1 at 0.1 A g-1) and superior rate capability (321 mA h g-1 at 20 A g-1). After alkaline activation, the HNCNBs become highly porous (PHNCNBs), which offers better capacitance performance within the potential window from 2.5 to 4.5 V (vs. Li/Li+) than commercial activated carbon (AC). Coupling a pre-lithiated HNCNB anode with a PHNCNB cathode forms a dual-carbon LIHC. Since the similar hollow structure in both electrodes could diminish the diffusion distance, the as-prepared HNCNB//PHNCNB LIHC provides high energy densities of 148.5 and 112.1 W h kg-1 at power densities of 250 and 25 000 W kg-1, respectively, together with long-term cycling stability, which efficiently bridges the gap between supercapacitors and lithium ion batteries. Furthermore, the self-discharge behavior and the temperature-dependent performance are also investigated.
Collapse
Affiliation(s)
- Tian Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Huanwen Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Rixin Fei
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Rui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Beibei He
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yansheng Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Chunjie Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
40
|
Wang L, Yuan YF, Chen Q, Zheng YQ, Yin SM, Guo SY. Construction of Co 3O 4 three-dimensional mesoporous framework structures from zeolitic imidazolate framework-67 with enhanced lithium storage properties. NANOTECHNOLOGY 2019; 30:435402. [PMID: 31300617 DOI: 10.1088/1361-6528/ab31ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-porosity mesoporous framework structures are attractive for electrochemical energy storage and other applications. Herein we demonstrate a novel synthesis strategy to make zeolitic imidazolate framework-67 oxidize to a Co3O4 three-dimensional mesoporous framework structure. This strategy relies on the oxygen-limitation effect of the closed nanocage and the affinity effect of polyvinylpyrrolidone towards zeolitic imidazolate framework-67. Several TiO2 nanospheres, as the unique structure junctions, are uniformly embedded within the Co3O4 framework to enhance the framework strength. The TiO2/hydrous titania polyhedron nanocage, as the protecting shell, further encapsulates the Co3O4 framework, forming a perfect capsule-type hybrid. As anode materials for lithium-ion batteries, TiO2@Co3O4 framework capsules show superior lithium storage performance with high reversible capacity, stable cycling life and good rate capability. A reversible capacity of 1042 mAh g-1 can be delivered after 200 cycles at a current density of 300 mA g-1. The average discharge capacity over 200 cycles reaches 926 mAh g-1. This demonstrates the superiority of this material structure and its great potential as an anode for high-performance lithium-ion batteries. This work indicates a new strategy to take advantage of metal-organic frameworks to synthesize their mesoporous framework derivatives.
Collapse
Affiliation(s)
- L Wang
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Zhang X, Wei Y, Wang B, Wang M, Zhang Y, Wang Q, Wu H. Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2019; 11:78. [PMID: 34138023 PMCID: PMC7770752 DOI: 10.1007/s40820-019-0313-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/01/2019] [Indexed: 05/08/2023]
Abstract
Boosting the utilization efficiency of sulfur electrodes and suppressing the "shuttle effect" of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries (LSBs). However, most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading, as well as to mitigate the more serious shuttle effect of polysulfides, especially when worked at an elevated temperature. Herein, we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays (CoS2-CNA) into a nitrogen-rich 3D conductive scaffold (CTNF@CoS2-CNA) for LSBs. An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated. Besides, the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur, thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature (55 °C). Even with the ultrahigh sulfur loading of 7.19 mg cm-2, the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55 °C.
Collapse
Affiliation(s)
- Xuemei Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yunhong Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Boya Wang
- Department of Advanced Energy Materials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mei Wang
- Department of Advanced Energy Materials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yun Zhang
- Department of Advanced Energy Materials, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Qian Wang
- Department of Advanced Energy Materials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Hao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
42
|
Xiao H, Xu L, Xiao Z, Huang H, Gan Y, Pan G, Tao X, Xia Y, Xia X, Zhang W. Biological Metabolism Synthesis of Metal Oxides Nanorods from Bacteria as a Biofactory toward High-Performance Lithium-Ion Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902032. [PMID: 31368636 DOI: 10.1002/smll.201902032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Increasing awareness toward environmental remediation and renewable energy has led to a vigorous demand for exploring a win-win strategy to realize the eco-efficient conversion of pollutants ("trash") into energy-storage nanomaterials ("treasure"). Inspired by the biological metabolism of bacteria, Acidithiobacillus ferrooxidans (A. ferrooxidans) is successfully exploited as a promising eco-friendly sustainable biofactory for the controllable fabrication of α-Fe2 O3 nanorods via the oxidation of soluble ferrous irons to insoluble ferric substances (Jarosite, KFe3 (SO4 )2 (OH)6 ) and a facile subsequent heat treatment. It is demonstrated that the stable solid electrolyte interphase layers and marvelous cracks in situ formed in biometabolic α-Fe2 O3 nanorods play important roles that not only significantly enhance the structure stability but also facilitate electron and ion transfer. Consequently, these biometabolic α-Fe2 O3 nanorods deliver a superior stable capacity of 673.9 mAh g-1 at 100 mA g-1 over 200 cycles and a remarkable multi-rate capability that observably prevails over the commercial counterpart. It is highly expected that such biological synthesis strategies can shed new light on an emerging field of research interconnecting biotechnology, energy technology, environmental technology, and nanotechnology.
Collapse
Affiliation(s)
- Han Xiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Ningbo Graphene Innovation Center Co., Ltd, Ningbo, 315200, China
| | - Lusheng Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhen Xiao
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Gan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, and Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
43
|
Wu Y, Yuan Y, Xiang J, Yin S, Guo S. NiCo2O4 doubled-shelled nanocages with enhanced lithium storage properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Wang L, Yuan YF, Zhang XT, Chen Q, Guo SY. Co 3O 4 hollow nanospheres/carbon-assembled mesoporous polyhedron with internal bubbles encapsulating TiO 2 nanosphere for high-performance lithium ion batteries. NANOTECHNOLOGY 2019; 30:355401. [PMID: 31067517 DOI: 10.1088/1361-6528/ab2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Co3O4 hollow nanospheres 15 nm in the diameter were assembled to the mesoporous polyhedron together with carbon. Within the Co3O4 polyhedrons, the bubbles 300-500 nm in diameter were uniformly generated. Every bubble further encapsulated one TiO2 nanosphere, forming a unique sphere-bubble structure. The specific surface area and the pore volume were calculated to be 97.85 and 0.31 cm3 g-1. When evaluated as anode material for lithium ion batteries, the as-prepared material exhibited superior lithium storage properties with high specific capacity, excellent cycling stability and good rate capability. After 400 cycles, the discharge capacity of 609 mAh g-1 was still delivered at current density of 335 mA g-1. Even at a high current density of 2000 mA g-1, the reversible capacity reached 296 mAh g-1. The outstanding electrochemical performance was attributed to the unique hybrid structure, which avoids nanomaterial aggregation, promotes ion diffusion and electron transfer, accommodates volume change of Co3O4 during (de)lithiation process, enhances structure strength, cycling stability and space utilization ratio of the hollow material.
Collapse
Affiliation(s)
- L Wang
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Liu J, Wei A, Pan G, Xiong Q, Chen F, Shen S, Xia X. Atomic Layer Deposition-Assisted Construction of Binder-Free Ni@N-Doped Carbon Nanospheres Films as Advanced Host for Sulfur Cathode. NANO-MICRO LETTERS 2019; 11:64. [PMID: 34138014 PMCID: PMC7770870 DOI: 10.1007/s40820-019-0295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/13/2019] [Indexed: 05/26/2023]
Abstract
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries (LSBs). Herein, novel binder-free Ni@N-doped carbon nanospheres (N-CNSs) films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method. The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking "dams" toward the soluble long-chain polysulfides. Moreover, the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption. In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides, the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance (816 mAh g-1 at 2 C) and excellent long cycling life (87% after 200 cycles at 0.1 C), much better than N-CNSs/S electrode and other carbon/S counterparts. Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.
Collapse
Affiliation(s)
- Jun Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Aixiang Wei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Information Science, Xinhua College of Sun Yat-sen University, Guangzhou, 510520, People's Republic of China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Qinqin Xiong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Fang Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shenghui Shen
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
46
|
Deng S, Ai C, Luo M, Liu B, Zhang Y, Li Y, Lin S, Pan G, Xiong Q, Liu Q, Wang X, Xia X, Tu J. Coupled Biphase (1T-2H)-MoSe 2 on Mold Spore Carbon for Advanced Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901796. [PMID: 31172634 DOI: 10.1002/smll.201901796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Performance breakthrough of MoSe2 -based hydrogen evolution reaction (HER) electrocatalysts largely relies on sophisticated phase modulation and judicious innovation on conductive matrix/support. In this work the controllable synthesis of phosphate ion (PO43- ) intercalation induced-MoSe2 (P-MoSe2 ) nanosheets on N-doped mold spore carbon (N-MSC) forming P-MoSe2 /N-MSC composite electrocatalysts is realized. Impressively, a novel conductive N-MSC matrix is constructed by a facile mold fermentation method. Furthermore, the phase of MoSe2 can be modulated by a simple phosphorization strategy to realize the conversion from 2H-MoSe2 to 1T-MoSe2 to produce biphase-coexisted (1T-2H)-MoSe2 by PO43- intercalation (namely, P-MoSe2 ), confirmed by synchrotron radiation technology and spherical aberration-corrected TEM (SACTEM). Notably, higher conductivity, lower bandgap and adsorption energy of H+ are verified for the P-MoSe2 /N-MSC with the help of density functional theory (DFT) calculation. Benefiting from these unique advantages, the P-MoSe2 /N-MSC composites show superior HER performance with a low Tafel slope (≈51 mV dec-1 ) and overpotential (≈126 mV at 10 mA cm-1 ) and excellent electrochemical stability, better than 2H-MoSe2 /N-MSC and MoSe2 /carbon nanosphere (MoSe2 /CNS) counterparts. This work demonstrates a new kind of carbon material via biological cultivation, and simultaneously unravels the phase transformation mechanism of MoSe2 by PO43- intercalation.
Collapse
Affiliation(s)
- Shengjue Deng
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Changzhi Ai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Mi Luo
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Bo Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yahao Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Qinqin Xiong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
47
|
Zhou W, Du Y, Zeng J, Liu F, Zhu Y. A modified "gel-blowing" strategy toward the one-step mass production of a 3D N-doped carbon nanosheet@carbon nanotube hybrid network for supercapacitors. NANOSCALE 2019; 11:7624-7633. [PMID: 30758004 DOI: 10.1039/c8nr10348h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we have realized the synchronous and large-scale synthesis of one-dimensional (1D) carbon nanotubes (CNTs) on two-dimensional (2D) N-doped carbon nanosheets (NCNS) by a one-step annealing of a Ni-containing gel precursor. Upon heating, the gel is "blown" into large-sized 2D NCNS with uniformly embedded Ni nanoparticles that can catalyze the in situ CNT growth, forming a three-dimensional (3D) N-doped carbon nanosheet@carbon nanotube (NCNS@CNT) hybrid. Different from our previous "gel-blowing" strategy for 2D nanosheets, the modified "gel-blowing" strategy is capable of producing 3D architecture by employing a new complexing agent and introducing ethanol as a carbon source. Importantly, this method can be easily scaled up by annealing more gel precursors with an increased amount of ethanol. The introduction of CNTs endows NCNS@CNTs with higher quality and larger specific surface area (SSA) than pure NCNS. Consequently, the electrochemical performance of 3D NCNS@CNTs is much superior to that of 2D NCNS and found to be related with the annealing temperature. The optimized NCNS@CNTs can deliver a specific capacitance of 124 F g-1 at 1 A g-1 and maintain 88% of their initial value after 10 000 cycles at 1 A g-1. Furthermore, NiO nanosheets are deposited on the NCNS@CNT framework to study its function as a conductive host. The as-fabricated hybrid electrode exhibits a high specific capacitance of 660 F g-1 at 1 A g-1 and 532 F g-1 at 20 A g-1, which is also better than its counterpart using NCNS as substrates. This method provides a simplified and low-cost way towards the mass production of NCNS@CNTs for energy application and beyond.
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | | | | | | | | |
Collapse
|
48
|
Shen S, Xia X, Zhong Y, Deng S, Xie D, Liu B, Zhang Y, Pan G, Wang X, Tu J. Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900009. [PMID: 30843629 DOI: 10.1002/adma.201900009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/30/2019] [Indexed: 05/28/2023]
Abstract
Tailored construction of advanced carbon hosts is playing a great role in the development of high-performance lithium-sulfur batteries (LSBs). Herein, a novel N,P-codoped trichoderma spore carbon (TSC) with a bowl structure, prepared by a "trichoderma bioreactor" and annealing process is reported. Moreover, TSC shows excellent compatibility with conductive niobium carbide (NbC), which is in situ implanted into the TSC matrix in the form of nanoparticles forming a highly porous TSC/NbC host. Importantly, NbC plays a dual role in TSC for not only pore formation but also enhancement of conductivity. Excitingly, the sulfur can be well accommodated in the TSC/NbC host forming a high-performance TSC/NbC-S cathode, which exhibits greatly enhanced rate performance (810 mAh g-1 at 5 C) and long cycling life (937.9 mAh g-1 at 0.1 C after 500 cycles), superior to TSC-S and other carbon/S counterparts due to the larger porosity, higher conductivity, and better synergetic trapping effect for the soluble polysulfide intermediate. The synergetic work of porous the conductive architecture, heterodoped N&P polar sites in TSC and polar conductive NbC provides new opportunities for enhancing physisorption and chemisorption of polysulfides leading to higher capacity and better rate capability.
Collapse
Affiliation(s)
- Shenghui Shen
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu Zhong
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengjue Deng
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dong Xie
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Bo Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
49
|
Tian Y, An Y, Feng J. Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10004-10011. [PMID: 30775905 DOI: 10.1021/acsami.8b21893] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silicon has been developed as the exceptionally desirable anode candidate for lithium-ion batteries (LIBs), attributing to its highest theoretical capacity, low working potential, and abundant resource. However, large volume expansion and poor conductivity hinder its practical application. Herein, we fabricate flexible, freestanding, and binder-free silicon/MXene composite papers directly as anodes for LIBs. The Silicon/MXene composite papers are synthesized via covalently anchoring silicon nanospheres on the highly conductive networks based on MXene sheets by vacuum filtration. This unique architecture can accommodate large volume expansion, enhance conductivity of composites, prevent restacking of MXene sheets, offer additional active sites, and facilitate efficient ion transport, which exhibits superior electrochemical performance with a high capacity of 2118 mAh·g-1 at 200 mA·g-1 current density after 100 cycles, a steady cycling ability of 1672 mAh·g-1 at 1000 mA·g-1 after 200 cycles, and a rate performance of 890 mAh·g-1 at 5000 mA·g-1. This work may shed lights on the development of silicon-based anodes for LIBs.
Collapse
Affiliation(s)
- Yuan Tian
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Yongling An
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Jinkui Feng
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| |
Collapse
|
50
|
Chen S, Wang Z, Xia Y, Zhang B, Chen H, Chen G, Tang S. Porous carbon material derived from fungal hyphae and its application for the removal of dye. RSC Adv 2019; 9:25480-25487. [PMID: 35530080 PMCID: PMC9070126 DOI: 10.1039/c9ra04648h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/03/2019] [Indexed: 11/21/2022] Open
Abstract
A highly porous carbon material based on fungal hyphae was prepared using mixed alkali and its application for removal of dye investigated.
Collapse
Affiliation(s)
- Siji Chen
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Zhixiao Wang
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Yuhan Xia
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Bolun Zhang
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Huan Chen
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Guang Chen
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| | - Shanshan Tang
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- China
- The Key Laboratory of Straw Biology and Utilization
| |
Collapse
|