1
|
Jiang B, Kong L, Cheng X, He M, Zhang H, Feng Y. Thioacetohydrazide-Cored Dendritic Metallogels with Multi-Stimuli-Responsive and Adsorptive Properties. Chem Asian J 2025:e00426. [PMID: 40377213 DOI: 10.1002/asia.202500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
A novel poly(aryl ether) dendritic ligand featuring a thioacetohydrazide functional group at the focal point was successfully designed and synthesized, along with its corresponding Zn(II) complexes formed through metal-ligand coordination. Notably, the dendritic Zn(II) complex demonstrated significantly enhanced gelation capabilities compared to their ligand precursors, achieving gel formation in various organic solvents at remarkably low critical gelation concentrations. Mechanistic investigations revealed that the formation of stable metallogels is facilitated by a synergistic combination of multiple noncovalent interactions, including Zn(II)-hydrazide coordination, solvophobic effects, and π─π stacking interactions. These dendritic metallogels exhibited intelligent stimuli-responsive behavior, undergoing reversible gel-sol phase transitions in response to various external stimuli, such as temperature and chemical inputs. Furthermore, the dendritic metallogel, particularly in its xerogel form, demonstrated exceptional efficacy (>94% within 10 hours) and outstanding adsorption capacity (800 mg/g) in the removal of Hg2⁺ ions from aqueous solutions, highlighting its potential for environmental remediation applications.
Collapse
Affiliation(s)
- Bo Jiang
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Longjie Kong
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xu Cheng
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Miao He
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Hongkui Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
2
|
Li G, Wang Y, Li Y, Wen Z, Luo Z, Song W, Zhang W. Multi-stimuli-responsive aggregation-induced emission of boryl substituted phenothiazine. RSC Adv 2025; 15:15480-15489. [PMID: 40365201 PMCID: PMC12067193 DOI: 10.1039/d5ra01331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Stimuli-responsive materials, especially multi-stimuli-responsive ones, represent a kind of intelligent materials with significant potential in high-tech innovations, owing to their ability to undergo physical property changes in response to external stimuli. This investigation produced three new functionalized donor-acceptor (D-A) fluorophores, specifically aminoboranes incorporating phenothiazyl groups (4a, 4b, and 4c), featuring analogous structural components. These aminoborane derivatives demonstrated excellent resistance to air/moisture degradation, along with reduced HOMO energy states compared to a CN-containing analog, 4d. Analysis indicated that these aminoborane compounds displayed fascinating photophysical characteristics, encompassing aggregation-induced emission (AIE). Notably, the diarylboryl-phenothiazines show case reversible and distinct multi-stimuli-responsive luminescence upon exposure to fluoride ions, voltage, and mechanical force. This investigation enhances understanding of molecular interaction mechanisms and structural modifications essential for developing advanced stimuli-responsive luminescent compounds.
Collapse
Affiliation(s)
- Guoqiang Li
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Yan Wang
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Yaohui Li
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Zengheng Wen
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Zhuang Luo
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Weijun Song
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Weidong Zhang
- School of Chemical Engineering, Qinghai University Xining 810016 China
| |
Collapse
|
3
|
Feng W, Li F, Jiang Z, Yue C, Yin G, Zhu N, Zhang K, Chen T, Lu W. Supramolecular Entanglement Driven Emissive Aggregate Densification Enabling Room-Temperature Phosphorescence Hydrogels with Ultrastretchability and Crack-Tolerance. Angew Chem Int Ed Engl 2025:e202505192. [PMID: 40347063 DOI: 10.1002/anie.202505192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/12/2025]
Abstract
Polymeric room temperature phosphorescence (RTP) hydrogels are emerging candidates for many advanced photonic applications. Unfortunately, phosphorescence of the introduced RTP chromophores can easily be quenched in water-swollen hydrogel networks, limiting their luminescence performance and application adaptability. Herein, we propose a supramolecular confinement-entanglement synergy strategy to produce ultrastretchable RTP hydrogels by in-situ polymerizing high-concentration 2-(acryloyloxy)ethyl trimethylammonium chloride (AETC) in the presence of preassembled 4-biphenylboronic acid@β-cyclodextrin (4-BB@β-CD) emissive aggregates. The hyper-entangled poly(AETC) (PAETC) chains, formed under water-limiting conditions, synergistically densify the 4-BB@β-CD aggregates through supramolecular confinement, effectively suppressing molecular vibrations and stabilizing triplet states. Impressively, the hydrogels exhibit intense afterglow and ultralong phosphorescence lifetime up to 1.1 s under room conditions. Crucially, the entanglement-dominated physical network free of static chemical crosslinking enables continuing chain disentanglement during stretching for efficient energy dissipation. Segment length between physical entanglement points can thus be significantly enlarged to reduce network fracture and avoid crack propagation, achieving record-breaking uniaxial/biaxial (21 000%/10 000%) stretchability. Even the notched hydrogels are capable of being unprecedentedly stretched to 20 500% and exhibit a fracture energy as high as 157 kJ m⁻2, demonstrating intrinsic crack-tolerance. This study opens new avenues of polymeric RTP hydrogels by bringing superior mechanical performance and should merit their application exploration.
Collapse
Affiliation(s)
- Weihao Feng
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, P.R. China
| | - Fen Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, 37077, Germany
| | - Zhenyi Jiang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Chaojun Yue
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Guangqiang Yin
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, P.R. China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, 37077, Germany
| | - Tao Chen
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Wei Lu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| |
Collapse
|
4
|
Liu Y, Su G, Lin J, Tan X, Wu C, Shen Q, Deng Z, Liu J, Han M, Lai JC, Dai R, Wang G, Zang G, Li Z, Zhao H. Macroporous hydrogel loaded with AIE-photosensitizer for enhanced antibacterial and wounds healing. Int J Biol Macromol 2025; 312:143977. [PMID: 40348218 DOI: 10.1016/j.ijbiomac.2025.143977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Effective wound healing requires precise immune regulation, including infection clearance to prevent excessive immune cell activation and polarization of macrophages. Therapeutic systems with combined immunomodulatory effects are crucial. Photodynamic therapy (PDT) is a promising antimicrobial treatment(AIE), with photosensitizers (PSs) playing a central role. The PSs with aggregation-induced emission can efficiently generate reactive oxygen species (ROS) in the aggregated state, making them workable in high concentration. Introduction of a biocompatible carrier is beneficial for the PSs' immobilization and distribution and hydrogels are excellent candidates. It is pursuing to design a PS-hydrogel system with synergetic effect. Type II PSs can generate singlet oxygen under sufficient oxygen. Macroporous hydrogels (MPHs) own superiorities in matter transport and immune cell adhesion reduction. Herein, an AIE-PS, TCSPy+ was designed. With its nanoparticles (NPs), an MPH dressing was developed using a facile extrusion-sequential-photo-crosslinking method based on PEGDA and GelMA. In vitro and in vivo studies demonstrated that TCSPy+@MPH dressing exhibited superior antibacterial activity compared to non-porous hydrogel-based one, significantly inhibiting excessive immune cell activation and polarization of macrophages. The macroporous structure also facilitated inflammatory exudates removal. The synergetic effect with the combined immunomodulation ability allows the dressing to efficiently treat infected wounds, offering an effective strategy to design advanced therapeutic systems for tissue regeneration and immune regulation.
Collapse
Affiliation(s)
- Yangkun Liu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jingsong Lin
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Xudong Tan
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Chaoying Wu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Qing'an Shen
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Zishan Deng
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Jiankai Liu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jian-Cheng Lai
- Tachin Technology Co., Ltd., Beijing 100094, China; Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Guixue Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Guangchao Zang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China; Jinfeng Laboratory, Chongqing 401329, China; Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China.
| | - Zhao Li
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
5
|
Zhang B, Peng Z, He Q, Hao S, Lu Z, Fan W, Wang Y, Bai G. Two-step sequential energy transfer in sodium carboxymethyl cellulose-based gels for information encryption. Int J Biol Macromol 2025; 305:141157. [PMID: 39971045 DOI: 10.1016/j.ijbiomac.2025.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Sodium carboxymethyl cellulose (NaCMC)-based gels have been widely explored for various applications; however, innovative preparation methods are still required to further extend their potential. In this study, we introduced a low-molecular-weight gelator, 3,3',3″-[1,3,5-benzenetriyltris(carbonylimino)]trisbenzoic acid (H3L), to induce gelation in NaCMC. The resulting NaCMC/H3L gel was further developed into an information-encryption material with misleading functionality. This approach employs a two-step sequential energy transfer platform, with 4,7-di(2-thienyl)-2,1,3-benzothiadiazole and sulforhodamine101 serving as the first and second energy transfer acceptors, respectively, to construct gels that exhibit blue, yellow, and red fluorescence. Upon the addition of NaOH, these gels' fluorescence either is quenched, shifts red or remains unaffected, whereas the addition of HCl can restore their fluorescence. This acid-base responsiveness forms the basis for a unique information-encryption system in which the correct information can only be accessed through a specific processing method; otherwise, the incorrect result would be obtained. This study not only broadens the preparation methods for NaCMC-based gels but also establishes a new paradigm for their application in information encryption.
Collapse
Affiliation(s)
- Binbin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Zhenhao Peng
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Qiuyu He
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Shanglong Hao
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhenyu Lu
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Wenxiu Fan
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yujie Wang
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
6
|
Kimura S, Adachi K, Ishii Y, Komiyama T, Saito T, Nakayama N, Yokoya M, Takaya H, Yagai S, Kawai S, Uchihashi T, Yamanaka M. Molecular-level insights into the supramolecular gelation mechanism of urea derivative. Nat Commun 2025; 16:3758. [PMID: 40263273 PMCID: PMC12015314 DOI: 10.1038/s41467-025-59032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Despite being a promising soft material embodied by molecular self-assembly, the formation mechanism of supramolecular gels remains challenging to fully understand. Here we provide molecular to nanoscopic insights into the formation mechanism of gel-forming fibers from a urea derivative. High-speed atomic force microscopy of the urea derivative revealed the presence of a lag phase prior to the formation of supramolecular fibers, suggesting a nucleation process. The fiber growth kinetics differ at both termini of the fiber, indicating a directional hydrogen-bonding motif by the urea units, which is supported by single-crystal X-ray crystallography of a reference compound. Moreover, we observed an intermittent growth pattern of the fibers with repeated elongation and pause phases. This unique behavior can be simulated by a theoretical block-stacking model. A statistical analysis of the concentration-dependent lag time on macroscopic observation of the gelation suggests the presence of a tetrameric or octameric nucleus of the urea molecules.
Collapse
Affiliation(s)
- Shinya Kimura
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan.
| | - Kurea Adachi
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoshiki Ishii
- Department of Physics and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tomoki Komiyama
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
- Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | | | | | - Hikaru Takaya
- Department of Life Science, Faculty of Life & Environmental Sciences, Teikyo University of Science, Adachi-ku, Tokyo, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institute of Natural Science, Okazaki, Aichi, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba, Japan.
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan.
| | - Shinnosuke Kawai
- Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka, Japan.
| | - Takayuki Uchihashi
- Department of Physics and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
7
|
Yang X, Du M, Chu Z, Li C. Synchronizing Multicolor Changes and Shape Deformation Into Structurally Homogeneous Hydrogels via a Single Photochromophore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500857. [PMID: 40059611 DOI: 10.1002/adma.202500857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 04/24/2025]
Abstract
The design of synthetic hydrogels that can mimic their biological counterparts in the simultaneous production of multicolor change and shape transformation in response to environmental stimuli is of great importance toward intelligent camouflage, encryption, and actuation. Previous efforts have focused primarily on developing heterogeneous hydrogels that highly rely on respective mechanisms to achieve color and shape changes separately, and synergistically synchronizing such two variations into structurally homogenous hydrogels via a single chromophore has been challenging. Here, the molecular design of a structurally homogenous hydrogel simultaneously exhibiting synchronized multicolor change and shape deformation triggered by a single stimulus of light is reported. The synchronization mechanism originates from a coupled alteration upon irradiation in the fluorescence emission and charge states of a spiropyran photochromophore covalently incorporated into the hydrogel network, thus leading to macroscale color change and shape variation in the hydrogel, respectively. Following this principle, both positive and negative phototropic deformation are obtained concomitantly with synchronized but flexibly tunable multicolor changes upon light illumination and demonstrated the ingenious application of biomimetic actuation, encryption, and camouflage by the rational combination of these two systems. This work represents an innovative molecular design strategy for developing bioinspired materials with synchronized functions via a single compound.
Collapse
Affiliation(s)
- Xuehan Yang
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengqi Du
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaomiao Chu
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Lv Y, Liu X, Liang J, Dong L, Zhang Y, Lin C, Xiang S, Chen B, Zhang Z. Monochromatic Responsive HOF Heterostructures via VIA-Group-Based Framework Hybridization for Fully-Covert Photonic Barcode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420486. [PMID: 40066512 DOI: 10.1002/adma.202420486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Indexed: 04/24/2025]
Abstract
Luminescent responsive heterostructures with region-domained emission and integrated responsiveness exhibit great potential in information security, but always suffer from the direct exposure of fingerprint information at the initial state, making it easy to decode the hidden confidential information. Herein, the first monochromatic responsive hydrogen-bonded organic framework (HOF) heterostructures are reported based on VIA-group-based framework hybridization toward fully-covert photonic barcodes. Designed HOF blocks with different VIA-group elements are integrated via a configuration-assimilation-based assembly method to generate the intrinsic monochromatic HOF heterostructures. Differentiated electronegativity of VIA-group elements endows each HOF block with distinct bonding stability, which triggers different responsive actions to the same stimuli, finally forming the multicolor emission mode at a responsive state. These monochromatic responsive HOF heterostructures can effectively hide the intrinsic fingerprint information, which further demonstrates the fully-covert photonic coding capability as high-security anti-counterfeiting labels. These findings offer novel insight on the exploitation of smart-responsive hetero-HOF systems for advanced information encryption and anticounterfeiting applications.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xinming Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Lin Dong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Chenwei Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
9
|
Đorđević L, Jaynes TJ, Sai H, Barbieri M, Kupferberg JE, Sather NA, Weigand S, Stupp SI. Mechanical and Light Activation of Materials for Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418137. [PMID: 40072297 PMCID: PMC12016744 DOI: 10.1002/adma.202418137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Indexed: 04/24/2025]
Abstract
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur. It is reported here on a hybrid hydrogel that combines light-activated supramolecular polymers for superoxide production with thermal mechanical actuation of a covalent polymer. Superoxide production is important in organic synthesis and environmental remediation, and is a potential precursor to hydrogen peroxide liquid fuel. It is shown that the closing of pores in the hybrid hydrogel results in a substantial decrease in photocatalysis, but cycles of swollen and contracted states enhance photocatalysis. The observations motivate the development of biomimetic photosynthetic materials that integrate large scale motion and chemical reactions.
Collapse
Affiliation(s)
- Luka Đorđević
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Tyler J. Jaynes
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Hiroaki Sai
- Center for Regenerative NanomedicineNorthwestern University303 E SuperiorChicagoIL60611USA
| | - Marianna Barbieri
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Jacob E. Kupferberg
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Nicholas A. Sather
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Steven Weigand
- DuPont‐Northwestern‐Dow Collaborative Access Team Synchrotron Research CenterNorthwestern UniversityDND‐CATArgonneIL60439USA
| | - Samuel I. Stupp
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of MedicineNorthwestern University676 N St. Clair StreetChicagoIL60611USA
| |
Collapse
|
10
|
Zhao J, Zhang Y, Wang Z, Yang D. Incorporation of Cages into Gels: Access to a New Class of Soft Materials with Well-Defined Functionality. Chemistry 2025; 31:e202404363. [PMID: 39876063 DOI: 10.1002/chem.202404363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications. In particular, the host-guest chemistry endows the hybrid gel materials with possibilities for guest-specific responsive systems.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yijie Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Zhe Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Dong Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
11
|
Sharma A, Kaur N, Singh N. Functional Nanofibres of Tb(III)-Coupled Metal-Organic Gel: Detection To Decontamination of Thiabendazole In Environmental Samples. Chem Asian J 2025; 20:e202401088. [PMID: 39895560 DOI: 10.1002/asia.202401088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/04/2025]
Abstract
Pollutant residues such as pharmaceuticals or pesticides in water bodies pose significant environmental and health risks, necessitating the development of advanced sensing and removal techniques to ensure safe and sustainable water resources. Tb-based luminescent sensors offer high sensitivity for pollutant residue analysis, but their application is often limited to detection. Developing Tb-derived metal-organic gel (ANS-4G-Tb) as soft supramolecular material is proposed to enhance trace contamination removal, integrating both sensing and sequestration capabilities. For the development of the self-assembled supramolecular material, ANS-4, a low molecular-mass organic gelator (LMOG) with a molecular weight of just about 215 g/mole, was selected, owing to its efficient single-step synthesis, and it was comprehensively characterized using single crystal XRD, and other routine spectroscopic techniques. Then, its nanosized ANS-4G-Tb metallogel was characterized using a comprehensive suite of analytical techniques to assess its structural, chemical, morphological, and optical characteristics. Upon interaction with parasiticide and fungicide thiabendazole (TBZ), a phase transformation from gel to sol is observed, enabling naked-eye detection and simultaneous turn-on photo-luminescence sensing (5D4→7F5 transition). Based on novel research, our study navigates through the photo-luminescence of lanthanide supramolecular complexes, transitioning from fundamental investigations to potential methodologies concerning analyte responsiveness and removal applications.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Panjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Panjab, 140001, India
| |
Collapse
|
12
|
Ruidas P, Dubey SK, Hafiz SA, Mandal J, Mukherjee S, Ghosh NN, Midya R, Roy D, Das D, Singh S, Neogi P, Saha S, Roy UK, Bhattacharyya S, Ghosh A, Bhattacharjee S. Chiral Self-Assembly of a Pyrene-Appended Glutamylalanine Dipeptide and Its Charge Transfer Complex: Fabrication of Magneto-Responsive Hydrogels and Human Cell Imaging. Macromol Rapid Commun 2025; 46:e2400672. [PMID: 39545862 DOI: 10.1002/marc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The formation of a robust, self-healing hydrogel of a novel pyrene-appended dipeptide, Py-E-A (L-Glutamic acid short as E; L-Alanine short as A) is demonstrated. Detailed studies suggest that nanoscopic fibers with a length of several micrometers have formed by chiral self-organization of Py-E-A gelators. Additionally, live human PBMCs imaging is shown using the Py-E-A fluorophore. Interestingly, electron-rich Py-E-A couples with electron-deficient NDI-β-A (β-Alanine short as β-A) by charge transfer (CT) complexation and forms stable deep violet-colored CT super-hydrogel. X-ray diffraction, DFT, and 2D ROESY NMR studies suggest lamellar packing of both Py-E-A and the alternating CT stack in its hydrogel matrixes. Supramolecular chirality of the Py-E-A donor can be altered by adding an achiral acceptor NDI-β-A. Notably, the fibers of the CT hydrogel are found to be even thinner than the Py-E-A fibers, which, in turn, makes the CT hydrogel more tolerant to the applied strain. Further, the self-healing and injectable properties of the hydrogels are shown. Finally, the magneto-responsive behavior of the Py-E-A and CT hydrogels loaded with spin-canted Cu-ferrite (Cu0.6Zn0.4Fe2O4) nanoparticles (NPs) is demonstrated. The presence of magnetic NPs within the hydrogels has changed the fibrous morphology to rod-like nanoclusters.
Collapse
Affiliation(s)
- Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Soumen Kumar Dubey
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Jishu Mandal
- CIF Biophysical Laboratory, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sunil Mukherjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | | | - Ramkrishna Midya
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Dipanwita Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Dona Das
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, West Bengal, 723104, India
| | - Somendra Singh
- Indian Institute of Technology, Delhi, Sonipat Campus, Sonipat, Haryana, 131021, India
| | - Poonam Neogi
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sudipta Saha
- Department of Chemistry, Trivenidevi Bhalotia College, Raniganj, West Bengal, 713347, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sankar Bhattacharyya
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, West Bengal, 723104, India
| | - Angshuman Ghosh
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
13
|
Liu X, Du L, Liu J, Shi Y, Liu Q, Xu Y, Xia Y, Wang X, Ding D, Li X, Lin D. NaCl-Responsive Ultrashort Peptide to Trigger Self-Assembly of TPE-Capped Supramolecular Hydrogelator. Biomacromolecules 2025; 26:258-265. [PMID: 39621541 DOI: 10.1021/acs.biomac.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
With the advantages of less invasiveness and better shape adaptability, in situ-forming hydrogels are desired biomaterials as scaffolds, drug carriers, and so on. Herein, a negatively charged NaCl-responsive ultrashort peptide sequence (EEH) is reported whose electrostatic repulsion can be reduced through the charge-shielding effect. Under physiological conditions, its AIEgen-capped amphiphile TPE-GEEH of low concentration (1 mg/mL) presents NaCl-triggered morphological transformation from micelle to closely packed fiber with enhanced emission, which can be applied to biosense sodium ion (Na+) with high sensitivity and quick response. At a slightly acidic pH, 10 mg/mL TPE-GEEH undergoes sol-gel transition upon addition of NaCl (100 mM) with improved mechanical properties, which should be useful to develop an in situ-forming hydrogel. Overall, our report provides a simple strategy to construct NaCl-responsive assemblies for potential application in biosensors and drug delivery system.
Collapse
Affiliation(s)
- Xiangyi Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lulu Du
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueting Shi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qipeng Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yingying Xia
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaiting Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Deqing Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
14
|
Geng L, Qiao Y, Sun R, Guo L, Li ZQ, Ma Y, Yu MH, Chang Z, Bu XH. Solution-Processable Metal-Organic Framework Featuring Highly Tunable Dynamic Aggregation States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415511. [PMID: 39623789 DOI: 10.1002/adma.202415511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Indexed: 01/30/2025]
Abstract
The limited processability of metal-organic frameworks (MOFs) is hindered flexibility in the manipulation of their aggregation state and applications. Therefore, achieving highly processable MOFs is of great significance but a challenging goal. Herein, a facile strategy is presented for achieving the construction of solution-processable Mg-based MOF, NKU-Mg-1, allowing for dynamic control of the aggregation state through dynamic self-assembly (DySA) process and reversible circularly polarized luminescence (CPL) switcher modulation. Notably, micron-sized crystals of NKU-Mg-1 can be readily dispersed in water to form nano-sized colloids, triggered by the dynamic COO-Mg coordination bonding interruption by the competitive H2O-Mg bonding. Accordingly, the aggregation state of the colloid MOF can be readily tuned from 50-80 nm up to 1000 nm, in turn enabling control of aggregation-dependent emission. Specially, the solid-phase aggregation can be controlled via structural transitions between 3D NKU-Mg-1-rec-1 and 2D NKU-Mg-1-rec-2 nano-crystals, as confirmed by 3D electron diffraction. Furthermore, benefiting from its highly dynamic tunable aggregation nature, the rational incorporation of the chiral module confers significant CPL activity (glum up to 0.01). Importantly, controllable dynamic aggregation enables reversible switching of the CPL activity by precisely regulating the aggregation states. The solution-processable and dynamic aggregation-tunable features endow it highly promising for applications.
Collapse
Affiliation(s)
- Lin Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Qiao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Rui Sun
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Linshuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Ze-Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
15
|
Xie X, Bai W, Wang N, Qiu Z, Song X, Gao Y, Li B. Mechano-Responsive Fluorescent Gel based on Tetraphenylethylene-Crosslinked Dynamic Covalent Network. Chemistry 2024; 30:e202403623. [PMID: 39508827 DOI: 10.1002/chem.202403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The rapid development of mechano-responsive fluorescence has been driven by its promising applications in the fields of sensors, information encryption, and anti-counterfeiting. However, designing mechanophores that can exhibit fluorescence changes under relatively low force remains challenging. In this study, a mechano-responsive fluorescent gel was developed using a tetraphenylethylene derivative as a cross-linker, producing a dynamic covalent network that exhibits increased fluorescence under tensile stress. Based on controlled experimental studies and molecular modeling calculations, the fluorescence enhancement by external forces was attributed to the restriction of intramolecular motion in tetraphenylethylene by macromolecular chain orientation. In time-dependent experiments, due to the exchange of dynamic covalent bonds, the stress relaxation and the decrease in fluorescence intensity of the gel at fixed strain occurred simultaneously, demonstrating the potential of this fluorescence as an indication of internal stress through aggregation-induced emission (AIE) type mechanophore.
Collapse
Affiliation(s)
- Xiaohe Xie
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Weiwei Bai
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Nanqiao Wang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Ziyan Qiu
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Xianxiao Song
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Yuhao Gao
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
16
|
Tang X, Xia W, Han H, Wang Y, Wang B, Gao S, Zhang P. Dual-Fluorescent Quantum Dot Nanobead-Based Lateral Flow Immunoassay for Simultaneous Detection of C-Reactive Protein and Procalcitonin. ACS APPLIED BIO MATERIALS 2024; 7:7659-7665. [PMID: 39482872 DOI: 10.1021/acsabm.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Simultaneous detection of C-reactive protein (CRP) and procalcitonin (PCT) at the point of care is crucial for the management of infections in patients with inflammation and in critical care settings. The challenge of detecting high concentrations of CRP alongside low concentrations of PCT in plasma from inflammatory patients has limited the clinical application of multiplexed immunoassays. Herein, we developed a lateral flow immunoassay (LFIA) that employs quantum dot nanobeads (QDNBs) of varying sizes and colors to enable the simultaneous quantification of PCT and CRP in human plasma. To extend the dynamic range of CRP detection, we combined QDNBs with smaller particle sizes with the CRP detection antibodies, thereby increasing the assay's dynamic range and reducing the hook effect. At the same time, the stronger fluorescence emitted by these larger QDNBs, in conjugation with the PCT detection antibodies, allows for the detection of PCT at the nanogram level, meeting the demand for high sensitivity. The results show that this method can detect CRP concentrations from 0.1 to 3 mg/L and PCT with a detection limit of 0.09 ng/mL, which is on par with clinically used methods. By employing this dual-color and dual-size QDNB labeling strategy, we successfully achieved simultaneous detection of CRP with a broad dynamic range and PCT with high sensitivity in a one-step point-of-care rapid test.
Collapse
Affiliation(s)
- Xinyue Tang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
- College of Chemistry and Biological Engineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Wenwen Xia
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yucheng Wang
- Shanghai Kundao Biotech Inc., Shanghai 201201, China
| | - Bolong Wang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| |
Collapse
|
17
|
Su Z, Liu B, Dai J, Han M, Lai JC, Wang S, Chen Y, Zhao Y, Zhang R, Ma H, Deng Y, Li Z. A simulated microgravity-oriented AIE probe-ECM hydrogel-integrated chip for cell culture and superoxide anion radical detection. Biosens Bioelectron 2024; 264:116656. [PMID: 39133993 DOI: 10.1016/j.bios.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Human space activities have been continuously increasing. Astronauts experiencing spaceflight are faced with health problems caused by special space environments such as microgravity, and the investigation of cell injury is fundamental. The development of a platform capable of cell culture and injury detection is the prerequisite for the investigation. Constructing a platform suitable for special conditions in space life science research is the key issue. The ground-based investigation is an indispensable part of the research. Accordingly, a simulated microgravity (SMG)-oriented integrated chip platform capable of 3D cell culture and in situ visual detection of superoxide anion radical (O2•-) is developed. SMG can cause oxidative stress in human cells, and O2•- is one of the signaling molecules. Thus, a O2•--responsive aggregation-induced emission (AIE) probe is designed, which shows high selectivity and sensitivity to O2•-. Moreover, the probe exhibits abilities of long-term and wash-free staining to cells due to the AIE behavior, which is precious for space cell imaging. Meanwhile, a chip with a high-aspect-ratio chamber for adequate medium storage for the lack of the perfusion system during the SMG experiment and a cell culture chamber which can integrate the extracellular matrix (ECM) hydrogel for the bioinspired 3D cell culture is fabricated. In addition, a porous membrane is introduced between the chambers to prevent the hydrogel from separating during the SMG experiment. The afforded AIE probe-ECM hydrogel-integrated chip can achieve 3D culturing of U87-MG cells and in situ fluorescent detection of endogenous O2•- in the cells after long-term staining under SMG. The chip provides a powerful and potential platform for ground-based investigation in space life science and biomedical research.
Collapse
Affiliation(s)
- Zhaoqing Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Beiqin Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Jing Dai
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Jian-Cheng Lai
- Tachin Technology Co., Ltd., Beijing, 100094, China; Beijing Institute of Collaborative Innovation, Beijing, 100094, China
| | - Shuyue Wang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Yu Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China; Aerospace Medical Center, Aerospace Center Hospital, Beijing, 100049, China
| | - Yimeng Zhao
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China
| | - Hong Ma
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China.
| | - Yulin Deng
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China.
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, 100081, China.
| |
Collapse
|
18
|
Jia B, Li X, Liu W, Yang Z, Wang Y, Wang Z, Yang L, Liu Y, Fu Y. Multi-stimuli-responsive cyanostilbene derivatives: Their fluorescent and mechanochromic properties, and potential application in water sensing and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124474. [PMID: 38763018 DOI: 10.1016/j.saa.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.
Collapse
Affiliation(s)
- Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Xiangying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Wenjun Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zhou Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yuanzhen Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zishi Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resource Utilization Technology, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
19
|
Jiang Z, Qin Y, Liao G, Liu L, Luo Y, Li Q, Guo K. Aggregation-Induced Emissive Feringa-Type Motor: Toward the Dual-Functional Motor in a Single Molecular Aggregation System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402785. [PMID: 39109945 DOI: 10.1002/smll.202402785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/29/2024] [Indexed: 10/25/2024]
Abstract
Aggregation-induced emission (AIE)allows tunable photoluminescence via the simple regulation of molecular aggregation. The research spurt along this vein has also offered tremendous opportunities for light-responsive artificial molecular machines that are to be fully explored for performing versatile functions. Herein, the study reports a light-driven Feringa-type motor, when in the appropriate aggregation state, not only demonstrates the light-activated rotary motion but emits photons with good quantum yield. A semi-quantitative TD-DFT calculation is also conducted to aid the understanding of the competitive photoluminescence and photoisomerization processes of the motor. Cytotoxicity test shows this motor possesses good biocompatibility, laying a solid foundation for applying it in the bio-environment. The results demonstrated that the engagement of the aggregation-induced emission concept and light-driven Feringa-motor can lead to the discovery of the novel motorized AIEgen, which will further stimulate the rise of more advanced molecular motors capable of executing multi-functionalities.
Collapse
Affiliation(s)
- Ziwei Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guohong Liao
- Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanling Luo
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Quan Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, P. R. China
| |
Collapse
|
20
|
Wu W, Yao W, Zuo L, Li X, Yang X, Liu Y, Tang Z. Flexible Full-Inorganic Ultrathin Films with Stable Circularly Polarized Luminescence Covering the Visible to Near-Infrared Region. Chemphyschem 2024; 25:e202400138. [PMID: 38507137 DOI: 10.1002/cphc.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Circularly polarized luminescence (CPL) materials hold significant value in various fields, including information storage, secure communication, three-dimensional displays, biological detection, and optoelectronic devices. Using the Langmuir-Schaeffer (LS) assembly technique, we successfully construct a series of large-area flexible optical ultrathin films. Impressively, the inorganic assembled ultrathin films exhibit excellent CPL optical activity covering the visible to near-infrared (NIR) region, with the luminescence asymmetry factor glum ranging from 0.59 to 0.72. Moreover, such ultrathin films also display outstanding mechanical flexibility, the optical activity of which even after 240 bending cycles shows almost no difference compared to the unbent samples. Owing to the ultra-broadband optical activity and ultra-stable optical activity of such full-inorganic assembled materials on flexible substrates, coupled with their excellent processability and outstanding mechanical flexibility, we anticipate they will find use in many fields such as communication technology and flexible optoelectronics.
Collapse
Affiliation(s)
- Wenxuan Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenyan Yao
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lulu Zuo
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinwei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xuekang Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yaling Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
21
|
Sun Y, Le X, Shang H, Shen Y, Wu Y, Liu Q, Théato P, Chen T. Dual-Mode Hydrogels with Structural and Fluorescent Colors toward Multistage Secure Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401589. [PMID: 38744437 DOI: 10.1002/adma.202401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Constructing an anti-counterfeiting material with non-interference dual optical modes is an effective way to improve information security. However, it remains challenging to achieve multistage secure information encryption due to the limited stimulus responsiveness and color tunability of the current dual-mode materials. Herein, a dual-mode hydrogel with both independently tunable structural and fluorescent colors toward multistage information encryption, is reported. In this hydrogel system, the rigid lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) formed by shear flow-induced self-assembly provides the restricted domains wherein monomers undergo polymerization to form a hydrogel network, producing structural color. The introduction of fluorescent monomer 6-acrylamidopicolinate (6APA) as a complexation site provides the possibility of fluorescent color formation. The hydrogel's angle-dependent structural color can be controlled by adjusting the crosslinking density and water content. Additionally, the fluorescence color can be modulated by adjusting the ratio of lanthanide ions. Information of dual-mode can be displayed separately in different channels and synergistically overlayed to read the ultimate message. Thus, a multistage information encryption system based on this hydrogel is devised through the programed decryption process. This strategy holds tremendous potential as a platform for encrypting and safeguarding valuable and authentic information in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Ying Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qingquan Liu
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Partick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
22
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
23
|
Su G, Wang N, Liu Y, Zhang R, Li Z, Deng Y, Tang BZ. From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400085. [PMID: 38469972 DOI: 10.1002/adma.202400085] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
Collapse
Affiliation(s)
- Gongmeiyue Su
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ni Wang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yangkun Liu
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruoyao Zhang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhao Li
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yulin Deng
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), Guangdong, 518172, P. R. China
| |
Collapse
|
24
|
Liu F, Yang T, Chang X, Chen L, Cheng C, Peng X, Liu H, Zhang Y, Chen X. Intelligent gold nanocluster for effective treatment of malignant tumor via tumor-specific photothermal-chemodynamic therapy with AIE guidance. Natl Sci Rev 2024; 11:nwae113. [PMID: 38698903 PMCID: PMC11065357 DOI: 10.1093/nsr/nwae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Precise and efficient therapy of malignant tumors is always a challenge. Herein, gold nanoclusters co-modified by aggregation-induced-emission (AIE) molecules, copper ion chelator (acylthiourea) and tumor-targeting agent (folic acid) were fabricated to perform AIE-guided and tumor-specific synergistic therapy with great spatio-temporal controllability for the targeted elimination and metastasis inhibition of malignant tumors. During therapy, the functional gold nanoclusters (AuNTF) would rapidly accumulate in the tumor tissue due to the enhanced permeability and retention effect as well as folic acid-mediated tumor targeting, which was followed by endocytosis by tumor cells. After that, the overexpressed copper ions in the tumor cells would trigger the aggregation of these intracellular AuNTF via a chelation process that not only generated the photothermal agent in situ to perform the tumor-specific photothermal therapy damaging the primary tumor, but also led to the copper deficiency of tumor cells to inhibit its metastasis. Moreover, the copper ions were reduced to cuprous ions along with the chelation, which further catalysed the excess H2O2 in the tumor cells to produce cytotoxic reactive oxygen species, resulting in additional chemodynamic therapy for enhanced antitumor efficiency. The aggregation of AuNTF also activated the AIE molecules to present fluorescence, which not only imaged the therapeutic area for real-time monitoring of this tumor-specific synergistic therapy, but also allowed us to perform near-infrared radiation at the correct time point and location to achieve optimal photothermal therapy. Both in vitro and in vivo results revealed the strong tumor elimination, effective metastasis inhibition and high survival rate of tumor-bearing mice after treatment using the AuNTF nanoclusters, indicating that this AIE-guided and tumor-specific synergistic strategy could offer a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Feng Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haihu Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Cao Y, Wang D, Zhang Y, Li G, Gao C, Li W, Chen X, Chen X, Sun P, Dong Y, Cai Z, He Z. Multi-Functional Integration of Phosphor, Initiator, and Crosslinker for the Photo-Polymerization of Flexible Phosphorescent Polymer Gels. Angew Chem Int Ed Engl 2024; 63:e202401331. [PMID: 38456641 DOI: 10.1002/anie.202401331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
A general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole-based dialkene (BTD-HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD-HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent-phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film-shearing, roll coating process, and two/three-dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.
Collapse
Affiliation(s)
- Yanyan Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Gao
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Li
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoting Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaofei Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiyuan He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
26
|
Tang J, Xing T, Chen S, Feng J. A Shape Memory Hydrogel with Excellent Mechanical Properties, Water Retention Capacity, and Tunable Fluorescence for Dual Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305928. [PMID: 37986102 DOI: 10.1002/smll.202305928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Information encryption platforms with reliable encryption performance, excellent mechanical performance, and high water retention capacity are highly desired. In this study, a tough double-network hydrogel is designed using the first network of a polyion complex containing lanthanide complexes via one-pot polymerization and the second network of a poly (N-hydroxyethyl acrylamide) (PHEAA) obtained by deep eutectic solvent (DES)-assisted introduction and subsequent photopolymerization. In this system, the pH-induced shape memory function and pH-/wavelength-dependent fluorescence allow the use of the prepared hydrogel as a dual-encryption platform. Owing to its high response reversibility, the hydrogel-based platform exhibits both a high security level and the advantages of rewritability, reprogrammability, and reusability. Additionally, the excellent mechanical properties and water retention capacity owing to the solvent exchange process involving the low-volatility solvent DES and the resulting introduction of the second network of PHEAA offer high practical application value for the hydrogel-based dual encryption platform, demonstrating its potential for information security protection.
Collapse
Affiliation(s)
- Junyi Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Tianyu Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Sijia Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, China
| |
Collapse
|
27
|
Patra SK, Mahato MK, Prasad E. Aggregation induced emission and volatile acid vapour sensing in acridine appended poly (aryl ether) based low molecular weight organogelator. Org Biomol Chem 2024; 22:2596-2607. [PMID: 38450570 DOI: 10.1039/d3ob01945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Considerable research attention has been devoted to the development of portable and rapid fluorescence sensors that can selectively detect volatile acids, due to the harmful effects of acid vapour on the environment and human health. Although various types of fluorophores have been reported for sensing volatile acid vapours, regulation of the sensory response using aggregation induced emissive (AIE) based gelators has rarely been reported. In this study, we present the design and synthesis of a novel organogelator that is capable of sensing volatile acids through AIE. An acridine-attached poly(aryl ether) dendron molecular system is synthesized through an aldimine coupling reaction, which self-assembles and forms a gel, exhibiting AIE behavior. The synthesized molecule and prepared gel were characterized using NMR, MASS, XRD, HRSEM and rheology techniques. The AIE property of APD was investigated using steady-state absorption and emission spectroscopic techniques. The sensory response of the APD gelator was tested with various analytes, and the results indicated that APD shows rapid response, particularly to acid vapours, where the detection limits (DL) of trifluoroacetic acid (TFA), hydrochloric acid (HCl) and nitric acid (HNO3) vapor were as low as 0.22, 0.9 and 0.30 ppm, respectively. An APD solid film in filter paper shows a visual color change from yellow to red in an aqueous acidic medium, and the effect is reversed in an alkaline medium. These findings suggest that an APD gelator could potentially be utilized to generate a portable acid vapor sensor kit due to its low detection limit and rapid response time, and it could be also be used as a substitute for existing acid indicators.
Collapse
Affiliation(s)
- Srikanta Kumar Patra
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Malay Krishna Mahato
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| |
Collapse
|
28
|
Xiao L, Zhang L, Li S, Zhu Y, Yu Q, Liu Z, Qiu M, Li Y, Chen S, Zhou X. Visualization and Quantification of Drug Release by GSH-Responsive Multimodal Integrated Micelles. JACS AU 2024; 4:1194-1206. [PMID: 38559742 PMCID: PMC10976607 DOI: 10.1021/jacsau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Using molecular imaging techniques to monitor biomarkers and drug release profiles simultaneously is highly advantageous for cancer diagnosis and treatment. However, achieving the accurate quantification of both biomarkers and drug release with a single imaging modality is challenging. This study presents the development of a glutathione (GSH)-responsive polymer-based micelle, PEG-SS-FCy7/PEG-SS-GEM (PSFG), which can precisely localize the tumor using bimodal imaging and prevent drug leakage. These PSFG micelles exhibit a small particle size of 106.3 ± 12.7 nm with a uniform size distribution, and the drug loading efficiency can also be easily controlled by changing the PEG-SS-FCy7 (PSF) and PEG-SS-GEM (PSG) feeding ratio. The PSFG micelles display weak fluorescence emission and minimal drug release under physiological conditions but collapse in the presence of GSH to trigger near-infrared fluorescence and the 19F magnetic resonance imaging signal, allowing for real-time monitoring of intracellular GSH levels and drug release. GSH could synergistically promote the disassembly of the micellar structure, resulting in accelerated probe and drug release of up to about 93.1% after 24 h. These prodrug micelles exhibit high in vitro and in vivo antitumor abilities with minimal side effects. The GSH-responsive drug delivery system with dual-modal imaging capability provides a promising imaging-guided chemotherapeutic platform to probe the tumor microenvironment and quantify real-time drug release profiles with minimal side effects.
Collapse
Affiliation(s)
- Long Xiao
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sha Li
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Yue Zhu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Qiao Yu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
| | - Zhaoqing Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Maosong Qiu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Li
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shizhen Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School
of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Xin Zhou
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School
of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| |
Collapse
|
29
|
Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, Chu Y, Wang X, Deng G, Cai L. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307147. [PMID: 37941517 DOI: 10.1002/smll.202307147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.
Collapse
Affiliation(s)
- Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaohan Gao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Qi Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, P. R. China
- School of Public Health, Nanchang University, Nanchang, 330031, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, P. R. China
| |
Collapse
|
30
|
Li J, Wan K, Zhu T, Zheng Y, Chen Z, Feng Q, Du Z. Fibrous Conductive Metallogels with Hybrid Electron/Ion Networks for Boosted Extreme Sensitivity and High Linearity Strain Sensor. Macromol Rapid Commun 2024; 45:e2300568. [PMID: 37956305 DOI: 10.1002/marc.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Fibrous strain sensing materials with both high sensitivity and high linearity are of significant importance for wearable sensors, yet they still face great challenges. Herein, a photo-spun reaction encapsulation strategy is proposed for the continuous fabrication of fibrous strain sensor materials (AMGF) with a core-sheath structure. Metallogels (MOGs) formed by bacterial cellulose (BC) nanofibers and Ag nanoparticles (AgNPs), and thermoplastic elastomers (TPE) are employed as the core and sheath, respectively. The in situ ultraviolet light reduction of Ag+ ensured AgNPs to maintain the interconnections between the BC nanofibers and form electron conductive networks (0.31 S m-1 ). Under applied strain, the BC nanofibers experience separation, bringing AMGF a high sensitivity (gauge factor 4.36). The concentration of free ions in the MOGs uniformly varies with applied deformation, endowing AMGF with high linearity and a goodness-of-fit of 0.98. The sheath TPE provided AMGF sensor with stable working life (>10 000 s). Furthermore, the AMGF sensors are demonstrated to monitor complex deformations of the dummy joints in real-time as a wearable sensor. Therefore, the fibrous hybrid conductive network fibers fabricated via the photo-spun reaction encapsulation strategy provide a new route for addressing the challenge of achieving both high sensitivity and high linearity.
Collapse
Affiliation(s)
- Jifeng Li
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yong Zheng
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ziyin Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Qichun Feng
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Zhaofang Du
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
| |
Collapse
|
31
|
Li H, Lei H, Ma S, Song T, Li Y, Yu H. Capturing Doublet Intermediate Emitters by Chemically Crosslinking Confinement towards Spatiotemporal Encryption. Angew Chem Int Ed Engl 2024; 63:e202312185. [PMID: 37985243 DOI: 10.1002/anie.202312185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Photoluminescence is one of the most meticulous ways to manipulate light energy. Typical photoluminescent emitters are mostly stable substances with a pure photophysical process of spontaneous photon-emission from their excited states. Intermediate emitters are elusive attributing to their synchronous energy transfer process including photophysical and incomplete photochemical pathways. An intermediate emitter containing radicals is more difficult to be observed due to its inherent chemical reactivity. Here, these challenges are overcome by spontaneously formed space limitations in polymer crosslinking networks meanwhile chemically active intermediates are captured. These doublet intermediates exhibit unique long-wavelength emissions under chemically crosslinking confinement conditions, and their luminous mechanism provides a novel perspective for designing intermediate emitters with liquid-crystal character and photoresponsive features towards spatiotemporal encryption, promising for the detection of photochemical reactions and the development of fascinating luminescent systems.
Collapse
Affiliation(s)
- Haomin Li
- School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shudeng Ma
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianfu Song
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yan Li
- School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Li D, Shi H, Qi Q, Chang B, Jiang Y, Qian K, Guan X, Kang P, Ma N, Zhang Y, Zhang Z, Shi X, Qu C, Wu Y, Chen W, Chen H, Li B, Chen L, Li Z, Ma S, Xu L, Zhang Y, Tian J, Hu Z, Jia W, Cheng Z. Clinically Translatable Solid-State Dye for NIR-II Imaging of Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303491. [PMID: 37946702 PMCID: PMC10754084 DOI: 10.1002/advs.202303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Medical devices are commonly implanted underneath the skin, but how to real-time noninvasively monitor their migration, integrity, and biodegradation in human body is still a formidable challenge. Here, the study demonstrates that benzyl violet 4B (BV-4B), a main component in the FDA-approved surgical suture, is found to produce fluorescence signal in the first near-infrared window (NIR-I, 700-900 nm) in polar solutions, whereas BV-4B self-assembles into highly crystalline aggregates upon a formation of ultrasmall nanodots and can emit strong fluorescence in the second near-infrared window (NIR-II, 1000-1700 nm) with a dramatic bathochromic shift in the absorption spectrum of ≈200 nm. Intriguingly, BV-4B-involved suture knots underneath the skin can be facilely monitored during the whole degradation process in vivo, and the rupture of the customized BV-4B-coated silicone catheter is noninvasively diagnosed by NIR-II imaging. Furthermore, BV-4B suspended in embolization glue achieves hybrid fluorescence-guided surgery (hybrid FGS) for arteriovenous malformation. As a proof-of-concept study, the solid-state BV-4B is successfully used for NIR-II imaging of surgical sutures in operations of patients. Overall, as a clinically translatable solid-state dye, BV-4B can be applied for in vivo monitoring the fate of medical devices by NIR-II imaging.
Collapse
|
33
|
Tang X, Sima W, Sun P, Zun C, Yuan T, Yang M, Shi Z, Yang H, Deng Q. In Situ Self-Fluorescence 3D Imaging of Micro/Nano Damage in Silicone Gel for Understanding Insulation Failure under High-Frequency Electric Fields. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55082-55094. [PMID: 37936415 DOI: 10.1021/acsami.3c12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Strong electromagnetic and heat flux stresses can induce severe damage to solid insulation materials, leading to faults in power equipment and power electronics devices. However, in the absence of suitable in situ imaging methods for observing the development and morphology of electrical damage within insulation materials, the mechanism of insulation failure under high-frequency electric fields has remained elusive. In this work, a recently discovered fluorescence self-excitation phenomenon in electrical damage channels of polymers is used as the basis for a laser confocal imaging method that is able to realize three-dimensional (3D) in situ imaging of electrical tree channels in silicone gel through nondestructive means. Based on the reconstructed morphology of the damaged area, a spatial equivalent calculation model is proposed for analysis of the 3D geometric features of electrical trees. The insulation failure mechanism of silicone gel under electric fields of different frequencies is analyzed through ReaxFF molecular dynamics simulations of the thermal cracking process. This work provides a new method for in situ nondestructive 3D imaging of micro/nanoscale damage structures within polymers with potential applications to material analysis and defect diagnosis.
Collapse
Affiliation(s)
- Xinyu Tang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Wenxia Sima
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Potao Sun
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Chun Zun
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Tao Yuan
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Ming Yang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zeyan Shi
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Haoyue Yang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing 400030, China
| |
Collapse
|
34
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
35
|
Jiang L, Cai H, Qin W, Li Z, Zhang L, Bi H. Meticulously Designed Carbon Dots as Photo-Triggered RNA-Destroyer for Evoking Pyroptosis. Bioconjug Chem 2023; 34:1387-1397. [PMID: 37534892 DOI: 10.1021/acs.bioconjchem.3c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
An ideal photosensitizer for photodynamic therapy should not only possess high reactive oxygen species (ROS) generation efficiency but also maximize utilization of the in situ produced ROS species, where the latter is closely related to its intracellular location. However, rational design of such photosensitizer without tedious conjugation procedures remains a grand challenge. Here, we report the one-pot preparation of carbon dots (CDs)-based photosensitizer from levofloxacin and neutral red featuring both high 1O2 quantum yield (φΔ = 38.85%) and superior RNA selectivity. Moreover, the φΔ value shows a further 40% improvement and reaches 54.33% in response to RNA binding. Owing to these combined attributes, the CDs could exert great damage to the cellular RNA system (termed the RNA-destroyer) under extremely low dosage of light irradiation (15 mW cm-2, 1 min). It induces pyroptotic cell death and causes rapid release of different cytokines that served as molecular markers in photodynamic immunotherapy. This work represents the meticulously designed CDs with high ROS generation and utilization efficiency via good organization of the photosensitive and targeting modularity. Moreover, it is the first CDs-based pyroptosis inducer to the best of our knowledge.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Weixia Qin
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Liang Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
36
|
Jiang Q, Ruan H, Wang T, Zhang Y, Qiu Y, Wang H, Liao Y, Xie X. Extending Conjugation of Linear Cyanostilbene Derivatives via a Pyridine Moiety for Multi-Stimuli-Responsive Fluorescence Organogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37498220 DOI: 10.1021/acs.langmuir.3c01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In the design of effective gelators with aggregation-induced emission behavior, amide and cholesterol moieties are generally used to provide multiple driving forces for gelation. In this work, a series of linear cyanostilbene gelators with a pyridine moiety and different lengths of the alkoxyl group, i.e., CSpy-Cn, have been synthesized through nucleophilic substitution and Knoevenagel reaction. The direct connection of pyridine extends the conjugation of the cyanostilbene moiety, while the alkoxyl group can regulate the solubility of the compounds so that the compounds can serve as gelators for common solvents such as acetonitrile, dimethyl sulfoxide, and ethanol at ultra-low concentrations. At the same time, the cyanostilbene group makes the compounds undergo photoisomerization and emit fluorescence under UV light, while the pyridine group can serve as an acid-base responsive group due to easy protonation. The gels can respond to temperature, light, and organic acid/base. The fluorescence intensity and color can reversibly change during the gel-sol transitions. Finally, a thin film based on the CSpy-C8 xerogel has been prepared and utilized as a multi-stimuli-responsive fluorescence display for information storage and anti-counterfeiting.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Ruan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Xue S, Ruan G, Li J, Madry H, Zhang C, Ding C. Bio-responsive and multi-modality imaging nanomedicine for osteoarthritis theranostics. Biomater Sci 2023; 11:5095-5107. [PMID: 37305990 DOI: 10.1039/d3bm00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is one of the most common joint diseases currently, characterized by the gradual degradation of cartilage, remodeling of subchondral bone, development of synovitis, degenerative alterations in the menisci, and formation of osteophytes. Generally, loss of articular cartilage is the most common pathological manifestation of OA. However, owing to the lack of blood vessels and nerves, the damaged cartilage is unable to execute self-repair. Therefore, early detection and treatment of cartilage lesions are extremely vital. Given that precise diagnosis and therapeutic strategy are indispensable from the basic pathological features of OA, an ideal therapeutic strategy should cater to the specific features of the OA microenvironment to achieve disease-modifying therapy. To date, nanomedicine presents an opportunity to achieve the precisely targeted delivery of agents and stimuli-sensitive release at the optimum dose, which may be coupled with a controlled release profile and reduced side effects. This review mainly summarizes inherent and microenvironment traits of OA and outlines stimuli-responsive nanotherapies, including internal bio-responsive (e.g., reactive oxygen species, pH, and protease) and external (e.g., photo stimuli, temperature, ultrasound, and magnetic field) responsive nanotherapies. Furthermore, multi-targeted therapeutic strategies combined with multi-modality imaging are also discussed. In general, future exploration of more novel stimuli-responsive nanotherapies that can be used for early diagnosis and cartilage targeting may help ameliorate OA-related cartilage damage, decrease pain, and promote joint function.
Collapse
Affiliation(s)
- Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Li
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Chao Zhang
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
38
|
Ma F, Deng L, Wang T, Zhang A, Yang M, Li X, Chen X. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023; 190:291. [PMID: 37458835 DOI: 10.1007/s00604-023-05910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The weak fluorescence efficiency of copper nanoclusters (Cu NCs) limits their wide applications in biosensing and bioimaging areas, while the aggregation-induced emission (AIE) effect is anticipated to increase their luminescence intensity. Herein, the weak red emission of Cu NCs is increased considerably by the addition of lanthanide Tb3+, ascribed to the AIE effect. Monitoring of spores contamination can be carried out by determining the level of 2, 6-dipicolinic acid (DPA), which is a marker of spores. Due to the stronger synergy between DPA and Tb3+ for its clamped configuration of adjacent pyridine nitrogen group with the carboxylic acid group, the addition of DPA leads Tb3+ to be taken away from Cu NCs through a stronger coordination effect, causing Cu NCs to return to the dispersed state and weakened fluorescence. Based on this, an "off-on-off" fluorescent probe for DPA sensing was built, in which Tb3+ was used as a bridge to achieve AIE enhanced fluorescence effect on Cu NCs as well as a specific recognizer of DPA. The detection range for DPA was 0.1-60 μM and the detection limit was 0.06 μM, which was much lower than the infectious dose of anthrax spores. Since DPA is a unique biomarker for bacterial spores, the method was applied to the detection of actual bacterial spores and satisfactory results were obtained with a detection limit of 4.9*103 CFU mL-1.
Collapse
Affiliation(s)
- Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aomei Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
| | - Xiaoqing Li
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
39
|
Chen M, Zhong M, Huang S, Chen Y, Cao F, Hu H, Huang W, Ji D, Zhu M. α-Cyanostilbene-based sensor with “AIE and ESIPT” features emitting long-wavelength intense red-fluorescence for highly selective and sensitive detection of Cu2+. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
40
|
Yang C, Xiao H, Luo Z, Tang L, Dai B, Zhou N, Liang E, Wang G, Tang J. A light-fueled dissipative aggregation-induced emission system for time-dependent information encryption. Chem Commun (Camb) 2023; 59:5910-5913. [PMID: 37170996 DOI: 10.1039/d3cc01092a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A light-fueled dissipative aggregation-induced emission (LDAIE) system is successfully fabricated based on reversible electrostatic interactions between cationic AIE luminogens (AIEgens) and anionic spiropyran (ASP) transformed from sulfonato-merocyanine photoacid (SMEH) upon 420 nm light irradiation. The novel LDAIE system can exhibit reversible and spontaneous AIE fluorescence on/off, showing potential in time-dependent information encryption with self-erasing ability. This work opens new opportunities to fabricate a unique fluorescent anti-counterfeiting platform with high-level security.
Collapse
Affiliation(s)
- Caixia Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Hangxiang Xiao
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Zichen Luo
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| | - Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| | - Ningbo Zhou
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| |
Collapse
|
41
|
Lin M, Lu X, Lu G, Jiang J. Photo-responsive Organogels Based on Stilbenedicarboxylic Acid and Octadecylamine. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
42
|
Hao S, Yang C, Yang X, Li T, Ma L, Jiao Y, Song H. Highly Tough, Stretchable, and Recyclable Ionogels with Crosslink-Enhanced Emission Characteristics for Anti-Counterfeiting and Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16132-16143. [PMID: 36921264 DOI: 10.1021/acsami.3c02352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traditional luminescent ionogels often suffer from poor mechanical properties and a lack of recyclability and regeneration, which limits their further application and sustainable development. Herein, a luminescent ionogel with strong mechanical properties and good recyclability has been designed and fabricated by introducing dynamic coordination bonds via in situ one-step crosslinking of acrylic acid in ionic liquid of 1-ethyl-3-methylimidazolium diethylphosphate by zinc dimethacrylate. Due to the special crosslinking of dynamic coordination bonds along with the hydrogen bond interaction, the as-prepared ionogel displays excellent stretchability and toughness, good self-adhesiveness, fast self-healability, and recyclability. Interestingly, the obtained ionogels exhibit tunable photoluminescence caused by the crosslink-enhanced emission (CEE) effect from the coordination bonds. Importantly, ionogels can be applied in information storage, information encryption, anti-counterfeiting due to their simple and in situ preparation method, and their special fluorescence performances. Moreover, an ionogel-based wearable sensor has rapid response time and a high gauge factor of 3.22 within a wide strain range from 1 to 700%, which can monitor various human movements accurately from subtle to large-scale motions. This paper offers a promising way to fabricate sustainable functional ionic liquid-based composites with CEE characteristics via an in situ one-step polymerization method.
Collapse
Affiliation(s)
- Shuai Hao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Chen Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Xuemeng Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Tianci Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Lianhua Ma
- College of Quality and Technical Supervision, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yunhong Jiao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
43
|
Zhu H, Zhang D, Feng E, Sheng X. Effects of aggregation on the structures and excited-state absorption for zinc phthalocyanine. Phys Chem Chem Phys 2023; 25:10278-10287. [PMID: 36883359 DOI: 10.1039/d2cp04372f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the present paper, the aggregated structures of zinc phthalocyanine (ZnPc) have been investigated by considering its dimers and trimers. Based on the density functional theory calculations, two stable conformations are obtained for the ZnPc dimer and trimer, respectively. The IGMH (independent gradient model based on the Hirshfeld partition of molecular density) analysis reveals that the π-π interaction between the ZnPc molecules causes the aggregation. Normally, stacked structures with a slight displacement are favorable for aggregation. In addition, the planar structure of the ZnPc monomer is largely maintained in the aggregated conformations. For the presently obtained structures, the first singlet excited state absorption (ESA) spectra of these aggregated conformations of ZnPc were calculated based on the linear-response time-dependent density functional theory (LR-TDDFT), which has been well applied by our group. The results of the excited state absorption spectra reveal that the aggregation causes the ESA band to blue shift compared to the ZnPc monomer. By using the conventional description of the interaction between monomer transition dipoles, this blue shift is elucidated by the side-by-side transition dipole moments in the constituted monomers. The present results for the ESA combined with the previously reported results for ground state absorption (GSA) will provide guidelines to tune the window of the optical-limiting effect for the ZnPc based materials.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Danyang Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Eryin Feng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
44
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
45
|
Thu P, Han M. Role of Sterically Bulky Azobenzenes in the Molecular Assembly of Pyrene Derivatives: Rectangular Sheet-like Structures and Their Emission Characteristics. Int J Mol Sci 2023; 24:4504. [PMID: 36901934 PMCID: PMC10003733 DOI: 10.3390/ijms24054504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The development of pyrene-based fluorescent assembled systems with desirable emission characteristics by reducing conventional concentration quenching and/or aggregation-induced quenching (ACQ) is highly desirable. In this investigation, we designed a new azobenzene-functionalized pyrene derivative (AzPy) in which sterically bulky azobenzene is linked to pyrene. Absorption and fluorescence spectroscopic results before and after molecular assembly indicate that even in a dilute N,N-dimethylformamide (DMF) solution (~10 μM), AzPy molecules experienced significant concentration quenching, whereas the emission intensities of AzPy DMF-H2O turbid suspensions containing self-assembled aggregates were slightly enhanced and showed similar values regardless of the concentration. The shape and size of sheet-like structures, from incomplete flakes less than one micrometer in size to well-completed rectangular microstructures, could be adjusted by changing the concentration. Importantly, such sheet-like structures exhibit concentration dependence of their emission wavelength from blue to yellow-orange. Comparison with the precursor (PyOH) demonstrates that the introduction of a sterically twisted azobenzene moiety plays an important role in converting the spatial molecular arrangements from H- to J-type aggregation mode. Thus, AzPy chromophores grow into anisotropic microstructures through inclined J-type aggregation and high crystallinity, which are responsible for their unexpected emission characteristics. Our findings provide useful insight into the rational design of fluorescent assembled systems.
Collapse
Affiliation(s)
| | - Mina Han
- Department of Chemistry Education, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| |
Collapse
|
46
|
Shan T, Zheng K, Fei J, Li C, He H, Shi Y, Ma M, Chen S, Gao L, Wang X. Modulus watch: In situ determination of the gel modulus by timing the fluorescence color change. J Colloid Interface Sci 2023; 640:656-661. [PMID: 36893532 DOI: 10.1016/j.jcis.2023.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023]
Abstract
The gel modulus, a key parameter for gel materials, is traditionally determined by cumbersome rheometer. Recently, probe technologies occur to meet the requirements of in situ determination. Till now, in situ and quantitatively testing of gel materials with unabridged structure informations still remains a challenge. Here, we provide a facile, in situ approach to determine the gel modulus, by timing the aggregation of a doped fluorescence probe. The probe shows green emission during aggregation and shifts to blue once it forms aggregates. The higher modulus of the gel, the longer probe's aggregation time. Furthermore, a quantitative correlation of gel modulus with the aggregation time is established. The in situ method not only facilitates the scientific researches in the field of gels, but also provides a new approach for spatiotemporal materials.
Collapse
Affiliation(s)
- Tianyu Shan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhao Fei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Longcheng Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
47
|
Chang Y, Qin H, Zhang F, Yang Z, Zhang Y, Wang D, Bi C, Guo M, Sun W, Qing G. Halogen Bond-Driven Aggregation-Induced Emission Skeleton: N-(3-(Phenylamino)allylidene) Aniline Hydrochloride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9751-9763. [PMID: 36763789 DOI: 10.1021/acsami.2c21073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aggregation-induced emission (AIE) is a unique photophysical process, and its emergence brings a revolutionary change in luminescence. However, AIE-based research has been limited to a few classical molecular skeletons, which is unfavorable for in-depth studies of the photophysical characteristics of AIE and the full exploitation of their potential values. There is an urgent need to develop new skeletons to rise to the challenges of an insufficient number of AIE core structures and difficult modification. Here, we report a novel dumbbell AIE skeleton, in which two phenyls are connected through (E)-3-iminoprop-1-en-1-amine. This skeleton shows extremely strong solid-state emission with an absolute quantum yield up to 69.5%, a large Stokes shift, and typical AIE characteristics, which well resolves the challenge of difficult modification and low luminous efficiency of the traditional AIE skeletons. One-step reaction, high yield, and diversified modification endow the skeleton with great scalability from simple to complicated, or from symmetrical to asymmetrical structures, which establishes the applicability of the skeleton in various scenarios. These molecules self-assemble into highly ordered layer-, rod-, petal-, hollow pipe-, or helix-like nanostructures, which contribute to strong AIE emission. Crystallographic data reveal the highly ordered layer structures of the aggregates with different substituents, and a novel halogen bond-driven self-assembly mechanism that restricts intramolecular motion is clearly discovered. Taking advantage of these merits, a full-band emission system from green to red is successfully established, which displays great potential in the construction of light-emitting films and advanced light-emitting diodes. The discovery of this AIE skeleton may motivate a huge potential application value in luminescent materials and lead to hitherto impossible technological innovations.
Collapse
Affiliation(s)
- Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300000, People's Republic of China
| | - Fusheng Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, People's Republic of China
| | - Zhiying Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Ce Bi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, People's Republic of China
| | - Miao Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, People's Republic of China
| |
Collapse
|
48
|
Zhao X, Xu J, Zhang J, Guo M, Wu Z, Li Y, Xu C, Yin H, Wang X. Fluorescent double network ionogels with fast self-healability and high resilience for reliable human motion detection. MATERIALS HORIZONS 2023; 10:646-656. [PMID: 36533533 DOI: 10.1039/d2mh01325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fascinating properties are displayed by high-performance ionogel-based flexible strain sensors, thereby gaining increasing attention in various applications ranging from human motion monitoring to soft robotics. However, the integration of excellent properties such as optical and mechanical properties and satisfactory sensing performance for one ionogel sensor is still a challenge. In particular, fatigue-resistant and self-healing properties are essential to continuous sensing. Herein, we design a flexible ion-conductive sensor based on a multifunctional ionogel with a double network using polyacrylamide, amino-modified agarose, 1,3,5-benzenetricarboxaldehyde and 1-ethyl-3-methylimidazolium chloride. The ionogel exhibits comprehensive properties including high transparency (>95%), nonflammability, strong adhesion and good temperature tolerance (about -96 to 260 °C), especially adaptive for extreme conditions. The dynamic imine bonds and abundant hydrogen bonds endow the ionogel with excellent self-healing capability, to realize rapid self-repair within minutes, as well as good mechanical properties and ductility to dissipate input energy and realize high resilience. Notably, unexpected fluorescence has been observed for the ionogel because of the gelation-induced emission phenomenon. Flexible strain sensors prepared directly from ionogels can sensitively monitor and differentiate various human motions, exhibiting a fast response time (38 ms), high sensitivity (gauge factor = 3.13 at 800% strain), good durability (>1000 cycles) and excellent stability over a wide temperature range (-30 to 80 °C). Therefore, the prepared ionogel as a high-performance flexible strain sensor in this study shows tremendous potential in wearable devices and soft ionotronics.
Collapse
Affiliation(s)
- Xiangjie Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Jiaheng Xu
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271000, P. R. China
| | - Jingyue Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Mengru Guo
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Zhelun Wu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Yueyue Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Hongzong Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Xiaolin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| |
Collapse
|
49
|
Zhang Y, Wang R, Lu W, Li W, Chen S, Chen T. Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning. NANOSCALE ADVANCES 2023; 5:725-732. [PMID: 36756500 PMCID: PMC9890953 DOI: 10.1039/d2na00757f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Aggregation-induced emissive fluorogens (AIEgens) are promising building blocks for fluorescent polymeric hydrogels (FPHs) because intense fluorescence intensities are usually guaranteed by spontaneous aggregates of hydrophobic AIEgens in a hydrophilic polymer network. However, most AIE-active FPHs are single-color fluorescent and cannot display tunable emission colors. Additionally, efforts to produce mechanically strong AIE-active hydrogels have been largely ignored, restricting their potential uses. Herein, we present the synthesis of an AIE-active methyl picolinate-substituted 1,8-naphthalimide monomer (MP-NI) for fabricating mechanical tough and multicolor FPHs. Owing to the introduction of bulky and coordinative methyl picolinate group, these specially designed MP-NI molecules were forced to adopt propeller-shaped conformation that renders them with intense aggregation-induced blue emission. Moreover, the MP-NI moieties grafted in a hydrogel matrix can sensitize red and green fluorescence of Eu3+and Tb3+ via antenna effect. Consequently, multicolor fluorescent hydrogels that sustain a high stress of 1 MPa were obtained by chemically introducing MP-NI moieties into dually cross-linked alginate polymer networks with high-density metal (Ca2+/Tb3+/Eu3+) coordination and hydrogen bonding crosslinks. Their capacity to enable the writing of arbitrary multicolor fluorescent patterns using Eu3+/Tb3+ as inks were finally demonstrated, suggesting their potential uses for smart display and information encryption.
Collapse
Affiliation(s)
- Yi Zhang
- College of Material Science and Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Ruijia Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Wanning Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Si Chen
- College of Material Science and Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
50
|
Gong W, Huang HB, Wang XC, He WY, Hu JN. Coassembly of Fiber Hydrogel with Antibacterial Activity for Wound Healing. ACS Biomater Sci Eng 2023; 9:375-387. [PMID: 36520681 DOI: 10.1021/acsbiomaterials.2c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wound healing remains a critical challenge due to its vulnerability to bacterial infection and the complicated inflammatory microenvironment. Herein, we report a novel antibacterial hydrogel constructed only by gallic acid (GA) and phycocyanin (PC), which is expected for the treatment of bacteria-infected wounds. These GA/PC hydrogels (GP) was found to coassemble into fibrous networks with a diameter of around 2 μm mainly through noncovalent interactions of hydrogen bonds, van der Waals force, and π interaction. Notably, these GP hydrogels showed excellent rheological properties (i.e., storage modulus of more than 9.0 × 104 Pa) and outstanding biocompatibility and antibacterial activities. Thanks to the incorporation of GA and PC, the GP hydrogels enabled adherence to the moist wound tissue and achieved a sustained release of GA and PC into the wound skin, therefore effectively attenuating inflammation and accelerating wound healing both in normal mice and bacteria-infected mice through regulating the expression of the tight junction protein and the alleviation of oxidative stress. Considering these results, these GP hydrogels are demonstrated to be a promising candidate for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|