1
|
Xie AQ, Qiu H, Jiang W, Wang Y, Niu S, Zhang KQ, Ho GW, Wang XQ. Recent Advances in Spectrally Selective Daytime Radiative Cooling Materials. NANO-MICRO LETTERS 2025; 17:264. [PMID: 40392366 DOI: 10.1007/s40820-025-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Daytime radiative cooling is an eco-friendly and passive cooling technology that operates without external energy input. Materials designed for this purpose are engineered to possess high reflectivity in the solar spectrum and high emissivity within the atmospheric transmission window. Unlike broadband-emissive daytime radiative cooling materials, spectrally selective daytime radiative cooling (SSDRC) materials exhibit predominant mid-infrared emission in the atmospheric transmission window. This selective mid-infrared emission suppresses thermal radiation absorption beyond the atmospheric transmission window range, thereby improving the net cooling power of daytime radiative cooling. This review elucidates the fundamental characteristics of SSDRC materials, including their molecular structures, micro- and nanostructures, optical properties, and thermodynamic principles. It also provides a comprehensive overview of the design and fabrication of SSDRC materials in three typical forms, i.e., fibrous materials, membranes, and particle coatings, highlighting their respective cooling mechanisms and performance. Furthermore, the practical applications of SSDRC in personal thermal management, outdoor building cooling, and energy harvesting are summarized. Finally, the challenges and prospects are discussed to guide researchers in advancing SSDRC materials.
Collapse
Affiliation(s)
- An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Qiu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, People's Republic of China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, People's Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| | - Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, He Q, Zhang F, Duan Y, Qin M, Feng W. Biomimetic Intelligent Thermal Management Materials: From Nature-Inspired Design to Machine-Learning-Driven Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503140. [PMID: 40376850 DOI: 10.1002/adma.202503140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Indexed: 05/18/2025]
Abstract
The development of biomimetic intelligent thermal management materials (BITMs) is essential for tackling thermal management challenges in electronics and aerospace applications. These materials possess not only exceptional thermal conductivity but also environmental compatibility. However, developing such materials necessitates overcoming intricate challenges, such as precise control over the material structure and optimization of the material's properties and stability. This review comprehensively overviews the research progress of BITMs, emphasizing the synergy between biomimetic design principles and artificial-intelligence-driven methodologies to enhance their performance. The unique nature-inspired structures are explored and valuable insights are provided into adaptive thermal management strategies, which can be further enhanced through data analytics and machine learning (ML). This review offers insights into overcoming design challenges and outlines future prospects for advanced BITMs by integrating ML and biomimetic design principles.
Collapse
Affiliation(s)
- Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Qingxia He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Fei Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069, Dresden, Germany
| | - Yanshuai Duan
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Zhou Y, Xiong Y, Liu Y, Zhang W, Wu Y, Li Q, Zhang D. Multimodal Visible-Infrared Subwavelength Structures with Decoupled Modulation of Reflection Spectra. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27020-27029. [PMID: 40275432 DOI: 10.1021/acsami.5c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Visible-infrared reflectivity carries an important part of identity information for most kinds of objects, and its decoupled modulation holds significant application value in the field of identity information reconstruction, such as display, camouflage, and anticounterfeiting. Some well-designed materials or devices have exhibited remarkable abilities in the decoupled modulation of optical reflectivity, but it is difficult to concisely describe their modulation performance as the involved controllable reflectivity characteristics are at least two. Here, a systematic evaluation strategy that comprehensively assesses both the decoupling degree and the changing range through a single quantitative indicator is first proposed, and a set of subwavelength structures is presented for the complex decoupled modulation of four visible-infrared reflectivity characteristics. The decoupled modulation ability of the subwavelength structures is evaluated utilizing the new strategy, where the magnitudes of the indicators align with the modulation flexibility, thus verifying the validity of the proposed evaluation approach. The set of structures possesses robustness and can be fabricated by a controllable electrochemical process. Based on the obtained modulation structures, a multiple identity information display is successfully implemented.
Collapse
Affiliation(s)
- Yitong Zhou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqin Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yili Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhou S, Dong S, Song J, Guo Y, Shuai Y, Hu G. Tri-spectral decoupled programmable thermal emitter for multimode camouflage with heterogeneous phase-change integration. NANOSCALE 2025. [PMID: 40326612 DOI: 10.1039/d5nr00385g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Camouflage technology requires tailoring of the optical characteristics of objects against possible detection. Currently, there are three essential spectra, namely, 0.36-0.83 μm, 3-5 μm, and 8-14 μm, corresponding to the commonly used visible camera and thermal detectors. Thus, to fulfil the mentioned requirement, herein, we present the efficient design and optimization of a tri-spectral decoupled thermal emitter using a heterogeneous integrated phase-change material (PCM) multilayer composed of vanadium dioxide (VO2) and In3SbTe2 (IST). This thermal emitter could theoretically feature both structural colors across the visible range and independently programmable emissivity modulation with up to 80% absolute tuning in two infrared detection regions. Additionally, two methods for achieving confusing and deceptive colored thermal camouflage are proposed based on this thermal emitter, enhancing camouflage disorientation capabilities and enabling the generation of deceptive infrared images that mimic other objects. Thus, this work offers a near-perfect solution with flexible designs for camouflage in complex environments.
Collapse
Affiliation(s)
- Sihong Zhou
- Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, Harbin 150001, China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Shikui Dong
- Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, Harbin 150001, China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiameng Song
- Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, Harbin 150001, China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanming Guo
- Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, Harbin 150001, China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, Harbin 150001, China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- CNRS-International-NTU-Thales Research Alliance (CINTRA), IRL 3288, 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
5
|
Mei Z, Ding Y, Wang M, Lee PS, Pawlicka A, Zhao L, Diao X. A Colorful Electrochromic Infrared Emissivity Regulator for All-Season Intelligent Thermal Management in Buildings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420578. [PMID: 40190177 DOI: 10.1002/adma.202420578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Indexed: 05/20/2025]
Abstract
Radiative cooling is a technology that utilizes the high emissivity of materials in the atmospheric window to achieve cooling, showing great application prospects in building energy-saving. However, traditional static passive radiative cooling materials with broad-spectrum high emissivity can lead to increased heating energy consumption in winter due to overcooling and a weakened cooling effect in summer due to the urban heat island effect. In this study, a colorful, intelligent infrared emissivity regulator is well designed based on a multi film ultrathin electrochromic device for all-season thermal management in buildings. The infrared emissivity of the regulator can vary in real time in response to seasonal or temperature variations, allowing for the switching between radiative cooling and insulation. Guided by nano-photonics theory for multilayer optical films, the regulator achieves multi-modal dynamic infrared emissivity regulation in the atmospheric windowΔ ε ¯ $\Delta \ \bar{\varepsilon }$ Δ ε ¯ $\Delta \ \bar{\varepsilon }$ , and the high reflectance in the non-atmospheric window inhibits heat gains from the external environment. The regulator demonstrates excellent environmental adaptivity with an acceptable response time, a long cycle life, and good bending resistance. The regulator can achieve ≈2 °C/3 °C (nighttime/daytime) temperature adjustment. The simulation results indicate that the regulator can achieve an annual building energy saving of 3.46 MJ m- 2.
Collapse
Affiliation(s)
- Zheyue Mei
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
| | - Yilin Ding
- School of Physics, Beihang University, Beijing, 100191, China
| | - Mengying Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Agnieszka Pawlicka
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Le Zhao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
6
|
Tang C, Ma H, Wu S, Zhang H, Chen W, Zhou Y, Wei K, Li X, Niu F, Liu P, Duan Y, Liu G, Luo T, Yang R. Customizable Single-Layer Programmable Deformation Hydrogel Robots Based on One-Time Fabricating with Near-Infrared-Triggered Responsiveness. Soft Robot 2025. [PMID: 40197129 DOI: 10.1089/soro.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Programmable deformation hydrogel robots have garnered significant attention in biomedical fields due to their ability to undergo large-scale reversible deformation. As clinical demand rises, there is a need for hydrogel robots that are easy to process and operate, and can undergo programmable deformation. Here, we propose a method to fabricate single-layer programmable deformation hydrogel robots in one step using a high-precision digital light processing 3D printing system. Two kinds of deformable elements with different structure distribution on the top and bottom sides are produced by using two kinds of focused light with varying intensities. By combining these deformable elements, we create four basic modules with different and fixed deformable shapes. The desired shape deformation in hydrogel robots can be achieved by programming the combination of these four basic modules. The hydrogel robots exhibit reversible repeat deformation under near-infrared light stimulation. We validate our approach by fabricating several scaffolds using combinations of the four basic modules, demonstrating the feasibility of programming deformation and the potential application of these scaffolds in pipeline movement. This research provides the feasibility for the simple programming deformation of hydrogel robots and offers a novel approach for fabricating programmable deformation hydrogel robots in biomedical fields.
Collapse
Affiliation(s)
- Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Shiyu Wu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Hui Zhang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Wenquan Chen
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Yang Zhou
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Xiaojian Li
- Key Laboratory of Process Optimization and Intelligent Decision-making, School of Management, Hefei University of Technology, Hefei, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Ping Liu
- School of Microelectronics, Hefei University of Technology, Hefei, P.R. China
| | - Yuping Duan
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Xu Y, Huang Y, Wang J, Huang S, Yang H, Li Q. Force-Trainable Liquid Crystal Elastomer Enabled by Mechanophore-Induced Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202423584. [PMID: 39869822 DOI: 10.1002/anie.202423584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this "adaptive learning" in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment. Inspired by biological training, the LCEs can self-strengthen and acquire new functionalities through mechanical stress-induced radical polymerization. The research not only enhances the mechanical performance of LCEs, but also endows them with the ability to learn properties such as flexibility, light responsiveness, and fluorescence. These advancements are crucial for overcoming the limitations of current materials, paving the way for the creation of advanced intelligent soft materials with autonomous self-improvement, akin to the adaptive skills of living organisms.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
8
|
Wang X, Li J, Luo Z, Gao Z, Huang Y, Luo J, Wang X, Zhang Y, Tan M, Hou Z. ATP-Exhausted Strategy Induced Anti-Tumor Low-Temperature Photothermal Therapy Based on Rare Earth Nanocrystals Modified Hollow Porous MnO x Nanozyme with TME-Activated NIR-II Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410070. [PMID: 40025926 DOI: 10.1002/smll.202410070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Insufficient adenosine triphosphate (ATP) can reduce the synthesis of heat-stress-induced heat shock proteins (HSPs) to promote the efficiency of mild photothermal therapy (mPTT), thus the rational design of ATP-exhausted strategy based on nanotechnology is an effective approach to resuscitate mPTT. Herein, Nd3+ doped nanocrystals (NaYF4:Nd@CaF2, Nd-NCs) modified hollow mesoporous manganese oxide (H-MnOx) nanocomposite (H-MnOx@Nd-NCs, MN) is synthesized, and loaded with glucose transporters (GLUTs) inhibitor KL-11743, noted as MN-KL nanozyme. In tumor microenvironment (TME), MN-KL can react with overexpressed glutathione (GSH) to release KL-11743, which can suppress the synthesis of intracellular ATP at the source by blocking glucose uptake to inhibit HSPs expression, meanwhile, MN-KL catalyzes the production of ·O2 -/1O2/·OH and lipid peroxidation (LPO) to cleave existing HSPs. Through a two-pronged strategy with ATP inhibition and oxide accumulation, reducing the level of HSPs can be guaranteed for achieving efficient mPTT in both subcutaneous and in situ tumor models in mice. During this process, Nd-NCs can absorb near-infrared light and convert it into heat, and the quenched fluorescence of Nd-NCs by H-MnOx can be recovered through GSH-triggered biodegradation in tumors, thus the modification of Nd-NCs not only provides photothermal effect but also enables MN to own TME-activated fluorescence imaging.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Jing Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Zhengtao Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yongxin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jiamin Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xinyi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yaru Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, P. R. China
| | - Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhiyao Hou
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, P. R. China
| |
Collapse
|
9
|
Cao X, Sun J, Fang Y, Qiao X, Cai S, Qiu Y, Chen X, Sun Y, Huang J, Ding X, Sun J, Wan C, Zhang Z. Electrically Controlled Metal-Insulator Heterogeneous Evolution for Infrared Switch and Perfect Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416420. [PMID: 39999299 PMCID: PMC12021118 DOI: 10.1002/advs.202416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Active switching, which enables multifunctionality within a single optical component, is essential for reconfigurable infrared photonic systems such as radiation engineering, sensing, and communication. Metamaterials offer a solution but involve complex design and fabrication. A simpler approach with a planar layered structure becomes promising for offering economical manufacturing, easier integration, and scalability. However, it requires an active medium with giant tunability and effective modulation mechanisms. Here, an electrically controlled reversible infrared switching is demonstrated via a single layer of perovskite nickelate on an opaque substrate. Driven by the evolution of the refractive index during an electrically triggered proton-mediated metal-to-insulator transition, the device transforms from a high reflective (R ≈0.74) to a low reflective state (R ≈0.09) at λ = 7-10 µm. A temperature-independent perfect absorption (A > 0.99 at λ = 11.6-12.1 µm) emerges in the partially hydrogenated state with the mixture of the metal and insulator phases, which results in a modulation of emissivity ≈0.623 at λ = 7-14 µm. The switching behavior is tunable over a wide temperature and wavelength range, offering a versatile path for adaptive infrared applications.
Collapse
Affiliation(s)
- Xuefeng Cao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jiahui Sun
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yuan Fang
- School of MaterialsShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Xurong Qiao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Shenghao Cai
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Yuhao Qiu
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Xuegang Chen
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Yifei Sun
- College of EnergyXiamen UniversityXiamen3661005China
| | - Jijie Huang
- School of MaterialsShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Chenghao Wan
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Zhen Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
10
|
Ma LL, Wei Y, Wang N, Chen W, Lu YQ. Soft Matter Photonics: Interplay of Soft Matter and Light. ACS NANO 2025; 19:11501-11516. [PMID: 40111282 DOI: 10.1021/acsnano.5c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The light-soft matter interaction and its applications form the foundation of Soft Matter Photonics, here termed "Soft Mattonics", positioning it as fertile ground for developing next-generation photonic technologies. Over the past few decades, this rapidly evolving field has achieved significant advancements, leading to successful applications across a wide range of disciplines, including optoelectronics, photonics, information technology, material science, robotics, biomedicine, and astronomy. In this Perspective, we provide an overview of Soft Mattonics, highlighting recent developments in light-controlled soft matter and their applications in light field manipulating. Additionally, we offer insights into future research directions for Soft Mattonics, with an emphasis on both foundational research and practical applications that will drive continued growth and innovation in this field.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Wei
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Ning Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Zhang Y, Li G, Ma S, Li Z, Fan F, Huang Y. Switchable Multi-Spectral Electromagnetic Defense in the Ultraviolet, Visible, Infrared, Gigahertz, and Terahertz Bands Using a Magnetically-Controllable Soft Actuator. ACS NANO 2025; 19:11295-11308. [PMID: 40070210 DOI: 10.1021/acsnano.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Traditional passive single-spectrum electromagnetic defense materials are inadequate to defend against complex multispectral electromagnetic threats. Herein, a bilayer heterofilm (BLH film)-based magnetically controllable soft actuator (MCSA), comprising a defense unit and a drive unit, is constructed. The defense unit offers multispectral electromagnetic protection, while the drive unit enables active defense via magnetic actuation. The synergy allows the MCSA to provide intelligent, switchable electromagnetic defense from ultraviolet to terahertz spectra. The BLH film exhibits the lowest infrared emissivity of 0.04 at 14 μm and an average of 0.16 at 8-14 μm, outperforming comparable composites while integrating radiation energy management for enhanced overall protection. It also demonstrates complete blocking of ultraviolet and visible light (320-780 nm), demonstrating zero transmission. Furthermore, the MCSA can be modulated between open and closed states by applying a magnetic field, facilitating a seamless transition between full-band transparency and full-band defense modes. To expand electromagnetic defense applications, a multilayer gradient impedance matching (M-BLH-300) absorber based on the BLH film is fabricated for stealth in microwave bands, achieving a strong reflection loss of -26.7 dB with an effective absorption bandwidth of 4.85 GHz. Notably, the M-BLH-300 absorber retains excellent performance when extended to the terahertz frequency range and further demonstrates its suitability for multispectrum (from ultraviolet to terahertz) defense. In short, this innovative design concept of combining multispectral defense with intelligent switches will guide the development of next-generation advanced electromagnetic defense systems.
Collapse
Affiliation(s)
- Yawen Zhang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Guanghao Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Suping Ma
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Zhuo Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Fei Fan
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, PR China
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
12
|
Liu Y, Bi R, Zhang X, Chen Y, Valenzuela C, Yang Y, Liu H, Yang L, Wang L, Feng W. Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage. Angew Chem Int Ed Engl 2025; 64:e202422636. [PMID: 39714338 DOI: 10.1002/anie.202422636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Multispectral camouflage materials that provide adaptable features across a wide spectrum, from visible light to radar frequencies, play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface. The resulting MXene-CLCE exhibits dynamic structural color changes, tunable infrared radiation, and switchable microwave shielding across wide ranges upon mechanical stretching, with its infrared stealth and microwave shielding properties being realized through the reconfiguration of surface morphology from planar to cracked states via mechanical actuation. A visible-to-infrared camouflage octopus-patterned MXene-CLCE is demonstrated to achieve a stealth effect across the visible-infrared spectrum upon mechanical stretching. As an illustration, proof-of-concept pneumatic-driven octopus-inspired soft models are demonstrated, which enables dynamic visible-infrared camouflage and microwave shielding switching between two compatible states. The research herein can offer new perspectives on the development of bioinspired smart camouflage materials and their application in various emerging fields such as smart optical stealth, dynamic thermal management, and switchable electromagnetic devices.
Collapse
Affiliation(s)
- Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ran Bi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Le Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| |
Collapse
|
13
|
Liu A, Qiu H, Lu X, Guo H, Hu J, Liang C, He M, Yu Z, Zhang Y, Kong J, Gu J. Asymmetric Structural MXene/PBO Aerogels for High-Performance Electromagnetic Interference Shielding with Ultra-Low Reflection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414085. [PMID: 39629529 DOI: 10.1002/adma.202414085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Indexed: 02/06/2025]
Abstract
Electromagnetic interference (EMI) shielding materials with low electromagnetic (EM) waves reflection characteristics are ideal materials for blocking EM radiation and pollution. Materials with low reflectivity must be constructed using materials with excellent EM waves absorption properties. However, materials simultaneously possessing both low reflectivity and excellent EMI shielding performance remain scarce, consequently, multilayer structures need to be developed. Poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNF) are prepared by deprotonation. PNF are combined with MXene and heterostructure MXene@Ni prepared by in-situ growth; MXene@Ni/PNF acts as an EM absorption layer while MXene/PNF acts as an EM reflective layer. Finally, (MXene@Ni/PNF)-(MXene/PNF) aerogels are prepared by layer-by-layer freeze-drying based on the layered modular design concept. Experimental characterizations revealed that (MXene@Ni/PNF)-(MXene/PNF) aerogels enable the efficient absorption-reflection-reabsorption of EM waves, effectively eliminating EMI. When the mass ratio of MXene to Ni in MXene@Ni is 1:6 and the mass fraction of MXene in the reflective layer is 80 wt.%, the (MXene@Ni/PNF)-(MXene/PNF) aerogels exhibit excellent EMI shielding performance (71 dB) and a very low reflection coefficient (R = 0.10). Finite element simulations verified that the developed asymmetric structural aerogels achieve high EMI shielding performance with low reflection characteristics. In addition, (MXene@Ni/PNF)-(MXene/PNF) aerogels display excellent infrared camouflage ability.
Collapse
Affiliation(s)
- An Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xinghan Lu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jinwen Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Chaobo Liang
- Key Laboratory of Functional Nanocomposites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, Shanxi, 030051, P. R. China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
14
|
Chen K, Chen J, Xu C, Zhu H, Hu J, Yu K. Design and Synthesis of Multi-compartment Microcapsules via Pickering Emulsion Polymerization for Infrared Stealth and Adaptive Camouflage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405543. [PMID: 39690884 DOI: 10.1002/smll.202405543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/23/2024] [Indexed: 12/19/2024]
Abstract
High-performance color-changing compounds, recognized as prominent smart materials, dynamically alter their color in response to external environmental stimuli. However, existing compounds exhibit limited responsiveness and color diversity, presenting challenges in the development of textiles responsive to multiple stimuli. This research introduces a novel design for dual-responsive color-changing microcapsules, employing a Pickering emulsion template method. The larger compartment encloses photosensitive dyes, whereas the smaller one contains thermochromic phase-change colorants. Adjusting the density of nanocapsules in the smaller compartment on the microcapsule surface enables a spectrum of colors, including red, yellow, blue, and green, triggered by light and heat. When incorporated into textiles, these microcapsules bestow adaptive color-changing attributes and infrared stealth capabilities onto the fabrics. Additionally, by modulating the color via surface micro/nanostructures, textile surfaces can exhibit hydrophobic and oleophobic properties. Such enhancements extend the textiles' potential applications in areas like anti-counterfeiting and military operations.
Collapse
Affiliation(s)
- Kunlin Chen
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jingyu Chen
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changyue Xu
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haie Zhu
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Kejing Yu
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Wu WL, Tsai SY, Lo YC, Wang HC, Chen HL, Wan D, Ko FH. Design of a Multifunctional Resin-Based Outdoor Spherical Robot Shell for Ultrahigh Visible to Near-Infrared Transmittance and Mid-Infrared Radiative Cooling. ACS OMEGA 2025; 10:3080-3089. [PMID: 39895724 PMCID: PMC11780446 DOI: 10.1021/acsomega.4c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
As robots undertake increasingly complex tasks, such as real-time visible image sensing, environmental analysis, and weather monitoring under harsh conditions, design of an appropriate robot shell has become crucial to ensure the reliability of internal electronic components. Several key factors, such as the cooling efficiency, visible transparency, mechanical performance, and weathering resistance of the shell material, are proposed in this research to ensure future robot functionality. In this study, a polymeric double-layered shell for fabrication by stereolithography 3D printing was designed, featuring a porous outer layer and a spherical inner shell. The inner spherical shell provides approximately 90% transmission in the visible to near-infrared wavelength range (450-1050 nm) and ensures the proper functioning of the optical devices, such as cameras, lidar, and solar cells, inside the robot. In addition, the inner shell material displays high emittance in the mid-infrared range (5-20 μm) to facilitate effective radiative cooling and protect the robot control system from thermal damage. The 3D-printed inner shell is exposed to a real environment for three months, and its stable optical and mechanical performance confirms its weather resistance ability. Moreover, the 3D-printed outer robot shell promotes mechanical strength while the robot is moving. The optimal 50% porous outer shell is designed to protect the inner shell from continuous moving impact. Finite element simulations are also used to show that the 50% porosity of the outer shell significantly reduces the strain energy upon impact. Compared with a conventional single-layer design with a strain energy of 130 mJ, the double-layered shell with 50% porosity exhibits a reduced strain energy of 22.09 mJ. This double-layered design, which offers excellent weather resistance, high visible transparency, and effective radiative cooling, is promising for future applications in both land and water robot shells.
Collapse
Affiliation(s)
- Wei-Lin Wu
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan
| | - Shang Yu Tsai
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan
| | - Yu-Chieh Lo
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan
| | - Hsueh-Cheng Wang
- Department
of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan
| | - Hsuen-Li Chen
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Dehui Wan
- Institute
of Biomedical Engineering, National Tsing
Hua University, No.101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Fu-Hsiang Ko
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
16
|
Tootoonchian P, Bahçeci L, Budnyk A, Okur HI, Baytekin B. Lyotropic "Salty" Tuning for Straightforward Diversification and Anisotropy in Hydrogel Actuators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:162-171. [PMID: 39743324 PMCID: PMC11736847 DOI: 10.1021/acs.langmuir.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025]
Abstract
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators. SIE controls not only the dehydration speeds but also the water diffusion and mechanical properties of the gels, leading to composite actuation behavior. Most reported thermally activated hydrogel actuators suffer from expensive precursors or complex fabrication processes. This work addresses these issues by using a physicochemical effect displayed within an inexpensive gel with common salts. SIE-controlled anisotropic actuation in geometrically different systems provides a demonstration of how such physicochemical effects can lead to higher complexity in basic soft material design and hydrogel soft robotics.
Collapse
Affiliation(s)
| | - Levent Bahçeci
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
| | - Andriy Budnyk
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Halil I. Okur
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Bilge Baytekin
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
17
|
Qi H, Wu W, Zhu J, Zhao H, Yu H, Huang X, Wang T, Wang N, Hao H. Hybrid Strategies for Enhancing the Multifunctionality of Smart Dynamic Molecular Crystal Materials. Chemistry 2025; 31:e202403293. [PMID: 39604001 DOI: 10.1002/chem.202403293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Dynamic molecular crystals are an emerging class of smart engineering materials that possess unique ability to convert external energy into mechanical motion. Moreover, they have being considered as strong candidates for dynamic elements in applications such as flexible electronic devices, artificial muscles, sensors, and soft robots. However, the inherent defects of molecular crystals like brittleness, short-life and fatigue, have significantly impeded their practical applications. Inspired by the concept of "the whole is greater than the sum of its parts" in the field of biology, building stimuli-response composites materials can be regarded as one of the ways to break through the current limitations of dynamic molecular crystals. Moreover, the hybrid materials can exhibit new functionalities that cannot be achieved by a single object. In this review, the focus was placed on the analysis and discussion of various hybrid strategies and options, as well as the functionalities of hybrid dynamic molecular crystal materials and the important practical applications of composite materials, with the introduction of photomechanical molecular crystals and flexible molecular crystals as a starting point. Moreover, the efficiency, limitations, and advantages of different hybrid methods were compared and discussed. Furthermore, the promising perspectives of smart dynamic molecular crystal materials were also discussed and the potential directions for future work were suggested.
Collapse
Affiliation(s)
- Haoqiang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Jiaxuan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Hui Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
18
|
Hou X, Zang Z, Meng Y, Wang T, Gao S, Liu Q, Qu L, Zhang X. A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:98. [PMID: 39852713 PMCID: PMC11767746 DOI: 10.3390/nano15020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed. The results indicate that the mid-infrared emissivity of the modified fabric decreases with an increase in the coating times of graphene and MXene. When the graphene/MXene-modified fabrics are prepared at loads of 5 and 1.2 mg/cm2, respectively, the modified fabrics have very low infrared emissivity in the 3-5 and 8-14 μm bands, and the surface temperature can be reduced by 53.1 °C when placed on a heater with a temperature of 100 °C (surface radiation temperature of 95 °C). The modified fabric also demonstrates excellent Joule heating capabilities; at 4 V of power, a temperature of 91.7 °C may be reached in 30 s. In addition, customized materials exhibit strong electromagnetic shielding performance. By simply folding the cloth, the electromagnetic interference shield effect can be increased to 64.3 dB. With their superior infrared camouflage, thermal management, and electromagnetic shielding performance, graphene/MXene-modified fabrics have found extensive use in intelligent wearables and military applications.
Collapse
Affiliation(s)
- Xianguang Hou
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Ziyi Zang
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Yaxin Meng
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Tian Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Shuai Gao
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Qingman Liu
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Lijun Qu
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Xiansheng Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China; (X.H.); (Z.Z.); (Y.M.); (T.W.); (S.G.); (Q.L.); (L.Q.)
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials (Chengdu Textile College), Chengdu 611731, China
| |
Collapse
|
19
|
Qin S, Cao S, Liu Y, Chen J, Li H, Yang T, Liu G, Zhao J, Zou B. A Wide Color Gamut and Noniridescent Zinc-Anode Asymmetric Electrochromic Device for Self-Sustaining Color-Adaptive Bio-Camouflage System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407838. [PMID: 39428823 DOI: 10.1002/smll.202407838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Inspired by camouflage-colored organisms, the development of bio-camouflage systems using electrochromic (EC) technology has gained significant interest. However, existing EC systems struggle with achieving a wide color gamut, noniridescent colors, and self-sustainability. Herein, a self-sustainable color-adaptive bio-camouflage system integrating EC and nanogenerator (NG) technologies, enabling environmental color adaptation, and thermal regulation without an external power source is proposed. The system is based on a zinc-anode EC device (ZECD) with an asymmetric structure, incorporating flexible tungsten oxide and vanadium oxide electrodes. During the EC process, tungsten oxide shifts between blue and transparent, allowing near-infrared thermal modulation, while the vanadium oxide transitions from yellow to transparent. This design enables reversible near-infrared modulation and noniridescent color conversion among black, blue, green, yellow, and transparent. For the self-sustainability of the system, an electromagnetic and triboelectric hybrid NG that collects biomechanical energy is developed. In a typical driven cycle, the integrated system transitions colors and achieves significant near-infrared spectral modulation, demonstrating environmental adaptability and thermal regulation. Experiments on human skin and simulated chameleon color changes further confirm the system's effectiveness. This work highlights the potential of integrating EC and NG technologies to advance color-adaptive camouflage systems, opening new an avenue for bio-camouflage design.
Collapse
Affiliation(s)
- Shihua Qin
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Yuwei Liu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Junyao Chen
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Huiying Li
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Tao Yang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guanlin Liu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| |
Collapse
|
20
|
Liao Q, Cheng H, Qu L. Droplet-Pen Writing of Ultra-Uniform Graphene Pattern for Multi-Spectral Applications. SMALL METHODS 2024; 8:e2400384. [PMID: 38708684 DOI: 10.1002/smtd.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Artificial optical patterns bring wide benefits in applications like structural color display, photonic camouflage, and electromagnetic cloak. Their scalable coating on large-scale objects will greatly enrich the multimodal-interactive society. Here, a droplet-pen writing (DPW) method to directly write multi-spectral patterns of thin-film graphene is reported. By amphiphilicity regulations of 2D graphene nanosheets, ultra-uniform and ultrathin films can spontaneously form on droplet caps and pave to the substrate, thus inducing optical interference. This allows the on-surface patterning by pen writing of droplets. Specifically, drop-on-demand thin films are achieved with millimeter lateral size and uniformity up to 97% in subwavelength thickness (<100 nm), corresponding to an aspect ratio of over 30 000. The pixelated thin-film patterns of disks and lines in an 8-inch wafer scale are demonstrated, which enable low-emittance structural color paintings. Furthermore, the applications of these patterns for dual-band camouflage and infrared-to-visible encryption are investigated. This study highlights the potential of 2D material self-assembly in the large-scale preparation and multi-spectral application of thin film-based optical patterns.
Collapse
Affiliation(s)
- Qihua Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Wang S, Yang T, Fu H, Dong Y, Li W, Zhang C. A Soluble ProDOT-Based Polymer and Its Electrochromic Device with Yellow-to-Green Color Switching Towards Camouflage Application. Molecules 2024; 29:5585. [PMID: 39683744 DOI: 10.3390/molecules29235585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Yellow-to-green electrochromic color switching plays a key role in the intelligent adaptive camouflage under the visible light environment in future military camouflage applications. Here, we designed and synthesized a soluble electrochromic conjugated pDPTD polymer, mainly based on perylo[1,12-bcd]thiophene and the novel ProDOT groups. The pDPTD polymer displayed a yellow-to-green electrochromism with large optical contrast and fast switching times. Based on the pDPTD polymer film, a yellow-to-green electrochromic device was achieved, showing an orange-yellow color at -0.4 V with L*a*b* color coordinates of 88.5, 18.5, and 34.2 and a pale green color at 0.7 V with L*a*b* color coordinates of 85.6, -4.8, and 11.5, together with a large optical contrast of 43.5% and fast switching times of 2.4/3.2 s. These results indicated that the pDPTD polymer could serve as a potential electrochromic material for yellow/green system camouflage applications.
Collapse
Affiliation(s)
- Shizhao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haichang Fu
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Yujie Dong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weijun Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
22
|
Zhu H, Li T, Fu L, Bai J, Li S, Bai Y, Deng S, Yuan S, Liu Q, Ma Y, Peng L, Xu J, Ma N, Cheng G, Ding J, Zhang T. A Proprioceptive Janus Fiber with Controllable Multistage Segments for Bionic Soft Robots. ACS NANO 2024; 18:32023-32037. [PMID: 39499810 DOI: 10.1021/acsnano.4c10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Smart fibers capable of integrating the multifunctionality of actuation and self-sensation into a single proprioceptive device have significant applications in soft robots and biomedicine. Especially, the achievement of self-sensing the movement patterns of different actuating segments in one fiber is still a great challenge. Herein, in this study, a fiber with the controllable Janus architecture is successfully proposed via an artful centrifugation-driven hierarchical gradient self-assembly strategy, which couples two functional components of piezoresistive carbon nanotubes and magnetic NdFeB nanoparticles into the upper and lower layers of this flexible fibrous framework with the porous sponge structure partially, respectively. As predicted, the final product exhibits the as-anticipated bionic proprioceptive behaviors of programmable actuating deformation and highly selective response to bending, stretching, and pressure with high washable stability and mechanical performances. More importantly, assisted by the different three-dimensional printing molds, the superlong Janus fibers with various controllable lengths of the reversed but sequential multistage segments can be fabricated, offering the hybrid magnetic actuation and proprioceptive sensation existing at arbitrary nodes. Therefore, several kinds of soft organism-inspired Janus fiber-derived soft robots with the arbitrarily controlled segmental characters were assembled as the proof-of-concept, which can not only realize a snake or inchworm-inspired successive contracting-stretching deformation and a sperm-inspired self-rotating crawling motion but also self-sense the signals of each segment themselves in real time and then be used to navigate an object to target position in a liquid-filled confined tube. It is believed that this work promotes the further development of proprioceptive soft robots.
Collapse
Affiliation(s)
- Hao Zhu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tie Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Lei Fu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Ju Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shengzhao Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Yuanyuan Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shihao Deng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shen Yuan
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Qianzuo Liu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunping Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Peng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Jingyi Xu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Nan Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhang
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| |
Collapse
|
23
|
Joo Y, Kang D, Lee M. Dual-Mode Stretchable Emitter with Programmable Emissivity and Air Permeability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63010-63018. [PMID: 39497604 DOI: 10.1021/acsami.4c15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Materials with anisotropic emission characteristics have attracted considerable attention for thermal management. Although many dual-mode emitters have been developed for this purpose in the form of textiles, multilayer films, and photonic structures, multiple functionalities are essential for their versatile applications. Herein, a highly stretchable dual-mode emitter with programmable emissivity and air permeability is presented. The emitter comprises a planar Ge2Sb2Te5 (GST) cavity on one side of a perforated elastomer substrate and an infrared-reflecting metal layer on the other side. With a laser-induced phase transition from amorphous to crystalline GST, the emitter exhibits a large emissivity difference of 0.52 between both sides. The dual-mode emitter remains highly stable without mechanical failure after repeated stretching cycles to a strain of 50%. This air-permeable and stretchable emitter can be attached to any curved surface, including the human body. The GST-side emissivity can be programmed into an arbitrary emissivity pattern using a spatially modulated laser beam, ultimately enabling the printing of mutually independent visible and thermal images in a single emitter. This study provides a promising structure for multispectral optical security as well as thermal management.
Collapse
Affiliation(s)
- Yinhyui Joo
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Dongkyun Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Myeongkyu Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
24
|
Zhao T, Chen Y, Gu J, Wei H, Geng C, Li X, Jin C, Liang S, Dou S, Wang J, Li Y. Multifunctional Radiation Conditioning Emitter for Laser and Infrared with Adaptive Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52153-52161. [PMID: 39295299 DOI: 10.1021/acsami.4c06912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
With the development of technology, multifunctional multiband emitters have been paid much attention due to their wide range of applications, such as LIDAR detection, spectroscopic sensing, and infrared thermal management. However, the development of such emitters is impeded by incompatible structural requirements of different electromagnetic wavebands. Here, we demonstrate coupled modulation between near-infrared (NIR) laser-wavelength and long-wavelength-infrared by constructing a multifunctional emitter (MFE) with a structure of Al/HfO2/VO2, utilizing the phase transition of VO2. The MFE displays excellent thermal modulation capability within the 8-14 μm range, achieving a thermal insulation effect (ε8-14 μm = 0.18) at low temperatures, and heat dissipation effect (ε8-14 μm = 0.64) at high temperatures. The MFE's radiation power regulation capability is 145.06 W m-2 between a temperature of 0 to 60 °C. Moreover, the MFE possesses a large reflectivity modulation value of 0.78 at NIR laser-wavelength (1.06 μm) with a short phase transition time of 1003 ms under 3 W cm-2 laser irradiation. This study provides a guideline for the coordinated control of electromagnetic waves and intelligent collaborative thermal management through simple structural design, thus, having broad implications in energy saving and thermal information processing.
Collapse
Affiliation(s)
- Tao Zhao
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Yanyu Chen
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jinxin Gu
- Suzhou Laboratory, Suzhou 215123, China
| | - Hang Wei
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Chenchen Geng
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chenfei Jin
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Shuhui Liang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuliang Dou
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jiazhi Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
- Suzhou Laboratory, Suzhou 215123, China
| |
Collapse
|
25
|
Zhang X, Hou K, Long Y, Song K. Bioinspired Intelligent Ferrofluid: Old Magnetic Material with New Optical Properties. NANO LETTERS 2024; 24:11559-11566. [PMID: 39240172 DOI: 10.1021/acs.nanolett.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Fine-tuning of microstructures enables the modulation of optical properties at multiple scales from metasurfaces to geometric optics. However, a dynamic system with a significant deformation range and topology transformation remains challenging. Owing to its magnetic controllability, ferrofluid has proven to be fertile ground for a wide range of engineering and technological applications. Here, we demonstrate a series of intelligent optical surfaces based on ferrofluid, through which multiple optical functions inspired by nature can be realized. The tunability is based on the topological transition of the ferrofluid between the flat state and cone array upon magnetic actuation. In the visible band, a tunable visual appearance is realized. In the mid-infrared band, active manipulation of reflection is realized based on the gradient-index (GRIN) effect. This system also features low latency response and straightforward manufacturability, and it may open opportunities for novel technologies such as smart windows, color displays, infrared camouflage, and other infrared-related technologies.
Collapse
Affiliation(s)
- Xuesen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, P. R. China
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, P. R. China
| |
Collapse
|
26
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
27
|
Faisal M, Ur Rahman A, Khan S, Siyaf M, Shah TA, Okla MK, Bourhia M, Younous YA. Selective-wavelength perfect infrared absorption in Ag@ZnO conical metamaterial structure. Sci Rep 2024; 14:21321. [PMID: 39266568 PMCID: PMC11393131 DOI: 10.1038/s41598-024-71260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
We present a new selective Metamaterial Perfect Absorber (MPA) consisting of zinc oxide embedded silver (Ag@ZnO), designed for applications in infrared stealth technology. The numerical simulation included a wide frequency range from 1 to 1000 THz and shows that the design MPA structure presented two absorption peaks at the desired wavelengths of 1.7 µm and 6.5 µm. The absorptivity of both peaks reached approximately 93.1% and 93.5%. The first peak at 1.7 µm decreases the scattering of IR laser beams from the surface of the MPA structure and also lowers the infrared tracks that could direct laser-guided devices to its specific target. On the other hand, the second peak reduces the surface heat wave. The suggested MPA (Ag@ZnO) structure is activated by a plane wave using a full wave vector and a broad frequency domain solution. In the framework of computer simulation technology (CST) Microwave Studio, uses both Finite-Difference-Time-Domain (FDTD) and Finite-Element-Method (FEM) techniques to predict the optical behavior of the proposed MPA structure. Both peaks achieved a high value of absorptivity due to the simultaneous excitation of the electric and magnetic dipole at resonance wavelength.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Physics, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Atta Ur Rahman
- Department of Physics, Khushal Khan Khattak University, Karak, KPK, Pakistan.
| | - Sajid Khan
- Department of Physics, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Muhammad Siyaf
- Department of Physics, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 25500, China
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | | |
Collapse
|
28
|
Chen J, Wang Z, Yu Y, Huang J, Chen X, Du T, Song X, Yuan H, Zhou S, Hu XG, Zeng X, Zhong S, Lan R. Dynamic handedness inversion of self-organized helical superstructures enabled by novel thermally stable light-driven chiral hydrazone switches. Chem Sci 2024; 15:d4sc05007j. [PMID: 39328194 PMCID: PMC11421039 DOI: 10.1039/d4sc05007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Chiral hydrazone photoswitch features are its high thermal stability and negative photochromy, making it desirable in the fabrication of thermally stable optical device. However, chiral hydrazones capable of reversibly inversing chirality is scarcely reported. Herein, a series of new chiral hydrazone switches, HI-1, HI-2 and HI-3, were designed and synthesized. Due to the photoinduced configuration changes, the newly synthesized hydrazone photoswitch presents a surprising chirality inversion upon light stimulation. Photoisomerization of light-driven hydrazone switch molecules was investigated by nuclear magnetic resonance (NMR) spectra and Raman spectroscopy. The effect of the intramolecular hydrogen bond on photoresponsiveness was analyzed. By incorporating the photoswitch into a liquid crystal (LC) host, light-driven cholesteric liquid crystals (CLCs) with handedness invertibility, a feasible photonic bandgap tunability, and superior thermal stability were achieved. In addition, according to the optical-driven thermal stability of the hydrazone switches, the fine regulation of light-driven CLC materials with multistage photo stationary states was realized, and the application of CLC materials in erasable and rewritable display panels was also demonstrated.
Collapse
Affiliation(s)
- Jingyu Chen
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Zichen Wang
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yuexin Yu
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Jun Huang
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xinyu Chen
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Tongji Du
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xinyue Song
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Haiyang Yuan
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Shuai Zhou
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xiang-Guo Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 China
| | - Xingping Zeng
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Shengliang Zhong
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Ruochen Lan
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
29
|
Zhang J, Wang P, Xie W, Wang H, Zhang Y, Zhou H. Cephalopod-Inspired Nanomaterials for Optical and Thermal Regulation: Mechanisms, Applications and Perspectives. ACS NANO 2024; 18:24741-24769. [PMID: 39177374 DOI: 10.1021/acsnano.4c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the "king of disguise", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Pan Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Weirong Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Haoyu Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Yifan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| |
Collapse
|
30
|
Pang X, Lee H, Rong J, Zhu Q, Xu S. Self-Thermal Management in Filtered Selenium-Terminated MXene Films for Flexible Safe Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309580. [PMID: 38705865 DOI: 10.1002/smll.202309580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Indexed: 05/07/2024]
Abstract
Li-ion batteries with superior interior thermal management are crucial to prevent thermal runaway and ensure safe, long-lasting operation at high temperatures or during rapid discharging and charging. Typically, such thermal management is achieved by focusing on the separator and electrolyte. Here, the study introduces a Se-terminated MXene free-standing electrode with exceptional electrical conductivity and low infrared emissivity, synergistically combining high-rate capacity with reduced heat radiation for safe, large, and fast Li+ storage. This is achieved through a one-step organic Lewis acid-assisted gas-phase reaction and vacuum filtration. The Se-terminated Nb2Se2C outperformed conventional disordered O/OH/F-terminated materials, enhancing Li+-storage capacity by ≈1.5 times in the fifth cycle (221 mAh·g-1 at 1 A·g-1) and improving mid-infrared adsorption with low thermal radiation. These benefits result from its superior electrical conductivity, excellent structural stability, and high permittivity in the infrared region. Calculations further reveal that increased permittivity and conductivity along the z-direction can reduce heat radiation from electrodes. This work highlights the potential of surface groups-terminated layered material-based free-standing flexible electrodes with self-thermal management ability for safe, fast energy storage.
Collapse
Affiliation(s)
- Xin Pang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hyunjin Lee
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Jingzhi Rong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiaoyu Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shumao Xu
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
31
|
Zhang R, Song Z, Cao W, Gao G, Yang L, He Y, Han J, Zhang Z, Wang T, Zhu J. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. LIGHT, SCIENCE & APPLICATIONS 2024; 13:223. [PMID: 39209835 PMCID: PMC11362162 DOI: 10.1038/s41377-024-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A novel multispectral smart window has been proposed, which features dynamic modulation of light transmittance and effective shielding against electromagnetic microwave radiation. This design integrates liquid crystal dynamic scattering and dye doping techniques, enabling the dual regulation of transmittance and scattering within a single-layer smart window. Additionally, the precise control of conductive film thickness ensures the attainment of robust microwave signal shielding. We present a theoretical model for ion movement in the presence of an alternating electric field, along with a novel approach to manipulate negative dielectric constant. The proposed model successfully enables a rapid transition between light transparent, absorbing and haze states, with an optimum drive frequency adjustable to approximately 300 Hz. Furthermore, the resistive design of the conductive layer effectively mitigates microwave radiation within the 2-18 GHz range. These findings offer an innovative perspective for future advancements in environmental construction.
Collapse
Affiliation(s)
- Ruicong Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Zicheng Song
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Wenxin Cao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Gang Gao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Yurong He
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Jiaqi Zhu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| |
Collapse
|
32
|
Lei X, Jiang Y, Zeng Q, Dou Y, Zhang H, Ni J, Zhuo Y, Wang W, Ai Y, Li Y. A visible-light regulated luminescent switch based on a spiropyran-derived Pt(II) complex for advanced anti-counterfeiting materials. Chem Commun (Camb) 2024; 60:9360-9363. [PMID: 39072686 DOI: 10.1039/d4cc02576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A dual optical switch regulated by visible light has been developed through an integrated strategy, including luminescent Pt(II) and photochromic spiropyran (SP) as a triplet-sensitizer and photo-regulator building block, respectively. An efficient Förster resonance energy transfer (FRET) process is achieved, along with apparent and emissive color changes under visible light irradiation and temperature stimuli, which was utilized to develop advanced anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xin Lei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Ying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Qingguo Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yuncan Dou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Haokun Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Jiatao Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yinuo Zhuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yeye Ai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| |
Collapse
|
33
|
Sansone L, Loffredo F, Cilento F, Miscioscia R, Martone A, Barrella N, Paulillo B, Bassano A, Villani F, Giordano M. Recent Advances in Graphene Adaptive Thermal Camouflage Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1394. [PMID: 39269056 PMCID: PMC11397510 DOI: 10.3390/nano14171394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Thermal camouflage is a highly coveted technology aimed at enhancing the survivability of military equipment against infrared (IR) detectors. Recently, two-dimensional (2D) nanomaterials have shown low IR emissivity, widely tunable opto-electronic properties, and compatibility with stealth applications. Among these, graphene and graphene-like materials are the most appealing 2D materials for thermal camouflage applications. In multilayer graphene (MLG), charge density can be effectively tuned through sufficiently intense electric fields or through electrolytic gating. Therefore, MLG's optical properties, like infrared emissivity and absorbance, can be controlled in a wide range by voltage bias. The large emissivity modulation achievable with this material makes it suitable in the design of thermal dynamic camouflage devices. Generally, the emissivity modulation in the multilayered graphene medium is governed by an intercalation process of non-volatile ionic liquids under a voltage bias. The electrically driven reduction of emissivity lowers the apparent temperature of a surface, aligning it with the background temperature to achieve thermal camouflage. This characteristic is shared by other graphene-based materials. In this review, we focus on recent advancements in the thermal camouflage properties of graphene in composite films and aerogel structures. We provide a summary of the current understanding of how thermal camouflage materials work, their present limitations, and future opportunities for development.
Collapse
Affiliation(s)
- Lucia Sansone
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Fausta Loffredo
- Nanomaterials and Devices Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 80055 Portici, Italy
| | - Fabrizia Cilento
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Riccardo Miscioscia
- Nanomaterials and Devices Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 80055 Portici, Italy
| | - Alfonso Martone
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Nicola Barrella
- Nanomaterials and Devices Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 80055 Portici, Italy
| | - Bruno Paulillo
- Leonardo Innovation Labs, Quantum Technologies, Optronics and Materials Lab, Via Albert Einstein 35, 50013 Campi Bisenzio, Italy
| | - Alessio Bassano
- Leonardo Electronics, Defence Business Area, Via Valdilocchi 15, 19136 La Spezia, Italy
| | - Fulvia Villani
- Nanomaterials and Devices Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 80055 Portici, Italy
| | - Michele Giordano
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (CNR), 80055 Portici, Italy
- CRdC Tecnologie Scarl, Via Nuova Agnano 11, 80125 Napoli, Italy
| |
Collapse
|
34
|
Dang S, Yang W, Zhang J, Zhan Q, Ye H. Simultaneous thermal camouflage and radiative cooling for ultrahigh-temperature objects using inversely designed hierarchical metamaterial. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3835-3846. [PMID: 39633731 PMCID: PMC11466004 DOI: 10.1515/nanoph-2024-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 12/07/2024]
Abstract
Sophisticated infrared detection technology, operating through atmospheric transmission windows (usually between 3 and 5 μm and 8-13 μm), can detect an object by capturing its emitted thermal radiation, posing a threat to the survival of targeted objects. As per Wien's displacement law, the shift of peak wavelength towards shorter wavelengths as blackbody temperature rises, underscores the significance of the 3-5 μm range for ultra-high temperature objects (e.g., at 400 °C), emphasizing the crucial need to control this radiation for the objects' viability. Additionally, effective heat management is essential for ensuring the consistent operation of these ultrahot entities. In this study, based on a database with high-temperature resist materials, we introduced a material-informatics-based framework aimed at achieving the inverse design of simultaneous thermal camouflage (low emittance in the 3-5 μm range) and radiative cooling (high emittance in the non-atmospheric window 5-8 μm range) tailored for ultrahigh-temperature objects. Utilizing the transfer matrix method to calculate spectral properties and employing the particle swarm optimization algorithm, two optimized multilayer structures with desired spectral characteristics are obtained. The resulted structures demonstrate effective infrared camouflage at temperatures up to 250 °C and 500 °C, achieving reductions of 86.7 % and 63.7 % in the infrared signal, respectively. At equivalent heating power densities applied to the structure and aluminum, structure 1 demonstrates a temperature reduction of 29.4 °C at 0.75 W/cm2, while structure 2 attains a temperature reduction of 57.5 °C at 1.50 W/cm2 compared to aluminum, showcasing enhanced radiative cooling effects. This approach paves the way for attenuating infrared signals from ultrahigh-temperature objects and effectively managing their thermal conditions.
Collapse
Affiliation(s)
- Saichao Dang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei230027, People’s Republic of China
- Sustainable Photonics Energy Research Laboratory, Material Science Engineering, PSE, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Wei Yang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei230027, People’s Republic of China
| | - Jialei Zhang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei230027, People’s Republic of China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People’s Republic of China
| | - Hong Ye
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei230027, People’s Republic of China
| |
Collapse
|
35
|
Guan T, Liang S, Kang Y, Pensa E, Li D, Liang W, Liang Z, Bulut Y, Reck KA, Xiao T, Guo R, Drewes J, Strunskus T, Schwartzkopf M, Faupel F, Roth SV, Cortés E, Jiang L, Müller-Buschbaum P. High-Power Impulse Magnetron Sputter Deposition of Ag on Self-Assembled Au Nanoparticle Arrays at Low-Temperature Dewetting Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40286-40296. [PMID: 39013146 PMCID: PMC11299143 DOI: 10.1021/acsami.4c10726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Plasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, via applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures. However, tailoring the evolution of the dewetting process of metal films poses considerable experimental complexities, mainly due to nanoscale structure formation. Here, we use grazing-incidence small- and wide-angle X-ray scattering for the in situ investigation of the high-power impulse magnetron sputter deposition of Ag on self-assembled Au nanoparticle arrays at low-temperature dewetting conditions. This approach allows us to examine both the direct formation of binary Au/Ag nanostructure and the consequential impact of the dewetting process on the spatial arrangement of the bimetallic nanoparticles. It is observed that the dewetting at 100 °C is sufficient to favor the establishment of a homogenized structural configuration of bimetallic nanostructures, which is beneficial for localized surface plasmon resonances (LSPRs). The fabricated metal nanostructures show potential application for the surface-enhanced Raman scattering (SERS) detection of rhodamine 6G molecules. As SERS platform, bimetallic nanostructures formed with dewetting conditions turn out to be superior to those without dewetting conditions. The method in this work is envisioned as a facile strategy for the fabrication of plasmonic nanostructures.
Collapse
Affiliation(s)
- Tianfu Guan
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suzhe Liang
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Yicui Kang
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Evangelina Pensa
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Dong Li
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices,
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Wenkai Liang
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices,
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Zhiqiang Liang
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices,
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Yusuf Bulut
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Kristian A. Reck
- Chair
for Multicomponent Materials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Tianxiao Xiao
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Renjun Guo
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jonas Drewes
- Chair
for Multicomponent Materials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Thomas Strunskus
- Chair
for Multicomponent Materials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | | | - Franz Faupel
- Chair
for Multicomponent Materials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Lin Jiang
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices,
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Peter Müller-Buschbaum
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
36
|
Meng Z, Liu D, Pang Y, Wang J, Liu T, Jia Y, Cheng H. Multispectral metal-based electro-optical metadevices with infrared reversible tunability and microwave scattering reduction. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3165-3174. [PMID: 39634936 PMCID: PMC11501323 DOI: 10.1515/nanoph-2024-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 12/07/2024]
Abstract
The demand for advanced camouflage technology is increasing in modern military warfare. Multispectral compatibility and adaptive capabilities are increasingly desired features in camouflage materials. However, due to the strong wavelength dependence and limited tunability of electromagnetic wave responses, achieving simultaneous multispectral compatibility and adaptive capability in a single structure or device remains a challenge. By integrating coding metamaterials with infrared (IR) electrochromic devices, we demonstrate a highly integrated multispectral metal-based electro-optical metadevice. The fabricated metadevices enable the reversible tunability of IR emissivity (0.58 at 3-5 µm, 0.50 at 7.5-13 µm) and wideband microwave scattering reduction (>10 dB at 10-20 GHz). The excellent integration performance is attributed to the remarkable electromagnetic control capabilities of the coding metamaterials in a chessboard-like configuration and the IR electrochromic devices based on metal reversible electrodeposition. Furthermore, the monolithic integrated design with shared barium fluoride substrate and electrodes allows the metadevices to have a simple architecture, and the careful design avoids coupling between functions. Our approach is general enough for the design of various electrochromic devices and metamaterials for multispectral camouflage, offering valuable insights for the development of advanced adaptive multispectral camouflage systems.
Collapse
Affiliation(s)
- Zhen Meng
- National University of Defense Technology, Changsha, China
| | - Dongqing Liu
- National University of Defense Technology, Changsha, China
| | | | - Jiafu Wang
- Air Force Engineering University, Xi’an, China
| | - Tianwen Liu
- National University of Defense Technology, Changsha, China
| | - Yan Jia
- National University of Defense Technology, Changsha, China
| | - Haifeng Cheng
- National University of Defense Technology, Changsha, China
| |
Collapse
|
37
|
Fang S, Xu N, Zhou L, Wei T, Yang Y, Liu Y, Zhu J. Self-assembled skin-like metamaterials for dual-band camouflage. SCIENCE ADVANCES 2024; 10:eadl1896. [PMID: 38896621 PMCID: PMC11186495 DOI: 10.1126/sciadv.adl1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Skin-like soft optical metamaterials with broadband modulation have been long pursued for practical applications, such as cloaking and camouflage. Here, we propose a skin-like metamaterial for dual-band camouflage based on unique Au nanoparticles assembled hollow pillars (NPAHP), which are implemented by the bottom-up template-assisted self-assembly processes. This dual-band camouflage realizes simultaneously high visible absorptivity (~0.947) and low infrared emissivity (~0.074/0.045 for mid-/long-wavelength infrared bands), ideal for visible and infrared dual-band camouflage at night or in outer space. In addition, this self-assembled metamaterial, with a micrometer thickness and periodic through-holes, demonstrates superior skin-like attachability and permeability, allowing close attachment to a wide range of surfaces including the human body. Last but not least, benefiting from the extremely low infrared emissivity, the skin-like metamaterial exhibits excellent high-temperature camouflage performance, with radiation temperature reduction from 678 to 353 kelvin. This work provides a new paradigm for skin-like metamaterials with flexible multiband modulation for multiple application scenarios.
Collapse
Affiliation(s)
- Shiqi Fang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lin Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuhan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yongmin Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Sustainable Energy and Resources, Nanjing University, Suzhou 215010, China
| |
Collapse
|
38
|
Zhang J, Zhang Y, Yang J, Wang X. Beyond Color Boundaries: Pioneering Developments in Cholesteric Liquid Crystal Photonic Actuators. MICROMACHINES 2024; 15:808. [PMID: 38930778 PMCID: PMC11205596 DOI: 10.3390/mi15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Jiaxing Yang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Xinye Wang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| |
Collapse
|
39
|
Zhang P, Zhao S, Chen G, Li K, Chen J, Zhang Z, Yang F, Yang Z. Preparation of Fibrous Three-Dimensional Porous Materials and Their Research Progress in the Field of Stealth Protection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1003. [PMID: 38921879 PMCID: PMC11206925 DOI: 10.3390/nano14121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Intelligent and diversified development of modern detection technology greatly affects the battlefield survivability of military targets, especially infrared, acoustic wave, and radar detection expose targets by capturing their unavoidable infrared radiation, acoustic wave, and electromagnetic wave information, greatly affecting their battlefield survival and penetration capabilities. Therefore, there is an urgent need to develop stealth-protective materials that can suppress infrared radiation, reduce acoustic characteristics, and weaken electromagnetic signals. Fibrous three-dimensional porous materials, with their high porosity, excellent structural adjustability, and superior mechanical properties, possess strong potential for development in the field of stealth protection. This article introduced and reviewed the characteristics and development process of fibrous three-dimensional porous materials at both the micrometer and nanometer scales. Then, the process and characteristics of preparing fibrous three-dimensional porous materials through vacuum forming, gel solidification, freeze-casting, and impregnation stacking methods were analyzed and discussed. Meanwhile, their current application status in infrared, acoustic wave, and radar stealth fields was summarized and their existing problems and development trends in these areas from the perspectives of preparation processes and applicability were analyzed. Finally, several prospects for the current challenges faced by fibrous three-dimensional porous materials were proposed as follows: functionally modifying fibers to enhance their applicability through self-cross-linking; establishing theoretical models for the transmission of thermal energy, acoustic waves, and electromagnetic waves within fibrous porous materials; constructing fibrous porous materials resistant to impact, shear, and fracture to meet the needs of practical applications; developing multifunctional stealth fibrous porous materials to confer full-spectrum broadband stealth capability; and exploring the relationship between material size and mechanical properties as a basis for preparing large-scale samples that meet the application's requirement. This review is very timely and aims to focus researchers' attention on the importance and research progress of fibrous porous materials in the field of stealth protection, so as to solve the problems and challenges of fibrous porous materials in the field of stealth protection and to promote the further innovation of fibrous porous materials in terms of structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Jun Chen
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (P.Z.); (S.Z.); (G.C.); (K.L.); (Z.Z.); (F.Y.)
| | | | | | - Zichun Yang
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (P.Z.); (S.Z.); (G.C.); (K.L.); (Z.Z.); (F.Y.)
| |
Collapse
|
40
|
Fu S, Liang Z, Qian X, Zhang W, Qiu Y, Ling X, Liu Q, Zhang D. Ultrawide Spectra Camouflage Coatings from Metallic Flake Powder. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27627-27639. [PMID: 38766902 DOI: 10.1021/acsami.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultrawide-spectra-compatible camouflage materials are imperative for military science and national security due to the continuous advancement of various sophisticated multispectral detectors. However, ultrawide spectra camouflage still has challenges, as the spectral requirements for different bands are disparate and even conflicting. This work demonstrates an ultrawide spectra camouflage material compatible with visible (VIS, 400-800 nm), infrared (IR, 3-5 and 8-14 μm), and microwave (S-Ku bands, 2-12 GHz). The carbon nanotubes adsorbed on porous anodic alumina/aluminum flake powder (CNTs@PAA/AFP) material for ultrawide spectra camouflage is composed of bioinspired porous alumina surface layers for low visible reflection and aluminum flake powder substrate for low infrared emissivity, while the surface of the porous alumina layers is loaded with carbon nanotubes for microwave absorption. Compared with previous low-emissivity materials, CNTs@PAA/AFP has omnidirectional low reflectance (Ravg = 0.29) and high gray scale (72%) in the visible band. Further, it exhibits low emissivity (ε3-5μm = 0.15 and ε8-14μm = 0.18) in the dual infrared atmospheric window, which reduces the infrared lock-on range by 59.6%/49.8% in the mid/far-infrared band at high temperatures (573 K). The infrared camouflage performance calculated from the radiation temperature of CNTs@PAA/AFP coatings is enhanced to over 65%, which is at least 4 times greater than that of its substrate. In addition, the CNTs@PAA/AFP coating achieves high microwave absorption (RLmin = -42.46 dB) and an effective absorption bandwidth (EAB = 7.43 GHz) in the microwave band (S-Ku bands) due to the enhancement of interfacial polarization and conductive losses. This study may introduce new insight and feasible methods for multispectral manipulation, electromagnetic signal processing, and thermal management via bioinspired structural design and fabrication.
Collapse
Affiliation(s)
- Siqi Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zudian Liang
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Xing Qian
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulun Qiu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Ling
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Gong Y, Wang H, Luo J, Chen J, Qu Z. Research Progress of Bioinspired Structural Color in Camouflage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2564. [PMID: 38893828 PMCID: PMC11173615 DOI: 10.3390/ma17112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Bioinspired structural color represents a burgeoning field that draws upon principles, strategies, and concepts derived from biological systems to inspire the design of novel technologies or products featuring reversible color changing mechanisms, with significant potential applications for camouflage, sensors, anticounterfeiting, etc. This mini-review focuses specifically on the research progress of bioinspired structural color in the realm of camouflage. Firstly, it discusses fundamental mechanisms of coloration in biological systems, encompassing pigmentation, structural coloration, fluorescence, and bioluminescence. Subsequently, it delineates three modulation strategies-namely, photonic crystals, film interference, and plasmonic modulation-that contribute to the development of bioinspired structural color materials or devices. Moreover, the review critically assesses the integration of bioinspired structural color materials with environmental contexts, with a particular emphasis on their application in camouflage. Finally, the paper outlines persisting challenges and suggests future development trends in the camouflage field via bioinspired structural color.
Collapse
Affiliation(s)
- Yimin Gong
- School of Materials Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China;
| | - Haibin Wang
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China;
| | - Jianxin Luo
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China;
| | - Jiwei Chen
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China;
| | - Zhengyao Qu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
42
|
Sentjens H, Bloemers JM, Lub J, Gonzalez CL, Kragt AJ, Schenning AP. On the isomeric purity of endcap molecules in cholesteric liquid crystal oligomers for near-infrared thermochromic coatings. LIQUID CRYSTALS 2024; 51:1651-1663. [PMID: 39493736 PMCID: PMC11529603 DOI: 10.1080/02678292.2024.2350046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 11/05/2024]
Abstract
Structurally coloured responsive materials provide an interesting avenue for the development of autonomous temperature regulating window films. One interesting class of such thermochromic materials is cholesteric liquid crystals. However, cholesteric liquid crystals have rarely been applied in coatings for smart window applications. In this work, we report the synthesis of endcapped cholesteric liquid crystal oligomers and its application as near-infrared thermochromic coatings for windows. Two isomerically pure monoacrylate endcapping molecules and its isomeric mixture are synthesised. The molecules are used to synthesise a variety of endcapped cholesteric liquid crystal oligomers to study the effect of the isomeric purity on the thermochromic properties of the coatings. It is found that while the oligomers are almost identical in composition and phase behaviour, only one isomer produces a clear transparent coating, highlighting the significance of minute isomeric differences. Remarkably, the thermochromic behaviour of the coatings for all oligomers is the same. The best performing oligomer is able to reversibly blueshift by 250 nanometres when heated from room temperature to 100°C, opening the way of cholesteric liquid crystals for use in temperature regulating window films.
Collapse
Affiliation(s)
- Henk Sentjens
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| | - Janneke M.A. Bloemers
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| | - Johan Lub
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| | - Carmen Luengo Gonzalez
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| | - Augustinus J.J. Kragt
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
- ClimAd Technology, Nijmegen, The Netherlands
| | - Albert P.H.J. Schenning
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
43
|
Chen Y, Guo Y, Xie B, Jin F, Ma L, Zhang H, Li Y, Chen X, Hou M, Gao J, Liu H, Lu YJ, Wong CP, Zhao N. Lightweight and drift-free magnetically actuated millirobots via asymmetric laser-induced graphene. Nat Commun 2024; 15:4334. [PMID: 38773174 PMCID: PMC11109242 DOI: 10.1038/s41467-024-48751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fujun Jin
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yihao Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jian Gao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
44
|
Gao H, Cai W, Li A, Du Y, Zhu JL, Ye Z. Ultrasensitive Biomimetic Skin with Multimodal and Photoelectric Dual-Signal Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593088 DOI: 10.1021/acsami.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mimicking biological skin enabling direct, intelligent interaction between users and devices, multimodal sensing with optical/electrical (OE) output signals is urgently required. Owing to this, this work aims to logically design a stretchable OE biomimetic skin (OE skin), which can sensitively sense complex external stimuli of pressure, strain, temperature, and localization. The OE skin consists of elastic thin polymer-stabilized cholesteric liquid crystal films, an ion-conductive hydrogel layer, and an elastic protective membrane formed with thin polydimethylsiloxane. The as-designed OE skin exhibits customizable structural color on demand, good thermochromism, and excellent mechanochromism, with the ability to extend the full visible spectrum, a good linearity of over 0.99, fast response speed of 93 ms, and wide temperature range of 119 °C. In addition, the conduction resistance variation of ion-conductive hydrogel exhibits excellent sensing capabilities under pressure, stretch, and temperature, endowing a good linearity of 0.99998 (stretching from 0 to 150%) and high thermal sensitivity of 0.86% per °C. Such an outstanding OE skin provides design concepts for the development of multifunctional biomimetic skin used in human-machine interaction and can find wide applications in intelligent wearable devices and human-machine interactions.
Collapse
Affiliation(s)
- Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Wenshan Cai
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Ji-Liang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
45
|
Liu S, Du Y, Zhang R, He H, Pan A, Ho TC, Zhu Y, Li Y, Yip HL, Jen AKY, Tso CY. Perovskite Smart Windows: The Light Manipulator in Energy-Efficient Buildings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306423. [PMID: 37517047 DOI: 10.1002/adma.202306423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Uncontrolled sunlight entering through windows contributes to substantial heating and cooling demands in buildings, which leads to high energy consumption from the buildings. Recently, perovskite smart windows have emerged as innovative energy-saving technologies, offering the potential to adaptively control indoor solar heat gain through their impressive sunlight modulation capabilities. Moreover, harnessing the high-efficiency photovoltaic properties of perovskite materials, these windows have the potential to generate power, thereby realizing more advanced windows with combined light modulation and energy harvesting capabilities. This review summarizes the recent advancements in various chromic perovskite materials for achieving light modulation, focusing on both perovskite structures and underlying switching mechanisms. The discussion also encompasses device engineering strategies for smart windows, including the improvement of their optical and transition performance, durability, combination with electricity generation, and the evaluation of their energy-saving performance in building applications. Furthermore, the challenges and opportunities associated with perovskite smart windows are explicated, aimed at stimulating more academic research and advancing their pragmatic implementation for building energy efficiency and sustainability.
Collapse
Affiliation(s)
- Sai Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Yuwei Du
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Rui Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Huanfeng He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hin-Lap Yip
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Alex K Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue Kowloon Tong, Hong Kong, HKG, China
| |
Collapse
|
46
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Zhang X, Wang F, Guo H, Sun F, Li X, Zhang C, Yu C, Qin X. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305228. [PMID: 38140792 PMCID: PMC10933611 DOI: 10.1002/advs.202305228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Indexed: 12/24/2023]
Abstract
High-temperature environments pose significant risks to human health and safety. The body's natural ability to regulate temperature becomes overwhelmed under extreme heat, leading to heat stroke, dehydration, and even death. Therefore, the development of effective personal thermal-moisture management systems is crucial for maintaining human well-being. In recent years, significant advancements have been witnessed in the field of textile-based cooling systems, which utilize innovative materials and strategies to achieve effective cooling under different environments. This review aims to provide an overview of the current progress in textile-based personal cooling systems, mainly focusing on the classification, mechanisms, and fabrication techniques. Furthermore, the challenges and potential application scenarios are highlighted, providing valuable insights for further advancements and the eventual industrialization of personal cooling textiles.
Collapse
Affiliation(s)
- Xueping Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fei Wang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Hanyu Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xiangshun Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chentian Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chongwen Yu
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
48
|
Liu Q, Liu L, Zheng Y, Li M, Ding B, Diao X, Cheng HM, Tang Y. On-demand engineerable visible spectrum by fine control of electrochemical reactions. Natl Sci Rev 2024; 11:nwad323. [PMID: 38312377 PMCID: PMC10833456 DOI: 10.1093/nsr/nwad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/16/2023] [Indexed: 02/06/2024] Open
Abstract
Tunability of optical performance is one of the key technologies for adaptive optoelectronic applications, such as camouflage clothing, displays, and infrared shielding. High-precision spectral tunability is of great importance for some special applications with on-demand adaptability but remains challenging. Here we demonstrate a galvanostatic control strategy to achieve this goal, relying on the finding of the quantitative correlation between optical properties and electrochemical reactions within materials. An electrochromic electro-optical efficiency index is established to optically fingerprint and precisely identify electrochemical redox reactions in the electrochromic device. Consequently, the charge-transfer process during galvanostatic electrochemical reaction can be quantitatively regulated, permitting precise control over the final optical performance and on-demand adaptability of electrochromic devices as evidenced by an ultralow deviation of <3.0%. These findings not only provide opportunities for future adaptive optoelectronic applications with strict demand on precise spectral tunability but also will promote in situ quantitative research in a wide range of spectroelectrochemistry, electrochemical energy storage, electrocatalysis, and material chemistry.
Collapse
Affiliation(s)
- Qirong Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Liu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Li
- School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Baofu Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
49
|
Liu Y, Zheng Y. Reverse-switching radiative cooling for synchronizing indoor air conditioning. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:701-710. [PMID: 39635096 PMCID: PMC11501576 DOI: 10.1515/nanoph-2023-0699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/23/2024] [Indexed: 12/07/2024]
Abstract
Switchable radiative cooling based on the phase-change material vanadium dioxide (VO2) automatically modulates thermal emission in response to varying ambient temperature. However, it is still challenging to achieve constant indoor temperature control solely using a VO2-based radiative cooling system, especially at low ambient temperatures. Here, we propose a reverse-switching VO2-based radiative cooling system, assisting indoor air conditioning to obtain precise indoor temperature control. Unlike previous VO2-based radiative cooling systems, the reverse VO2-based radiative cooler turns on radiative cooling at low ambient temperatures and turns off radiative cooling at high ambient temperatures, thereby synchronizing its cooling modes with the heating and cooling cycles of the indoor air conditioning during the actual process of precise temperature control. Calculations demonstrate that our proposed VO2-based radiative cooling system significantly reduces the energy consumption by nearly 30 % for heating and cooling by indoor air conditioning while maintaining a constant indoor temperature, even surpassing the performance of an ideal radiative cooler. This work advances the intelligent thermal regulation of radiative cooling in conjunction with the traditional air conditioning technology.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA02115, USA
| | - Yi Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
50
|
Ma H, Pu S, Wu H, Jia S, Zhou J, Wang H, Ma W, Wang Z, Yang L, Sun Q. Flexible Ag 2Se Thermoelectric Films Enable the Multifunctional Thermal Perception in Electronic Skins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7453-7462. [PMID: 38303156 DOI: 10.1021/acsami.3c17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Skin is critical for shaping our interactions with the environment. The electronic skin (E-skin) has emerged as a promising interface for medical devices to replicate the functions of damaged skin. However, exploration of thermal perception, which is crucial for physiological sensing, has been limited. In this work, a multifunctional E-skin based on flexible thermoelectric Ag2Se films is proposed, which utilizes the Seebeck effect to replicate the sensory functions of natural skin. The E-skin can enable capabilities including temperature perception, tactile perception, contactless perception, and material recognition by analyzing the thermal conduction behaviors of various materials. To further validate the capabilities of constructed E-skins, a wearable device with multiple sensory channels was fabricated and tested for gesture recognition. This work highlights the potential for using flexible thermoelectric materials in advanced biomedical applications including health monitoring and smart prosthetics.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Pu
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiamin Zhou
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Hao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wangta Ma
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Zegao Wang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
| |
Collapse
|