1
|
George MA, McGiffin D, Peleg AY, Elnathan R, Kaye DM, Qu Y, Voelcker NH. Nanowire arrays with programmable geometries as a highly effective anti-biofilm surface. Biofilm 2025; 9:100275. [PMID: 40230726 PMCID: PMC11994934 DOI: 10.1016/j.bioflm.2025.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Biofilm-related microbial infections are the Achilles' heel of many implantable medical devices. Surface patterning with nanostructures in the form of vertically aligned silicon (Si) nanowires (VA-SiNWs) holds promise to prevent these often "incurable" infections. In this study, we fabricated arrays of highly ordered SiNWs varying in three geometric parameters, including height, pitch size, and tip diameter (sharpness). Anti-infective efficacies of fabricated SiNW arrays were assessed against representative laboratory reference bacterial strains, Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922, using a modified microwell biofilm assay representing microorganism-implant interactions at a liquid-solid interface. To further understand the role of individual geometric parameters to the SiNW-induced bacterial killing, SiNW arrays with stepwise changes in individual geometric parameters were compared. The force that NWs applied on bacterial cells was mathematically calculated. Our results suggested that NWs with specific geometries were able to kill adherent bacterial cells and prevent further biofilm formation on biomaterial surfaces. Tip diameter and pitch size appeared to be key factors of nanowires predetermining their anti-infectiveness. Mechanistic investigation found that tip diameter and pitch size co-determined the pressure that NWs put on the cell envelope. The most effective anti-infective NWs fabricated in our study (50 nm in tip diameter and 400 nm in pitch size for S. aureus and 50 nm in tip diameter and 800 nm in pitch size for E. coli) put pressures of approximately 2.79 Pa and 8.86 Pa to the cell envelop of S. aureus and E. coli, respectively, and induced cell lyses. In addition, these NWs retained their activities against clinical isolates of S. aureus and E. coli from patients with confirmed device-related infections and showed little toxicity against human fibroblast cells and red blood cells.
Collapse
Affiliation(s)
- Marina A. George
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, 3168, Australia
- Department of Photochemistry and Photobiology, National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred and Monash University, Melbourne, 3004, Australia
| | - Anton Y. Peleg
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, 3004, Australia
| | - Roey Elnathan
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, 3216, Australia
| | - David M. Kaye
- Department of Cardiology, The Alfred Hospital and Monash Alfred Baker Centre for Cardiovascular Research, Monash University, Melbourne, 3004, Australia
| | - Yue Qu
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, 3004, Australia
| | - Nicolas H. Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Australia
| |
Collapse
|
2
|
Sun N, Wang C, Edwards W, Wang Y, Lu XL, Gu C, McLennan S, Shangaris P, Qi P, Mastronicola D, Scottà C, Lombardi G, Chiappini C. Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416066. [PMID: 40231643 DOI: 10.1002/advs.202416066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Regulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.
Collapse
Affiliation(s)
- Ningjia Sun
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cong Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
- Wenzhou Eye Valley Innovation Center, Eye Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - William Edwards
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yikai Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Xiangrong L Lu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Samuel McLennan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Panicos Shangaris
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- School of Life Course & Population Sciences, 10th Floor North Wing, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, SE1 7EH, UK
| | - Peng Qi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Daniela Mastronicola
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
3
|
Yee Mon KJ, Kim S, Dai Z, West JD, Zhu H, Jain R, Grimson A, Rudd BD, Singh A. Functionalized nanowires for miRNA-mediated therapeutic programming of naïve T cells. NATURE NANOTECHNOLOGY 2024; 19:1190-1202. [PMID: 38684809 PMCID: PMC11330359 DOI: 10.1038/s41565-024-01649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Cellular programming of naïve T cells can improve the efficacy of adoptive T-cell therapy. However, the current ex vivo engineering of T cells requires the pre-activation of T cells, which causes them to lose their naïve state. In this study, cationic-polymer-functionalized nanowires were used to pre-program the fate of primary naïve CD8+ T cells to achieve a therapeutic response in vivo. This was done by delivering single or multiple microRNAs to primary naïve mouse and human CD8+ T cells without pre-activation. The use of nanowires further allowed for the delivery of large, whole lentiviral particles with potential for long-term integration. The combination of deletion and overexpression of miR-29 and miR-130 impacted the ex vivo T-cell differentiation fate from the naïve state. The programming of CD8+ T cells using nanowire-delivered co-delivery of microRNAs resulted in the modulation of T-cell fitness by altering the T-cell proliferation, phenotypic and transcriptional regulation, and secretion of effector molecules. Moreover, the in vivo adoptive transfer of murine CD8+ T cells programmed through the nanowire-mediated dual delivery of microRNAs provided enhanced immune protection against different types of intracellular pathogen (influenza and Listeria monocytogenes). In vivo analyses demonstrated that the simultaneous alteration of miR-29 and miR-130 levels in naïve CD8+ T cells reduces the persistence of canonical memory T cells whereas increases the population of short-lived effector T cells. Nanowires could potentially be used to modulate CD8+ T-cell differentiation and achieve a therapeutic response in vivo without the need for pre-activation.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Sungwoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Zhonghao Dai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jessica D West
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Hongya Zhu
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew Grimson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | - Ankur Singh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Chen Y, Shokouhi AR, Voelcker NH, Elnathan R. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering. Acc Chem Res 2024; 57:1722-1735. [PMID: 38819691 PMCID: PMC11191407 DOI: 10.1021/acs.accounts.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
In human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering. Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies. We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
Collapse
Affiliation(s)
- Yaping Chen
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Institute of Aging, Key Laboratory of Alzheimer’s
Disease of Zhejiang Province, Zhejiang Provincial Clinical Research
Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ali-Reza Shokouhi
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department
of Materials Science and Engineering, Monash
University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School
of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC 3216, Australia
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, VIC 3216, Australia
- The
Institute for Mental and Physical Health and Clinical Translation,
School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC 3216, Australia
| |
Collapse
|
5
|
Kim H, Gu C, Mustfa SA, Martella DA, Wang C, Wang Y, Chiappini C. CRISPR/Cas-Assisted Nanoneedle Sensor for Adenosine Triphosphate Detection in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49964-49973. [PMID: 37769296 PMCID: PMC10623508 DOI: 10.1021/acsami.3c07918] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection. ATP recognition occurs by first presenting in the cell cytosol an aptamer-locked Cas12a activator conjugated to nanoneedles; the recognition event unlocks the activator immobilized on the nanoneedles. The nanoneedles are then removed from the cells and exposed to the Cas12a/crRNA complex, where the activator triggers the cleavage of an ssDNA fluorophore-quencher pair, generating a detectable fluorescence signal. NanoCRISPR has an ATP detection limit of 246 nM and a dynamic range from 1.56 to 50 μM. Importantly, nanoCRISPR can detect intracellular ATP in 30 min in live cells without impacting cell viability. We anticipate that the nanoCRISPR approach will contribute to broadening the biomedical applications of CRISPR/Cas sensors for the detection of diverse intracellular molecules in living systems.
Collapse
Affiliation(s)
- Hongki Kim
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- Department
of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
| | - Chenlei Gu
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Salman Ahmad Mustfa
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
| | | | - Cong Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Yikai Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Ciro Chiappini
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| |
Collapse
|
6
|
Shokouhi AR, Chen Y, Yoh HZ, Brenker J, Alan T, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Engineering Efficient CAR-T Cells via Electroactive Nanoinjection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304122. [PMID: 37434421 DOI: 10.1002/adma.202304122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.7%) and expression (43.3%) of CAR genes in the T cells, with minimal cellular perturbation (>90% cell viability). Compared to conventional BEP, the ENI platform achieves an almost threefold higher CAR transfection efficiency, indicated by the significantly higher reporter GFP expression (43.3% compared to 16.3%). By co-culturing with target lymphoma Raji cells, the ENI-transfected CAR-T cells' ability to effectively suppress lymphoma cell growth (86.9% cytotoxicity) is proved. Taken together, the results demonstrate the platform's remarkable capacity to generate functional and effective anti-lymphoma CAR-T cells. Given the growing potential of cell-based immunotherapies, such a platform holds great promise for ex vivo cell engineering, especially in CAR-T cell therapy.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Jason Brenker
- Dynamic Micro Devices (DMD) Lab, Department of Mechanical & Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Dynamic Micro Devices (DMD) Lab, Department of Mechanical & Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Roey Elnathan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC, 3216, Australia
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Waurn Ponds, VIC, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia
| |
Collapse
|
7
|
Liu J, Jiang J, He M, Chen J, Huang S, Liu Z, Yao C, Chen HJ, Xie X, Wang J. Nanopore Electroporation Device for DNA Transfection into Various Spreading and Nonadherent Cell Types. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50015-50033. [PMID: 37853502 DOI: 10.1021/acsami.3c10939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Cell transfection plays a crucial role in the study of gene function and regulation of gene expression. The existing gene transfection methods, such as chemical carriers, viruses, electroporation, and microinjection, suffer from limitations, including cell type dependence, reliance on cellular endocytosis, low efficiency, safety concerns, and technical complexity. Nanopore-coupled electroporation offers a promising approach to localizing electric fields for efficient cell membrane perforation and nucleic acid transfection. However, the applicability of nanopore electroporation technology across different cell types lacks a systematic investigation. In this study, we explore the potential of nanopore electroporation for transfecting DNA plasmids into various cell types. Our nanopore electroporation device employs track-etched membranes as the core component. We find that nanopore electroporation efficiently transfects adherent cells, including well-spreading epithelial-like HeLa cells, cardiomyocyte-like HL-1 cells, and dendritic-cell-like DC2.4 cells. However, it shows a limited transfection efficiency in weakly spreading macrophages (RAW264.7) and suspension cells (Jurkat). To gain insights into these observations, we develop a COMSOL model, revealing that nanopore electroporation better localizes the electric field on adherent and well-spreading cells, promoting favorable membrane poration conditions. Our findings provide valuable references for advancing nanopore electroporation as a high-throughput, safe, and efficient gene transfection platform.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Jiayi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Liu J, Jiang J, Deng C, Huang X, Huang S, Liu Z, Yang J, Mo J, Chen HJ, Wang J, Xie X. Nanochannel Electro-Injection as a Versatile Platform for Efficient RNA/DNA Programming on Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303088. [PMID: 37381646 DOI: 10.1002/smll.202303088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Indexed: 06/30/2023]
Abstract
The utilization of dendritic cell (DC) vaccines is a promising approach in cancer immunotherapy, and the modification of DCs for the expression of tumor-associated antigens is critical for successful cancer immunotherapy. A safe and efficient method for delivering DNA/RNA into DCs without inducing maturation is beneficial to achieve successful DC transformation for cell vaccine applications, yet remains challenging. This work presents a nanochannel electro-injection (NEI) system for the safe and efficient delivery of a variety of nucleic acid molecules into DCs. The device is based on track-etched nanochannel membrane as key components, where the nano-sized channels localize the electric field on the cell membrane, enabling lower voltage (<30 V) for cell electroporation. The pulse conditions of NEI are examined so that the transfection efficiency (>70%) and biosafety (viability >85%) on delivering fluorescent dyes, plasmid DNA, messenger RNA, and circular RNA (circRNA) into DC2.4 are optimized. Primary mouse bone marrow DC can also be transfected with circRNA with 68.3% efficiency, but without remarkably affecting cellular viability or inducing DC maturation. These results suggest that NEI can be a safe and efficient transfection platform for in vitro transformation of DCs and possesses a promising potential for developing DC vaccines against cancer.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jingshan Mo
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Lu K, Lin Y, Zhang H, Cheng J, Qu Y, Wu Y, Zhang Y, Zou Y, Zhang Y, Yu Q, Chen H. Enhanced Intracellular Delivery and Cell Harvest Using a Candle Soot-Based Photothermal Platform with Dual-Stimulus Responsiveness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40153-40162. [PMID: 37587876 DOI: 10.1021/acsami.3c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Intracellular delivery of bioactive macromolecules and functional materials plays a crucial role in fundamental biological research and clinical applications. Nondestructive and efficient harvesting of engineered cells is also required for some specific applications. In this work, we develop a multifunctional platform based on candle soot modified with copolymer brushes containing temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and sugar-responsive phenylboronic acid (PBA) components. This platform possesses a high cell adhesion capacity due to the inherent hierarchical structure of candle soot and the formation of boronate ester bonds between the PBA groups and glycoproteins on the cell membrane. Under the irradiation of a near-infrared laser, the excellent light-to-heat conversion ability of candle soot enables the highly efficient delivery of macromolecules into diverse cells (including hard-to-transfect cells) attached to the surface via a photothermal-poration mechanism. Owing to the temperature-responsive properties of PNIPAAm and the sugar-responsive properties of PBA, the engineered cells could be harvested nondestructively from the platform by a mild treatment using a cold fructose solution. A proof-of-concept experiment demonstrates that fibroblasts attached to the surface could be transfected by a functional plasmid encoding basic fibroblast growth factor and then harvested efficiently and recultured with improved proliferation and migration ability. The whole delivery-harvesting process required less than 1 h, allowing the cells to be engineered without compromising their viability. This platform thus provides a widely applicable method for both the intracellular delivery of diverse macromolecules efficiently as well as harvesting engineered cells simply and safely, holding great potential for biomedical applications.
Collapse
Affiliation(s)
- Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, P. R. China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Shokouhi AR, Chen Y, Yoh HZ, Murayama T, Suu K, Morikawa Y, Brenker J, Alan T, Voelcker NH, Elnathan R. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J Nanobiotechnology 2023; 21:273. [PMID: 37592297 PMCID: PMC10433684 DOI: 10.1186/s12951-023-02056-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Melbourne, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia.
| |
Collapse
|
11
|
Wu X, Yang K, He S, Zhu F, Kang S, Liu B, Sun C, Pang W, Wang Y. Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring. J Colloid Interface Sci 2023; 647:429-437. [PMID: 37269739 DOI: 10.1016/j.jcis.2023.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Surface topography has become a powerful tool to control cell behaviors, however, it's still difficult to monitor cellular microenvironment changes during topography-induced cell responses. Here, a dual-functional platform integrating cell alignment with extracellular pH (pHe) measurement is proposed. The platform is fabricated by assembling gold nanorods (AuNRs) into micro pattern via wettability difference interface method, which provides topographical cues and surface-enhanced Raman scattering (SERS) effect for cell alignment and biochemical detection respectively. Results demonstrate that contact guidance and cell morphology changes are achieved by the AuNRs micro pattern, and pHe are also obtained by the changes of SERS spectra during cell alignment, where the pHe near cytoplasm is lower than nucleus, revealing the heterogeneity of extracellular microenvironment. Moreover, a correlation between lower extracellular pH and higher cell migration ability is revealed, and AuNRs micro pattern can differentiate cells with different migration ability, which may be an inheritable character during cell division. Furthermore, mesenchymal stem cells response dramatically to AuNRs micro pattern, showing different morphology and increased pHe level, offering the potential of impacting stem cell differentiation. This approach provides a new idea for the research of cell regulation and response mechanism.
Collapse
Affiliation(s)
- Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shenghui Kang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Yoh HZ, Chen Y, Shokouhi AR, Thissen H, Voelcker NH, Elnathan R. The influence of dysfunctional actin on polystyrene-nanotube-mediated mRNA nanoinjection into mammalian cells. NANOSCALE 2023; 15:7737-7744. [PMID: 37066984 DOI: 10.1039/d3nr01111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The advancement of nanofabrication technologies has transformed the landscape of engineered nano-bio interfaces, especially with vertically aligned nanoneedles (NNs). This enables scientists to venture into new territories, widening NN applications into increasingly more complex cellular manipulation and interrogation. Specifically, for intracellular delivery application, NNs have been shown to mediate the delivery of various bioactive cargos into a wide range of cells-a physical method termed "nanoinjection". Silicon (Si) nanostructures demonstrated great potential in nanoinjection, whereas the use of polymeric NNs for nanoinjection has rarely been explored. Furthermore, the underlying mechanism of interaction at the cell-NN interface is subtle and multifaceted, and not fully understood-underpinned by the design versatility of the NN biointerface. Recent studies have suggested that actin dynamic plays a pivotal role influencing the delivery efficacy. In this study, we fabricated a new class of NNs-a programmable polymeric nanotubes (NTs)-from polystyrene (PS) cell cultureware, designed to facilitate mRNA delivery into mouse embryonic fibroblast GPE86 cells. The PSNT delivery platform was able to mediate mRNA delivery with high delivery efficiency (∼83%). We also investigated the role of actin cytoskeleton in PSNTs mediated intracellular delivery by introducing two actin inhibitors-cytochalasin D (Cyto D) and jasplakinolide (Jas)-to cause dysfunctional cytoskeleton, via inhibiting actin polymerization and depolymerization, respectively (before and after the establishment of cell-PSNT interface). By inhibiting actin dynamics 12 h before cell-PSNT interfacing (pre-interface treatment), the mRNA delivery efficiencies were significantly reduced to ∼3% for Cyto D-treated samples and ∼1% for Jas-treated sample, as compared to their post-interface (2 h after cell-PSNT interfacing) counterpart (∼46% and ∼68%, respectively). The added flexibility of PSNTs have shown to help withstand mechanical breakage stemming from cytoskeletal forces in contrast to the SiNTs. Such findings will step-change our capacity to use programmable polymeric NTs in fundamental cellular processes related to intracellular delivery.
Collapse
Affiliation(s)
- Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
- Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
| |
Collapse
|
13
|
Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional Bioinspired Bredigite-Modified Adhesive for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6499-6513. [PMID: 36700731 DOI: 10.1021/acsami.2c20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine-co-acrylate, PDA), bredigite (BR) nanoparticles, and Fe3+ ions. The hybrid adhesives exhibit strong adhesion to various substrates such as poly(methyl methacrylate), glass, bone, and skin tissues through synergy between irreversible covalent and reversible noncovalent cross-linking, depending on the BR content. Noticeably, the adhesion strength of hybrid adhesives containing 2 wt % BR nanoparticles to bone tissues is 2.3 ± 0.8 MPa, which is about 3 times higher than that of pure PDA adhesives. We also demonstrate that these hybrid adhesives not only are bioactive and accelerate in vitro bone-like apatite formation but also exhibit antibacterial properties against Staphylococcus aureus, depending on the BR concentration. Furthermore, the superior cellular responses in contact with hybrid adhesives, including improved human osteosarcoma MG63 cell spreading and osteogenic differentiation, are achieved owing to the appropriate ion release and flexibility of the cross-linked double-network adhesive. In summary, multifunctional hybrid PDA/BR adhesives with appreciable osteoconductive, mechanical, and antibacterial properties represent the potential applications for median sternotomy surgery as a bone tissue adhesive.
Collapse
Affiliation(s)
- Shima Moazami
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Rahmatallah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| |
Collapse
|
14
|
Liu S, Zhang M, Jin H, Wang Z, Liu Y, Zhang S, Zhang H. Iron-Containing Protein-Mimic Supramolecular Iron Delivery Systems for Ferroptosis Tumor Therapy. J Am Chem Soc 2023; 145:160-170. [PMID: 36542745 DOI: 10.1021/jacs.2c09139] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ferroptosis provides an innovative theoretical basis and method for tumor therapy but is limited by the low efficiency of conventional iron delivery systems. Herein, an efficient supramolecular iron delivery system (SIDS) is demonstrated upon the hydrolysis of FeCl3, condensation of amino acids, and self-assembly of iron-containing components. The as-assembled SIDS possesses a shuttle-like core/shell structure with β-FeOOH as the core and Fe3+/polyamino acid coordinated networks as shells. The iron content of SIDS is up to 42 wt %, which is greatly higher than that of ferritin. The iron-containing protein-mimic structure and shuttle-like morphology of SIDS facilitate tumor accumulation and cell internalization. Once exposed to the tumor microenvironment with overexpressed glutathione (GSH), the SIDS will disassemble, accompanied by the depletion of GSH and the release of Fe2+, leading to dual amplified ferroptosis. Primary studies indicate that SIDS exhibits outstanding antitumor efficacy on bladder cancer.
Collapse
Affiliation(s)
- Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songling Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.,Gynecolgical Oncology Division, Gynecology and Obstetrics Center, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Hao Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Xin H, Shi Q, Ning X, Chen Y, Jia X, Zhang Z, Zhu S, Li Y, Liu F, Kong L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol Biosci 2023; 23:e2200436. [PMID: 36617598 DOI: 10.1002/mabi.202200436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Indexed: 01/10/2023]
Abstract
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.
Collapse
Affiliation(s)
- He Xin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianwen Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Simin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
16
|
Chakrabarty P, Illath K, Kar S, Nagai M, Santra TS. Combinatorial physical methods for cellular therapy: Towards the future of cellular analysis? J Control Release 2023; 353:1084-1095. [PMID: 36538949 DOI: 10.1016/j.jconrel.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
17
|
Zhang Y, Jiang N, Gan Z. Poly(ε-Caprolactone) Substrates with Micro/Nanohierarchical Patterned Structures for Cell Culture. Macromol Biosci 2022; 22:e2200300. [PMID: 36086924 DOI: 10.1002/mabi.202200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
A simple, efficient and controllable one-step template method is proposed to fabricate poly(ε-caprolactone) substrates with micro/nanohierarchical patterned structures. Two kinds of geometric patterns with and without nanowires, i.e., hexagonal and strip with controllable island size and spacing are designed and fabricated. Furthermore, the influence of geometric patterns, island size, island spacing, and patterned nanowires (pNW) on the growth behavior of MG-63 cells is studied in terms of cell density, distribution, proliferation, morphogenesis, and cellular alignment. It is found that MG-63 cells prefer to adhere and grow on the substrate with smaller island size or spacing. Moreover, unlike the hexagonal structure, the strip structure can guide cellular alignment on its surface. In addition, the microisland structures and the pNW play different roles in promoting cell proliferation, distribution, and morphogenesis. It is concluded that the growth behavior of MG-63 cells can be well controlled by precisely adjusting the micro/nanostructure of the substrate surface. A simple and effective method is provided here for the regulation of cell growth behavior.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Huang W, Sakuma S, Tottori N, Sugano SS, Yamanishi Y. Viscosity-aided electromechanical poration of cells for transfecting molecules. LAB ON A CHIP 2022; 22:4276-4291. [PMID: 36263697 DOI: 10.1039/d2lc00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell poration technologies offer opportunities not only to understand the activities of biological molecules but also to investigate genetic manipulation possibilities. Unfortunately, transferring large molecules that can carry huge genomic information is challenging. Here, we demonstrate electromechanical poration using a core-shell-structured microbubble generator, consisting of a fine microelectrode covered with a dielectric material. By introducing a microcavity at its tip, we could concentrate the electrical field with the application of electric pulses and generate microbubbles for electromechanical stimulation of cells. Specifically, the technology enables transfection with molecules that are thousands of kDa even into osteoblasts and Chlamydomonas, which are generally considered to be difficult to inject. Notably, we found that the transfection efficiency can be enhanced by adjusting the viscosity of the cell suspension, which was presumably achieved by remodeling of the membrane cytoskeleton. The applicability of the approach to a variety of cell types opens up numerous emerging gene engineering applications.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shinya Sakuma
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naotomo Tottori
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan.
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
19
|
Lestrell E, Chen Y, Aslanoglou S, O'Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45124-45136. [PMID: 36173149 DOI: 10.1021/acsami.2c10583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.
Collapse
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Yaping Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Stella Aslanoglou
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
20
|
Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022; 10:6116-6134. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.
Collapse
Affiliation(s)
- Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Japan.,Graduate School of Advanced Engineering, Tokyo University of Science, Japan
| | - Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
21
|
Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnology 2022; 20:406. [PMID: 36076230 PMCID: PMC9461134 DOI: 10.1186/s12951-022-01618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia. .,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia. .,INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia. .,Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Geelong, VIC, 3216, Australia.
| |
Collapse
|
22
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
23
|
Elnathan R, Tay A, Voelcker NH, Chiappini C. The start-ups taking nanoneedles into the clinic. NATURE NANOTECHNOLOGY 2022; 17:807-811. [PMID: 35760894 DOI: 10.1038/s41565-022-01158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Roey Elnathan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia.
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- London Centre for Nanotechnology, King's College London, London, UK
| |
Collapse
|
24
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
25
|
Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation. Sci Rep 2022; 12:12250. [PMID: 35851278 PMCID: PMC9293906 DOI: 10.1038/s41598-022-16214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Macrophage phagocytosis is an important research target to combat various inflammatory or autoimmune diseases; however, the phenomenon has never been controlled by artificial means. Titania nanospikes created by alkaline etching treatment can tune macrophage polarization toward a M1-like type and might regulate macrophage phagocytosis. This in vitro study aimed to determine whether the two-dimensional titania nanosurfaces created by alkaline etching treatment activated the macrophage phagocytosis by nanospike-mediated contact stimulation. On two-dimensional pure titanium sheets, alkaline etching treatments with different protocols created superhydrophilic nanosurfaces with hydroxyl function groups and moderate or dense nanospikes. Both types of titania nanosurfaces promoted the phagocytic activity of the mouse macrophage-like cell line, J774A.1, through upregulation of M1 polarization markers and phagocytosis-related receptors, such as toll-like receptors (TLR2 and 4). In contrast, the hydrophobic smooth or micro-roughened titanium surfaces did not activate macrophage phagocytosis or the expression of related receptors. These phenomena remained unchanged even under the antibody blockade of macrophage TLR2 but were either suppressed or augmented for each surface excited by ultraviolet irradiation. Titania nanospikes induced paxillin expression and provided physical stimuli to macrophages, the extent of which was positively correlated with TLR expression levels. Ligand stimulation with lipopolysaccharide did not upregulate macrophage TLR expression but further enhanced M1 marker expression by titania nanosurfaces. These results showed that the two-dimensional titania nanosurfaces activated macrophage phagocytosis by enhancing expression of phagocytosis-related receptors through nanospike-mediated contact stimulation, in assistance with physical surface properties, in a ligand-independent manner.
Collapse
|
26
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
27
|
Mukherjee P, Patino CA, Pathak N, Lemaitre V, Espinosa HD. Deep Learning-Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard-to-Transfect Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107795. [PMID: 35315229 PMCID: PMC9119920 DOI: 10.1002/smll.202107795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Indexed: 05/03/2023]
Abstract
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| |
Collapse
|
28
|
Li K, Lv L, Shao D, Xie Y, Cao Y, Zheng X. Engineering Nanopatterned Structures to Orchestrate Macrophage Phenotype by Cell Shape. J Funct Biomater 2022; 13:jfb13010031. [PMID: 35323231 PMCID: PMC8949710 DOI: 10.3390/jfb13010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Physical features on the biomaterial surface are known to affect macrophage cell shape and phenotype, providing opportunities for the design of novel “immune-instructive” topographies to modulate foreign body response. The work presented here employed nanopatterned polydimethylsiloxane substrates with well-characterized nanopillars and nanopits to assess RAW264.7 macrophage response to feature size. Macrophages responded to the small nanopillars (SNPLs) substrates (450 nm in diameter with average 300 nm edge-edge spacing), resulting in larger and well-spread cell morphology. Increasing interpillar distance to 800 nm in the large nanopillars (LNPLs) led to macrophages exhibiting morphologies similar to being cultured on the flat control. Macrophages responded to the nanopits (NPTs with 150 nm deep and average 800 nm edge-edge spacing) by a significant increase in cell elongation. Elongation and well-spread cell shape led to expression of anti-inflammatory/pro-healing (M2) phenotypic markers and downregulated expression of inflammatory cytokines. SNPLs and NPTs with high availability of integrin binding region of fibronectin facilitated integrin β1 expression and thus stored focal adhesion formation. Increased integrin β1 expression in macrophages on the SNPLs and NTPs was required for activation of the PI3K/Akt pathway, which promoted macrophage cell spreading and negatively regulated NF-κB activation as evidenced by similar globular cell shape and higher level of NF-κB expression after PI3K blockade. These observations suggested that alterations in macrophage cell shape from surface nanotopographies may provide vital cues to orchestrate macrophage phenotype.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Lin Lv
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Yunzhen Cao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Correspondence:
| |
Collapse
|
29
|
Lu K, Qu Y, Lin Y, Li L, Wu Y, Zou Y, Chang T, Zhang Y, Yu Q, Chen H. A Photothermal Nanoplatform with Sugar-Triggered Cleaning Ability for High-Efficiency Intracellular Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2618-2628. [PMID: 34989547 DOI: 10.1021/acsami.1c21670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracellular delivery of functional molecules is of great importance in various biomedical and biotechnology applications. Recently, nanoparticle-based photothermal poration has attracted increasing attention because it provided a facile and efficient method to permeabilize cells transiently, facilitating the entry of exogenous molecules into cells. However, this method still has some safety concerns associated with the nanoparticles that bind to the cell membranes or enter the cells. Herein, a nanoplatform with both photothermal property and sugar-triggered cleaning ability for intracellular delivery is developed based on phenylboronic acid (PBA) functionalized porous magnetic nanoparticles (named as M-PBA). The M-PBA particles could bind to the target cells effectively through the specific interactions between PBA groups and the cis-diol containing components on the cell membrane. During a short-term near-infrared irradiation, the bound particles convert absorbed light energy to heat, enabling high-efficiency delivery of various exogenous molecules into the target cells via a photothermal poration mechanism. After delivery, the bound particles could be easily "cleaned" from the cell surface via mild sugar-treatment and collected by a magnet, avoiding the possible side effects caused by the entrance of particles or their fragments. The delivery and cleaning process is short and effective without compromising the viability and proliferation ability of the cells with delivered molecules, suggesting that the M-PBA particles could be used as promising intracellular delivery agents with a unique combination of efficiency, safety, and flexibility.
Collapse
Affiliation(s)
- Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Luohuizi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Tianqi Chang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
30
|
Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022; 13:100193. [PMID: 35005598 PMCID: PMC8718663 DOI: 10.1016/j.mtbio.2021.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, CB30FA, UK
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
31
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
32
|
Lestrell E, O'Brien CM, Elnathan R, Voelcker NH. Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Carmel M. O'Brien
- CSIRO Manufacturing Clayton Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| |
Collapse
|
33
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
34
|
Rey M, Wendisch FJ, Aaron Goerlitzer ES, Julia Tang JS, Bader RS, Bourret GR, Vogel N. Anisotropic silicon nanowire arrays fabricated by colloidal lithography. NANOSCALE ADVANCES 2021; 3:3634-3642. [PMID: 34212129 PMCID: PMC8204746 DOI: 10.1039/d1na00259g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/09/2021] [Indexed: 05/21/2023]
Abstract
The combination of metal-assisted chemical etching (MACE) and colloidal lithography allows for the affordable, large-scale and high-throughput synthesis of silicon nanowire (SiNW) arrays. However, many geometric parameters of these arrays are coupled and cannot be addressed individually using colloidal lithography. Despite recent advancements towards higher flexibility, SiNWs fabricated via colloidal lithography and MACE usually have circular, isotropic cross-sections inherited from the spherical templates. Here we report a facile technique to synthesize anisotropic SiNWs with tunable cross-sections via colloidal lithography and MACE. Metal films with an elliptical nanohole array can form from shadows of colloidal particles during thermal evaporation of the metal at tilted angles. The aspect ratio of these anisotropic holes can be conveniently controlled via the deposition angle. Consecutive MACE using these patterned substrates with or without prior removal of the templating spheres results in arrays of anisotropic SiNWs with either elliptical or crescent-shaped cross-sections, respectively. As a consequence of the anisotropy, long SiNWs with elliptical cross-sections preferentially collapse along their short axis, leading to a controlled bundling process and the creation of anisotropic surface topographies. These results demonstrate that a rich library of SiNW shapes and mesostructures can be prepared using simple spherical colloidal particles as masks.
Collapse
Affiliation(s)
- Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
- Department of Physics and Astronomy, The University of Edinburgh Mayfield Road Edinburgh EH9 3JZ UK
| | - Fedja Jan Wendisch
- Department of Chemistry and Physics of Materials, University of Salzburg Jakob Haringer Strasse 2A A-5020 Salzburg Austria
| | - Eric Sidney Aaron Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| | - Jo Sing Julia Tang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
- Department of Biofunctionalized Materials and (Glyco)Biotechnology, Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam 14476 Potsdam-Golm Germany
| | - Romina Sigrid Bader
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| | - Gilles Remi Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg Jakob Haringer Strasse 2A A-5020 Salzburg Austria
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| |
Collapse
|
35
|
Elnathan R, Holle AW, Young J, George MA, Heifler O, Goychuk A, Frey E, Kemkemer R, Spatz JP, Kosloff A, Patolsky F, Voelcker NH. Optically transparent vertical silicon nanowire arrays for live-cell imaging. J Nanobiotechnology 2021; 19:51. [PMID: 33596905 PMCID: PMC7890818 DOI: 10.1186/s12951-021-00795-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 12/15/2022] Open
Abstract
Programmable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.
Collapse
Affiliation(s)
- Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Vic, 3052, Australia.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Vic, 3168, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Australia.
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Jennifer Young
- Mechanobiology Institute, National University of Singapore, Singapore, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Marina A George
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Vic, 3168, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Australia
| | - Omri Heifler
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Ralf Kemkemer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Applied Chemistry, Reutlingen University, 72762, Reutlingen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Alon Kosloff
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel.
| | - Fernando Patolsky
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel.
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Vic, 3052, Australia.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Vic, 3168, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Australia.
- INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
36
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
37
|
Aslanoglou S, Chen Y, Oorschot V, Trifunovic Z, Hanssen E, Suu K, Voelcker NH, Elnathan R. Efficient Transmission Electron Microscopy Characterization of Cell-Nanostructure Interfacial Interactions. J Am Chem Soc 2020; 142:15649-15653. [PMID: 32869983 DOI: 10.1021/jacs.0c05919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineered nano-bio interfaces driven by tunable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Yet the interplay between substrate topography and cellular behavior is highly complex and not fully understood. A new experimental design is proposed that enables generation of ultrathin sections (lamellae) of cell-nanostructure imprints with minimal artifacts. We demonstrate the potential of such lamellae for efficient transmission electron microscopy (TEM) characterization of interfacial interactions between adherent cells and vertically aligned Si nanostructures. This approach will advance understanding of cellular responses to extracellular biophysical and biochemical cues-which is likely to facilitate the design of improved cellular manipulation technologies.
Collapse
Affiliation(s)
- Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC 3168, Australia.,Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Zlatan Trifunovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemmington Road, Parkville, VIC 3052, Australia
| | - Eric Hanssen
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemmington Road, Parkville, VIC 3052, Australia
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia.,INM-Leibnitz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany.,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia.,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| |
Collapse
|