1
|
Yuan Y, Li Z, Wu L, Cheng X, Deng C, Yu Y, Wang Q, Wang P. Smearable CQD-entrapped hydrogel with sensitive pH response and photodynamic antibacterial properties for visual intelligent wound monitoring. Biomaterials 2025; 322:123360. [PMID: 40286574 DOI: 10.1016/j.biomaterials.2025.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of chronic wounds remains a significant challenge in the clinical field, and optimizing the treatment plan through visual monitoring of wound healing is an effective way to solve such problem. Herein, we propose a feasible strategy to construct a smearable C-P-T/mCQDs hydrogel for real-time monitoring of wound infection and healing status, through the synergistic combination of modified carbon quantum dots (mCQD), cellulose nanofiber, tannic acid, and polyvinyl alcohol. The hydrogel can be readily applied on the skin and rapidly forms a gel dressing through high-density hydrogen bonding, demonstrating exceptional mechanical robustness (tensile elongation: 600 %) and autonomous self-healing capabilities. In particular, the carboxyl-rich mCQDs are more easily recognized by the sensitive pH-mediated polychromatic fluorescence response under ultraviolet excitation, exhibiting encouraging photodynamic therapy effect against bacterial infections. Under the irradiation of sunlight or near-infrared laser, the hydrogel achieves 99.99 % bactericidal efficacy against multiple types of bacteria (S. aureus, E. coli, P. aeruginosa, A. baumannii) within 20 min through reactive oxygen species generation. Furthermore, C-P-T/mCQDs demonstrates excellent antioxidant activity, biocompatibility, hemostatic efficiency and pro-healing properties. Notably, the mCQD-integrated hydrogel enables real-time, visual monitoring of wound status through its pH-responsive properties, providing substantial translational potential for personalized chronic wound management.
Collapse
Affiliation(s)
- Yun Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zirong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Leilei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xinyi Cheng
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Chao Deng
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
2
|
Li X, Zhang J, Shi B, Li Y, Wang Y, Shuai K, Li Y, Ming G, Song T, Pei W, Sun B. Freestanding Transparent Organic-Inorganic Mesh E-Tattoo for Breathable Bioelectrical Membranes with Enhanced Capillary-Driven Adhesion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22337-22351. [PMID: 40189874 DOI: 10.1021/acsami.5c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The electronic tattoo (e-tattoo), a cutting-edge wearable sensor technology adhered to human skin, has garnered significant attention for its potential in brain-computer interfaces (BCIs) and routine health monitoring. Conventionally, flexible substrates with adhesion force on dewy surfaces pursue seamless contact with skin, employing compact airtight substrates, hindering air circulation between skin and the surrounding environment, and compromising long-term wearing comfort. To address these challenges, we have developed a freestanding transparent e-tattoo featuring flexible serpentine mesh bridges with a unique full-breathable multilayer structure. The mesh e-tattoo demonstrates remarkable ductility and air permeability while maintaining robust electronic properties, even after significant mechanical deformation. Furthermore, it exhibits an impressive visible-light transmittance of up to 95%, coupled with a low sheet resistance of 0.268 Ω sq-1, ensuring both optical clarity and electrical efficiency. By increasing the number of menisci between the mesh e-tattoo and the skin, the total adhesion force increases due to the cumulative capillary-driven effect. We also successfully demonstrated high-quality bioelectric signal collections. In particular, the controlling virtual reality (VR) objects using electrooculogram (EOG) signals collected by mesh e-tattoos were achieved to demonstrate their potential for human-computer interactions (HCIs). This freestanding transparent e-tattoo with a fully breathable mesh structure represents a significant advancement in flexible electrodes for bioelectrical signal monitoring applications.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Junyi Zhang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Bo Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yawen Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yanan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Kexiang Shuai
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Yue Li
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Gege Ming
- Department of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Tao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weihua Pei
- Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macau Institute of Materials Science and Engineering, MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau 999078, P. R. China
| |
Collapse
|
3
|
Li L, Ye X, Ji Z, Zheng M, Lin S, Wang M, Yang J, Zhou P, Zhang Z, Wang B, Wang H, Wang Y. Paintable, Fast Gelation, Highly Adhesive Hydrogels for High-fidelity Electrophysiological Monitoring Wirelessly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407996. [PMID: 39460395 DOI: 10.1002/smll.202407996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/08/2024] [Indexed: 10/28/2024]
Abstract
High-fidelity wireless electrophysiological monitoring is essential for ambulatory healthcare applications. Soft solid-like hydrogels have received significant attention as epidermal electrodes because of their tissue-like mechanical properties and high biocompatibility. However, it is challenging to develop a hydrogel electrode that provides robust contact and high adhesiveness with glabrous skin and hairy scalp for high-fidelity, continuous electrophysiological signal detection. Here, a paintable, fast gelation, highly adhesive, and conductive hydrogel is engineered for high-fidelity wireless electrophysiological monitoring. The hydrogel, consisting of gelatin, gallic acid, sodium citrate, lithium chloride, glycerol, and Tris-HCl buffer solution exhibits a reversible thermal phase transition capability, which endows it with the attributes of on-skin applicability and fast in situ gelation with 15 s, thereby addressing the aforementioned limitations. The introduction of gallic acid enhances the adhesive properties of the hydrogel, facilitating secure electrode attachment to the skin or hairy scalp. To accentuate the potential applications in at-home electrophysiological health monitoring, the hydrogel electrodes are demonstrated for high-fidelity electrocardiogram recording for one hour during various daily activities, as well as in simultaneous electroencephalogram and electrocardiogram recording during a 30 min nap.
Collapse
Affiliation(s)
- Leqi Li
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Xinyuan Ye
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Zichong Ji
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Meiqiong Zheng
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Mingzhe Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| | - Haoyang Wang
- School of Electronic Science & Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
4
|
Zhou N, Ji J, Qu R, Feng X, Song X, Chen M, Chen F, Ma Z, Wei Y. Permeable and Durable Liquid-Metal Fiber Mat as Implantable Physiological Electrodes with Long-Term Biocompatibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413728. [PMID: 39801201 DOI: 10.1002/adma.202413728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Indexed: 02/26/2025]
Abstract
Implantable physiological electrodes provide unprecedented opportunities for real-time and uninterrupted monitoring of biological signals. Most implantable electronics adopt thin-film substrates with low permeability that severely hampers tissue metabolism, impeding their long-term biocompatibility. Recent innovations have seen the advent of permeable electronics through the strategic modification of liquid metals (LMs) onto porous substrates. However, the durability of these electronics is limited by the inherent poor wettability of LMs, particularly within the intricate 3D skeleton of the porous substrate. Herein, the study reports a spatial wettability tuning strategy that solves the wettability issue of LMs within the porous substrates, enabling the LM physiological electrodes with high durability and long-term biocompatibility. The study demonstrates the use of the electrodes as implantable neural interface to realize in vivo acquisition of electrocardiograph and electrocorticogram signals with long-term biocompatibility and high signal-to-noise ratio. This work demonstrates a promising direction for rational design of durable implantable bioelectronics with long-term biocompatibility.
Collapse
Affiliation(s)
- Ningjing Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Jiujiang Ji
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | | | - Xue Feng
- Zhejiang Lab, Hangzhou, 311100, P. R. China
| | | | - Mengjia Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Fuguang Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Zhijun Ma
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Lai J, Xiao L, Zhu B, Xie L, Jiang H. 3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control. MICROSYSTEMS & NANOENGINEERING 2025; 11:15. [PMID: 39833177 PMCID: PMC11747008 DOI: 10.1038/s41378-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 01/22/2025]
Abstract
Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array. This electrode array offered a series of excellent human-machine interface (HMI) features, including conformal adherence to the skin, high electron-to-ion conductivity (and thus lower contact impedance), and sustained stability over extended periods. These attributes render our electrodes more conducive than commercial electrodes for long-term wearing and high-fidelity sEMG recording at complicated skin interfaces. Systematic in vivo studies were used to investigate its efficacy to control a prosthetic hand by decoding sEMG signals from the human hand via a multiple-channel readout circuit and a sophisticated artificial intelligence algorithm. Our findings demonstrate that the 3D printed gel myoelectric sensing system enables real-time and highly precise control of a prosthetic hand.
Collapse
Affiliation(s)
- Jinxin Lai
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longya Xiao
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Beichen Zhu
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longhan Xie
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| | - Hongjie Jiang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| |
Collapse
|
6
|
Choi G, Kim J, Kim H, Bae H, Kim B, Lee HJ, Jang H, Seong M, Tawfik SM, Kim JJ, Jeong HE. Motion-Adaptive Tessellated Skin Patches With Switchable Adhesion for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412271. [PMID: 39428834 PMCID: PMC11775872 DOI: 10.1002/adma.202412271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Skin-interfaced electronics have emerged as a promising frontier in personalized healthcare. However, existing skin-interfaced patches often struggle to simultaneously achieve robust skin adhesion, adaptability to dynamic body motions, seamless integration of bulky devices, and on-demand, damage-free detachment. Here, a hybrid strategy that synergistically combines these critical features within a thin, flexible patch platform is introduced. This design leverages shape memory polymers (SMPs) arranged in a tessellated array, comprising both rigid and compliant SMPs. This configuration enables exceptional deformability, motion adaptability, and ultra-strong, repeatable skin adhesion while offering on-demand adhesion control. Furthermore, the design facilitates the seamless integration of bulky electronics without compromising skin adhesion. By incorporating sizeable electronics including signal acquisition circuits, sensors, and a battery, it is demonstrated that the proposed tessellated patch can be securely mounted on the skin, accommodate dynamic body motions, precisely detect physiological signals with an outstanding signal-to-noise ratio (SNR), wirelessly transmit data, and be effortlessly released from the skin.
Collapse
Affiliation(s)
- Geonjun Choi
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jaeil Kim
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyunjoong Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Haejin Bae
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Baek‐Jun Kim
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Hee Jin Lee
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyejin Jang
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Minho Seong
- Department of Fire Protection EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Salah M. Tawfik
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jae Joon Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
7
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
8
|
Li T, Ding Y, Teng C, Zheng Y, Wang X, Zhou D. Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60625-60632. [PMID: 39453918 DOI: 10.1021/acsami.4c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Epidermal electronics employed on human skin for the long term require good breathability and nonforeign wearing. In this work, we combine phase separation and spray coating to fabricate a porous and ultrathin electrode within minutes as well as micrometer-scale porous pressure sensors. The resulting electrodes show a water vapor transmission rate of 18.4 mg·cm-2·h-1, sheet resistance of 5.2 Ω/sq, and thickness below 5 μm. The introduction of the biogel further reduced the electrode-skin impedance, which is lower than that of the commercial gel electrode, indicating that the electrode can have a high degree of conformal contact with the skin. The epidermal electronics prepared by this strategy exhibit an excellent performance in force sensing. Such results strongly prove the efficiency and practicality of the strategy.
Collapse
Affiliation(s)
- Tang Li
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yichen Ding
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Teng
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yan Zheng
- Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Luo J, Jin Y, Li L, Chang B, Zhang B, Li K, Li Y, Zhang Q, Wang H, Wang J, Yin S, Wang H, Hou C. A selective frequency damping and Janus adhesive hydrogel as bioelectronic interfaces for clinical trials. Nat Commun 2024; 15:8478. [PMID: 39353938 PMCID: PMC11445415 DOI: 10.1038/s41467-024-52833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Maintaining stillness is essential for accurate bioelectrical signal acquisition, but dynamic noise from breathing remains unavoidable. Isotropic adhesives are often used as bioelectronic interfaces to ensure signal fidelity, but they can leave irreversible residues, compromising device accuracy. We propose a hydrogel with selective frequency damping and asymmetric adhesion as a bioelectronic interface. This hydrogel mitigates dynamic noise from breathing, with a damping effect in the breathing frequency range 60 times greater than at other frequencies. It also exhibits an asymmetric adhesion difference of up to 537 times, preventing residues. By homogenizing ion distribution, extending Debye length, and densifying the electric field, the hydrogel ensures stable signal transmission over 10,000 cycles. Additionally, it can non-invasively diagnose otitis media with higher sensitivity than invasive probes and has been effective in clinical polysomnography monitoring, aiding in the diagnosis of obstructive sleep apnea.
Collapse
Affiliation(s)
- Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yuefan Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Bin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China.
| |
Collapse
|
10
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
12
|
Wang W, Zhou H, Xu Z, Li Z, Zhang L, Wan P. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401035. [PMID: 38552161 DOI: 10.1002/adma.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hailiang Zhou
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhishan Xu
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zehui Li
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
O’Neill SJK, Huang Z, Chen X, Sala RL, McCune JA, Malliaras GG, Scherman OA. Highly stretchable dynamic hydrogels for soft multilayer electronics. SCIENCE ADVANCES 2024; 10:eadn5142. [PMID: 39018406 PMCID: PMC466958 DOI: 10.1126/sciadv.adn5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Recent progress in the development of synthetic polymer networks has enabled the next generation of hydrogel-based machines and devices. The ability to mimic the mechanical and electrical properties of human tissue gives great potential toward the fields of bioelectronics and soft robotics. However, fabricating hydrogel devices that display high ionic conductivity while maintaining high stretchability and softness remains unmet. Here, we synthesize supramolecular poly(ionic) networks, which display high stretchability (>1500%), compressibility (>90%), and rapid self-recovery (<30 s), while achieving ionic conductivities of up to 0.1 S cm -1. Dynamic cross-links give rise to inter-layer adhesion and a stable interface is formed on account of ultrahigh binding affinities (>1013 M-2). Superior adherence between layers enabled the fabrication of an intrinsically stretchable hydrogel power source, paving the way for the next generation of multi-layer tissue mimetic devices.
Collapse
Affiliation(s)
- Stephen J. K. O’Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Xiaoyi Chen
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Renata L. Sala
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jade A. McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
14
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
15
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
He W, Li P, Wang H, Hu Y, Lu B, Weng C, Cheng H, Qu L. Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality. ACS NANO 2024; 18:12096-12104. [PMID: 38687972 DOI: 10.1021/acsnano.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 μA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.
Collapse
Affiliation(s)
- Wenya He
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Puying Li
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yajie Hu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanxin Weng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Yan X, Ma Y, Lu Y, Su C, Liu X, Li H, Lu G, Sun P. Zeolitic Imidazolate-Framework-Engineered Heterointerface Catalysis for the Construction of Plant-Wearable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311144. [PMID: 38190757 DOI: 10.1002/adma.202311144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Plant-wearable sensors provide real-time information that enables pesticide inputs to be finely tuned and play critical roles in precision agriculture. However, tracking pesticide information in living plants remains a formidable challenge owing to inadequate shape adaptabilities and low in-field sensor sensitivities. In this study, plant-wearable hydrogel discs are designed by embedding a dual-shelled upconversion-nanoparticles@zeolitic-imidazolate-framework@polydopamine (UCNPs@ZIF@PDA) composite in double-network hydrogels to deliver on-site pesticide-residue information. Benefiting from the enzyme-mimetic catalytic activity of ZIFs and enzyme triggered-responsive property of PDA shell, the hydrogel discs are endowed with high sensing sensitivity toward 2,4-dichlorophenoxyacetic acid pesticide at the nanogram per milliliter level via boosting fluorescence quenching efficiency. Notably, hydrogel discs mounted on tomato plants exhibit sufficient adaptability to profile dynamic pesticide degradation when used in conjunction with an ImageJ processing algorithm, which is practically applicable. Such hydrogel discs form a noninvasive and low-cost toolkit for the on-site acquisition of pesticide information, thereby contributing to the precise management of the health status of a plant and the judicious development of precision agriculture.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Ma
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Changshun Su
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Hongxia Li
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Li HN, Zhang C, Yang HC, Liang HQ, Wang Z, Xu ZK. Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. MATERIALS HORIZONS 2024; 11:1152-1176. [PMID: 38165799 DOI: 10.1039/d3mh01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
Collapse
Affiliation(s)
- Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
20
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
21
|
Luo J, Zhang H, Sun C, Jing Y, Li K, Li Y, Zhang Q, Wang H, Luo Y, Hou C. Topological MXene Network Enabled Mixed Ion-Electron Conductive Hydrogel Bioelectronics. ACS NANO 2024; 18:4008-4018. [PMID: 38277229 DOI: 10.1021/acsnano.3c06209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.
Collapse
Affiliation(s)
- Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033 Jinan, Shandong, People's Republic of China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yangmin Jing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
22
|
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, Chen X. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311255. [PMID: 38030137 DOI: 10.1002/adma.202311255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
23
|
Ma J, Zhong J, Sun F, Liu B, Peng Z, Lian J, Wu X, Li L, Hao M, Zhang T. Hydrogel sensors for biomedical electronics. CHEMICAL ENGINEERING JOURNAL 2024; 481:148317. [DOI: 10.1016/j.cej.2023.148317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Ma H, Hou J, Xiao X, Wan R, Ge G, Zheng W, Chen C, Cao J, Wang J, Liu C, Zhao Q, Zhang Z, Jiang P, Chen S, Xiong W, Xu J, Lu B. Self-healing electrical bioadhesive interface for electrophysiology recording. J Colloid Interface Sci 2024; 654:639-648. [PMID: 37864869 DOI: 10.1016/j.jcis.2023.09.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Electrical bioadhesive interfaces (EBIs) are standing out in various applications, including medical diagnostics, prosthetic devices, rehabilitation, and human-machine interactions. Nonetheless, crafting a reliable and advanced EBI with comprehensive properties spanning electrochemical, electrical, mechanical, and self-healing capabilities remains a formidable challenge. Herein, we develop a self-healing EBI by thoughtfully integrating conducting polymer nanofibers and a typical bioadhesive within a robust hydrogel matrix. The accomplished EBI demonstrates extraordinary adhesion (lap shear strength of 197 kPa), exceptional electrical conductivity (2.18 S m-1), and outstanding self-healing performance. Taking advantage of these attributes, we integrated the EBI into flexible skin electrodes for surface electromyography (sEMG) signal recording from forearm muscles. The engineered skin electrodes exhibit robust adhesion to the skin even when sweating, rapid self-healing from damage, and seamless real-time signal recording with a higher signal-to-noise ratio (39 dB). Our EBI, along with its skin electrodes, offers a promising platform for tissue-device integration, health monitoring, and an array of bioelectronic applications.
Collapse
Affiliation(s)
- Hude Ma
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingdan Hou
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Gang Ge
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Chen Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jinye Wang
- Liaocheng Ecological Environment Monitoring Centre of Shandong Province, Liaocheng 252000, Shandong, China
| | - Chang Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qi Zhao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Zhilin Zhang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Peng Jiang
- Xi'an Physical Education University, Xi'an 710068, Shaanxi, China
| | - Shuai Chen
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wenhui Xiong
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
25
|
Zhang Z, Yang J, Wang H, Wang C, Gu Y, Xu Y, Lee S, Yokota T, Haick H, Someya T, Wang Y. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. SCIENCE ADVANCES 2024; 10:eadj5389. [PMID: 38198560 PMCID: PMC10781413 DOI: 10.1126/sciadv.adj5389] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hydrogel-enabled skin bioelectronics that can continuously monitor health for extended periods is crucial for early disease detection and treatment. However, it is challenging to engineer ultrathin gas-permeable hydrogel sensors that can self-adhere to the human skin for long-term daily use (>1 week). Here, we present a ~10-micrometer-thick polyurethane nanomesh-reinforced gas-permeable hydrogel sensor that can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 8 days under daily life conditions. This research involves two key steps: (i) material design by gelatin-based thermal-dependent phase change hydrogels and (ii) robust thinness geometry achieved through nanomesh reinforcement. The resulting ultrathin hydrogels exhibit a thickness of ~10 micrometers with superior mechanical robustness, high skin adhesion, gas permeability, and anti-drying performance. To highlight the potential applications in early disease detection and treatment that leverage the collective features, we demonstrate the use of ultrathin gas-permeable hydrogels for long-term, continuous high-precision electrophysiological monitoring under daily life conditions up to 8 days.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Haoyang Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Chunya Wang
- State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
26
|
Xia M, Liu J, Kim BJ, Gao Y, Zhou Y, Zhang Y, Cao D, Zhao S, Li Y, Ahn J. Kirigami-Structured, Low-Impedance, and Skin-Conformal Electronics for Long-Term Biopotential Monitoring and Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304871. [PMID: 37984876 PMCID: PMC10767437 DOI: 10.1002/advs.202304871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Epidermal dry electrodes with high skin-compliant stretchability, low bioelectric interfacial impedance, and long-term reliability are crucial for biopotential signal recording and human-machine interaction. However, incorporating these essential characteristics into dry electrodes remains a challenge. Here, a skin-conformal dry electrode is developed by encapsulating kirigami-structured poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyvinyl alcohol (PVA)/silver nanowires (Ag NWs) film with ultrathin polyurethane (PU) tape. This Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU epidermal electrode exhibits a low sheet resistance (≈3.9 Ω sq-1 ), large skin-compliant stretchability (>100%), low interfacial impedance (≈27.41 kΩ at 100 Hz and ≈59.76 kΩ at 10 Hz), and sufficient mechanoelectrical stability. This enhanced performance is attributed to the synergistic effects of ionic/electronic current from PEDOT:PSS/Ag NWs dual conductive network, Kirigami structure, and unique encapsulation. Compared with the existing dry electrodes or standard gel electrodes, the as-prepared electrodes possess lower interfacial impedance and noise in various conditions (e.g., sweat, wet, and movement), indicating superior water/motion-interference resistance. Moreover, they can acquire high-quality biopotential signals even after water rinsing and ultrasonic cleaning. These outstanding advantages enable the Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU electrodes to effectively monitor human motions in real-time and record epidermal biopotential signals, such as electrocardiogram, electromyogram, and electrooculogram under various conditions, and control external electronics, thereby facilitating human-machine interactions.
Collapse
Affiliation(s)
- Meili Xia
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - Jianwen Liu
- School of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Beom Jin Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yongju Gao
- Shandong Zhongke Advanced Technology Co., LtdJinan250000China
| | - Yunlong Zhou
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - Yongjing Zhang
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - Duxia Cao
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - Songfang Zhao
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - Yang Li
- School of Information Science and EngineeringUniversity of JinanJinan250022China
- School of MicroelectronicsShandong UniversityJinan250101China
| | - Jong‐Hyun Ahn
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
27
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
28
|
Zhang D, Chen Z, Xiao L, Zhu B, Wu R, Ou C, Ma Y, Xie L, Jiang H. Stretchable and durable HD-sEMG electrodes for accurate recognition of swallowing activities on complex epidermal surfaces. MICROSYSTEMS & NANOENGINEERING 2023; 9:115. [PMID: 37731914 PMCID: PMC10507084 DOI: 10.1038/s41378-023-00591-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
Surface electromyography (sEMG) is widely used in monitoring human health. Nonetheless, it is challenging to capture high-fidelity sEMG recordings in regions with intricate curved surfaces such as the larynx, because regular sEMG electrodes have stiff structures. In this study, we developed a stretchable, high-density sEMG electrode array via layer-by-layer printing and lamination. The electrode offered a series of excellent human‒machine interface features, including conformal adhesion to the skin, high electron-to-ion conductivity (and thus lower contact impedance), prolonged environmental adaptability to resist water evaporation, and epidermal biocompatibility. This made the electrode more appropriate than commercial electrodes for long-term wearable, high-fidelity sEMG recording devices at complicated skin interfaces. Systematic in vivo studies were used to investigate its ability to classify swallowing activities, which was accomplished with high accuracy by decoding the sEMG signals from the chin via integration with an ear-mounted wearable system and machine learning algorithms. The results demonstrated the clinical feasibility of the system for noninvasive and comfortable recognition of swallowing motions for comfortable dysphagia rehabilitation.
Collapse
Affiliation(s)
- Ding Zhang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Zhitao Chen
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Longya Xiao
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Beichen Zhu
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - RuoXuan Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - ChengJian Ou
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Yi Ma
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Longhan Xie
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| | - Hongjie Jiang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 P. R. China
| |
Collapse
|
29
|
Niu W, Tian Q, Liu Z, Liu X. Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On-Skin Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304157. [PMID: 37345560 DOI: 10.1002/adma.202304157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 × 10-2 S m-1 ) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
Wang P, Fu J, Jin P, Zeng J, Miao X, Wang H, Ma Y, Feng X. A soft, bioinspired artificial lymphatic system for interactive ascites transfer. Bioeng Transl Med 2023; 8:e10567. [PMID: 37693063 PMCID: PMC10486333 DOI: 10.1002/btm2.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 09/12/2023] Open
Abstract
Low-flow removal of refractory ascites is critical to treating cirrhosis and digestive system tumor, and thus, commercial ascites pump emerged lately. The rigid structure of clinically available pumps rises complication rate and lack of flow rate monitoring hinders early warning of abnormalities. Herein, a soft artificial system was proposed inspired by lymph for interactive ascites transfer with great biocompatibility. The implantable system is composed of pump cavity, valves and tubes, which are soft and flexible made by silica gel. Therefore, the system possesses similar modulus to tissues and can naturally fit surrounding tissues. The cavity with magnetic tablet embedded is driven by extracorporeal magnetic field. Subsequently, the system can drain ascites with a top speed of 23 mL min-1, much higher than that of natural lymphatic system and state-of-art devices. Moreover, integrated flexible sensors enable wireless, real-time flow rate monitoring, serving as proof of treatment adjustment, detection and locating of malfunction at early stage. The liver function of experimental objects was improved, and no severe complications occurred for 4 weeks, which proved its safety and benefit to treatment. This artificial lymphatic system can serve as a bridge to recovery and pave the way for further clinical research.
Collapse
Affiliation(s)
- Peng Wang
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Peng Jin
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Jin Zeng
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Xiaohui Miao
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Heling Wang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Yinji Ma
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Xue Feng
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| |
Collapse
|
31
|
Wang R, Zheng Y, Liu X, Chen T, Li N, Lin J, Lin JM. In situ polymerized ionic liquids in polyester fiber composite membranes for detection of trace oil. iScience 2023; 26:106776. [PMID: 37235046 PMCID: PMC10206487 DOI: 10.1016/j.isci.2023.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In situ trace detection on ultra-clean surfaces is an important technology. The polyester fiber (PF) was introduced to serve as the template, to which the ionic liquids were bonded by hydrogen bonding. Polymerized ionic liquids (PIL) in PF were formed by in situ polymerization with the azodiisobutyronitrile (AIBN) and IL. The trace oil on metal surfaces was enriched by the composite membrane based on similar compatibility principle. The absolute recovery of the trace oil ranged from 91%-99% using this composite membrane. In the extraction samples, desirable linear correlations were obtained for trace oil in the range of 1.25-20 mg/mL. It has been proven that a 1 cm2 PIL-PF composite membrane can effectively extract as little as 1 mg of lubricating oil on an ultra-clean metal surface of 0.1 m2 with the LOD of 0.9 mg/mL, making it a promising material for in situ detection of trace oil on metal surfaces.
Collapse
Affiliation(s)
- Ruying Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yajing Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xuejiao Liu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Tongwang Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jing Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Tian Q, Zhao H, Wang X, Jiang Y, Zhu M, Yelemulati H, Xie R, Li Q, Su R, Cao Z, Jiang N, Huang J, Li G, Chen S, Chen X, Liu Z. Hairy-Skin-Adaptive Viscoelastic Dry Electrodes for Long-Term Electrophysiological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211236. [PMID: 37072159 DOI: 10.1002/adma.202211236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Indexed: 06/11/2023]
Abstract
Long-term epidermal electrophysiological (EP) monitoring is crucial for disease diagnosis and human-machine synergy. The human skin is covered with hair that grows at an average rate of 0.3 mm per day. This impedes a stable contact between the skin and dry epidermal electrodes, resulting in motion artifacts during ultralong-term EP monitoring. Therefore, accurate and high-quality EP signal detection remains challenging. To address this issue, a new solution-the hairy-skin-adaptive viscoelastic dry electrode (VDE) is reported. This innovative technology is capable of bypassing hair and filling into the skin wrinkles, leading to long-lasting and stable interface impedance. The VDE maintains a stable interface impedance for a remarkable period of 48 days and 100 cycles. The VDE is highly effective in shielding against hair disturbances in electrocardiography (ECG) monitoring, even during intense chest expansion, and in electromyography (EMG) monitoring during large strain. Furthermore, the VDE is easily attachable to the skull without requiring any electroencephalogram (EEG) cap or bandage, making it an ideal solution for EEG monitoring. This work represents a substantial breakthrough in the field of EP monitoring, providing a solution for the previously challenging issue of monitoring human EP signals on hairy skin.
Collapse
Affiliation(s)
- Qiong Tian
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Wang
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingxing Zhu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huoerhute Yelemulati
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ruijie Xie
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rui Su
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhengshuai Cao
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Naifu Jiang
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianping Huang
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shixiong Chen
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
33
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 312] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
34
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
35
|
Han Q, Zhang C, Guo T, Tian Y, Song W, Lei J, Li Q, Wang A, Zhang M, Bai S, Yan X. Hydrogel Nanoarchitectonics of a Flexible and Self-Adhesive Electrode for Long-Term Wireless Electroencephalogram Recording and High-Accuracy Sustained Attention Evaluation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209606. [PMID: 36620938 DOI: 10.1002/adma.202209606] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels are ideal building blocks to fabricate the next generation of electrodes for acquiring high-quality physiological electrical signals, for example, electroencephalography (EEG). However, collection of EEG signals still suffers from electrode deformation, sweating, extensive body motion and vibration, and environmental interference. Herein, polyvinyl alcohol and polyvinylpyrrolidone are selected to prepare a hydrogel network with tissue-like modulus and excellent flexibility. Additionally, polydopamine nanoparticles, obtained by polydopamine peroxidation, are integrated into the hydrogel to endow them with higher transparency, higher self-adhesion, and lower impedance. Consequently, a multichannel and wirelessly operated hydrogel electrode can establish a conformal and stable interface with tissue and illustrate high channel uniformity, low interfacial contact impedance, low power noise, long-term stability, and a tolerance to sweat and motion. Furthermore, the hydrogel electrode shows the unprecedented ability to classify the recorded high-quality prefrontal EEG signals into seven-category sustained attention with high accuracy (91.5%), having great potential applications in the assessment of human consciousness and in multifunctional diagnoses.
Collapse
Affiliation(s)
- Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chao Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Taoming Guo
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wei Song
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
36
|
Stretchy electronic devices assembled in a Lego-like way. Nature 2023:10.1038/d41586-023-00161-7. [PMID: 36792898 DOI: 10.1038/d41586-023-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
37
|
Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. BIOSENSORS 2023; 13:101. [PMID: 36671936 PMCID: PMC9855417 DOI: 10.3390/bios13010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Recently, advanced electrodes have been developed, such as semi-dry, dry contact, dry non-contact, and microneedle array electrodes. They can overcome the issues of wet electrodes and maintain high signal quality. However, the variations in these electrodes are still unclear and not explained, and there is still confusion regarding the feasibility of electrodes for different application scenarios. In this review, the physical features and electroencephalogram (EEG) signal performances of these advanced EEG electrodes are introduced in view of the differences in contact between the skin and electrodes. Specifically, contact features, biofeatures, impedance, signal quality, and artifacts are discussed. The application scenarios and prospects of different types of EEG electrodes are also elucidated.
Collapse
Affiliation(s)
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | | | | | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | | |
Collapse
|
38
|
Liu Q, Zhou J, Yang L, Xie J, Guo C, Li Z, Qi J, Shi S, Zhang Z, Yang H, Hu J, Wu J, Zhang Y. A reversible gel-free electrode for continuous noninvasive electrophysiological signal monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:8866-8875. [DOI: 10.1039/d3tc00948c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
PPEM gel-free electrode for continuous noninvasive electrophysiological signal monitoring.
Collapse
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajia Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Chenhui Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215127, China
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jun Qi
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an, 237100, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
39
|
Luo J, Sun C, Chang B, Jing Y, Li K, Li Y, Zhang Q, Wang H, Hou C. MXene-Enabled Self-Adaptive Hydrogel Interface for Active Electroencephalogram Interactions. ACS NANO 2022; 16:19373-19384. [PMID: 36279105 DOI: 10.1021/acsnano.2c08961] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human-machine interaction plays a significant role in promoting convenience, production efficiency, and usage experience. Because of the universality and characteristics of electroencephalogram (EEG) signals, active EEG interaction is a promising and cutting-edge method for human-machine interaction. The seamless, skin-compliant, and motion-robust human-machine interface (HMI) for active EEG interaction has been in focus. Herein, we report a self-adaptive HMI (PAAS-MXene hydrogel) that can activate rapid gelation (5 s) using MXene cross-linking and conformably self-adapt to the scalp to help improve signal transduction. In addition to exhibiting satisfactory skin compliance, appropriate adhesion, and good biocompatibility, PAAS-MXene has demonstrated electrical performance reliability, such as low impedance (<50 Ω) at physiologically relevant frequencies, stable polarization potential (the rate of change is less than 6.5 × 10-4 V/min), negligible ion conductivity, and impedance change after 1000 stretch cycles, thereby realizing acquisition of EEG signals. In addition, a cap-free EEG signal acquisition method based on PAAS-MXene has been proposed. These findings confirm the high-precision detection ability of PAAS-MXene for electrocardiogram signals and EEG signals. Therefore, PAAS-MXene offers an option to actively control intention, motion, and vision through active EEG signals.
Collapse
Affiliation(s)
- Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Yangmin Jing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republis of China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republis of China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republis of China
| |
Collapse
|
40
|
Tang H, Li Y, Chen B, Chen X, Han Y, Guo M, Xia HQ, Song R, Zhang X, Zhou J. In Situ Forming Epidermal Bioelectronics for Daily Monitoring and Comprehensive Exercise. ACS NANO 2022; 16:17931-17947. [PMID: 36200714 DOI: 10.1021/acsnano.2c03414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional epidermal bioelectronics usually do not conform well with natural skin surfaces and are susceptible to motion artifact interference, due to incompatible dimensions, insufficient adhesion, imperfect compliance, and usually require complex manufacturing and high costs. We propose in situ forming hydrogel electrodes or electronics (ISF-HEs) that can establish highly conformal interfaces on curved biological surfaces without auxiliary adhesions. The ISF-HEs also have favorable flexibility and soft compliance comparable to human skin (≈0.02 kPa-1), which can stably maintain synchronous movements with deformed skins. Thus, the as-prepared ISF-HEs can accurately monitor large and tiny human motions with short response time (≈180 ms), good biocompatibility, and excellent performance. The as-obtained nongapped hydrogel electrode-skin interfaces achieve ultralow interfacial impedance (≈50 KΩ), nearly an order of magnitude lower than commercial Ag|AgCl electrodes as well as other reported dry and wet electrodes, regardless of the intrinsic micro-obstacles (wrinkles, hair) and skin deformation interference. Therefore, the ISF-HEs can collect high-quality electrocardiography and surface electromyography (sEMG) signals, with high signal-to-noise ratio (SNR ≈ 32.04 dB), reduced signal crosstalk, and minimized motion artifact interference. Simultaneously monitoring human motions and sEMG signals have also been implemented for the general exercise status assessment, such as the shooting competition in the Olympics. The as-prepared ISF-HEs can be considered as supplements/substitutes of conventional electrodes in percutaneously noninvasive monitoring of multifunctional physiological signals for health and exercise status.
Collapse
Affiliation(s)
- Hao Tang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanfang Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baiqi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yulong Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hong-Qi Xia
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An All-in-One, Bioderived, Air-Permeable, and Sweat-Stable MXene Epidermal Electrode for Muscle Theranostics. ACS NANO 2022; 16:17168-17178. [PMID: 36219847 DOI: 10.1021/acsnano.2c07646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Muscle fatigue is a common symptom experienced by many people and associated with less maximal force production of fatigued muscle. It is highly desirable to simultaneously and imperceivably diagnose muscle fatigue and restore muscle function using one skin electrode, yet no such electrode has been developed so far. Herein, we report an all-in-one, bioderived, air-permeable, and sweat-stable MXene electrode that can concurrently and comfortably record electromyographic (EMG) signals and achieve electrostimulation and electrothermal therapy for muscle theranostics. Leveraging the structural arrangement of perennial herbs and ion cross-linking of MXene in sweat, MXene-based electrodes (MBE) exhibit high breathability, are ultralightweight (∼0.25 mg/cm3), and have low and stable electrode-skin interfacial impedance at a variety of environments, facilitating the long-term reliable monitoring of electrophysiology. Taken together with electrostimulation and electrothermal therapy at the skin surface, MBE can diagnose muscle fatigue and restore muscle function by stimulating blood circulation. In addition, it can also be used for muscle rehabilitation training and prosthesis control via human-computer interaction. Our all-in-one, bioderived, air-permeable, and sweat-stable MXene electrode has a great potential for daily wearable healthcare of muscle fatigue.
Collapse
Affiliation(s)
- Dekui Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guo Ye
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing Graphene Institute, Beijing 100094, China
| |
Collapse
|
42
|
Sun P, Mei S, Xu J, Zhang X. A Bio-Based Supramolecular Adhesive: Ultra-High Adhesion Strengths at both Ambient and Cryogenic Temperatures and Excellent Multi-Reusability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203182. [PMID: 35945172 PMCID: PMC9534982 DOI: 10.1002/advs.202203182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Indexed: 06/01/2023]
Abstract
Developing high-performance and reusable adhesives from renewable feedstocks is of significance to sustainable development, yet it still remains a formidable task. Herein, castor oil, melevodopa, and iron ions are used as building blocks to construct a novel bio-based supramolecular adhesive (BSA) with outstanding adhesion performances. It is prepared through partial coordination between melevodopa functionalized castor oil and Fe3+ ions. Noncovalent interactions between adherends and the catechol unit from melevodopa contribute to reinforcing adhesion, and the metal-ligand coordination between catechol and Fe3+ ions is utilized to strengthen cohesion. By combining strong adhesion and tough cohesion, the prepared BSA achieves an adhesion strength of 14.6 MPa at ambient temperature, a record-high value among reported bio-based adhesives as well as supramolecular adhesives to the best of knowledge. It also outperforms those adhesives at cryogenic temperature, realizing another record-high adhesion strength of 9.5 MPa at -196 °C. In addition, the BSA displays excellent multi-reusability with more than 87% of the original adhesion strength remaining even after reuse for ten times. It is highly anticipated that this line of research will provide a new insight into designing bio-based adhesives with outstanding adhesion performances and excellent multi-reusability.
Collapse
Affiliation(s)
- Peng Sun
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
43
|
Cong Y, Fu J. Hydrogel-Tissue Interface Interactions for Implantable Flexible Bioelectronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11503-11513. [PMID: 36113043 DOI: 10.1021/acs.langmuir.2c01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels have emerged as multifunctional interface materials between implantable bioelectronic devices and biotissues. The soft and wet materials with low and alterable mechanical properties can match the mechanical, chemical, electrical, and biological properties of biotissues and thus diminish the mechanical and electrical mismatch. Interactions at the hydrogel-biotissue and hydrogel-device interfaces have attracted broad research interest. Great efforts have been devoted to establishing instant, strong, and conformal adhesion at the interface by chemical bonding, electrostatic interaction, hydrogen bonding, supramolecular recognition, hydrophobic association, and even topological entanglements at the interfaces. This Perspective provides a brief account of representative progress on the hydrogel-tissue adhesive that forms seamless and conformal interface adhesion and applications in implantable devices for physiological, cardiac, and neuronal signal collection and electrical stimulation. Major challenges such as wet adhesion and the stability of the adhesive hydrogel-tissue interface are identified for examination in future investigations.
Collapse
Affiliation(s)
- Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials, Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Hsieh JC, Alawieh H, Li Y, Iwane F, Zhao L, Anderson R, Abdullah S, Kevin Tang KW, Wang W, Pyatnitskiy I, Jia Y, Millán JDR, Wang H. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens Bioelectron 2022; 218:114756. [DOI: 10.1016/j.bios.2022.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
|
45
|
Zhang J, Wang Y, Zhang J, Lei IM, Chen G, Xue Y, Liang X, Wang D, Wang G, He S, Liu J. Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201796. [PMID: 35801492 DOI: 10.1002/smll.202201796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels have gained intensive interest in biomedical and flexible electronics, and adhesion of hydrogels to substrates or devices is indispensable in these application scenarios. Although numerous hydrogel adhesion strategies have been developed, it is still challenging to achieve a hydrogel with robust adhesion interface through a universal yet simple method. Here, a strategy for establishing strong interfacial adhesion between various hydrogels and a wide variety of substrates (i.e., soft hydrogels and rigid solids, including glass, aluminum, PET, nylon and PDMS) even under wet conditions, is reported. This strong interfacial adhesion is realized by constructing a bioinspired mineralized transition layer through ion diffusion and subsequent mineral deposition. This strategy is not only generally applicable to a broad range of substrates and ionic pairs, but also compatible with various fabrication approaches without compromising their interfacial robustnesses. This strategy is further demonstrated in the application of single-electrode triboelectric nanogenerators (TENG), where a robust interface between the hydrogel and elastomer layers is enabled to ensure a reliable signal generation and output.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaya Wang
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Jiajun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangda Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daozeng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guigen Wang
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Sisi He
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
46
|
Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat Commun 2022; 13:4411. [PMID: 35906238 PMCID: PMC9338060 DOI: 10.1038/s41467-022-32140-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/15/2022] [Indexed: 01/19/2023] Open
Abstract
Robust ionic sensing materials that are both fatigue-resistant and self-healable like human skin are essential for soft electronics and robotics with extended service life. However, most existing self-healable artificial ionic skins produced on the basis of network reconfiguration suffer from a low fatigue threshold due to the easy fracture of low-energy amorphous polymer chains with susceptible crack propagation. Here we engineer a fatigue-free yet fully healable hybrid ionic skin toughened by a high-energy, self-healable elastic nanomesh, resembling the repairable nanofibrous interwoven structure of human skin. Such a design affords a superhigh fatigue threshold of 2950 J m−2 while maintaining skin-like compliance, stretchability, and strain-adaptive stiffening response. Moreover, nanofiber tension-induced moisture breathing of ionic matrix leads to a record-high strain-sensing gauge factor of 66.8, far exceeding previous intrinsically stretchable ionic conductors. This concept creates opportunities for designing durable ion-conducting materials that replicate the unparalleled combinatory properties of natural skins more precisely. Developing robust skin-like sensing materials is essential for soft electronics and robotics with extended service life. Here, inspired by the repairable nanofibrous structure of human skin, the authors engineer a fatigue-resistant artificial ionic skin toughened by self-healable elastic nanomesh.
Collapse
|
47
|
Zhang B, Zhang X, Song H, Nguyen DH, Zhang C, Liu T. Strong-Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32551-32560. [PMID: 35796233 DOI: 10.1021/acsami.2c07963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The requirement of ionic conductive hydrogels with tailor-made superelasticity and high chain mobility is highly desired while meeting a challenge. Herein, ionic conductive hydrogels with the design of strong-weak response networks were synthesized via the free-radical copolymerization of monomers of 1-methyl-3-(4-vinylbenzyl)imidazolium chloride and sodium 2-acrylamino-2-methylpropanesulfonate in water. The as-formed strong-weak response networks in ionic conductive hydrogels included binary interactions of strong electrostatic forces and weak hydrogen bonds. The electrostatic forces imparted excellent mechanical elasticity, and the hydrogen-bonded interactions served as highly active and reversible networks to dissipate fracture energy during the deformation. Importantly, the resultant ionic conductive hydrogels exhibited high toughness of ∼2205 kJ m-3, satisfying fatigue resistance, and excellent healing efficiency of >90%. Moreover, the tailoring of counterion concentrations in hydrogels by adding various concentrations of inorganic salts could regulate the electrostatic forces within hydrogels as well as the finally mechanical strengths. Ascribing to the combination of large stretchability and large chain mobility, the resultant ionic conductive hydrogels could directly act as a stretchable ionic conductor for the assembly of self-healable and self-adhesive capacitance-type ionic sensors which are capable of detecting large and tiny human activities. This study could offer a promising strategy for the design and manufacturing of emerging ionic conductors with high mechanical elasticity and large segment mobility.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
48
|
Wang T, Liu Q, Liu H, Xu B, Xu H. Printable and Highly Stretchable Viscoelastic Conductors with Kinematically Reconstructed Conductive Pathways. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202418. [PMID: 35523721 DOI: 10.1002/adma.202202418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Printable and stretchable conductors based on metallic-filler-reinforced polymer composites that can maintain high electrical conductivity at large strains are essential for emerging applications in wearable electronics, soft robotics, and bio-integrated devices. Regulating microstructures of conductive fillers during mechanical deformations is the key to reconstructing the conductive pathway and retaining high electrical conductivity, which has proven to be challenging. Here, it is reported that Ag flakes can spontaneously reorganize inside a viscoelastic, liquid-like polymer matrix by cyclic mechanical stretching, resulting in reconstructed microstructures and forming highly efficient and stable conductive pathways. Consequently, the electrical conductivities of the resultant composites can be dramatically enhanced by ≈4-8 orders of magnitude and reach ≈104 S cm-1 . The stretch-induced kinematic movements of Ag flakes inside the polymer matrix, together with the reorganization and stabilization mechanisms, are unraveled and validated by the dissipative particle dynamics simulations. This unique phenomenon enables high-performance stretchable conductors to be fabricated with significantly reduced conductive fillers. The printable and stretchable composites presented here hold great promise for use in soft and stretchable electronics, as demonstrated in stretchable light-emitting diode arrays and wearable electronics.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qingchang Liu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Haitao Liu
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Hangxun Xu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
49
|
Hsieh JC, Li Y, Wang H, Perz M, Tang Q, Tang KWK, Pyatnitskiy I, Reyes R, Ding H, Wang H. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B 2022; 10:7260-7280. [PMID: 35678148 DOI: 10.1039/d2tb00618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electroencephalogram (EEG) is considered to be a promising method for studying brain disorders. Because of its non-invasive nature, subjects take a lower risk compared to some other invasive methods, while the systems record the brain signal. With the technological advancement of neural and material engineering, we are in the process of achieving continuous monitoring of neural activity through wearable EEG. In this article, we first give a brief introduction to EEG bands, circuits, wired/wireless EEG systems, and analysis algorithms. Then, we review the most recent advances in the interfaces used for EEG recordings, focusing on hydrogel-based EEG electrodes. Specifically, the advances for important figures of merit for EEG electrodes are reviewed. Finally, we summarize the potential medical application of wearable EEG systems.
Collapse
Affiliation(s)
- Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yang Li
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C3J7, Canada
| | - Huiqian Wang
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Matt Perz
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Qiong Tang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Raymond Reyes
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Hong Ding
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Liu Y, Wang C, Xue J, Huang G, Zheng S, Zhao K, Huang J, Wang Y, Zhang Y, Yin T, Li Z. Body Temperature Enhanced Adhesive, Antibacterial and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200653. [PMID: 35668708 DOI: 10.1002/adhm.202200653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Hydrogel-based epidermal electrodes have attracted widespread attention in health monitoring and human-machine interfaces for their good biocompatibility, skin-matched Young's modulus, and stable in situ electrophysiological recording performance. However, it is difficult to make the exact conformal attachment between skin and electrodes because of the hair, wrinkles as well as complex, curved contours of the skin. This also results in signal distortion and large noise. Here, a body temperature enhanced skin-adhesive epidermal electrode is proposed based on non-covalent cross-linked network ionic hydrogel. The ionic hydrogel is fabricated by the polyvinyl alcohol (PVA), branched polyethyleneimine (b-PEI) and calcium chloride (CaCl2 ), which demonstrates impressive performances including ultra-stretchability of 1291%, great adhesion to skin and other non-biological materials, stable conductivity of 3.09 S/m, recyclability and outstanding antibacterial ability, simultaneously. Specifically, the adhesion of the ionic hydrogel behaves as temperature-sensitive and could be enhanced by body temperature. Furthermore, the ionic hydrogel is utilized as epidermal electrodes, which displays seductive capability to record multifarious electrophysiological signals with high signal-to-noise ratio and ultra-low detection limit, including electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG). The as-proposed body temperature enhanced skin-adhesive ionic hydrogel brings intelligent functions and broadens the way for epidermal electronics, promoting the development of healthcare electronics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ying Liu
- Y. Liu, C. Wang, X.J. Tao, J. Huang, Y. Q. Wang, Prof. Z. Li, CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Y. Liu, C. Wang, Prof. Z. Li, School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chan Wang
- Y. Liu, C. Wang, X.J. Tao, J. Huang, Y. Q. Wang, Prof. Z. Li, CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Y. Liu, C. Wang, Prof. Z. Li, School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Xue
- J. T. Xue, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guanhua Huang
- G. H. Huang, S. Zheng, Prof. K. Zhao, State Key Laboratory of Brain and Cognitive Science, Institute of psychology, Chinese Academy of Sciences, Beijing, 100101, China.,G. H. Huang, S. Zheng, Prof. K. Zhao, Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zheng
- G. H. Huang, S. Zheng, Prof. K. Zhao, State Key Laboratory of Brain and Cognitive Science, Institute of psychology, Chinese Academy of Sciences, Beijing, 100101, China.,G. H. Huang, S. Zheng, Prof. K. Zhao, Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zhao
- G. H. Huang, S. Zheng, Prof. K. Zhao, State Key Laboratory of Brain and Cognitive Science, Institute of psychology, Chinese Academy of Sciences, Beijing, 100101, China.,G. H. Huang, S. Zheng, Prof. K. Zhao, Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- Y. Liu, C. Wang, X.J. Tao, J. Huang, Y. Q. Wang, Prof. Z. Li, CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,J. Huang, Prof. Z. Li, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yiqian Wang
- Y. Liu, C. Wang, X.J. Tao, J. Huang, Y. Q. Wang, Prof. Z. Li, CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Y.Q. Wang, College of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Yan Zhang
- Y. Zhang, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Tailang Yin
- T. L. Yin, Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Zhou Li
- Y. Liu, C. Wang, X.J. Tao, J. Huang, Y. Q. Wang, Prof. Z. Li, CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Y. Liu, C. Wang, Prof. Z. Li, School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.,J. Huang, Prof. Z. Li, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.,Prof. Z. Li, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|