1
|
Zheng N, Smith D, Ng SH, Huang HH, Stonytė D, Appadoo D, Vongsvivut J, Katkus T, Le NHA, Mu H, Nishijima Y, Grineviciute L, Juodkazis S. Infrared Absorption of Laser Patterned Sapphire Al 2O 3 for Radiative Cooling. MICROMACHINES 2025; 16:476. [PMID: 40283351 PMCID: PMC12029610 DOI: 10.3390/mi16040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
The reflectance (R) of linear and circular micro-gratings on c-plane sapphire Al2O3 ablated by a femtosecond (fs) laser were spectrally characterised for thermal emission ∝(1-R) in the mid-to-far infrared (IR) spectral range. An IR camera was used to determine the blackbody radiation temperature from laser-patterned regions, which showed (3-6)% larger emissivity dependent on the grating pattern. The azimuthal emission curve closely followed the Lambertian angular profile ∝cosθa at the 7.5-13 μm emission band. The back-side ablation method on transparent substrates was employed to prevent debris formation during energy deposition as it applies a forward pressure of >0.3 GPa to the debris and molten skin layer. The back-side ablation maximises energy deposition at the exit interface where the transition occurs from the high-to-low refractive index. Phononic absorption in the Reststrahlen region 20-30 μm can be tailored with the fs laser inscription of sensor structures/gratings.
Collapse
Affiliation(s)
- Nan Zheng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Daniel Smith
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Hsin-Hui Huang
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Dominyka Stonytė
- Laser Research Centre, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania;
| | - Dominique Appadoo
- THz Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia;
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia;
| | - Tomas Katkus
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Nguyen Hoai An Le
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Haoran Mu
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
| | - Yoshiaki Nishijima
- Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan;
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
- Institute for Multidisciplinary Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Lina Grineviciute
- Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (D.S.); (S.H.N.); (T.K.); (N.H.A.L.); (H.M.); (S.J.)
- Laser Research Centre, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania;
- WRH Program International Research Frontiers Initiative (IRFI) Institute of Science Tokyo, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
2
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Liu MJ, Tang SY, Cyu RH, Chung CC, Peng YR, Yang PJ, Chueh YL. Two-Dimensional Transition Metal Dichalcogenides (2D TMDs) Coupled With Zero-Dimensional Nanomaterials (0D NMs) for Advanced Photodetection. SMALL METHODS 2025; 9:e2401240. [PMID: 39676477 DOI: 10.1002/smtd.202401240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Indexed: 12/17/2024]
Abstract
The integration of 2D transition metal dichalcogenides (TMDs) with other materials presents a promising approach to overcome inherent limitations and enable the development of novel functionalities. In particular, 0D nanomaterials (0D NMs) offer notable advantages for photodetection, including broadband light absorption, size-dependent optoelectronic properties, high quantum efficiency, and good compatibility. Herein, the integration of 0D NMs with 2D TMDs to develop high-performance photodetectors is reviewed. The review provides a comprehensive overview of different types of 0D NMs, including plasma nanoparticles (NPs), up-conversion NPs, quantum dots (QDs), nanocrystals (NCs), and small molecules. The discussion starts with an analysis of the mechanism of 0D NMs on 2D TMDs in photodetection, exploring various strategies for improving the performance of hybrid 2D TMDs/0D NMs. Recent advancements in photodetectors combining 2D TMDs with 0D NMs are investigated, particularly emphasizing critical factors such as photosensitivity, photogain, specific detectivity, and photoresponse speed. The review concludes with a summary of the current status, highlighting the existing challenges and prospective developments in the advancement of 0D NMs/2D TMDs-based photodetectors.
Collapse
Affiliation(s)
- Ming-Jin Liu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Shin-Yi Tang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Ruei-Hong Cyu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Chen Chung
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ren Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Jung Yang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
He T, Xi J, Zhao R, Chen N, Yuan Q. Bio-Inspired Multiple Responsive NIR II Nanophosphors for Reversible and Environment-Interactive Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416399. [PMID: 39703021 DOI: 10.1002/adma.202416399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Inspired by the natural responsive phenomena, herein the multiple responsive persistent luminescent Zn1.2Ga1.6Ge0.2O4:Ni2+ (ZGGO:Ni) nanoparticles with near-infrared (NIR) II emission peak ≈1330 nm derived from the Ni2+ doping through controlled synthesis based on hydrothermal method are obtained. The obtained NIR II persistent luminescent ZGGO:Ni can not only respond to temperature but also the specific solvent stimulus. The results demonstrate that the NIR II persistent luminescence intensity decreases in hydroxyl containing solvent such as water (H2O) and ethyl alcohol (C2H6O), while the PL intensity remains in solvent without hydroxyl groups such as n-hexane (C6H14) and deuterated water (D2O). This NIR II luminescence quenching is attributed to the adsorption of interaction hydroxyl groups in specific solvents with the amino group on the surface of ZGGO:Ni and the subsequent fluorescence resonance energy transfer mechanism. Benefiting from the multiple responsive properties, the obtained NIR II persistent luminescent ZGGO:Ni is utilized for high-order dynamic optical information encryption, providing increased security level. The multi-responsive NIR II persistent luminescence strategy outlined in this study is anticipated to offer a straightforward methodology for optimizing the optical characteristics of NIR II persistent luminescent materials. Moreover, it is set to expand the scope of their applications in the realm of dynamic and environment-interactive information encryption, thereby opening frontiers for their utilization in advanced security measures.
Collapse
Affiliation(s)
- Tianpei He
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Xi
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Zhao
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Fan X, Luo M, Zhang Y, Zhu XX, Zhao C. Color-shifting Crystalline Colloidal Arrays from Polymers With Upper Critical Solution Temperature. Macromol Rapid Commun 2025:e2401077. [PMID: 39887862 DOI: 10.1002/marc.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Crystalline colloidal arrays (CCAs) composed of core-shell microspheres with thermoresponsive structural iridescence governed by Bragg's law have garnered significant attention for diverse applications. While core-shell microspheres with lower critical solution temperature (LCST) properties are extensively studied, upper critical solution temperature (UCST) counterparts remain unexplored, offering the potential to expand the application scope of thermoresponsive CCAs. In this study, poly(N-acryloyl glycinamide) (PNAGA), a UCST homopolymer, is employed for the first time to synthesize core-shell microspheres. By copolymerizing NAGA with the hydrophilic co-monomer acrylamide (AM) to form the shell, microspheres with soft shells capable of assembling into CCAs with bright iridescence are obtained. Owing to Bragg's law and the UCST properties of the shell, the diffraction wavelength of these CCAs depends on concentration, observation angle, and temperature. The CCAs exhibit thermoresponsive behavior, with a size transition temperature around 14°C. Upon heating, the shells swell, and the microspheres transition from a rigid to a soft state, leading to an increase in interparticle distance and enhanced stabilization of the ordered microsphere packing. This process results in a red shift and a significant increase in the intensity of the diffraction peak. The thermoresponsive properties of these CCAs highlight their potential as intelligent temperature-sensing materials.
Collapse
Affiliation(s)
- Xinzhen Fan
- School of Materials Science & Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo, 315211, China
- Département de Chimie, Université de Montréal, Montréal, Québec, H2V0B3, Canada
| | - Mengqi Luo
- School of Materials Science & Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yulin Zhang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, 614000, China
| | - X X Zhu
- Department of Chemistry, Beijing Normal University, Zhuhai, 519085, China
| | - Chuanzhuang Zhao
- School of Materials Science & Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
6
|
Li C, Chen Z, Xiao M, Liu J, Huang Y, Zhu Z, Liu Y, Pan L, An X, Hua W, He L. Magneto-Photonic Effect of Fe 3O 4@SiO 2 Nanorods for Visualizing the Direction of Magnetic Fields with High Spatiotemporal Resolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70656-70664. [PMID: 39663800 DOI: 10.1021/acsami.4c16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In this work, we demonstrate the visualization of the complex magnetic fields by utilizing the magneto-photonic effect of Fe3O4@SiO2 nanorod suspension with one-to-one correspondence between the visible colors and magnetic field directions. The selected anisotropic nanorods possess appropriate saturated magnetization and high electrostatic repulsion, which is magnetically direction-responsive but strength-insensitive, accurately detecting the field direction while eliminating the influence from intensity. The combined experiment-simulation study validates the accuracy of the simulation, allowing us to further determine the intensity distribution of the magnetic field. The packed photonic device's high spatial (∼20 μm) and temporal (∼1 ms) resolutions were confirmed by time-resolved ultrasmall-angle X-ray scattering (USXAS) tests, as well as observations using an optical microscope and a high-speed camera. Our work provides a new technique for visualizing magnetic fields and opens an avenue toward further studying and utilizing complex magnetic fields for various purposes.
Collapse
Affiliation(s)
- Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Zhijie Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Jingjing Liu
- Institute of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou 215009, Jiangsu, P.R. China
| | - Yang Huang
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Yonghao Liu
- The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Liangbin Pan
- The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|
7
|
Lekshmanan L, Pillai AS, Thomas MM, Sukumaran PA, Saif S, Thankamani PR, Surendran KP, Pillai S, Ajayaghosh A. Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres. SMALL METHODS 2024:e2402125. [PMID: 39703087 DOI: 10.1002/smtd.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 12/21/2024]
Abstract
To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling. The angle-dependent structural color variations, a remarkable 250-fold fluorescence enhancement, non-toxicity, and the rare earth-free formulation have made the ink novel and suitable for dual-layer high-security printing. Covert security patterns and labels are made overt under 365 nm UV light, while also exhibiting angle-dependent structural color. The increased level of security with developed photonic colloidal inks is demonstrated with dual-layer screen-printed images and patterns on flexible substrates.
Collapse
Affiliation(s)
- Lekshmi Lekshmanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Adarsh S Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Meghana M Thomas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Priyanka A Sukumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Safna Saif
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Priya R Thankamani
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Kuzhichalil P Surendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Saju Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
8
|
Bian W, Wang S, Zhou R, Ye Z, Yuan W, Xiang H, Xie A, Liu J, Zeng H, Li W. Surface-mounted carbon quantum dots onto photonic crystals generating dual structural-fluorescent color rendering. Chem Commun (Camb) 2024; 60:14972-14975. [PMID: 39620285 DOI: 10.1039/d4cc05618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
By using citric acid (CA) as the carbon source and hyperbranched polyethyleneimine (PEI) as the surface passivation agent, we successfully synthesized carbon quantum dots (CQDs) with outstanding fluorescence even in their aggregated state. Further mounting them onto the surface of ZIF-8/TiO2 one-dimensional photonic crystals (PCs), we can realize composite films to demonstrate dual structural-fluorescent color rendering.
Collapse
Affiliation(s)
- Wenyang Bian
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Sijia Wang
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Ruitao Zhou
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Zhimin Ye
- Xiamen Institute of Materials, Xiamen 361116, China
| | - Wenjun Yuan
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Hengyang Xiang
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Aming Xie
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Juan Liu
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Haibo Zeng
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Weijin Li
- MIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
9
|
Nakamura S, Hirano K, Tohnai N. Organic Mechanochromic Luminescent Materials with Self-Recovering Characters. Chempluschem 2024; 89:e202400437. [PMID: 39079915 DOI: 10.1002/cplu.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Indexed: 11/08/2024]
Abstract
Recently, applied research on stimuli-responsive materials with luminescence-switching characteristics has been conducted in various fields. A representative phenomenon of stimuli-responsive luminescent materials is mechanochromic luminescence (MCL), which exhibits luminescent color change induced by mechanical stimuli such as grinding. These materials are among the most prominent candidates for security and sensing applications. Interestingly, some mechanochromic luminescent materials have shown self-recovery character, in which their original luminescent color can be recovered by just standing under ambient conditions after grinding. Although there have been more and more reports of such materials in recent years, the fundamental principles of molecular design still remain elusive. In this concept, we summarize distinctive advances in mechanochromic luminescent materials with self-recovery according to the core structures of luminescent molecules. Controlling amorphous state by introducing substituents such as alkyl or polar groups is effective method to provide self-recovering properties.
Collapse
Affiliation(s)
- Shotaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Barrera G, Martella D, Celegato F, Fuochi N, Coïsson M, Parmeggiani C, Wiersma DS, Tiberto P. Light-Controlled Magnetic Properties: An Energy-Efficient Opto-Mechanical Control over Magnetic Films by Liquid Crystalline Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408273. [PMID: 39373716 DOI: 10.1002/advs.202408273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Magnetostrictive materials are essential components in sensors, actuators, and energy-storage devices due to their ability to convert mechanical stress into changes in magnetic properties and vice-versa. However, their operation typically requires physical contact to apply stress or relies on magnetic field sources to control magnetic properties. This poses significant limitations to devices miniaturization and their integration into contactless technologies. This work reports on an approach that overcomes these limitations by using light to transfer mechanical stress to a magnetostrictive device, thereby achieving non-contact and reversible opto-mechanical control of its magnetic and electrical properties. The proposed solution combines a magnetostrictive Fe70Ga30 thin film with a photo-responsive Liquid Crystalline Network (LCN). Magnetic properties are modulated by changing the light wavelength and illumination time. Remarkably, the stable shape change of the LCN induced by ultraviolet (UV) light leads to the retention of magnetic properties even after the light is switched off, resulting in a magnetic memory effect with an energy consumption advantage over the use of conventional magnetic field applicators. The memory effect is erased by visible light, which releases the mechanical stress in the photoresponsive layer. Therefore, this new composite material creates a fully reconfigurable magnetic system controlled by light.
Collapse
Affiliation(s)
- Gabriele Barrera
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino, Firenze, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via N. Carrara 3-13, Sesto Fiorentino, 50019, Italy
| | - Federica Celegato
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Neri Fuochi
- European Laboratory for Non Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino, Firenze, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via N. Carrara 3-13, Sesto Fiorentino, 50019, Italy
| | - Marco Coïsson
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino, Firenze, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via N. Carrara 3-13, Sesto Fiorentino, 50019, Italy
| | - Diederik S Wiersma
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- European Laboratory for Non Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino, Firenze, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Paola Tiberto
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| |
Collapse
|
11
|
Huang H, Chen Z, Zheng H, Ou Y, Zhang J, Xiao K, Huang J, Liu ZQ, Chen Y. Water-Vapor-Triggered Dual-Mode Optical Responses in Rare-Earth-Doped Hollow Nanospheres. NANO LETTERS 2024; 24:15001-15007. [PMID: 39547712 DOI: 10.1021/acs.nanolett.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF2 hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF2 and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.
Collapse
Affiliation(s)
- Hongji Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zixian Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Hanqi Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yingyi Ou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jianing Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Liu F, Sun Y, Wang Z, Li B, Niu S, Zhang J, Han Z, Ren L. Reversible Antireflection Materials Inspired by Cicada Wings for Anticounterfeit and Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63049-63058. [PMID: 39470170 DOI: 10.1021/acsami.4c15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Antireflection (AR) surfaces are essential for the fields of flexible displays, photovoltaic industry, medical endoscope, intelligent windows, etc. Although natural creatures with well-organized micro/nanostructures have provided some coupling design principles for the rapid development of bioinspired AR materials, the mechanical vulnerability, poor flexibility, and nonadjustability have been pointed out as the drawback of these nanostructures. Here, a bioinspired reversible AR film with 4% reflectivity, 90% transmittance, and 9% haze in broadband (400-900 nm) was prepared. The flexible switching of AR performance enhancement and weakening throughout the visible wavelength band has been achieved by controlling the reversible change in the morphology of the interface structure. A variety of patterned film samples can be obtained by simply changing the template, which can be used in intelligent identification fields such as anticounterfeiting. The cycle test and photoelectric test show that the bionic reversible antireflection structure has certain stability and can effectively reduce the loss of photovoltaic cell conversion efficiency caused by mechanical deformation. It has broad application prospects in the fields of anticounterfeiting, intelligent window, flexible display, photoelectric element, and so on.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yuhan Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
13
|
Zhao C, Yan S, Wang L, Zhu L, Zhou Z, Li J, Wen L. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. NANO LETTERS 2024; 24:13638-13646. [PMID: 39364886 DOI: 10.1021/acs.nanolett.4c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Multiplexed optical techniques with multichannel patterns provide powerful strategies for high-capacity anti-counterfeiting. However, it is still a big challenge to meet the demands of achieving high encryption levels, excellent readability, and simple preparation simultaneously. Herein, we use a multistep imprinting technique, leveraging surface work-hardening to massively produce multiplexed encrypted patterns with hierarchical structures. These patterns with coupled nano- and microstructures can be instantaneously decoded into different pieces of information at different view angles under white light illumination. By incorporating perpendicular nano- and microgratings, we achieve four-channel encoded patterns, enhancing anti-counterfeiting capacity. This versatile method works on various metal/polymer materials, offering high-density information storage, direct visibility, broad material compatibility, and low-cost mass production. Our high-performance anti-counterfeiting patterns show significant potential in real-world applications.
Collapse
Affiliation(s)
- Chen Zhao
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Sisi Yan
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lang Wang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Luting Zhu
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Ziqian Zhou
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jiye Li
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liaoyong Wen
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang 311421, China
| |
Collapse
|
14
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
15
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
17
|
Deng BY, Zhou ZR, Xu HL, Liao ZH, Tung CH, Wu LZ, Wang F. Surficial Host-Guest Responsive CsPbBr 3 Perovskite Nanocrystals for Programmable Multi-Level Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311058. [PMID: 38351656 DOI: 10.1002/smll.202311058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Indexed: 07/19/2024]
Abstract
The design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr3 (AD-CsPbBr3) perovskite NCs, along with its supramolecular host-guest assembly partner a modified β-CD (mCD), mCD@AD-CsPbBr3, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr3 in toluene, mCD@AD-CsPbBr3 in toluene, and mCD@AD-CsPbBr3 in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus. Based on these responses, a proof-of-principle programmable Multi-Level Photoluminescence Encoding System (MPLES) is established. Three types of four-level and three types of three-level information encoding are achieved by the system. A layer-by-layer four-level information encryption and decryption as well as a two-level encrypted 3D code are successfully achieved.
Collapse
Affiliation(s)
- Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Hai-Long Xu
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| |
Collapse
|
18
|
Hu Q, Meng W, Li K, Yang C, Huang X, Song K, Long M, Liu X, Zhou G, Wu B. Glass Disorder Modulated Luminescence in Zero-Dimensional Antimony-Chloride Coplanar Dimers for Optical Anti-counterfeiting. NANO LETTERS 2024; 24:6568-6575. [PMID: 38787693 DOI: 10.1021/acs.nanolett.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.
Collapse
Affiliation(s)
- Qichuan Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Weiwei Meng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Keyu Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiong Huang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kejian Song
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Li X, Wu Y, Tang X, Lu X. Preparation and properties of hydrogel photonic crystals assembled by biodegradable nanogels. J Colloid Interface Sci 2024; 663:554-565. [PMID: 38428113 DOI: 10.1016/j.jcis.2024.02.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Tang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.
| |
Collapse
|
20
|
Wang Z, Wang X, Dai X, Xu T, Qian X, Chang M, Chen Y. 2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca 2+ Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312316. [PMID: 38501540 DOI: 10.1002/adma.202312316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The introduction of glucose oxidase, exhibiting characteristics of glucose consumption and H2O2 production, represents an emerging antineoplastic therapeutic approach that disrupts nutrient supply and promotes efficient generation of reactive oxygen species (ROS). However, the instability of natural enzymes and their low therapeutic efficacy significantly impede their broader application. In this context, 2D Ca2Mn8O16 nanosheets (CMO NSs) designed and engineered to serve as a high-performance nanozyme, enhancing the enzyodynamic effect for a ferroptosis-apoptosis synergistic tumor therapy, are presented. In addition to mimicking activities of glutathione peroxidase, catalase, oxidase, and peroxidase, the engineered CMO NSs exhibit glucose oxidase-mimicking activities. This feature contributes to their antitumor performance through cascade catalytic reactions, involving the disruption of glucose supply, self-supply of H2O2, and subsequent efficient ROS generation. The exogenous Ca2+ released from CMO NSs, along with the endogenous Ca2+ enrichment induced by ROS from the peroxidase- and oxidase-mimicking activities of CMO NSs, collectively mediate Ca2+ overload, leading to apoptosis. Importantly, the ferroptosis process is triggered synchronously through ROS output and glutathione consumption. The application of exogenous ultrasound stimulation further enhances the efficiency of ferroptosis-apoptosis synergistic tumor treatment. This work underscores the crucial role of enzyodynamic performance in ferroptosis-apoptosis synergistic therapy against tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianming Xu
- Department of Orthopedics, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, 200050, P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225009, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| |
Collapse
|
21
|
Liang T, Li Z, Bai Y, Yin Y. Dichroic switching of core-shell plasmonic nanoparticles on reflective surfaces. EXPLORATION (BEIJING, CHINA) 2024; 4:20210234. [PMID: 38939865 PMCID: PMC11189573 DOI: 10.1002/exp.20210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high-contrast colour-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high-contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large-scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing.
Collapse
Affiliation(s)
- Tian Liang
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Zhiwei Li
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yaocai Bai
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yadong Yin
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
22
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Liu S, Ye Z, Yin Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8760-8770. [PMID: 38641343 DOI: 10.1021/acs.langmuir.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
24
|
Zhang X, Lyu Q, Chen X, Li M, Zhang L, Zhu J. Colloidal Photonic Composites with a Long-Range Order by Hot-Pressing Polymer Brush-Grafted Silica Colloids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38477047 DOI: 10.1021/acsami.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Colloidal photonic composites (CPCs) are unique optical materials that combine flexible and responsive polymers with colloidal photonic crystals, and they have promising applications in colorful displays, optical anticounterfeiting, and visual sensors. However, conventional self-assembly strategies for constructing CPCs via solvent evaporation have faced limitations due to the meticulous regulation required during the evaporation process and typically long preparation durations. Here, we present an external force method to achieve a long-range ordered arrangement in CPCs by hot-pressing poly(2-[[(butylamino)carbonyl]oxy]ethyl acrylate (PBCOE)) brush-grafted silica colloidal particles (SiO2-g-PBCOE). We show that the hot-pressing conditions (i.e., temperature and pressure) and the silica volume fraction (φsilica) of the SiO2-g-PBCOE colloidal particles play crucial roles in determining their ordering and optical properties. By optimization of the hot-pressing temperature up to 100 °C and pressure of 5 MPa, a long-range ordered arrangement of SiO2-g-PBCOE colloidal particles with a φsilica of 20.3% can be achieved. For the effect of structural features, our findings reveal that SiO2-g-PBCOE colloidal particles featuring a higher φsilica are more prone to obtain a long-range ordered arrangement compared to a lower φsilica under hot-pressing conditions at relatively low temperature and pressure (50 °C and 5 MPa), which is mainly attributed to the chain entanglement and hydrogen bonding interactions induced by grafted longer polymer brushes, leading to additional energy inputs and weakening the ordering. Significantly, the critical φsilica (φc) of SiO2-g-PBCOE colloidal particles is discerned, strongly influencing the optical properties of the hot-pressed films. Specifically, a hot-pressed SiO2-g-PBCOE film with a critical φsilica of 29.3% displays enhanced optical properties characterized by intensified reflection peaks, narrowed full width at half-maximum (FWHM), and brilliant structural colors. Notably, in this work, we reveal the mechanism of hot-pressing-driven core-shell colloidal particle ordering and the key factors affecting the ordering of colloidal particles, i.e., chain entanglement and hydrogen-bonding interactions, which play a crucial role in obtaining CPCs with controllable structures. Moreover, angle-dependent structural color is observed in the hot-pressed SiO2-g-PBCOE film with a φsilica content of 29.3% due to the unique attributes of the highly ordered arrangement, while the films exhibit mechanochromic properties due to chain entanglement and hydrogen bonding interactions. This work provides valuable insights into the rapid construction of highly ordered CPCs and establishes a solid foundation for external force-assisted ordering of colloidal particles.
Collapse
Affiliation(s)
- Xiujuan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Miaomiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
25
|
Han X, Cheng P, Han S, Wang Z, Guan J, Han W, Shi R, Chen S, Zheng Y, Xu J, Bu XH. Multi-stimuli-responsive luminescence enabled by crown ether anchored chiral antimony halide phosphors. Chem Sci 2024; 15:3530-3538. [PMID: 38455020 PMCID: PMC10915841 DOI: 10.1039/d3sc06362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.
Collapse
Affiliation(s)
- Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Shanshan Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University Longyan 364012 Fujian P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| |
Collapse
|
26
|
Zhou H, Ouyang W, Zou S, Xu S. The Control of the Expansion or Compression of Colloidal Crystals Lattice with Salt Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:355. [PMID: 38392728 PMCID: PMC10893356 DOI: 10.3390/nano14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Tuning the lattice spacing or stop bands holds great significance in the design and application of materials with colloidal crystals. Typically, particle surface modifications or the application of external physical fields are needed. In this study, we demonstrated the ability to expand or compress the lattice of colloidal crystals simply by utilizing a salt solution, without the need for any special treatments to the colloidal particles. We found that by only considering the diffusiophoresis effect we cannot explain the reversion of lattice expansion to lattice compression with the increase in the salt concentration and that the diffusioosmotic flow originating from the container wall must be taken into account. Further analysis revealed that variations in the salt concentration altered the relative amplitudes between diffusiophoresis and diffusioosmosis through changing the zeta potentials of the particles and the wall, and the competition between the particle diffusiophoresis and wall diffusioosmosis lay at the center of the underlying mechanism.
Collapse
Affiliation(s)
- Hongwei Zhou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Wenze Ouyang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Shuangyang Zou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
| | - Shenghua Xu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (W.O.); (S.Z.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Hu Y, Tian Z, Ma D, Qi C, Yang D, Huang S. Smart colloidal photonic crystal sensors. Adv Colloid Interface Sci 2024; 324:103089. [PMID: 38306849 DOI: 10.1016/j.cis.2024.103089] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024]
Abstract
Smart colloidal photonic crystals (PCs) with stimuli-responsive periodic micro/nano-structures, photonic bandgaps, and structural colors have shown unique advantages (high sensitivity, visual readout, wireless characteristics, etc.) in sensing by outputting diverse structural colors and reflection signals. In this review, smart PC sensors are summarized according to their fabrications, structures, sensing mechanisms, and applications. The fabrications of colloidal PCs are mainly by self-assembling the well-defined nanoparticles into the periodical structure (supersaturation-, polymerization-, evaporation-, shear-, interaction-, and field-induced self-assembly process). Their structures can be divided into two groups: closely packed and non-closely packed nano-structures. The sensing mechanisms can be explained by Bragg's law, including the change in the effective refractive index, lattice constant, and the order degree. The sensing applications are detailly introduced according to the analytes of the target, including solvents, vapors, humidity, mechanical force, temperature, electrical field, magnetic field, pH, ions/molecules, and so on. Finally, the corresponding challenges and the future potential prospects of artificial smart colloidal PCs in the sensing field are discussed.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ziqiang Tian
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Dongpeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China..
| |
Collapse
|
28
|
Hu C, Zhou J, Zhang J, Zhao Y, Xie C, Yin W, Xie J, Li H, Xu X, Zhao L, Qin M, Li J. A structural color hydrogel for diagnosis of halitosis and screening of periodontitis. MATERIALS HORIZONS 2024; 11:519-530. [PMID: 37982193 DOI: 10.1039/d3mh01563g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Oral pathogens can produce volatile sulfur compounds (VSCs), which is the main reason for halitosis and indicates the risk of periodontitis. High-sensitivity detection of exhaled VSCs is urgently desired for promoting the point-of-care testing (POCT) of halitosis and screening of periodontitis. However, current detection methods often require bulky and costly instruments, as well as professional training, making them impractical for widespread detection. Here, a structural color hydrogel for naked-eye detection of exhaled VSCs is presented. VSCs can reduce disulfide bonds within the network, leading to expansion of the hydrogel and thus change of the structural color. A linear detection range of 0-1 ppm with a detection limit of 61 ppb can be achieved, covering the typical VSC concentration in the breath of patients with periodontitis. Furthermore, visual and in situ monitoring of Porphyromonas gingivalis responsible for periodontitis can be realized. By integrating the hydrogels into a sensor array, the oral health conditions of patients with halitosis can be evaluated and distinguished, offering risk assessment of periodontitis. Combined with a smartphone capable of color analysis, POCT of VSCs can be achieved, providing an approach for the monitoring of halitosis and screening of periodontitis.
Collapse
Affiliation(s)
- Chuanshun Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jieyu Zhou
- West China School/Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yonghang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Chunyu Xie
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Yin
- West China School/Hospital of Stomatology, Department of Preventive Dentistry, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- West China School/Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu 610041, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Nakamura S, Okubo K, Nishii Y, Hirano K, Tohnai N, Miura M. Stimuli-Responsive Properties on a Bisbenzofuropyrazine Core: Mechanochromism and Concentration-Controlled Vapochromism. Chemistry 2023; 29:e202302605. [PMID: 37694960 DOI: 10.1002/chem.202302605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Stimulus-responsive organic materials with luminescence switching properties have attracted considerable attention for their practical applications in sensing, security, and display devices. In this paper, bent-type bisbenzofuropyrazine derivatives, Bent-H and Bent-sBu, with good solubilities were synthesized, and their physical and optical properties were investigated in detail. Bent-H gave three crystalline polymorphs, and they showed different luminescence properties depending on their crystal packing structures. In addition, Bent-H exhibited mechanochromic luminescence in spite of its rigid skeleton. Bent-sBu exhibited unique concentration-dependent vapochromic luminescence. Ground Bent-sBu was converted to blue-emissive, green-emissive, and green-emissive high-viscosity solution states at low, moderate, and high concentrations of CHCl3 vapor, respectively. This finding represents a concentration-dependent multi-phase transition with an organic solvent, which is of potent interest for application in sensing systems.
Collapse
Affiliation(s)
- Shotaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kohei Okubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
31
|
Tuff WJ, Hughes RA, Nieukirk BD, Ciambriello L, Neal RD, Golze SD, Gavioli L, Neretina S. Periodic arrays of structurally complex oxide nanoshells and their use as substrate-confined nanoreactors. NANOSCALE 2023; 15:17609-17620. [PMID: 37876284 DOI: 10.1039/d3nr04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
32
|
Sharifi AR, Ardalan S, Tabatabaee RS, Soleimani Gorgani S, Yousefi H, Omidfar K, Kiani MA, Dincer C, Naghdi T, Golmohammadi H. Smart Wearable Nanopaper Patch for Continuous Multiplexed Optical Monitoring of Sweat Parameters. Anal Chem 2023; 95:16098-16106. [PMID: 37882624 DOI: 10.1021/acs.analchem.3c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Notwithstanding the substantial progress in optical wearable sensing devices, developing wearable optical sensors for simultaneous, real-time, and continuous monitoring of multiple biomarkers is still an important, yet unmet, demand. Aiming to address this need, we introduced for the first time a smart wearable optical sensor (SWOS) platform combining a multiplexed sweat sensor sticker with its IoT-enabled readout module. We employed our SWOS system for on-body continuous, real-time, and simultaneous fluorimetric monitoring of sweat volume (physical parameter) and pH (chemical marker). Herein, a variation in moisture (5-45 μL) or pH (4.0-7.0) causes a color/fluorescence change in the copper chloride/fluorescein immobilized within a transparent chitin nanopaper (ChNP) in a selective and reversible manner. Human experiments conducted on athletic volunteers during exercise confirm that our developed SWOS platform can be efficiently exploited for smart perspiration analysis toward personalized health monitoring. Moreover, our system can be further extended for the continuous and real-time multiplexed monitoring of various biomarkers (metabolites, proteins, or drugs) of sweat or other biofluids (for example, analyzing exhaled breath by integrating onto a facemask).
Collapse
Affiliation(s)
- Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sina Ardalan
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sara Soleimani Gorgani
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Hossein Yousefi
- Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg 79110, Germany
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
33
|
Hu Y, Yu S, Wei B, Yang D, Ma D, Huang S. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. MATERIALS HORIZONS 2023; 10:3895-3928. [PMID: 37448235 DOI: 10.1039/d3mh00877k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Siyi Yu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
34
|
Li X, Li X, Xia T, Chen W, Shea KJ, Lu X. Remarkable sol-gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains. MATERIALS HORIZONS 2023; 10:4452-4462. [PMID: 37503733 DOI: 10.1039/d3mh00892d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the block/graft/branched structures are widely studied to favor the reversible physical gelation, there are no reports regarding the steric hindrance-induced sol-gel transition of PNIPAm-based nanogels above their phase transition temperature (Tp). Generally, the introduction of hydrophobic components into poly (N-isopropylacrylamide) (PNIPAm)-based nanogels only led to collapse and lower viscosity instead of the sol-gel transition upon heating above the Tp. Herein, the results of temperature-variable 1HNMR and FTIR confirm that the introduction of hydrophobic N-tert-butylacrylamide (TBA) with the large steric hindrance of side groups of N-tert-butyl to form NIPAm/TBA copolymer nanogels can dramatically slow down the dehydration of all the hydrophobic alkyl groups, thus resulting in the formation of thermally induced sol-gel transition above the Tp. Furthermore, the N-acrylamido-L-phenylalanine (APhe) monomer composed of a strongly water absorbing carboxyl group and a phenyl group with larger steric hindrance is studied to form P(NIPAm/TBA/APhe) terpolymer nanogels which can self-assemble into colorful colloidal crystals. Surprisingly, owing to the synergistic effect between the water absorbing carboxyl group and the steric hindrance group on the same side group, these colloidal crystals can achieve sol-gel transition above Tp, forming a physically crosslinked colorful hydrogel. This work is expected to greatly advance the design, synthesis, and application of the sol-gel transition of PNIPAm-based nanogel systems.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| | - Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| |
Collapse
|
35
|
Zheng S, Lin YL, Chang CC, Lee MJ, Chen YF, Lee LR, Chang MH, Chen JT. Boosting Ion Conductivities: Light-Modulated Azobenzene-Based Ionic Liquids in Vertical Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45418-45425. [PMID: 37677063 DOI: 10.1021/acsami.3c08792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Exploring stimuli-responsive ion-conductive materials is a challenging task, but it has gained increasing attention because of their enormous potential applications in actuators, sensors, and smart electronics. Here, we demonstrate a distinctive photoresponsive ion-conductive device that utilizes azobenzene-based ionic liquids ([AzoCnMIM][Br], where n = 2, 6, and 10), confined in nanochannels of anodic aluminum oxide (AAO) templates for photoisomerization. The structure of [AzoCnMIM][Br] comprises photoresponsive and hydrophobic azobenzene moieties, hydrophilic imidazolium cations, and negatively charged bromide ions. Therefore, [AzoCnMIM][Br] can form micelles and exhibit photoresponsive ion conductivities. The nanochannels of AAO templates exhibit a confinement effect on the formation of azobenzene-based ionic liquid micelles due to the pore size, thereby preventing the formation of larger micelles that could lead to a decrease in conductivity. Consequently, the ion conductivities of the azobenzene-based ionic liquids are higher in the nanochannels of the AAO templates. The effects of the length of carbon chains on the azobezene-based ionic liquids and the pore size of the AAO templates have also been investigated. Additionally, through irradiation with UV/vis light, [AzoCnMIM][Br] can undergo reversible isomerization, thereby reversibly changing the sizes of the micelles and subsequently altering the ion conductivities.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Liang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Min-Jie Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Hsuan Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
36
|
Luo Y, Liu Q, He P, Li L, Zhang Z, Li X, Bao G, Wong K, Tanner PA, Jiang L. Responsive Regulation of Energy Transfer in Lanthanide-Doped Nanomaterials Dispersed in Chiral Nematic Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303235. [PMID: 37505484 PMCID: PMC10520692 DOI: 10.1002/advs.202303235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The responsive control of energy transfer (ET) plays a key role in the broad applications of lanthanide-doped nanomaterials. Photonic crystals (PCs) are excellent materials for ET regulation. Among the numerous materials that can be used to fabricate PCs, chiral nematic liquid crystals are highly attractive due to their good photoelectric responsiveness and biocompatibility. Here, the mechanisms of ET and the photonic effect of chiral nematic structures on ET are introduced; the regulation methods of chiral nematic structures and the resulting changes in ET of lanthanide-doped nanomaterials are highlighted; and the challenges and promising opportunities for ET in chiral nematic structures are discussed.
Collapse
Affiliation(s)
- Yuxia Luo
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Qingdi Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Ping He
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Liang Li
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| | - Zhao Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xinping Li
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSW2007Australia
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Peter A. Tanner
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Lijun Jiang
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| |
Collapse
|
37
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
38
|
Surel JL, Christians JA. Can we make color switchable photovoltaic windows? Chem Sci 2023; 14:7828-7841. [PMID: 37502325 PMCID: PMC10370607 DOI: 10.1039/d3sc01811c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The development of smart windows could enhance the functionality of the large glass facades found in modern buildings around the globe. While these facades offer occupants views and natural light, the poor insulating qualities of glass cut against the desire for more efficient use of energy resources. In this perspective article, we explore recent developments for next-generation smart window technologies that can offer improved energy management through dynamic color switching, reducing heating and cooling loads, while also generating electricity through the photovoltaic effect. Approaches with chromogenic organic dyes and halide perovskite semiconductors have been developed for switchable photovoltaic windows, but each of these comes with unique challenges. These approaches are briefly discussed and evaluated with an eye to their future prospects. We hope that this perspective will spur other researchers as they think about the various materials and chemical design challenges associated with color switchable photovoltaic windows. Perhaps these initial demonstrations and research ideas can then become marketable products that efficiently use space to improve occupant comfort and reduce the energy demand of the built environment.
Collapse
Affiliation(s)
- Josephine L Surel
- Department of Engineering, Hope College Holland MI 49423 USA
- Department of Physics, University of Oxford, Clarendon Laboratory Parks Road Oxford OX1 3PU UK
| | | |
Collapse
|
39
|
Fan Q, Li Z, Wu C, Yin Y. Magnetically Induced Anisotropic Interaction in Colloidal Assembly. PRECISION CHEMISTRY 2023; 1:272-298. [PMID: 37529717 PMCID: PMC10389807 DOI: 10.1021/prechem.3c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
The wide accessibility to nanostructures with high uniformity and controllable sizes and morphologies provides great opportunities for creating complex superstructures with unique functionalities. Employing anisotropic nanostructures as the building blocks significantly enriches the superstructural phases, while their orientational control for obtaining long-range orders has remained a significant challenge. One solution is to introduce magnetic components into the anisotropic nanostructures to enable precise control of their orientations and positions in the superstructures by manipulating magnetic interactions. Recognizing the importance of magnetic anisotropy in colloidal assembly, we provide here an overview of magnetic field-guided self-assembly of magnetic nanoparticles with typical anisotropic shapes, including rods, cubes, plates, and peanuts. The Review starts with discussing the magnetic energy of nanoparticles, appreciating the vital roles of magneto-crystalline and shape anisotropies in determining the easy magnetization direction of the anisotropic nanostructures. It then introduces superstructures assembled from various magnetic building blocks and summarizes their unique properties and intriguing applications. It concludes with a discussion of remaining challenges and an outlook of future research opportunities that the magnetic assembly strategy may offer for colloidal assembly.
Collapse
Affiliation(s)
- Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
40
|
Dong S, Zheng Q, Tang M, Zhu S, Nie J, Du B. Ionic Microgel Colloidal Crystals: Responsive Chromism in Dual Physical and Chemical Colors for High-End Information Security and Encryption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418692 DOI: 10.1021/acsami.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Chromic materials play a decisive and escalating role in information security. However, it is challenging to develop chromic materials for encryption technologies that can hardly be imitated. Inspired by versatile metachrosis in nature, a series of coumarin-based 7-(6-bromohexyloxy)-coumarin microgel colloidal crystals (BrHC MGCC) with multiresponsive chromism are able to be assembled by ionic microgels in poly(vinyl alcohol) (PVA) solution followed by two cycles of freezing-thawing. The ionic microgels can be finely tailored by in situ quaternization with tunable size under varied temperatures and hydration energies of counterions as well as quenched luminescence under UV irradiation, which endows BrHC MGCC with intriguing chromism in the dual-channel coloration of physical structural color and chemical fluorescent color. Three types of BrHC MGCC exhibit various change ranges in structural coloration and similar quenching in fluorescence emission, which can be utilized for the development of the static-dynamic combined anticounterfeiting system with dual coloration. The information conveyed by the BrHC MGCC array presents dynamic variation versus temperature, while the static information can be only integrally read in both sunlight and a 365 nm UV lamp. The fabrication of a microgel colloidal crystal with dual coloration opens a facile and ecofriendly window for multilevel information security, camouflage, and a cumbersome authentication process.
Collapse
Affiliation(s)
- Shunni Dong
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Zheng
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiqi Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaoxiong Zhu
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
41
|
Das G, Prakasam T, Alkhatib N, AbdulHalim RG, Chandra F, Sharma SK, Garai B, Varghese S, Addicoat MA, Ravaux F, Pasricha R, Jagannathan R, Saleh N, Kirmizialtin S, Olson MA, Trabolsi A. Light-driven self-assembly of spiropyran-functionalized covalent organic framework. Nat Commun 2023; 14:3765. [PMID: 37353549 PMCID: PMC10290075 DOI: 10.1038/s41467-023-39402-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.
Collapse
Affiliation(s)
- Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rasha G AbdulHalim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Falguni Chandra
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Bikash Garai
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- CTP, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | - Florent Ravaux
- Quantum research center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- CTP, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA.
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates.
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
42
|
Li L, Yu Z, Liu J, Yang M, Shi G, Feng Z, Luo W, Ma H, Guan J, Mou F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. NANO-MICRO LETTERS 2023; 15:141. [PMID: 37247162 PMCID: PMC10226971 DOI: 10.1007/s40820-023-01095-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Huiru Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
43
|
Yu S, Shao Y, Qiu Q, Cheng Y, Qing R, Wang CF, Chen S, Xu C. Photo-and thermo-regulation by photonic crystals for extended longevity of C. elegans. Mech Ageing Dev 2023; 212:111819. [PMID: 37120065 DOI: 10.1016/j.mad.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Methods allowing light energy to be modulated in a controllable fashion are potentially important for finding the correlation between light-related environmental factors and aging-related lifespan. Here, we report photo- and thermo-regulation based on photonic crystals (PCs) for extended longevity of C. elegans. We show that PCs can function as a regulator of visible spectrum to tune photonic energy received by C.elegans. We provide direct evidence that lifespan depends on photonic energy, and the use of PCs reflecting blue light (440-537nm) gives 8.3% increasement in lifespan. We demonstrate that the exposure to modulated light alleviates photo-oxidative stress and unfolded-protein response. We realize reflective passive cooling temperature using PCs, and favorable low temperature could be created for worms to extend lifespan. This work offers a new path based on PCs to resist negative effects light and temperature for longevity, provides an available platform for studying the role of light in aging.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yating Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qineng Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renkun Qing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
44
|
Feng C, Mao M, Zhang X, Liao Y, Xiao X, Liu H, Liu K. Programmable microfluidics for dynamic multiband camouflage. MICROSYSTEMS & NANOENGINEERING 2023; 9:43. [PMID: 37033108 PMCID: PMC10073183 DOI: 10.1038/s41378-023-00494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/19/2023]
Abstract
Achieving multiband camouflage covering both visible and infrared regions is challenging due to the broad bandwidth and differentiated regulation demand in diverse regions. In this work, we propose a programmable microfluidic strategy that uses dye molecules in layered fluids to manipulate visible light- and infrared-semitransparent solvent to manipulate infrared light. With three primary fluid inputs, we achieve 64 chromaticity values and 8 emissivities from 0.42 to 0.90. In view of the wide tuning range, we demonstrate that the microfluidic film can dynamically change its surface reflectance to blend into varying backgrounds in both visible and infrared images. Moreover, we fabricate the microfluidic device in a textile form and demonstrate its ability to match exactly with the colors of natural leaves of different seasons in the full hyperspectrum range. Considering the broadband modulation and ease of operation, the programmable microfluidic strategy provides a feasible approach for smart optical surfaces in long-span optical spectra.
Collapse
Affiliation(s)
- Chunzao Feng
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Mingran Mao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Xiaohui Zhang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Yutian Liao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Xiaohui Xiao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Huidong Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| |
Collapse
|
45
|
Pan Y, Li C, Hou X, Yang Z, Li M, Shum HC. Pixelating Responsive Structural Color via a Bioinspired Morphable Concavity Array (MoCA) Composed of 2D Photonic Crystal Elastomer Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300347. [PMID: 36793100 PMCID: PMC10104634 DOI: 10.1002/advs.202300347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive structural coloration allows the color change of soft substrates in response to environmental stimuli such as heat, humidity, and solvents. Such color-changing systems enable smart soft devices, such as the camouflageable skin of soft robots or chromatic sensors in wearable devices. However, individually and independently programmable stimuli-responsive color pixels remain significant challenges among the existing color-changing soft materials and devices, which are crucial for dynamic display. Inspired by the dual-color concavities on butterfly wings, a morphable concavity array to pixelate the structural color of two-dimensional photonic crystal elastomer and achieve individually and independently addressable stimuli-responsive color pixels is designed. The morphable concavity can convert its surface between concave and flat upon changes in the solvent and temperature, accompanied by angle-dependent color-shifting. Through multichannel microfluidics, the color of each concavity can be controllably switched. Based on the system, the dynamic display by forming reversibly editable letters and patterns for anti-counterfeiting and encryption are demonstrated. It is believed that the strategy of pixelating optical properties through locally altering surface topography can inspire the design of new transformable optical devices, such as artificial compound eyes or crystalline lenses for biomimetic and robotic applications.
Collapse
Affiliation(s)
- Yi Pan
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Chang Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Xiaoyu Hou
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Zhenyu Yang
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
| | - Mingzhu Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong999077P. R. China
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkNew Territories, ShatinHong Kong999077P. R. China
| |
Collapse
|
46
|
Demirel M, Aslan N, Aksakal B, Arslan ME. Fabrication of hydroxyapatite-based nano-gold and nano-silver-doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties. J Biomed Mater Res B Appl Biomater 2023; 111:1386-1397. [PMID: 36891913 DOI: 10.1002/jbm.b.35242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
In this study, nano-gold (nAu) and nano-silver (nAg) were doped at the molar ratios of Molar5-Molar30 to the Hydroxyapatite (HAp)-based bioceramic bone graft synthesized by the sol-gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM-EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp-nAu5 grafts did not show toxicological properties at any concentration, while HAp-nAg5 among the nAg-containing grafts gave the best results at the 200-100 μg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu-containing grafts showed toxicological properties in the concentration range of 200-50 μg/mL and nAg-containing grafts in the concentration range of 200-100 μg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg-doped bone grafts gave higher total MN, L, and N amounts compared to the nAu-doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg-doped bone grafts.
Collapse
Affiliation(s)
- M Demirel
- Vocational School of Technical Science, Mechanical and Mater Technology, Adiyaman University, Adiyaman, Turkey
| | - N Aslan
- Department of Metallurgical and Materials Engineering, Munzur University, Tunceli, Turkey
| | - B Aksakal
- School of Civil Aviation, Firat University, Elazig, Turkey
| | - M E Arslan
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
47
|
Schöttle M, Tran T, Oberhofer H, Retsch M. Machine Learning Enabled Image Analysis of Time-Temperature Sensing Colloidal Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205512. [PMID: 36670061 PMCID: PMC10015860 DOI: 10.1002/advs.202205512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Smart, responsive materials are required in various advanced applications ranging from anti-counterfeiting to autonomous sensing. Colloidal crystals are a versatile material class for optically based sensing applications owing to their photonic stopband. A careful combination of materials synthesis and colloidal mesostructure rendered such systems helpful in responding to stimuli such as gases, humidity, or temperature. Here, an approach is demonstrated to simultaneously and independently measure the time and temperature solely based on the inherent material properties of complex colloidal crystal mixtures. An array of colloidal crystals, each featuring unique film formation kinetics, is fabricated. Combined with machine learning-enabled image analysis, the colloidal crystal arrays can autonomously record isothermal heating events - readout proceeds by acquiring photographs of the applied sensor using a standard smartphone camera. The concept shows how the progressing use of machine learning in materials science has the potential to allow non-classical forms of data acquisition and evaluation. This can provide novel insights into multiparameter systems and simplify applications of novel materials.
Collapse
Affiliation(s)
- Marius Schöttle
- Department of ChemistryPhysical Chemistry IUniversity of Bayreuth95447Universitätsstr. 30BayreuthGermany
| | - Thomas Tran
- Department of ChemistryPhysical Chemistry IUniversity of Bayreuth95447Universitätsstr. 30BayreuthGermany
| | - Harald Oberhofer
- Department of PhysicsTheoretical Physics VIIUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
- Bavarian Center for Battery Technology (BayBatt)University of BayreuthUniversitätsstr. 3095447BayreuthGermany
| | - Markus Retsch
- Department of ChemistryPhysical Chemistry IUniversity of Bayreuth95447Universitätsstr. 30BayreuthGermany
- Bavarian Center for Battery Technology (BayBatt)University of BayreuthUniversitätsstr. 3095447BayreuthGermany
| |
Collapse
|
48
|
Lu D, Qin M, Zhao Y, Li H, Luo L, Ding C, Cheng P, Su M, Li H, Song Y, Li J. Supramolecular Photonic Hydrogel for High-Sensitivity Alkaline Phosphatase Detection via Synergistic Driving Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206461. [PMID: 36587969 DOI: 10.1002/smll.202206461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors. Here, a facilely prepared supramolecular photonic hydrogel biosensor is developed for high-sensitivity detection of alkaline phosphatase (ALP), which is an extensively considered clinical biomarker for a variety of diseases. Responding to ALP results in the broken supramolecular crosslinking and thus increased lattice distancing of the photonic hydrogel driven by synergistic repulsive force between nanoparticles embedded in photonic crystal structure and osmotic swelling pressure. The biosensor shows sensitivity of 7.3 nm spectral shift per mU mL-1 ALP, with detection limit of 0.52 mU mL-1 . High-accuracy colorimetric detection can be realized via a smartphone, promoting point-of-care sensing and timely diagnosis of related pathological conditions.
Collapse
Affiliation(s)
- Dengfeng Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yonghang Zhao
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
49
|
Stein A. Achieving Functionality and Multifunctionality through Bulk and Interfacial Structuring of Colloidal-Crystal-Templated Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2890-2910. [PMID: 36757136 DOI: 10.1021/acs.langmuir.2c03297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Over the past 25 years, the field of colloidal crystal templating of inverse opal or three-dimensionally ordered macroporous (3DOM) structures has made tremendous progress. The degree of structural control over multiple length scales, understanding of mechanical properties, and complexity of systems in which 3DOM materials are a component have increased substantially. In addition, we are now seeing applications of 3DOM materials that make use of multiple features of their architecture at the same time. This Feature Article focuses on the different properties of 3DOM materials that provide functionality, including a relatively large surface area, the interconnectedness of the pores and the resulting good accessibility of the internal surface, the nanostructured features of the walls, the structural hierarchy and periodicity, well-defined surface roughness, and relative mechanical robustness at low density. It provides representative examples that illustrate the properties of interest related to applications including energy storage and conversion systems, sensors, catalysts, sorbents, photonics, actuators, and biomedical materials or devices.
Collapse
Affiliation(s)
- Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
50
|
Hou X, Vogelbacher F, Lai X, Li K, Song Y, Li M. Bioinspired multichannel colorful encryption through kirigami activating grating. Sci Bull (Beijing) 2023; 68:276-283. [PMID: 36702683 DOI: 10.1016/j.scib.2023.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Optical encryption, exploiting degrees of freedom of light as parameters to encode and decode information, plays an indispensable role in our daily life. Responsive structural color materials can give real-time visible feedback to external stimuli and provide ideal candidates for optical encryption. However, the development of existing responsive structural color materials is hindered by poor repeatability and long feedback time. Meanwhile, there are only few strategies to exploit structural colors in multichannel information encryption. Herein, bioinspired by the structural color variation due to a change in angle arising from the movement of animal's scales or feathers, we developed a general multichannel information encryption strategy using a two-dimensional deformable kirigami arranging orientations of the grating arrays by design. The kirigami grating sheet shows rapid, repeatable, and programmable color change. This strategy utilizes the topological space deformation to guide the change of optical property, which suggests new possibilities for spatial and spectral encryption as well as mechano-sensing and camouflage.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xintao Lai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|