1
|
Zhang Q, Li F, Zuo P. Two-Step Chemical Vapor Deposition for Fabrication of FAPbI 3 Single-Crystal Microsheets with High Exciton Binding Energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24892-24900. [PMID: 39540319 DOI: 10.1021/acs.langmuir.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hybrid perovskites exhibit highly efficient optoelectronic properties and find widespread applications in areas such as solar cells, light-emitting diodes, photodetectors, and lasers. Here, we report the innovative synthesis of formamidinium lead iodide (FAPbI3) single-crystal microsheets via a two-step chemical vapor deposition (CVD) method. The microsheets exhibit hexagonal and trapezoidal shapes, with hexagonal FAPbI3 growing parallel to the substrate and trapezoidal FAPbI3 growing perpendicular to the substrate. The dominant role of single-exciton recombination in the photoluminescence (PL) of these microsheets is observed, especially pronounced at low temperatures, attributed to the relatively large exciton binding energies of the samples. Calculations reveal exciton binding energies as high as 110.8 meV for hexagonal and 133.3 meV for trapezoidal FAPbI3 single-crystal microsheets, attributed to reduced rotational freedom of the formamidinium (FA) ions. Further investigation into low-temperature phase transitions indicates lower transition temperatures (around 100 K) for these microsheets, suggesting reduced FA ion rotational freedom and consequently higher exciton binding energies.
Collapse
Affiliation(s)
- Qianpeng Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Fang Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
2
|
Zhu M, Xia K, Wang H, Li S, Zhang M, Wang H, Liang X, Chen K, Zhang Y. Growth of 1D Carbon Nanotube@Perovskite Core-Shell van der Waals Heterostructures through Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401681. [PMID: 38923771 DOI: 10.1002/smll.202401681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Perovskite is an emerging material with immense potential in the field of optoelectronics. 1D perovskite nanowires are crucial building blocks for the development of optoelectronic devices. However, producing perovskite nanowires with high quality and controlled alignment is challenging. In this study, the direct epitaxial growth of perovskite on oriented carbon nanotube (CNT) templates is presented through a chemical vapor deposition method. The deposition process of lead iodide and methylammonium iodide is systematically investigated, and a layer plus island growth mechanism is proposed to interpret the experimental observations. The aligned long CNTs serve as 1D templates and allow the growth of CNT@perovskite core-shell heterostructure with a high aspect ratio to withstand large deformation. The obtained 1D perovskite materials can be easily manipulated and transferred, enabling the facile preparation of microscale flexible devices. For proof of concept, a photodetector based on an individual CNT@methylammonium lead iodide heterostructure is fabricated. This work provides a new approach to prepare 1D hetero-nanostructure and may inspire the design of novel flexible nanophotodetectors.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Future Technology, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Poudyal S, Deka M, Adhikary P, D R, Barman PK, Yadav R, Biswal B, Rajarapu R, Mukherjee S, Nanda BRK, Singh A, Misra A. Room Temperature, Twist Angle Independent, Momentum Direct Interlayer Excitons in van der Waals Heterostructures with Wide Spectral Tunability. NANO LETTERS 2024; 24:9575-9582. [PMID: 39051155 DOI: 10.1021/acs.nanolett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayer excitons (IXs) in van der Waals heterostructures with static out of plane dipole moment and long lifetime show promise in the development of exciton based optoelectronic devices and the exploration of many body physics. However, these IXs are not always observed, as the emission is very sensitive to lattice mismatch and twist angle between the constituent materials. Moreover, their emission intensity is very weak compared to that of corresponding intralayer excitons at room temperature. Here we report the room-temperature realization of twist angle independent momentum direct IX in the heterostructures of bulk PbI2 and bilayer WS2. Momentum conserving transitions combined with the large band offsets between the constituent materials enable intense IX emission at room temperature. A long lifetime (∼100 ns), noticeable Stark shift, and tunability of IX emission from 1.70 to 1.45 eV by varying the number of WS2 layers make these heterostructures promising to develop room temperature exciton based optoelectronic devices.
Collapse
Affiliation(s)
- Saroj Poudyal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Mrinal Deka
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Priyo Adhikary
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ranju D
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prahalad Kanti Barman
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Renu Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Bubunu Biswal
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Ramesh Rajarapu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Birabar Ranjit Kumar Nanda
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Akshay Singh
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Abhishek Misra
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for 2D Materials Research and Innovation, IIT Madras, Chennai 600036, India
| |
Collapse
|
4
|
Wan J, Zhang J, Liu F, Sa Z, Li P, Wang M, Wang G, Zang Z, Chen F, Yip S, Yang ZX. Toward High-Performance Self-Powered Near-Ultraviolet Photodetection by Constructing a Unipolar Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049155 DOI: 10.1021/acsami.4c07333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Constructing a unipolar heterojunction is an effective energy band engineering strategy to improve the performance of photoelectric devices, which could suppress dark current and enhance detectivity by modulating the transfer of carriers. In this work, unipolar heterojunctions of Si/PbI2 and GaSb/PbI2 are constructed successfully for high-performance self-powered near-ultraviolet photodetection. Owing to the unique band offset of unipolar heterojunctions, the transport of holes is blocked, and only photogenerated electrons in PbI2 can flow unimpeded under the driving force of the built-in electric field. Thus, the recombination of photogenerated electron-hole pairs is suppressed, contributing to high-performance near-ultraviolet photodetection. The as-fabricated Si/PbI2 self-powered near-ultraviolet photodetector exhibits a low dark current of 10-13 A, a high Ilight/Idark ratio of 104, and fast response times of 26/24 ms, which are much better than those of the PbI2 metal-semiconductor-metal photodetector. Furthermore, the as-fabricated GaSb/PbI2 unipolar heterojunction photodetector also exhibits impressive self-powered near-ultraviolet photodetection behaviors. Evidently, this work shows the potential of unipolar heterojunctions for next-generation Si-based and GaSb-based high-performance photodetection.
Collapse
Affiliation(s)
- Junchen Wan
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jie Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fengjing Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zixu Sa
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Pengsheng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mingxu Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guangcan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeqi Zang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 8168580, Japan
| | - Zai-Xing Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Song H, Ji S, Kang SG, Shin N. Contact Geometry-Dependent Excitonic Emission in Mixed-Dimensional van der Waals Heterostructures. ACS NANO 2024; 18:19179-19189. [PMID: 38990759 PMCID: PMC11271179 DOI: 10.1021/acsnano.4c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Manipulation of excitonic emission in two-dimensional (2D) materials via the assembly of van der Waals (vdW) heterostructures unlocks numerous opportunities for engineering their photonic and optoelectronic properties. In this work, we introduce a category of mixed-dimensional vdW heterostructures, integrating 2D materials with one-dimensional (1D) semiconductor nanowires composed of vdW layers. This configuration induces spatially distinct localized excitonic emissions through a tailored interfacial heterolayer atomic arrangement. By precisely adjusting both the axial and sidewall facet orientations of bottom-up grown PbI2 vdW nanowires and by transferring them onto 1L WSe2 flakes, we establish vdW heterointerfaces with either perpendicular or parallel interatomic arrangements. The edge-standing heterojunction, featuring perpendicular PbI2 layers atop WSe2, promotes efficient charge transfer through the edges and coupled localized states, leading to an enhanced redshifted excitonic emission. Conversely, the layer-by-layer heterointerface, where PbI2 layers are in parallel contact with WSe2, exhibits substantial quenching due to deep midgap states in a type-II alignment, as evidenced by power-dependent measurements and first-principle calculations. Our results introduce a method for actively manipulating excitonic emissions in 2D transition metal dichalcogenides (TMDs) through edge engineering, highlighting their potential in the development of various quantum devices.
Collapse
Affiliation(s)
- Hyukjin Song
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sumin Ji
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Sung Gu Kang
- School
of Chemical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Naechul Shin
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Kistner-Morris J, Shi A, Liu E, Arp T, Farahmand F, Taniguchi T, Watanabe K, Aji V, Lui CH, Gabor N. Electric-field tunable Type-I to Type-II band alignment transition in MoSe 2/WS 2 heterobilayers. Nat Commun 2024; 15:4075. [PMID: 38744965 PMCID: PMC11093968 DOI: 10.1038/s41467-024-48321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Semiconductor heterojunctions are ubiquitous components of modern electronics. Their properties depend crucially on the band alignment at the interface, which may exhibit straddling gap (type-I), staggered gap (type-II) or broken gap (type-III). The distinct characteristics and applications associated with each alignment make it highly desirable to switch between them within a single material. Here we demonstrate an electrically tunable transition between type-I and type-II band alignments in MoSe2/WS2 heterobilayers by investigating their luminescence and photocurrent characteristics. In their intrinsic state, these heterobilayers exhibit a type-I band alignment, resulting in the dominant intralayer exciton luminescence from MoSe2. However, the application of a strong interlayer electric field induces a transition to a type-II band alignment, leading to pronounced interlayer exciton luminescence. Furthermore, the formation of the interlayer exciton state traps free carriers at the interface, leading to the suppression of interlayer photocurrent and highly nonlinear photocurrent-voltage characteristics. This breakthrough in electrical band alignment control, interlayer exciton manipulation, and carrier trapping heralds a new era of versatile optical and (opto)electronic devices composed of van der Waals heterostructures.
Collapse
Affiliation(s)
- Jed Kistner-Morris
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Ao Shi
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Trevor Arp
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Farima Farahmand
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Vivek Aji
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
| | - Nathaniel Gabor
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
7
|
Gou R, Zhou S, Shi C, Sun Q, Huang Z, Zhao J, Xiao Y, Lei S, Cheng B. Control of positive and negative photo- and thermal-responses in a single PbI 2@CH 3NH 3PbI 3 micro/nanowire-based device for real-time sensing, nonvolatile memory, and logic operation. MATERIALS HORIZONS 2024; 11:2258-2270. [PMID: 38439663 DOI: 10.1039/d4mh00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
CH3NH3PbI3 has shown great potential for photodetectors and photovoltaic devices due to its excellent positive response to visible light. However, its real-time response characteristics hinder its application in optical memory and logic operation; moreover, the presence of excessive PbI2 is a double-edged sword. Herein, we constructed a dual-terminal device using a single CH3NH3PbI3 micro/nanowire with two Ag electrodes, and then in situ introduced PbI2 quantum dots (QDs) as hole trap centres by thermal decomposition at 160 °C. An anomalous negative photoconductivity (NPC) effect for sub-bandgap light below the PbI2 bandgap is obtained. Importantly, an electrically erasable nonvolatile photomemory can be realized. Furthermore, the device also exhibits an abnormal positive thermal resistance (PTR)-related thermomemory effect, and the thermal-induced high-resistance state (HRS) can be erased by a large bias or an illumination of 365 nm super-bandgap UV light. Additionally, logical "OR" gate operations are achieved through a combination of 650 nm sub-bandgap light and a 70 °C temperature-induced HRS, as well as a large bias and 365 nm super-bandgap light-triggered low-resistance state. These effects are attributed to the excitation and injection of holes in QDs and structural defect traps. This multifunctional device, integrating real-time sensing, nonvolatile memory, and logical operation, holds significant potential for novel electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Runna Gou
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Shuanfu Zhou
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Cencen Shi
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Qinghua Sun
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Zhikang Huang
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
8
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
9
|
Liu C, Pan J, Yuan Q, Zhu C, Liu J, Ge F, Zhu J, Xie H, Zhou D, Zhang Z, Zhao P, Tian B, Huang W, Wang L. Highly Reliable Van Der Waals Memory Boosted by a Single 2D Charge Trap Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305580. [PMID: 37882079 DOI: 10.1002/adma.202305580] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Charge trap materials that can store carriers efficiently and controllably are desired for memory applications. 2D materials are promising for highly compacted and reliable memory mainly due to their ease of constructing atomically uniform interfaces, however, remain unexplored as being charge trap media. Here it is discovered that 2D semiconducting PbI2 is an excellent charge trap material for nonvolatile memory and artificial synapses. It is simple to construct PbI2 -based charge trap devices since no complicated synthesis or additional defect manufacturing are required. As a demonstration, MoS2 /PbI2 device exhibits a large memory window of 120 V, fast write speed of 5 µs, high on-off ratio around 106 , multilevel memory of over 8 distinct states, high reliability with endurance up to 104 cycles and retention over 1.2 × 104 s. It is envisioned that PbI2 with ionic activity caused by the natively formed iodine vacancies is unique to combine with unlimited 2D materials for versatile van der Waals devices with high-integration and multifunctionality.
Collapse
Affiliation(s)
- Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jie Pan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qihui Yuan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jianquan Liu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jijie Zhu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Haitao Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicheng Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), North-Western Polytechnical University (NPU), Xi'an, 710072, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangdong, 518107, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
10
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Saleem MI, Chandrasekar P, Batool A, Lee JH. Aqueous-Phase Formation of Two-Dimensional PbI 2 Nanoplates for High-Performance Self-Powered Photodetectors. MICROMACHINES 2023; 14:1949. [PMID: 37893386 PMCID: PMC10608996 DOI: 10.3390/mi14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The process of the aqueous synthesis of nanomaterials has gained considerable interest due to its ability to eliminate the need for complex organic solvents, which aligns with the principles of green chemistry. Fabricating nanostructures in aqueous solutions has gained recognition for its potential to develop ultrasensitive, low-energy, and ultrafast optoelectronic devices. This study focuses on synthesizing lead iodide (PbI2) nanoplates (NPs) using a water-based solution technique and fabricating a planar photodetector. The planar photodetectors (ITO/PbI2 NPs/Au) demonstrated a remarkable photosensitivity of 3.9 × 103 and photoresponsivity of 0.51 mA/W at a wavelength of 405 nm. Further, we have carried-out analytical calculations for key performance parameters including open-circuit voltage (Voc), short-circuit current (Isc), on-off ratio, responsivity (R), and specific detectivity (D*) at zero applied bias, while photodetector operating in self-powered mode. These values are as follows: Voc = 0.103 V, Isc = 1.93 × 10-8, on-off ratio = 103, R = 4.0 mA/W, and D* = 3.3 × 1011 Jones. Particularly, the asymmetrical output properties of ITO/PbI2 NPs/Au detector provided additional evidence of the effective creation of a Schottky contact. Therefore, the photodetector exhibited a photo-response even at 0 V bias (rise/decay time ~1 s), leading to the realization of self-powered photodetectors. Additionally, the device exhibited a rapid photo-response of 0.23/0.38 s (-5 V) in the visible range. This study expands the scope of aqueous-phase synthesis of PbI2 nanostructures, enabling the large-area fabrication of high-performance photodetectors.
Collapse
Affiliation(s)
- Muhammad Imran Saleem
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | | | - Attia Batool
- Research Center for Materials Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
13
|
Luo H, Li P, Ma J, Li X, Zhu H, Cheng Y, Li Q, Xu Q, Zhang Y, Song Y. Bioinspired "cage traps" for closed-loop lead management of perovskite solar cells under real-world contamination assessment. Nat Commun 2023; 14:4730. [PMID: 37550327 PMCID: PMC10406821 DOI: 10.1038/s41467-023-40421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Despite the remarkable progress made in perovskite solar cells, great concerns regarding potential Pb contamination risk and environmental vulnerability risks associated with perovskite solar cells pose a significant obstacle to their real-world commercialization. In this study, we took inspiration from the ensnaring prey behavior of spiders and chemical components in spider web to strategically implant a multifunctional mesoporous amino-grafted-carbon net into perovskite solar cells, creating a biomimetic cage traps that could effectively mitigate Pb leakage and shield the external invasion under extreme weather conditions. The synergistic Pb capturing mechanism in terms of chemical chelation and physical adsorption is in-depth explored. Additionally, the Pb contamination assessment of end-of-life perovskite solar cells in the real-world ecosystem, including Yellow River water and soil, is proposed. The sustainable closed-loop Pb management process is also successfully established involving four critical steps: Pb precipitation, Pb adsorption, Pb desorption, and Pb recycling. Our findings provide inspiring insights for promoting green and sustainable industrialization of perovskite solar cells.
Collapse
Affiliation(s)
- Huaiqing Luo
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pengwei Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junjie Ma
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xue Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - He Zhu
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yajie Cheng
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qin Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qun Xu
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yiqiang Zhang
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences, 100190, Beijing, PR China.
| |
Collapse
|
14
|
Chen YJ, Wen YY, Li WH, Fu ZH, Wang GE, Xu G. TiO 2@COF Nanowire Arrays: A "Filter Amplifier" Heterojunction Strategy to Reverse the Redox Nature. NANO LETTERS 2023; 23:3614-3622. [PMID: 37017682 DOI: 10.1021/acs.nanolett.3c00804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.
Collapse
Affiliation(s)
- Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Science (UCAS), Beijing 100049, P. R. China
| | - Ying-Yi Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
| | - Wen-Hua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Science (UCAS), Beijing 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
15
|
Cha S, Lee G, Lee S, Ryu SH, Sohn Y, An G, Kang C, Kim M, Kim K, Soon A, Kim KS. Order-disorder phase transition driven by interlayer sliding in lead iodides. Nat Commun 2023; 14:1981. [PMID: 37031234 PMCID: PMC10082779 DOI: 10.1038/s41467-023-37740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
A variety of phase transitions have been found in two-dimensional layered materials, but some of their atomic-scale mechanisms are hard to clearly understand. Here, we report the discovery of a phase transition whose mechanism is identified as interlayer sliding in lead iodides, a layered material widely used to synthesize lead halide perovskites. The low-temperature crystal structure of lead iodides is found not 2H polytype as known before, but non-centrosymmetric 4H polytype. This undergoes the order-disorder phase transition characterized by the abrupt spectral broadening of valence bands, taken by angle-resolved photoemission, at the critical temperature of 120 K. It is accompanied by drastic changes in simultaneously taken photocurrent and photoluminescence. The transmission electron microscopy is used to reveal that lead iodide layers stacked in the form of 4H polytype at low temperatures irregularly slide over each other above 120 K, which can be explained by the low energy barrier of only 10.6 meV/atom estimated by first principles calculations. Our findings suggest that interlayer sliding is a key mechanism of the phase transitions in layered materials, which can significantly affect optoelectronic and optical characteristics.
Collapse
Affiliation(s)
- Seyeong Cha
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Giyeok Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Korea
| | - Sol Lee
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Sae Hee Ryu
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yeongsup Sohn
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Gijeong An
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Changmo Kang
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Minsu Kim
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Kwanpyo Kim
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Aloysius Soon
- Department of Materials Science and Engineering, Yonsei University, Seoul, Korea.
| | - Keun Su Kim
- Department of Physics, College of Science, Yonsei University, Seoul, Korea.
| |
Collapse
|
16
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
17
|
Su J, Li X, Xu M, Zhang J, Liu X, Zheng X, Shi Y, Zhang Q. Enhancing Photodetection Ability of MoS 2 Nanoscrolls via Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3307-3316. [PMID: 36596237 DOI: 10.1021/acsami.2c18537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Jun Su
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Jian Zhang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xiaolian Liu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Zheng
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| |
Collapse
|
18
|
Zhou D, Zhao P, Zhang J, Jiang X, Qin S, Zhang X, Jiang R, Deng Y, Jiang H, Zhan G, Luo Y, Ma H, Wang L. Lithographic Multicolor Patterning on Hybrid Perovskites for Nano-Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205227. [PMID: 36285770 DOI: 10.1002/smll.202205227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ultrathin hybrid perovskites, with exotic properties and two-dimensional geometry, exhibit great potential in nanoscale optical and optoelectronic devices. However, it is still challenging for them to be compatible with high-resolution patterning technology toward miniaturization and integration applications, as they can be readily damaged by the organic solvents used in standard lithography processes. Here, a flexible three-step method is developed to make high-resolution multicolor patterning on hybrid perovskite, particularly achieved on a single nanosheet. The process includes first synthesis of precursor PbI2 , then e-beam lithography and final conversion to target perovskite. The patterns with linewidth around 150 nm can be achieved, which can be applied in miniature optoelectronic devices and high-resolution displays. As an example, the channel length of perovskite photodetectors can be down to 126 nm. Through deterministic vapor-phase anion exchange, a perovskite nanosheet can not only gradually alter the color of the same pattern in a wide wavelength range, but also display different colors simultaneously. The authors are optimistic that the method can be applied for unlimited perovskite types and device configurations for their high-integrated miniature applications.
Collapse
Affiliation(s)
- Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohong Jiang
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sichen Qin
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yifan Deng
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hanjun Jiang
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Luo
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
19
|
Liu D, Chen R, Liu F, Zhang J, Zhuang X, Yin Y, Wang M, Sa Z, Wang P, Sun L, Pang Z, Tan Y, Jia Z, Chen M, Yang ZX. Flexible Omnidirectional Self-Powered Photodetectors Enabled by Solution-Processed Two-Dimensional Layered PbI 2 Nanoplates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46748-46755. [PMID: 36196627 DOI: 10.1021/acsami.2c13373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Realizing omnidirectional self-powered photodetectors is central to advancing next-generation portable and smart photodetector systems. However, the traditional omnidirectional photodetector is typically achieved by integrating complex hemispherical microlens on multiple photodetectors, which makes the detection system cumbersome and restricts its application in the portable field. Here, facile and high-performance flexible omnidirectional self-powered photodetectors are achieved by solution-processed two-dimensional (2D) layered PbI2 nanoplates on transparent conducting substrates. Characterization of PbI2 nanoplates microstructural/compositional and their photodetection properties have been systematically characterized. Under the irradiation of a 405 nm laser, the photodetectors exhibit an impressively low dark current of 10-13 A, a high light on/off ratio up to 106, and a fast rise/decay response time of 2/3 ms. Importantly, when light irradiates the photodetector at 5°, it can still maintain high photodetection properties, realizing almost 360° omnidirectional self-powered photodetection. What is more, these self-powered photodetectors exhibit robust omnidirectional photoresponse stability of flexibility even after bending for 1200 cycles. Thus, this work broadens the applicability of 2D layered nanoplates for further extending its applications in advanced optoelectronic devices.
Collapse
Affiliation(s)
- Dong Liu
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Ruichang Chen
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Fengjing Liu
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Jie Zhang
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Xinming Zhuang
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Yanxue Yin
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Mingxu Wang
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Zixu Sa
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Li Sun
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Zhiyong Pang
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Yang Tan
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Zhitai Jia
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Ming Chen
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| | - Zai-Xing Yang
- School of Physics, State Key Laboratory of Crystal Materials, School of Microelectronics, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Zhao K, He D, Fu S, Bai Z, Miao Q, Huang M, Wang Y, Zhang X. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3418. [PMID: 36234543 PMCID: PMC9565824 DOI: 10.3390/nano12193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to see that new and fascinating properties are formed beyond single 2D materials; thus, 2D heterostructures-based nanodevices, especially for potential optoelectronic applications, were successfully constructed in the past few decades. With the dramatically increased demand for well-controlled heterostructures for nanodevices with desired performance in recent years, various interfacial modulation methods have been carried out to regulate the interfacial coupling of such heterostructures. Here, the research progress in the study of interfacial coupling of vdWHs (investigated by Photoluminescence, Raman, and Pump-probe spectroscopies as well as other techniques), the modulation of interfacial coupling by applying various external fields (including electrical, optical, mechanical fields), as well as the related applications for future electrics and optoelectronics, have been briefly reviewed. By summarizing the recent progress, discussing the recent advances, and looking forward to future trends and existing challenges, this review is aimed at providing an overall picture of the importance of interfacial modulation in vdWHs for possible strategies to optimize the device's performance.
Collapse
|
21
|
Fang F, Wan Y, Li H, Fang S, Huang F, Zhou B, Jiang K, Tung V, Li LJ, Shi Y. Two-Dimensional Cs 2AgBiBr 6/WS 2 Heterostructure-Based Photodetector with Boosted Detectivity via Interfacial Engineering. ACS NANO 2022; 16:3985-3993. [PMID: 35179036 DOI: 10.1021/acsnano.1c09513] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers have been widely used for optoelectronic devices because of their ultrasensitivity to light detection acquired from their direct gap properties. However, the small cross-section of photon absorption in the atomically thin layer thickness significantly limits the generation of photocarriers, restricting their performance. Here, we integrate monolayer WS2 with 2D perovskites Cs2AgBiBr6, which serve as the light absorption layer, to greatly enhance the photosensitivity of WS2. The efficient charge transfer at the Cs2AgBiBr6/WS2 heterojunction is evidenced by the shortened photoluminescence (PL) decay time of Cs2AgBiBr6. Scanning photocurrent microscopy of Cs2AgBiBr6/WS2/graphene reveals that improved charge extraction from graphene leads to an enhanced photoresponse. The 2D Cs2AgBiBr6/WS2/graphene vertical heterostructure photodetector exhibits a high detectivity (D*) of 1.5 × 1013 Jones with a fast response time of 52.3 μs/53.6 μs and an on/off ratio of 1.02 × 104. It is worth noting that this 2D heterostructure photodetector can realize self-powered light detection behavior with an open-circuit voltage of ∼0.75 V. The results suggest that the 2D perovskites can effectively improve the TMDC layer-based photodetectors for low-power consumption photoelectrical applications.
Collapse
Affiliation(s)
- Feier Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Wan
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Henan Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shaofan Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fu Huang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Zhou
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Jiang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Vincent Tung
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yumeng Shi
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Jiang X, Zhang J, Liu X, Wang Z, Guo X, Li C. Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angew Chem Int Ed Engl 2022; 61:e202115663. [PMID: 34989073 DOI: 10.1002/anie.202115663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Organic ammonium salts (OASs) have been widely used to passivate perovskite defects. The passivation mechanism is usually attributed to coordination of OASs with unpaired lead or halide ions, yet ignoring their interaction with excess PbI2 on the perovskite film. Herein, we demonstrate that OASs not only passivate defects by themselves, but also redistribute excess aggregated PbI2 into a discontinuous layer, augmenting its passivation effect. Moreover, alkyl OAS is more powerful to disperse PbI2 than a F-containing one, leading to better passivation and device efficiency because F atoms restrict the intercalation of OAS into PbI2 layers. Inspired by this mechanism, exfoliated PbI2 nanosheets are adopted to provide better dispersity of PbI2 , further boosting the efficiency to 23.14 %. Our finding offers a distinctive understanding of the role of OASs in reducing perovskite defects, and a route to choosing an OAS passivator by considering substitution effects rather than by trial and error.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiafeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
23
|
Yan J, Ou Q, Vincenti MA, De Angelis C, Bao Q, Neshev DN. Nonlinear microscopy of lead iodide nanosheets. OPTICS EXPRESS 2022; 30:4793-4805. [PMID: 35209453 DOI: 10.1364/oe.451214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Lead iodide (PbI2) is a van der Waals layered semiconductor with a direct bandgap in its bulk form and a hexagonal layered crystalline structure. The recently developed PbI2 nanosheets have shown great promise for high-performance optoelectronic devices, including nanolasers and photodetectors. However, despite being widely used as a precursor for perovskite materials, the optical properties of PbI2 nanomaterials remain largely unexplored. Here, we determine the nonlinear optical properties of PbI2 nanosheets by utilising nonlinear microscopy as a non-invasive optical technique. We demonstrate the nonlinearity enhancement dependent on excitonic resonances, crystalline orientation, thickness, and influence of the substrate. Our results allow for estimating the second- and third-order nonlinear susceptibilities of the nanosheets, opening new opportunities for the use of PbI2 nanosheets as nonlinear and quantum light sources.
Collapse
|
24
|
Jiang X, Zhang J, Liu X, Wang Z, Guo X, Li C. Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoqing Jiang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis 457 Zhongshan Rd. 116023 Dalian CHINA
| | - Jiafeng Zhang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis 457 Zhongshan Rd. 116023 Dalian CHINA
| | - Xiaotao Liu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis 457 Zhongshan Rd. 116023 Dalian CHINA
| | - Ziyuan Wang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysiss 457 Zhongshan Rd. 116023 Dalian CHINA
| | - Xin Guo
- DICP: Dalian Institute of Chemical Physics 457 Zhongshan Rd. 116023 Dalian CHINA
| | - Can Li
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis 457 Zhongshan Rd. 116023 Dalian CHINA
| |
Collapse
|
25
|
Zhang K, Ding C, Pan B, Wu Z, Marga A, Zhang L, Zeng H, Huang S. Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105079. [PMID: 34541723 DOI: 10.1002/adma.202105079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding the growth mechanisms of 2D van der Waals (vdW) heterostructures is of great importance in exploring their functionalities and device applications. A custom-built system integrating physical vapor deposition and optical microscopy/Raman spectroscopy is employed to study the dynamic growth processes of 2D vdW heterostructures in situ. This allows the identification of a new growth mode with a distinctly different growth rate and morphology from those of the conventional linear growth mode. A model that explains the difference in morphologies and quantifies the growth rates of the two modes by taking the role of surface diffusion into account is proposed. A range of material combinations including CdI2 /WS2 , CdI2 /MoS2 , CdI2 /WSe2 , PbI2 /WS2 , PbI2 /MoS2 , PbI2 /WSe2 , and Bi2 Se3 /WS2 is systematically investigated. These findings may be generalized to the synthesis of many other 2D heterostructures with controlled morphologies and physical properties, benefiting future device applications.
Collapse
Affiliation(s)
- Kenan Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changchun Ding
- Key Laboratory of High-Performance Scientific Computation, School of Science, Xihua University, Chengdu, 610039, China
| | - Baojun Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhen Wu
- Key Laboratory of High-Performance Scientific Computation, School of Science, Xihua University, Chengdu, 610039, China
| | - Austin Marga
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hao Zeng
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
26
|
Ghoshal D, Shang H, Sun X, Wen X, Chen D, Wang T, Lu Z, Gupta T, Efstathiadis H, West D, Koratkar N, Lu TM, Zhang S, Shi SF. Orientation-Controlled Large-Area Epitaxial PbI 2 Thin Films with Tunable Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32450-32460. [PMID: 34196518 DOI: 10.1021/acsami.1c05734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.
Collapse
Affiliation(s)
- Debjit Ghoshal
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Hanzhi Shang
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xin Sun
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xixing Wen
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Dongxue Chen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tianmeng Wang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zonghuan Lu
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tushar Gupta
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Harry Efstathiadis
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, United States
| | - Damien West
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Toh-Ming Lu
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shengbai Zhang
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
27
|
Li QH, Ding YF, He PB, Zeng R, Wan Q, Cai MQ. Transition of the Type of Band Alignments for All-Inorganic Perovskite van der Waals Heterostructures CsSnBr 3/WS 2(1-x)Se 2x. J Phys Chem Lett 2021; 12:3809-3818. [PMID: 33852315 DOI: 10.1021/acs.jpclett.1c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In general, two-dimensional semiconductor-based van der Waals heterostructures (vdWHs) can be modulated to achieve the transition of band alignments (type-I, type-II, and type-III), which can be applied in different applications. However, it is rare in three-dimensional perovskite-based vdWHs, and it is challenging to achieve the tunable band alignments for a single perovskite-based heterostructure. Here, we systematically investigate the electronic and optical properties of all-inorganic perovskite vdWHs CsSnBr3/WS2(1-x)Se2x based on density functional theory (DFT) calculation. The calculated results show that the transitions of band alignment from type-II to type-I and type-III to type-II are achieved by modulating the doping ratio of the Se atom in the WS2(1-x)Se2x monolayer for SnBr2/WS2(1-x)Se2x and CsBr/WS2(1-x)Se2x heterostructures, respectively, in which the CsBr and SnBr2 represent two different terminated surfaces of CsSnBr3. The change of band alignments can be attributed to the conduction band minimum (CBM) transforming from the W 5d to Sn 5p orbital in SnBr2/WS2(1-x)Se2x vdWHs, and the valence band maximum (VBM) and CBM change from an overlapped state to a separated one in CsBr/WS2(1-x)Se2x vdWHs. This work can provide a theoretical basis for the dynamic modulation of band alignments in perovskite-based vdWHs.
Collapse
Affiliation(s)
- Qiao-Hua Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yu-Feng Ding
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Peng-Bin He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruosheng Zeng
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Wan
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Meng-Qiu Cai
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
She Y, Wu Z, You S, Du Q, Chu X, Niu L, Ding C, Zhang K, Zhang L, Huang S. Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS 2/Bi 2Se 3 Heterojunctions Based on Vapor Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15518-15524. [PMID: 33769777 DOI: 10.1021/acsami.1c00377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) heterojunctions have attracted great attention due to their excellent optoelectronic properties. Until now, precisely controlling the nucleation density and stacking area of 2D heterojunctions has been of critical importance but still a huge challenge. It hampers the progress of controlled growth of 2D heterojunctions for optoelectronic devices because the potential relation between numerous growth parameters and nucleation density is always poorly understood. Herein, by cooperatively controlling three parameters (substrate temperature, gas flow rate, and precursor concentration) in modified vapor deposition growth, the nucleation density and stacking area of WS2/Bi2Se3 vertical heterojunctions were successfully modulated. High-quality WS2/Bi2Se3 vertical heterojunctions with various stacking areas were effectively grown from single and multiple nucleation sites. Moreover, the potential nucleation mechanism and efficient charge transfer of WS2/Bi2Se3 vertical heterojunctions were systematically studied by utilizing the density functional theory and photoluminescence spectra. This modified vapor deposition strategy and the proposed mechanism are helpful in controlling the nucleation density and stacking area of other heterojunctions, which plays a key role in the preparation of electronic and optoelectronic nanodevices.
Collapse
Affiliation(s)
- Yihong She
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Zhen Wu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Shengdong You
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Quan Du
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Xiaohong Chu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Lijuan Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Changchun Ding
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Kenan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Wang X, Pan L, Yang J, Li B, Liu YY, Wei Z. Direct Synthesis and Enhanced Rectification of Alloy-to-Alloy 2D Type-II MoS 2(1- x ) Se 2 x /SnS 2(1- y ) Se 2 y Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006908. [PMID: 33448082 DOI: 10.1002/adma.202006908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The interfacial tunable band alignment of heterostructures is coveted in device design and optimization of device performance. As an intentional approach, alloying allows band engineering and continuous band-edge tunability for low-dimensional semiconductors. Thus, combining the tunability of alloying with the band structure of a heterostructure is highly desirable for the improvement of device characteristics. In this work, the single-step growth of alloy-to-alloy (MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y ) 2D vertical heterostructures is demonstrated. Electron diffraction reveals the well-aligned heteroepitaxial relationship for the heterostructure, and a near-atomically sharp and defect-free boundary along the interface is observed. The nearly intrinsic van der Waals (vdW) interface enables measurement of the intrinsic behaviors of the heterostructures. The optimized type-II band alignment for the MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y heterostructure, along with the large band offset and effective charge transfer, is confirmed through quenched PL spectroscopy combined with density functional theory calculations. Devices based on completely stacked heterostructures show one or two orders enhanced electron mobility and rectification ratio than those of the constituent materials. The realization of device-quality alloy-to-alloy heterostructures provides a new material platform for precisely tuning band alignment and optimizing device applications.
Collapse
Affiliation(s)
- Xiaoting Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longfei Pan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Zhang D, Liu Y, He M, Zhang A, Chen S, Tong Q, Huang L, Zhou Z, Zheng W, Chen M, Braun K, Meixner AJ, Wang X, Pan A. Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nat Commun 2020; 11:4442. [PMID: 32895376 PMCID: PMC7477097 DOI: 10.1038/s41467-020-18307-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022] Open
Abstract
The generation and manipulation of spin polarization at room temperature are essential for 2D van der Waals (vdW) materials-based spin-photonic and spintronic applications. However, most of the high degree polarization is achieved at cryogenic temperatures, where the spin-valley polarization lifetime is increased. Here, we report on room temperature high-spin polarization in 2D layers by reducing its carrier lifetime via the construction of vdW heterostructures. A near unity degree of polarization is observed in PbI2 layers with the formation of type-I and type-II band aligned vdW heterostructures with monolayer WS2 and WSe2. We demonstrate that the spin polarization is related to the carrier lifetime and can be manipulated by the layer thickness, temperature, and excitation wavelength. We further elucidate the carrier dynamics and measure the polarization lifetime in these heterostructures. Our work provides a promising approach to achieve room temperature high-spin polarizations, which contribute to spin-photonics applications.
Collapse
Affiliation(s)
- Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Mai He
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ao Zhang
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Qingjun Tong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lanyu Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhiyuan Zhou
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Weihao Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Mingxing Chen
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Kai Braun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Institute of Physical and Theoretical Chemistry and LISA+, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry and LISA+, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
31
|
Sun Y, Yin Y, Pols M, Zhong J, Huang Z, Liu B, Liu J, Wang W, Xie H, Zhan G, Zhou Z, Zhang W, Wang P, Zha C, Jiang X, Ruan Y, Zhu C, Brocks G, Wang X, Wang L, Wang J, Tao S, Huang W. Engineering the Phases and Heterostructures of Ultrathin Hybrid Perovskite Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002392. [PMID: 32686130 DOI: 10.1002/adma.202002392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI2 as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2 , MAPbI3 and FAPbI3 , can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2 . Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2 /MAPbI3 stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.
Collapse
Affiliation(s)
- Yan Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yao Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mike Pols
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jingxian Zhong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bowen Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinqiu Liu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hongguang Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guixiang Zhan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zishu Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Pengcheng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chenyang Zha
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaohong Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yinjie Ruan
- Analysis & testing center for inorganic materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chao Zhu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Geert Brocks
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shuxia Tao
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
32
|
Xiao J, Zhang L, Zhou H, Shao Z, Liu J, Zhao Y, Li Y, Liu X, Xie H, Gao Y, Sun JT, Wee ATS, Huang H. Type-II Interface Band Alignment in the vdW PbI 2-MoSe 2 Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32099-32105. [PMID: 32603081 DOI: 10.1021/acsami.0c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy band alignments at heterostructure interfaces play key roles in device performance, especially between two-dimensional atomically thin materials. Herein, van der Waals PbI2-MoSe2 heterostructures fabricated by in situ PbI2 deposition on monolayer MoSe2 are comprehensively studied using scanning tunneling microscopy/spectroscopy, atomic force microscopy, photoemission spectroscopy, and Raman and photoluminescence (PL) spectroscopy. PbI2 grows on MoSe2 in a quasi layer-by-layer epitaxial mode. A type-II interface band alignment is proposed between PbI2 and MoSe2 with the conduction band minimum (valence band maximum) located at PbI2 (MoSe2), which is confirmed by first-principles calculations and the existence of interfacial excitons revealed using temperature-dependent PL. Our findings provide a scalable method to fabricate PbI2-MoSe2 heterostructures and new insights into the electronic structures for future device design.
Collapse
Affiliation(s)
- Junting Xiao
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Hui Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyi Shao
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Jinxin Liu
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Yuan Zhao
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Youzhen Li
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Xiaoliang Liu
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Haipeng Xie
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Yongli Gao
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Jia-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Han Huang
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
33
|
Diao J, Qiu Y, Liu S, Wang W, Chen K, Li H, Yuan W, Qu Y, Guo X. Interfacial Engineering of W 2 N/WC Heterostructures Derived from Solid-State Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905679. [PMID: 31736168 DOI: 10.1002/adma.201905679] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/23/2019] [Indexed: 05/06/2023]
Abstract
To meet the practical demand of overall water splitting and regenerative metal-air batteries, highly efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are required to displace noble metal catalysts. In this work, a facile solid-state synthesis strategy is developed to construct the interfacial engineering of W2 N/WC heterostructures, in which abundant interfaces are formed. Under high temperature (800 °C), volatile CNx species from dicyanodiamide are trapped by WO3 nanorods, followed by simultaneous nitridation and carbonization, to form W2 N/WC heterostructure catalysts. The resultant W2 N/WC heterostructure catalysts exhibit an efficient and stable electrocatalytic performance toward the ORR, OER, and HER, including a half-wave potential of 0.81 V (ORR) and a low overpotential at 10 mA cm-2 for the OER (320 mV) and HER (148.5 mV). Furthermore, a W2 N/WC-based Zn-air battery shows outstanding high power density (172 mW cm-2 ). Density functional theory and X-ray absorption fine structure analysis computations reveal that W2 N/WC interfaces synergistically facilitate transport and separation of charge, thus accelerating the electrochemical ORR, OER, and HER. This work paves a novel avenue for constructing efficient and low-cost electrocatalysts for electrochemical energy devices.
Collapse
Affiliation(s)
- Jinxiang Diao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
- Aeronautical Polytechnic Institute, Xi'an, 710089, China
| | - Yu Qiu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Shuangquan Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Weitao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Kai Chen
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Korea
| | - Hailong Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Wenyu Yuan
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Yunteng Qu
- Department of Chemistry, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Guo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and The College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
34
|
Zong X, Hu H, Ouyang G, Wang J, Shi R, Zhang L, Zeng Q, Zhu C, Chen S, Cheng C, Wang B, Zhang H, Liu Z, Huang W, Wang T, Wang L, Chen X. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. LIGHT, SCIENCE & APPLICATIONS 2020; 9:114. [PMID: 32637081 PMCID: PMC7329856 DOI: 10.1038/s41377-020-00356-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 05/10/2023]
Abstract
Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals heterostructures-combining the best of various 2D materials at an artificial atomic level-provide many new possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP-WSe2 heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed, demonstrating highly efficient energy transfer in this heterostructure with type-I band alignment. For BP-MoS2 heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical PN heterojunction at the interface. Our work reveals that the BP-TMDC heterostructure with efficient light emission in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property studies and applications.
Collapse
Affiliation(s)
- Xinrong Zong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
| | - Huamin Hu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Gang Ouyang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Jingwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Le Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Qingsheng Zeng
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Chao Zhu
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Shouheng Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, 518060 Shenzhen, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, 518060 Shenzhen, China
| | - Zheng Liu
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072 Xi’an, China
| | - Taihong Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
35
|
Liu J, Sun Y, Zhou Y, Zhang C, Wang X, Wang L, Xiao M. Few-Layer PbI 2 Nanoparticle: A 2D Semiconductor with Lateral Quantum Confinement. J Phys Chem Lett 2019; 10:7863-7869. [PMID: 31791124 DOI: 10.1021/acs.jpclett.9b03009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the superior optoelectronic performances of various 2D semiconductors, their new compositions and structures are being actively pursued in order to foster novel fundamental physics and device applications. As a layered semiconductor with a direct bandgap, few-layer PbI2 should have drawn much research attention due to their capability of emitting photons at short wavelengths of the visible spectrum. Here we chemically synthesize few-layer PbI2 flakes and nanoparticles, which demonstrate unique exciton properties that have rare counterparts in other 2D semiconductors. For three layers and more, the single PbI2 flakes can be utilized to show how the bandgap energy of a 2D semiconductor evolves with the changing layer thickness. The single PbI2 nanoparticles are associated with an ultranarrow photoluminescence line width of ∼1 meV, thus reflecting the influence of lateral quantum confinement on the energy-level structures of a 2D semiconductor. The above findings mark the emergence of a potent 2D platform that is more than complementary to well-studied transition-metal dichalcogenide monolayers.
Collapse
Affiliation(s)
- Jinqiu Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Yan Sun
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Yong Zhou
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Lin Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Department of Physics , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
36
|
Tao Y, Koh SW, Yu X, Wang C, Liang H, Zhang Y, Li H, Wang QJ. Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. NANOSCALE ADVANCES 2019; 1:4783-4789. [PMID: 36133140 PMCID: PMC9417804 DOI: 10.1039/c9na00395a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 05/10/2023]
Abstract
Exciton/trion-involved optoelectronic properties have attracted exponential amount of attention for various applications ranging from optoelectronics, valleytronics to electronics. Herein, we report a new chemical (MXene) doping strategy to modulate the negative trion and neutral exciton for achieving high photoluminescence yield of atomically thin transition metal dichalcogenides, enabled by the regulation of carrier densities to promote electron-bound trion-to-exciton transition via charge transfer from TMDCs to MXene. As a proof of concept, the MXene nano-flake-doped tungsten disulfide is demonstrated to obtain an enhanced PL efficiency of up to ∼five folds, which obviously exceeds the reported efficiency upon electrical and/or plasma doping strategies. The PL enhancement degree can also be modulated by tuning the corresponding surface functional groups of MXene nano-flakes, reflecting that the electron-withdrawing functional groups play a vital role in this charge transfer process. These findings offer promising clues to control the optoelectronic properties of TMDCs and expand the scope of the application of MXene nano-flakes, suggesting a possibility to construct a new heterostructure junction based on MXenes and TMDCs.
Collapse
Affiliation(s)
- Ye Tao
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - See Wee Koh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Xuechao Yu
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Chongwu Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Houkun Liang
- Singapore Institute of Manufacturing Technology 71 Nanyang Drive 638075 Singapore
| | - Ying Zhang
- Singapore Institute of Manufacturing Technology 71 Nanyang Drive 638075 Singapore
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Qi Jie Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
37
|
Xiao J, Liu J, Sun K, Zhao Y, Shao Z, Liu X, Yuan Y, Li Y, Xie H, Song F, Gao Y, Huang H. PbI 2-MoS 2 Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment. J Phys Chem Lett 2019; 10:4203-4208. [PMID: 31291727 DOI: 10.1021/acs.jpclett.9b01665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
van der Waals (vdW) epitaxy offers a promising strategy without lattice and processing constraints to prepare atomically clean and electronically sharp interfaces for fundamental studies and electronic device demonstrations. Herein, PbI2 was thermally deposited at high-vacuum conditions onto CVD-grown monolayer MoS2 flakes in a vdW epitaxial manner to form 3D-2D heterojunctions, which are promising for vdW epitaxial growth of perovskite films. X-ray diffraction, X-ray photoemission spectroscopy, Raman, and atomic force microscopy measurements reveal the structural properties of the high-quality heterojunctions. Photoluminescence (PL) measurements reveal that the PL emissions from the bottom MoS2 flakes are greatly quenched compared to their as-grown counterparts, which can be ascribed to the band alignment-induced distinct interfacial charge-transfer behaviors. Strong interlayer excitons can be detected at the PbI2/MoS2 interface, indicating an effective type II band alignment, which can be further confirmed by ultraviolet photoemission spectroscopy measurements. The results provide a new material platform for the application of the vdW heterojunctions in electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Junting Xiao
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Jinxin Liu
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Kuanglv Sun
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Yuan Zhao
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Ziyi Shao
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Xiaoliang Liu
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Yongbo Yuan
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Youzhen Li
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Haipeng Xie
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road , Pudong New Area, Shanghai 201204 , P.R. China
| | - Yongli Gao
- Department of Physics and Astronomy , University of Rochester , Rochester , New York 14627 , United States
| | - Han Huang
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , P.R. China
| |
Collapse
|
38
|
Gao W, Zhang F, Zheng Z, Li J. Unique and Tunable Photodetecting Performance for Two-Dimensional Layered MoSe 2/WSe 2 p-n Junction on the 4H-SiC Substrate. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19277-19285. [PMID: 31046218 DOI: 10.1021/acsami.9b03709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MoSe2/WSe2 two-dimensional transition-metal dichalcogenide (TMDC) heterojunction photodetectors based on epitaxial n-doped 4H-silicon carbide (SiC) substrate are investigated and exhibited low leakage, high stability, and fast photoresponse. The efficient separation of photogenerated carriers occurs between TMDCs and 4H-SiC, as indicated by the photoluminescence spectrum and the band alignment analysis under 532 nm. The MoSe2/WSe2/4H-SiC photodetector shows an obvious rectification behavior and unique current-gate voltage ( I- Vg) characteristics. The gate tunable photocurrent scanning maps display the highest photocurrent in the MoSe2/WSe2 region including a certain intensive current region in individual TMDCs/4H-SiC junctions under a 532 nm laser. Besides, the maximum responsivity of the heterojunction photodetectors is 7.17 A·W-1 with the Vg of 10 V at positive bias. The corresponding maximum external quantum efficiency and detectivity also significantly increase to 1.67 × 103% and 5.51 × 1011 jones with the largest Ilight/ Idark ratio of ∼103. Moreover, the MoSe2/4H-SiC photodetector delivers an enhanced photoresponse behavior with gate modulation, which is different from the previous paper. These results of our study demonstrate that MoSe2/WSe2 heterojunction photodetectors based on the n-doped 4H-SiC substrate will be a promising candidate for future optoelectronics applications in spectral responsivity.
Collapse
Affiliation(s)
- Wei Gao
- College of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Feng Zhang
- Department of Physics , Xiamen University , Xiamen 361005 , P. R. China
- Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , P. R. China
- College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaoqiang Zheng
- College of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Jingbo Li
- College of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
- Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , P. R. China
- College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|