1
|
Bu F, Shen X, Zhan H, Wang D, Min L, Song Y, Wang S. Efficient Metabolomics Profiling from Plasma Extracellular Vesicles Enables Accurate Diagnosis of Early Gastric Cancer. J Am Chem Soc 2025; 147:8672-8686. [PMID: 40071449 DOI: 10.1021/jacs.4c18110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Accurate diagnosis of early gastric cancer is valuable for asymptomatic populations, while current endoscopic examination combined with pathological tissue biopsy often encounters bottlenecks for early-stage cancer and causes pain to patients. Liquid biopsy shows promise for noninvasive diagnosis of early gastric cancer; however, it remains a challenge to achieve accurate diagnosis due to the lack of highly sensitive and specific biomarkers. Herein, we propose a protocol combining metabolomics profiling from plasma extracellular vesicles (EVs) and machine learning to identify the metabolomics discrepancies of early gastric cancer individuals from other populations. Efficient metabolomics profiling is achieved by efficient, high-purity, and damage-free plasma EVs separation using elaborately designed nanotrap-structured microparticles (NanoFisher) by taking advantage of stereoscopic interaction and affinity interaction. Significant metabolomics discrepancies are obtained from 150 early gastric cancer (50), benign gastric disease (50), and non-disease control (50) plasma samples. Machine learning enables ideal distinction between early gastric cancer and non-disease control samples with an area under the curve (AUC) of 1.000, achieves an AUC of 0.875-0.975 for differentiating early gastric cancer from benign gastric diseases, and demonstrates an overall accuracy of 92% in directly classifying these three categories. The plasma EV metabolomics profiling enabled by NanoFisher materials, integrated with machine learning, holds considerable promise for broad clinical acceptance, enhancing gastric cancer screening outcomes.
Collapse
Affiliation(s)
- Fanqin Bu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| | - Xinyi Shen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haosu Zhan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Shang D, Song Y, Cui Y, Chen C, Xu F, Zhu C, Dong X, Chen Y, Wang S, Li X, Liang X. Superhydrophilic Nanostructured Microparticles for Enhanced Phosphoprotein Enrichment from Alzheimer's Disease Brain. ACS NANO 2025; 19:8118-8130. [PMID: 39992002 DOI: 10.1021/acsnano.4c16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and closely related to abnormal phosphoproteoforms. The analysis of low-abundance phosphoproteoforms relies heavily on the enrichment of phosphoproteins. However, existing phosphoprotein enrichment materials suffer from either low selectivity or low coverage due to the unavoidable unspecific adsorption of background proteins. Here, we propose a strategy of nanostructure-enabled superhydrophilic surfaces and synthesize Ti4+-functionalized superhydrophilic nanostructured microparticles (SNMs-Ti4+) via an emulsion interfacial polymerization process. In this process, hydrophilic and hydrophobic monomers assemble into a stable oil-in-water emulsion, producing microparticles with abundant hydrophilic phosphate nanoprotrusions on the surface. The microparticles are subsequently functionalized with Ti4+. SNMs-Ti4+ exhibit enormous nanoprotrusions and abundant Ti4+ modifications, which allow SNMs-Ti4+ to effectively adsorb the phosphoproteins and suppress the unspecific adsorption of background proteins. Using these SNMs-Ti4+, we identified 2256 phosphoproteins from HeLa cells, twice the number of those enriched with commercial kits. From AD mouse brains, 2603 phosphoproteins were successfully enriched, and 10 times of AD-related differentially regulated phosphoproteins were discovered than those without enrichment. These microparticles show great prospects for biomarker detection, disease diagnosis, and downstream biological process disclosure.
Collapse
Affiliation(s)
- Danyi Shang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Cui
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Feifei Xu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Congcong Zhu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xuefang Dong
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuling Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
3
|
Ergun C, Eskizengin H. Recent Updates on Blood Purification: Use of Smart Polymer Materials. J Biomed Mater Res A 2025; 113:e37883. [PMID: 39995147 DOI: 10.1002/jbm.a.37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Blood purification is indispensable in addressing various conditions such as liver dysfunction, autoimmune diseases, and renal failure whereby toxins have to be cleared from the bloodstream effectively. Conventional methods that involve hemoperfusion, hemodialysis, and hemofiltration possess several weaknesses, including loss of plasma components and inefficient clearance of high molecular weight solutes. This review explores current developments in blood purification techniques particularly stimuli-responsive polymers for use in extracorporeal therapy among other applications. Many aspects of engineering stimuli-responsive polymers are described in terms of their role in the removal of small soluble molecules and toxins in blood purification techniques. The development of stimuli-responsive systems has introduced a new paradigm in blood purification by enabling selective, on-demand control of polymer parameters in response to external stimuli such as temperature, pH, electrolytes, and light. Such advanced materials have been demonstrated potential for toxin clearance, minimizing thrombosis, and improving blood compatibility and antifouling, which are far much better than traditional approaches. Furthermore, the review presents a perspective on stimuli-responsive polymers that could be used in developing novel extracorporeal systems for future medical purposes.
Collapse
Affiliation(s)
- Can Ergun
- Department of Biology, Faculty of Science, Ankara University, Ankara, Türkiye
| | - Hakan Eskizengin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Türkiye
| |
Collapse
|
4
|
Yoshida E. Protein Cage-like Vesicles Fabricated via Polymerization-Induced Microphase Separation of Amphiphilic Diblock Copolymers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:727. [PMID: 39942392 PMCID: PMC11820364 DOI: 10.3390/ma18030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Highly symmetric protein cages represent one of the most artistic architectures formed by biomolecules. However, the underlying reasons for the formation of some of these architectures remain unknown. The present study aims to investigate the significance behind their morphological formation by fabricating protein cage-like vesicles using a synthetic polymer. The vesicles were synthesized by combining polymerization-induced self-assembly (PISA) with polymerization-induced microphase separation (PIMS), employing an amphiphilic poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-cyclohexyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(BMA-r-CMA-r-MAA). The copolymer, with a 60 mol% molar ratio of CMA to the BMA units, produced clathrin-like vesicles with angular windows in their shell, resulting from the segregation of the hard CMA units from the soft BMA matrix in the hydrophobic phase of the vesicle. These vesicles were highly stable against rising temperatures. In contrast, the vesicles with a 30 mol% CMA ratio dissociated upon heating to 50 °C into triskelion-like segments due to intramolecular microphase separation. These findings indicate that designing synthetic polymers can mimic living organ morphologies, aiding in elucidating their morphological significance and inspiring the development of new materials utilizing these morphologies.
Collapse
Affiliation(s)
- Eri Yoshida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan
| |
Collapse
|
5
|
Chen Q, Zhang L, Zhang Y, Shen J, Zhang D, Wang M. High-efficient depletion and separation of histidine-rich proteins via Cu 2+-chelated porous polymer microspheres. Talanta 2024; 277:126337. [PMID: 38823331 DOI: 10.1016/j.talanta.2024.126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Depletion and separation of histidine-rich proteins from complicated biosamples are crucial for various downstream applications in proteome research and clinical diagnosis. Herein, porous polymer microspheres coated with polyacrylic acid (SPSDVB-PAA) were fabricated through double emulsion interfacial polymerization technique and followed by immobilization of Cu2+ ions on the surface of SPSDVB-PAA. The as-prepared SPSDVB-PAA-Cu with uniform size and nanoscale pore structure enabled coordination interaction of Cu2+ with histidine residues in his-rich proteins, resulting in high-performance adsorption. As metal affinity adsorbent, the SPSDVB-PAA-Cu exhibited favorable selectivity for adsorbing hemoglobin (Hb) and human serum albumin (HSA) with the maximum adsorption capacities of 152.2 and 100.7 mg g-1. Furthermore, the polymer microspheres were used to isolate histidine-rich proteins from human whole blood and plasma, underscoring their effectiveness. The liquid chromatography tandem mass spectrometry (LC-MS/MS) results indicated that the content of 14 most abundant proteins in human plasma was depleted from 81.6 % to 30.7 % and low-abundance proteins were enriched from 18.4 % to 69.3 % after treatment with SPSDVB-PAA-Cu, illustrating potential application of SPSDVB-PAA-Cu in proteomic research.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Lijie Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Yang Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Jiajun Shen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Dandan Zhang
- Department of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Mengmeng Wang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
6
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
7
|
Shen X, Zhang Y, Wang D, Huang Y, Song Y, Wang S. Mediator Monomer Regulated Emulsion Interfacial Polymerization to Synthesize Nanofractal Magnetic Particles for Nucleic Acid Separation. SMALL METHODS 2024; 8:e2300531. [PMID: 37491768 DOI: 10.1002/smtd.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity. Here, a series of nanofractal magnetic particles (nanoFMPs) synthesized by a strategy of mediator monomer regulated emulsion interfacial polymerization is presented, which allows effective magnetic NPs loading and show efficient nucleic acid separation performance. The mediator monomers facilitate the dispersion of magnetic NPs in internal phase to achieve higher loading, and the hydrophilic monomers use electrostatic interactions to form surface nanofractal structures with functional groups. Compared with magnetic particles without nanofractal structure, nanoFMPs exhibit a higher nucleic acid extraction capability. This strategy offers an effective and versatile way for the synthesis of nanoFMPs toward efficient separation in various fields from clinical diagnosis to food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| |
Collapse
|
8
|
Wang Z, Liu Q, Liu Q, Qi H, Li Y, Song DP. Self-Assembly and In Situ Quaternization of Triblock Bottlebrush Block Copolymers via Organized Spontaneous Emulsification for Effective Loading of DNA. Macromol Rapid Commun 2023; 44:e2300192. [PMID: 37194368 DOI: 10.1002/marc.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Microspheres bearing large pores are useful in the capture and separation of biomolecules. However, pore size is typically poorly controlled, leading to disordered porous structures with limited performances. Herein, ordered porous spheres with a layer of cations on the internal surface of the nanopores are facilely fabricated in a single step for effective loading of DNA bearing negative charges. Triblock bottlebrush copolymers (BBCPs), (polynorbornene-g-polystyrene)-b-(polynorbornene-g-polyethylene oxide)-b-(polynorbornene-g-bromoethane) (PNPS-b-PNPEO-b-PNBr), are designed and synthesized for fabrication of the positively charged porous spheres through self-assembly and in situ quaternization during an organized spontaneous emulsification (OSE) process. Pore diameter as well as charge density increase with the increase of PNBr content, resulting in a significant increase of loading density from 4.79 to 22.5 ng µg-1 within the spheres. This work provides a general strategy for efficient loading and encapsulation of DNA, which may be extended to a variety of different areas for different real applications.
Collapse
Affiliation(s)
- Zhaoxu Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Qiujun Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Song Y, Zhou J, Zhu Z, Li X, Zhang Y, Shen X, O'Reilly P, Li X, Liang X, Jiang L, Wang S. Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle. Nat Commun 2023; 14:5779. [PMID: 37723155 PMCID: PMC10507067 DOI: 10.1038/s41467-023-41053-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Dispersion of colloidal particles in water or oil is extensively desired for industrial and environmental applications. However, it often strongly depends on indispensable assistance of chemical surfactants or introduction of nanoprotrusions onto the particle surface. Here we demonstrate the omnidispersity of hydrophilic-hydrophobic heterostructure particles (HL-HBPs), synthesized by a surface heterogeneous nanostructuring strategy. Photo-induced force microscopy (PiFM) and adhesion force images both indicate the heterogeneous distribution of hydrophilic domains and hydrophobic domains on the particle surface. These alternating domains allow HL-HBPs to be dispersed in various solvents with different polarity and boiling point. The HL-HBPs can efficiently adsorb organic dyes from water and release them into organic solvents within several seconds. The surface heterogeneous nanostructuring strategy provides an unconventional approach to achieve omnidispersion of colloidal particles beyond surface modification, and the omnidispersible HL-HBPs demonstrate superior capability for dye recycle merely by solvent exchange. These omnidispersible HL-HBPs show great potentials in industrial process and environmental protection.
Collapse
Affiliation(s)
- Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, P. R. China
| | - Zhongpeng Zhu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China
| | - Xiaoxia Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | | | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China.
| |
Collapse
|
10
|
He MQ, Ai Y, Hu W, Jia X, Wu L, Ding M, Liang Q. Dual-Functional Capping Agent-Mediated Transformation of Silver Nanotriangles to Silver Nanoclusters for Dual-Mode Biosensing. Anal Chem 2023; 95:6130-6137. [PMID: 37002208 DOI: 10.1021/acs.analchem.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The localized surface plasmon resonance (LSPR) property, depending on the structure (morphology and assembly) of nanoparticles, is very sensitive to the environmental fluctuation. Retaining the colorimetric effect derived from the LSPR property while introducing new optical properties (such as fluorescence) that provide supplementary information is an effective means to improve the controllability in structures and reproducibility in optical properties. DNA as a green and low-cost etching agent has been demonstrated to effectively control the morphology and optical properties (the blue shift of the LSPR peak) of the plasmonic nanoparticles. Herein, taking silver nanotriangles (AgNTs) as a proof of concept, we report a novel strategy to induce precisely tunable LSPR and fluorescence-composited dual-mode signals by using mono-DNA first as an etching agent for etching the morphology of AgNTs and later as a template for synthesizing fluorescent silver nanoclusters (AgNCs). In addition, common templates for synthesizing AgNCs, such as l-glutathione and bovine serum albumin, were demonstrated to have the capability to serve as etching agents. More importantly, these biomolecules as dual-functional capping agents (etching agents and templates) follow the size-dependent rule: as the size of the thiolated biomolecule increases, the blue shift of the LSPR peak increases; at the same time, the fluorescence intensity increases. The enzyme that can change the molecular weight (size) of the biomolecular substrates (DNA, peptides, and proteins) through an enzymatic cleavage reaction was explored to regulate the LSPR and fluorescent properties of the resulting nanoparticles (by etching of AgNTs and synthesis of AgNCs), achieving excellent performance in detection of cancer-related proteases. This study can be expanded to other biopolymers to impact both fundamental nanoscience and applications and provide powerful new tools for bioanalytical biosensors and nanomedicine.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
12
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
13
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
14
|
Bai Y, Li Y, Tang Z, Hu L, Jiang X, Chen J, Huang S, Wu K, Xu W, Chen C. Urinary proteome analysis of acute kidney injury in post-cardiac surgery patients using enrichment materials with high-resolution mass spectrometry. Front Bioeng Biotechnol 2022; 10:1002853. [PMID: 36177176 PMCID: PMC9513377 DOI: 10.3389/fbioe.2022.1002853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) may increase the mortality and incidence rates of chronic kidney disease in critically ill patients. This study aimed to investigate the underlying correlations between urinary proteomic changes and CSA-AKI. Methods: Nontargeted proteomics was performed using nano liquid chromatography coupled with Orbitrap Exploris mass spectrometry (MS) on urinary samples preoperatively and postoperatively collected from patients with CSA-AKI. Gemini C18 silica microspheres were used to separate and enrich trypsin-hydrolysed peptides under basic mobile phase conditions. Differential analysis was conducted to screen out urinary differential expressed proteins (DEPs) among patients with CSA-AKI for bioinformatics. Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis was adopted to identify the altered signal pathways associated with CSA-AKI. Results: Approximately 2000 urinary proteins were identified and quantified through data-independent acquisition MS, and 324 DEPs associated with AKI were screened by univariate statistics. According to KEGG enrichment analysis, the signal pathway of protein processing in the endoplasmic reticulum was enriched as the most up-regulated DEPs, and cell adhesion molecules were enriched as the most down-regulated DEPs. In protein–protein interaction analysis, the three hub targets in the up-regulated DEPs were α-1-antitrypsin, β-2-microglobulin and angiotensinogen, and the three key down-regulated DEPs were growth arrest-specific protein 6, matrix metalloproteinase-9 and urokinase-type plasminogen activator. Conclusion: Urinary protein disorder was observed in CSA-AKI due to ischaemia and reperfusion. The application of Gemini C18 silica microspheres can improve the protein identification rate to obtain highly valuable resources for the urinary DEPs of AKI. This work provides valuable knowledge about urinary proteome biomarkers and essential resources for further research on AKI.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Ying Li
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhizhong Tang
- Department of Urology, Maoming People’s Hospital, Maoming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Xinyi Jiang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingchun Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Sumei Huang
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- Department of Emergency, Maoming People’s Hospital, Maoming, China
- Biological Resource Center of Maoming People’s Hospital, Maoming, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- Biological Resource Center of Maoming People’s Hospital, Maoming, China
| | - Wang Xu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunbo Chen
- Department of Emergency, Maoming People’s Hospital, Maoming, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
- *Correspondence: Chunbo Chen, , orcid.org/0000-0001-5662-497X
| |
Collapse
|
15
|
Adsorption of flavonoids with glycosides: design and synthesis of chitosan-functionalized microspheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Zhang Y, Yang F, Wei W, Wang Y, Yang S, Li J, Xing Y, Zhou L, Dai W, Dong H. Self-Propelled Janus Mesoporous Micromotor for Enhanced MicroRNA Capture and Amplified Detection in Complex Biological Samples. ACS NANO 2022; 16:5587-5596. [PMID: 35357821 DOI: 10.1021/acsnano.1c10437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The slow mass transport of the target molecule essentially limits the biosensing performance. Here, we report a Janus mesoporous microsphere/Pt-based (meso-MS/Pt) nanostructure with greatly enhanced target transport and accelerated recognition process for microRNA (miRNA) amplified detection in complex biological samples. The mesoporous MS was synthesized via double emulsion interfacial polymerization, and Pt nanoparticles (PtNPs) were deposited on the half-MS surface to construct Janus meso-MS/Pt micromotor. The heterogeneous meso-MS/Pt with a large surface available was attached to an entropy-driven DNA recognition system, termed meso-MS/Pt/DNA, and the tremendous pores network was beneficial to enhanced receptor-target interaction. It enabled moving around complex biological samples to greatly enhance target miRNA mass transport and accelerate recognition procedure due to the self-diffusiophoretic propulsion. Coupling with the entropy-driven signal amplification, extremely sensitive miRNA detection in Dulbecco's modified Eagle medium (DMEM), and cell lysate without preparatory and washing steps was realized. Given the free preparatory and washing steps, fast mass transport, and amplified capability, the meso-MS/Pt/DNA micromotor provides a promising method for miRNAs analysis in real biological samples.
Collapse
Affiliation(s)
- Yufan Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Fan Yang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Wei Wei
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Yeyu Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Shuangshuang Yang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Jinze Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Yi Xing
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Liping Zhou
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Wenhao Dai
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
17
|
Cheng X, Yang Y, Song Y, Xu LP, Wang S. Utilizing Heterostructured Porous Particles to Improve Traditional Paper Chromatography for Spontaneous Protein Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4250-4255. [PMID: 35353528 DOI: 10.1021/acs.langmuir.1c03394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatography is a classical technique for protein separation. However, the chromatography column is filled with tightly packed separation materials and requires an additional pressurizing pump to propel the flow of fluidic samples, largely restraining their applications. Here, we combine heterostructured porous particles with paper strips, realizing spontaneous separation of similarly sized proteins. The interconnected nanofibrous structure and good hydrophility of paper strips enable the spontaneous flow of the liquid sample, and the heterostructured porous particles provide versatile tools for protein separation via electrostatic interaction. The fabricated paper strips are inexpensive, user-friendly, and disposable and exhibit good separation performance. This work may offer a new avenue for fabricating on-site bioseparation tools and purifying various biomacromolecules.
Collapse
Affiliation(s)
- Xu Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Xu H, Li X, Hao Y, Xu X, Zhang Y, Zhang J. Polyethyleneimine modified heterostructure porous polymer microspheres for efficient adsorption of acteoside. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Mesoporous polystyrene-based microspheres with polar functional surface groups synthesized from double emulsion for selective isolation of acetoside. J Chromatogr A 2021; 1662:462720. [PMID: 34902717 DOI: 10.1016/j.chroma.2021.462720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
In this study, a series of the functionalized mesoporous polystyrene-based microspheres (FMPMs) with different functional comonomers (acrylamide, AM; ethyleneglycol dimethacrylate, EGDMA; hydroxyethyl methacrylate, HEMA) and ratios of styrene (St) to divinylbenzene (DVB) were designed and synthesized by a double emulsion interface polymerization method. Among them, St and DVB existed in the oil phase, forming the skeleton structure of FMPMs. AM, EGDMA or HEMA in the water phase formed functional layers on the inner and outer surfaces of FMPMs. The experimental results indicated that the optimal functional comonomers and the ratio of St to DVB were AM (provided the hydrophilic -CONH2 groups) and 1:1, respectively. Thus, A-FMPMs-2 exhibited the highest adsorption capacity of 108.95 ± 8.13 mg/g and the selectivity of 5.14 ± 0.17. These results were attributed to the hydrophilic -CONH2 groups on A-FMPMs-2, and these groups were beneficial to ACT molecules diffusion driven by concentration gradient, improving the adsorption performance. Furthermore, hydrophilic -CONH2 groups on the inner and outer surfaces of A-FMPMs-2 acted as hydrophilic sites that had a high-affinity interaction with ACT molecules, thus increasing the adsorption selectivity. In addition, A-FMPMs-2 had the highest specific surface area and largest pore volume, resulting in the highest adsorption capacity and adsorption selectivity. Therefore, the development of adsorbents with adjustable pore structure and a large number of hydrophilic sites will provide a new strategy for selective separation of bioactive components from natural products.
Collapse
|
20
|
Song Y, Dong X, Shang D, Zhang X, Li X, Liang X, Wang S. Unusual Nanofractal Microparticles for Rapid Protein Capture and Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102802. [PMID: 34322996 DOI: 10.1002/smll.202102802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange porous microparticles are widely used for protein separation, but their totally porous structure often leads to slow diffusion rate and long separation time. Here unusual nanofractal microparticles synthesized by a strategy of electrostatic interaction regulated emulsion interfacial polymerization are demonstrated that exhibit excellent capability of rapid protein capture, release, and separation. The growth of nanostructures at nanofractal microparticle surface can be controlled by changing electrostatic repulsion between ion groups from weak to strong. The nanofractal microparticles provide a 3D contact model between ion groups and proteins, enable fast protein diffusion rate at initial capture and release stage, and realize rapid and efficient separation of similarly sized proteins as a proof of concept, superior to porous microparticles. This strategy offers an effective and general way for the synthesis of microparticles towards rapid and efficient separation in various fields of biomedicine, environment, and food.
Collapse
Affiliation(s)
- Yongyang Song
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuefang Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Danyi Shang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Liu B, Liu J, Huang D, Pei D, Wei J, Di D. Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
23
|
Isolation and purification of oleuropein from olive leaves using boric acid affinity resin and a novel solvent system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Wen Y, Liu Y, Chen C, Chi J, Zhong L, Zhao Y, Zhao Y. Metformin loaded porous particles with bio-microenvironment responsiveness for promoting tumor immunotherapy. Biomater Sci 2021; 9:2082-2089. [PMID: 33475656 DOI: 10.1039/d0bm01931c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PD1/PD-L1 antibody blockade-based immunotherapy has been widely recognized in the field of cancer treatment; however, only a small number of cancer patients have been shown to respond well due to the PD1/PD-L1 antibody hydrolysis induced substandard immunotherapeutic efficacy and the low immunogenicity and immunosuppressive tumor microenvironment of the patients. Here, we present a novel tumor microenvironment (TME) responsive particle delivery system with a metformin-loaded chitosan (CS) inverse opal core and a manganese dioxide (MnO2) shell (denoted as CS-metformin@MnO2 particles) for inhibiting the PD-1/PD-L1 signaling pathway and promoting tumor immunotherapy. Benefiting from the interconnected porous structure of the inverse opal, metformin can be easily extensively loaded into the CS particles. With the coating of the TME responsive MnO2 shells, the particle delivery system was imparted with an intelligent "trigger" to prevent premature leaking of the drug until it reaches the tumor tissue. We have demonstrated that CS-metformin@MnO2 particles were able to promote the apoptosis of tumor cells through immunotherapeutic means both in vivo and in vitro. Specifically, the viability of tumor cells in the drug carrier-treated group was nearly 20% less than in the untreated group. In addition, the CS particles could serve as scaffolds for the regeneration of normal tissues and promote post-surgical wound healing due to their biocompatibility and antibacterial ability. These results make CS-metformin@MnO2 particles an excellent delivery system in tumor immunotherapy and post-surgical wound healing applications.
Collapse
Affiliation(s)
- Yuanyuan Wen
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Qiao M, Wang MM, Chen ML, Wang JH. A novel porous polymeric microsphere for the selective adsorption and isolation of conalbumin. Anal Chim Acta 2021; 1148:238176. [PMID: 33516372 DOI: 10.1016/j.aca.2020.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
Porous polymeric microspheres, poly(styrene-divinyl benzene, PSDVB)-poly(ethylene glycol monoallyl ether, PEGMAE), termed as PSDVB-PEGMAE, are prepared via double emulsion interfacial polymerization strategy. PSDVB-PEGMAE microspheres exhibit a mean diameter of 2.98 μm, and possess heterogeneous porous structure with a pore volume of 0.354 cm3 g-1 and a pore size of 34.3 nm. PEGMAE moiety is identified on the external surface of the microspheres, while both PSDVB and PEGMAE moieties are found in the interior pores. The PSDVB-PEGMAE microspheres possess favorable selectivity towards the adsorption of conalbumin (ConA) through hydrogen-bonding and hydrophobic interactions, via surface and inter-pore adsorption. At pH 6, an adsorption capacity of 171.9 mg g-1 is achieved for ConA. The captured ConA may be readily recovered by stripping with a cetane trimethyl ammonium bromide (CTAB) solution (0.1%, m/v). The microspheres are further used for the isolation of ConA from egg white, deriving high purity ConA as demonstrated by SDS-PAGE assay.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
26
|
Zhang F, Fan J, Wang S. Grenzflächenpolymerisation: Von der Chemie zu funktionellen Materialien. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
27
|
Zhang F, Fan JB, Wang S. Interfacial Polymerization: From Chemistry to Functional Materials. Angew Chem Int Ed Engl 2020; 59:21840-21856. [PMID: 32091148 DOI: 10.1002/anie.201916473] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 11/07/2022]
Abstract
Interfacial polymerization, where a chemical reaction is confined at the liquid-liquid or liquid-air interface, exhibits a strong advantage for the controllable fabrication of films, capsules, and fibers for use as separation membranes and electrode materials. Recent developments in technology and polymer chemistry have brought new vigor to interfacial polymerization. Here, we consider the history of interfacial polymerization in terms of the polymerization types: interfacial polycondensation, interfacial polyaddition, interfacial oxidative polymerization, interfacial polycoordination, interfacial supramolecular polymerization, and some others. The accordingly emerging functional materials are highlighted, as well as the challenges and opportunities brought by new technologies for interfacial polymerization. Interfacial polymerization will no doubt keep on developing and producing a series of fascinating functional materials.
Collapse
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Wang MM, Chen S, Yu YL, Wang JH. Polyoxometalate-functionalized macroporous microspheres for selective separation/enrichment of glycoproteins. Chem Commun (Camb) 2020; 56:9870-9873. [PMID: 32840531 DOI: 10.1039/d0cc04244g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycoproteins always participate in various biological processes. Selective separation and enrichment of glycoproteins are of great significance for the research of pathogenesis. Herein, macroporous polymer microspheres were fabricated, and further functionalized by polyoxometalate. Thus, a simple, efficient and highly selective approach was constructed for glycoprotein enrichment from a complex matrix. The as-prepared material shows promise as a potential adsorbent in bio-separation and downstream clinical applications.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
29
|
Liu B, Liu J, Huang D, Wei J, Di D. Boric acid modified macroporous adsorption resin and its adsorption properties for catechol compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
He MQ, Chen S, Meng J, Shi W, Wang K, Yu YL, Wang JH. Capping Ligand Size-Dependent LSPR Property Based on DNA Nanostructure-Mediated Morphological Evolution of Gold Nanorods for Ultrasensitive Visualization of Target DNA. Anal Chem 2020; 92:7054-7061. [PMID: 32337976 DOI: 10.1021/acs.analchem.0c00321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematically tuning the structures and properties of noble-metal nanoparticles through biomolecule-mediated overgrowth is of significant importance for their applications in biosensing and imaging. Herein thiolated biomolecules with different concentrations and sizes (molecular weight and spatial structure) were used as a class of capping ligands to control the longitudinal surface plasmon resonance (LSPR) property of gold nanorods (GNRs). The LSPR peaks were red-shifted by increasing the capping agent concentration. The size effect could be divided to two aspects: (1) When the ligands are small molecules, the LSPR peak is blue-shifted as the size of the capping ligand increases. (2) When the ligands are macromolecular proteins, the LSPR property is similar to that of the overgrown nanoparticle (Au@gap@GNR) without thiolated biomolecules as capping agents. Interestingly, thiol-free and nonhomooligomeric DNA strands as capping agents present a similar influence in shaping the overgrowth of GNRs by varying their concentrations and sizes. In addition, the size effect of a DNA nanostructure was used to construct a ΔλLSPR-based catalytic nucleic acid biosensor using a DNA dendritic nanostructure as a capping agent combined with LSPR signals generated from the Au@gap@GNRs with morphological evolution. More importantly, the ΔλLSPR-based biosensor possesses three advantages in nucleic acid biosensing: (1) It is completely label- and wash-free, (2) it has an ultrahigh sensitivity and signal-to-noise ratio, and (3) it can be visualized without any instrumental aid, indicating a significant potential for ultrasensitive biosensing.
Collapse
Affiliation(s)
- Meng-Qi He
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Jie Meng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wei Shi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Kun Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
31
|
Zhang X, Cao Y, Jiang Q, Zhang Y, Yang W. Preparation of cross-linked poly(methyl methacrylate) microspheres using an asymmetric cross-linker via dispersion polymerization and its application in light diffusers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Zhang H, Liu Y, Chen G, Wang H, Chen C, Li M, Lu P, Zhao Y. Immunotherapeutic silk inverse opal particles for post-surgical tumor treatment. Sci Bull (Beijing) 2020; 65:380-388. [PMID: 36659229 DOI: 10.1016/j.scib.2019.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/21/2023]
Abstract
Recurrence of malignant tumor after surgical resection is the main reason of cancer treatment failure. Here, a novel kind of silk inverse opal particles (SIOPs) for post-surgical tumor treatment is presented, and it is derived from colloid crystal bead templates by negatively replicating. Because of their abundant uniform nanopores, interconnected nanochannels and excellent biocompatibility, SIOPs could not only carry great amount of anti-tumor drugs for tumor therapy, but also could provide support for cell adhesion, proliferation and differentiation as the 3D spherical scaffolds which is beneficial to the tissue repair at resection sites. It is demonstrated that the antibody drugs could maintain their high biological activity without any influences during the preparation of SIOPs and these particles were able to enhance the therapeutic efficacy and promote tissue regeneration after surgical resection with their multifunctional features. These prominent properties indicate the great potentials of SIOPs as a promising strategy for efficient postoperative cancer therapy.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Canwen Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Minli Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China.
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|