1
|
He Z, Zhou Q, Zi X, Zhang Y, Li Q, Li D, Liu M, Yu F, Zhou H. Unlocking Ampere-Level Nitrate Electroreduction to Ammonia Via the Built-In Electric Field in Monometallic Catalysts. NANO LETTERS 2025. [PMID: 40424355 DOI: 10.1021/acs.nanolett.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Bimetallic/multimetallic catalysts for nitrate reduction reaction (NO3-RR) have been extensively investigated benefiting from their synergistic effects in optimizing various intermediate adsorptions; however, the interphasic synergistic effects in monometallic catalysts are often overlooked. Here we report an interphasic synergy between electron-rich Co(OH)2 and electron-deficient CoO, in which the asymmetric charge distribution in monometallic cobalt-based heterojunction derived from the built-in electric field (BEF) significantly accelerates electron transfer and lowers the energy barriers for NO3-RR. Theoretical calculations reveal that the chemical affinities of Co atoms toward NO3- and NO2- are significantly enhanced and even NO3- adsorption switches to a spontaneous process. Simultaneously, the BEF in monometallic Co-based heterostructures greatly reduces the energy barrier of the rate-determining step (*NO→*NOH) in the NO3-RR. Therefore, the resultant catalyst exhibits ampere-level NO3-RR performance, achieving a record NH3 yield up to 73.9 mg h-1 cm-2 at a low potential of -0.2 V with a Faradaic efficiency (FE) of 95.6%.
Collapse
Affiliation(s)
- Zhihong He
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Qian Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Yong Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Qing Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
- Hunan Research Center of the Basic Discipline for Quantum Effects and Quantum Technologies, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Hao F, Zhong J, Hao F, Ke S, Li Y, Mao Z, He Y, Gao T, Wang L, Li S, Fang M, Huang Z, Chang X, Shao R, Lu J, Min X. Simple "Directional Trimming" Strategy Engineered Platinum Atomic Clusters with Controllable Coordination Numbers for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202504828. [PMID: 40134075 DOI: 10.1002/anie.202504828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
The coordination number (CN) in atomic cluster (AC) catalysts endows their catalytic performance with flexible tunability. However, the quantitative relationship between the CN and catalytic activity of atomic cluster catalysts remains ambiguity. Herein, inspired by the gardeners trimming plants branches to obtain ornamental value shape, we propose a "directional trimming" strategy to obtain a series of AC catalysts with wide range of Cl CN and establish an inverted volcano curve to explain the effect of CN on hydrogen evolution reaction (HER). Moreover, Pt/CB-90 (moderate Cl CN of 3.7) exhibits the lowest overpotential of 22.94 mV at 10 mA cm-2 and outstanding mass activity (25 times to commercial Pt/C). This proposed synthesis strategy fully utilizes the precursor atoms and is widely applicable. The reaction liquid can be reused up to 20 times to obtain 1130 mg catalysts without introducing any other chemicals. Additionally, theoretical calculations highlight the appropriate Cl CN benefits the HER on Pt2 ACs. This fundamental understanding of the role of CN in catalytic activity offers valuable guidance to promote performance in various catalytic reactions.
Collapse
Affiliation(s)
- Fengkun Hao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Zhong
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fengqian Hao
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shaorou Ke
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yanghong Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhengyi Mao
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen, 518045, China
| | - Yunhu He
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Tengshijie Gao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Linlin Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shuohan Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Minghao Fang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhaohui Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaoxue Chang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Ruiwen Shao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen, 518045, China
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Xin Min
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
3
|
Ji K, Wang S, Yao S, Ji Y, Li J, Wang X, Shi L, Wang G, Ren W, Wang J, Zhang F, Xie J, Yang Z, Yan YM. Built-in Electric Field in Ru/CoP Bifunctional Electrocatalyst Enhances Hydrazine-Assisted Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503182. [PMID: 40370312 DOI: 10.1002/adma.202503182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/20/2025] [Indexed: 05/16/2025]
Abstract
Electrocatalytic hydrazine-assisted water splitting, incorporating the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), offers a promising avenue for hydrogen production. Herein, a Ru/CoP heterostructure is introduced, which enhances bifunctional catalytic activity through interfacial interaction induced by the built-in electric field between Ru nanoparticles and CoP nanosheets. This interaction optimizes the adsorption of intermediates and facilitates improved HER performances by weakening the strong adsorption of active hydrogen species (*H) on Ru and enhancing *H coverage on CoP through hydrogen spillover. Additionally, this electron interaction promotes the adsorption of N2H4 and its subsequent dehydrogenation, vital for HzOR activity. The heterostructure's significant reduction in required potentials for both reactions underscores its efficiency and potential economic benefits over traditional systems. Furthermore, the study validates the feasibility of using this approach for practical applications in sustainable hydrogen production, emphasizing its lower operational costs and enhanced catalytic stability and activity. This work not only showcases the practical applications of Ru/CoP but also underscores the broader applicability of heterostructure strategy in designing efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Kang Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guixi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weikun Ren
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Yang Y, Liu J, Sun C, Fu Y, Li Q, Qian J. Pt-Skin Coated PtNi Alloy in Carbon Nanoshells for Enhanced Hydrogen Evolution Activity and Durability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503294. [PMID: 40116519 DOI: 10.1002/smll.202503294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm-2 and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.
Collapse
Affiliation(s)
- Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Chen Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yuting Fu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, 657000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
5
|
Shen S, Li Q, Zhang H, Yang D, Gong J, Gu L, Gao T, Zhong W. Negative-Valent Platinum Stabilized by Pt─Ni Electron Bridges on Oxygen-Deficient NiFe-LDH for Enhanced Electrocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500595. [PMID: 40040319 DOI: 10.1002/adma.202500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The unique hydrogen adsorption characteristics of negatively charged platinum play a crucial role in enhancing the electrocatalytic hydrogen evolution reaction. However, atomically dispersed Pt atoms are typically anchored to the support through non-metallic atom bonds, resulting in a high oxidation state. Here, atomically dispersed Pt atoms are anchored in oxygen-deficient NiFe-LDH. Electron transfer between Pt and NiFe-LDH occurs primarily through Pt─Ni bonds rather than the conventional Pt─O bonds. Oxygen vacancies in the NiFe-LDH promote additional electron transfer from Ni to Pt, thereby reducing the valence state of Pt and enhancing hydrogen adsorption. Meanwhile, the elevated valence state of Ni increases the catalyst's hydrophilicity and reduces the energy barrier for hydrolysis dissociation. This catalyst demonstrates remarkably low overpotentials of 4 and 9 mV at 10 mA cm-2 in 1 m KOH and 1 m KPi, respectively. Additionally, its mass activity is 51.5 and 23.7 times higher that of Pt/C, respectively. This study presents a novel strategy for enhancing electrocatalytic performance through the rational design of coordination environments and electronic structures in supported metal catalysts.
Collapse
Affiliation(s)
- Shijie Shen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Qingao Li
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Jiaojiang, Zhejiang, 310018, China
| | - Huanhuan Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Dian Yang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Junjie Gong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Tong Gao
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Wenwu Zhong
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| |
Collapse
|
6
|
Gu X, Li Z, Jang H, Tang J, Sun C, Kim MG, Liu S, Liu X, Hou L. Promoting Efficient Ruthenium Sites With Lewis Acid Oxide for the Accelerated Hydrogen and Chlor-Alkali Co-Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412123. [PMID: 39981792 DOI: 10.1002/smll.202412123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Ruthenium (Ru) -based catalysts have been considered a promising candidate for efficient sustainable hydrogen and chlor-alkali co-production. Theoretical calculations have disclosed that the hollow sites on the Ru surface have strong adsorption energies of H and Cl species, which inevitably leads to poor activity for cathodic hydrogen evolution reaction (HER) and anodic chlorine evolution reaction (CER), respectively. Furthermore, it have confirmed that anchoring Lewis acid oxide nanoparticles such as MgO on the Ru surface can induce the formation of the onion-like charge distribution of Ru atoms around MgO nanoparticles, thereby exposing the Ru-bridge sites at the interface as excellent H and Cl adsorption sites to accelerate both HER and CER. Under the guidance of theoretical calculations, a novel dispersed MgO nanoparticles on Ru (MgOx-Ru) electrocatalyst is successfully prepared. In strongly alkaline and saline media, MgOx-Ru recorded excellent HER and CER electrocatalytic activity with a very low overpotential of 19 mV and 74 mV at the current density of 10 mA cm-2, respectively. More stirringly, the electrochemical test with MgOx-Ru as both anodic and cathodic electrodes under simulated chlor-alkali electrolysis conditions demonstrated superior electrocatalytic performance to the industrial catalysts of commercial 20 wt% Pt/C and dimensionally stable anode (DSA).
Collapse
Affiliation(s)
- Xiumin Gu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Jiachen Tang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chaoyue Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Xu Z, Liu H, Yang JL, Gong X, Chen Y, Meng Y, Peng Q, Ding J, Qu Y, Zeng Q, Qi X, Yang Y. Exploring the Mechanisms of Charge Transfer and Identifying Active Sites in the Hydrogen Evolution Reaction Using Hollow C@MoS 2-Au@CdS Nanostructures as Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501091. [PMID: 40095735 DOI: 10.1002/adma.202501091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Plasmonic metal-semiconductor nanocomposites are promising candidates for considerably enhancing the solar-to-hydrogen conversion efficiency of semiconductor-based photocatalysts across the entire solar spectrum. However, the underlying enhancement mechanism remains unclear, and the overall efficiency is still low. Herein, a hollow C@MoS2-Au@CdS nanocomposite photocatalyst is developed to achieve improved photocatalytic hydrogen evolution reaction (HER) across a broad spectral range. Transient absorption spectroscopy experiments and electromagnetic field simulations demonstrate that compared to the treated sample, the untreated sample exhibits a high density of sulfur vacancies. Consequently, under near-field enhancement, photogenerated electrons from CdS and hot electrons generated by intra-band or inter-band transitions of Au nanoparticles are efficiently transferred to the CdS surface, thus significantly improving the HER activity of CdS. Additionally, in situ, Raman spectroscopy provided spectral evidence of S─H intermediate species on the CdS surface during the HER process, which is verified through isotope experiments. Density functional theory simulations identify sulfur atoms in CdS as the catalytic active sites for HER. These findings enhance the understanding of charge transfer mechanisms and HER pathways, offering valuable insights for the design of plasmonic photocatalysts with enhanced efficiency.
Collapse
Affiliation(s)
- Zhengye Xu
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Huijie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Jing-Liang Yang
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Xiu Gong
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Yanli Chen
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Yang Meng
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Qiong Peng
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Junfei Ding
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Yunpeng Qu
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Qixuan Zeng
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Xiaosi Qi
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Ye Yang
- College of Physics, School of Chemistry and Chemical Engineering, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Ding J, Liu L, Zhang J, Liu Y, Xu H, Shen Z, Yang HB, Feng X, Huang Y, Liu B. Unraveling Dynamic Structural Evolution of Single Atom Catalyst via In Situ Surface-Enhanced Infrared Absorption Spectroscopy. J Am Chem Soc 2025; 147:9601-9609. [PMID: 40054996 DOI: 10.1021/jacs.4c17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have been widely applied in catalyzing electrochemical redox reactions. However, their long-term catalytic stabilities greatly limit their practical applications. This work investigates the dynamic evolution of two model Cu-N-C SACs with different Cu-N coordinations, namely the Cu1/Npyri-C and Cu1/Npyrr-C, in electrochemical CO reduction reaction (CORR), based on a collection of in situ characterizations including in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy, in situ X-ray absorption spectroscopy, quasi-in situ electron paramagnetic resonance spectroscopy and in situ ultraviolet-visible spectroscopy, complemented by theoretical calculations. Our findings reveal that the Cu nanoparticle formation rate over Cu1/Npyrr-C is more than 6 times higher than that over Cu1/Npyri-C during the electrochemical CORR. Quasi-in situ electron paramagnetic resonance and in situ UV-vis spectroscopy measurements demonstrate that hydrogen radicals can be in situ produced during electrochemical CORR, which will attack the Cu-N bonds in the Cu-N-C SACs, causing leaching of Cu2+ followed by subsequent reduction to form Cu nanoparticles. Kinetic calculations show that Cu1/Npyri-C displays a better catalytic stability than Cu1/Npyrr-C resulting from the stronger Cu-Npyri bonds. This study deepens the understanding of the deactivation mechanism of SACs in electrochemical reactions and provides guidance for the design of next-generation SACs with enhanced durability.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 100872, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hao Xu
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Zheng Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Han P, Wu L, Zhang Y, Yue J, Jin Y, Jia H, Luo W. An Interstitial Boron Inserted Metastable Hexagonal Rh Nanocrystal for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419320. [PMID: 39578235 DOI: 10.1002/anie.202419320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Constructing metastable phase structure plays an important role in changing the physicochemical properties and improving the catalytic performance of nanocrystals. Unfortunately, the synthesis of metastable phase metallic nanocrystals is highly challenging, mainly due to the thermodynamically unstable ground-state. Here, we report a synthesis of unconventional metastable hexagonal rhodium nanocrystal (Bint-Rhhcp/C) via interstitial boron insertion. The insertion of boron atoms into the interstitial sites of cubic Rh lattice not only induces the atomic arrangements from face-centered cubic (fcc) to hexagonal close-packed (hcp), but also stabilizes the metastable hexagonal Rh structure. Benefiting from the phase transition and interstitial boron doping, the Bint-Rhhcp/C catalyst exhibits remarkable catalytic performance toward hydrogen oxidation reaction (HOR) under alkaline media, with a mass activity of 1.413 mA μgPGM -1. Experimental measurements including in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations indicate that the strengthened adsorption of hydroxyl species on the electrode surface of Bint-Rhhcp/C is responsible for the reconstruction of interfacial water structure and increased water proportions in the gap region in the electric double layers. As a result, the increased water connectivity and hydrogen bond network facilitate high-efficiency hydrogen transfer across the interface, thereby boost the alkaline HOR performance.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
10
|
Zou J, Li C, Wang L. Enhancing Alkaline Hydrogen Evolution by Regulating H and OH Binding Strength through Strong Metal-Support Interactions. NANO LETTERS 2025; 25:1536-1543. [PMID: 39812782 DOI: 10.1021/acs.nanolett.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity. For instance, Ru-O-CNT catalyst composite demonstrates an encouragingly low overpotential of 11 mV at 10 mA cm-2 and excellent stability. Electrochemical voltammetry analysis indicates that an effective MSI optimizes the binding strength of both *H and *OH, accelerating the HER process. Furthermore, we showcase that an industrial-level electrolyzer, assembled using Ru-O-CNT as the cathodic catalyst, achieves impressive performance with a low cell voltage of 1.72 V and high stability at a current density of 1 A cm-2.
Collapse
Affiliation(s)
- Jiaxin Zou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Hwa Chong Institution, 661 Bukit Timah Road, 269734, Singapore
| | - Chunfeng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, 117580, Singapore
| |
Collapse
|
11
|
Chen W, Wang D, Wang W, Liu X, Liu Y, Wang C, Kang Y, Fang S, Yang X, Gu W, Luo D, Luo Y, Qu Z, Zuo C, Kang Y, Cheng L, Yan W, Hu W, Long R, He JH, Liang K, Liu S, Xiong Y, Sun H. Enhanced solar hydrogen production via reconfigured semi-polar facet/cocatalyst heterointerfaces in GaN/Si photocathodes. Nat Commun 2025; 16:879. [PMID: 39837839 PMCID: PMC11751122 DOI: 10.1038/s41467-024-55743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.5G one sun illumination while exhibiting stable PEC hydrogen evolution over 800 h at a high current density. Specifically, by tailoring the GaN nanowires via a simple alkaline-etching step to expose the inner (101 ¯ 1 ¯ ) facets, we achieve a highly coupled semiconductor nanowire-cocatalyst heterointerface with strong electron interaction. The strongly coupled reconfigured GaN nanowire/Au heterointerface not only optimizes the electronic structure of Au nanoparticles to form abundant highly active interfacial regions, eventually realizing superior hydrogen evolution activity but also enables GaN nanowires to provide a stronger anchoring effect for Au nanoparticles, preventing the detachment of Au nanoparticles during the intense hydrogen evolution process. The proposed photoelectrode offers a feasible structure for overcoming the efficiency-reliability bottleneck of PEC devices for producing clean hydrogen fuel.
Collapse
Affiliation(s)
- Wei Chen
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Danhao Wang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Weiyi Wang
- Hefei National Research Center or Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, PR China
| | - Xin Liu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Yang Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Shi Fang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Xudong Yang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Wengang Gu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Dongyang Luo
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Yuanmin Luo
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Zongtao Qu
- Solarever Tecnología de América S.A. de C.V, Mexico City, Mexico
| | - Chengjie Zuo
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Yi Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Lin Cheng
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Wei Hu
- Hefei National Research Center or Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, PR China
| | - Ran Long
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, PR China
| | - Kang Liang
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Sheng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yujie Xiong
- Hefei National Research Center or Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, PR China
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
12
|
Liu L, Gao Z, Liao Y, Du K, Xia L, Li X, Qing Y, Wu Y. MoS 2/NiO heterocatalyst featuring stacking Structures, oxygen Vacancies, and hydrophilic Interfaces for hydrogen production via urea electrolysis. J Colloid Interface Sci 2025; 678:864-872. [PMID: 39321642 DOI: 10.1016/j.jcis.2024.09.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Two-dimensional nano-MoS2 holds remarkable potential for widespread use in hydrogen evolution reaction (HER) applications owing to its high catalytic activity, abundant availability, and low cost. However, its electrocatalytic performance is significantly lower than that of Pt-based catalysts necessitating strategies to improve its catalytic activity. We developed an effective strategy for enhancing the HER performance of MoS2 based on the synergistic effect of oxygen vacancies (Ov), heterostructures, and interfacial wettability. In particular, highly graphitized wood-based carbon (GWC) was used as a platform to prepare a hydrophilic/aerophobic MoS2@Ov-NiO-GWC heterocatalyst featuring nanosheet stacking and containing abundant Ov. Consequently, a current density of 10 mA cm-2 and an overpotential of only 77 mV were achieved in a 1 M KOH electrolyte using the prepared catalyst; notably, the overpotential increase was only 1.2 % after continuous operation for 90 h. Density functional theory calculations showed that coupling MoS2 with the Ov-NiO heterointerface increased the exposure of the MoS2 active sites on the heterointerface and accelerated the electron transfer between NiO and the MoS2 interface, considerably enhancing the HER performance. Moreover, an overall urea electrolysis cell assembled using this heterocatalyst demonstrated excellent hydrogen production activity and durability, with current densities of 10 and 100 mA cm-2 at cell voltages of only 1.33 and 1.46 V, respectively. Even after continuous operation for 75 h at a current density of 100 mA cm-2, the cell exhibited a voltage retention rate of 92.8 %. These results demonstrate the potential of this nano-heterocatalyst to efficiently produce hydrogen via overall urea electrolysis.
Collapse
Affiliation(s)
- Lei Liu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Zhifei Gao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Liao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Kun Du
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Liaoyuan Xia
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Xingong Li
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yan Qing
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
13
|
Zhang J, Liu G, Li H, Chang R, Jia S, Zhang Y, Huang K, Tang Y, Sun H. Independent Control Over the H/OH Adsorption: Breaking the Trade-Off Between H/OH-Adsorption and H 2O-Dissociation of Platinum-Group Metal Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407881. [PMID: 39328094 DOI: 10.1002/smll.202407881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Platinum-group metals catalysts (such as Rh, Pd, Ir, Pt) have been the most efficient hydrogen evolution reaction (HER) electrocatalysts due to their moderate H adsorption strength, while the high H2O-dissociation barrier in alkaline media restrains the catalytic performance of PGM catalysts. However, the optimization of the H2O-dissociation barrier and *H/*OH binding energy toward their individual optima is limited due to the constraints of their scaling relationship on a single active site. Here, a coordinatively unsaturated "M─Ox─W" (M = Rh, Pd, Ir, Pt) active area is constructed, where H and OH species are anchored on Pt-group metal sites and inactive W sites for individual regulation. By combining experiments and density functional theory calculations, the introduction of extra OH-adsorption sites (coordinatively unsaturated WO3-x) avoids the competitive adsorption of H and OH on the single site, while the enhanced OH-adsorption capacity on the coordinatively unsaturated WO3-x effectively facilitates the adsorption/dissociation of interfacial H2O. As a result, the representative Rh-WO3-x catalyst exhibits outstanding catalytic activity and durability for HER. The findings of this work not only provide valuable insights for the design of efficient PGM catalysts for HER but also shed light on the development of electrocatalysts for other catalytic reactions.
Collapse
Affiliation(s)
- Jiachen Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Guocong Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Huiting Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Ruixuan Chang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Shuyu Jia
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Yechuan Zhang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
14
|
Jin Y, Fan X, Cheng W, Zhou Y, Xiao L, Luo W. The Role of Phosphorus on Alkaline Hydrogen Oxidation Electrocatalysis for Ruthenium Phosphides. Angew Chem Int Ed Engl 2024; 63:e202406888. [PMID: 39007540 DOI: 10.1002/anie.202406888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Transition metal/p-block compounds are regarded as the most essential materials for electrochemical energy converting systems involving various electrocatalysis. Understanding the role of p-block element on the interaction of key intermediates and interfacial water molecule orientation at the polarized catalyst-electrolyte interface during the electrocatalysis is important for rational designing advanced p-block modified metal electrocatalysts. Herein, taking a sequence of ruthenium phosphides (including Ru2P, RuP and RuP2) as model catalysts, we establish a volcanic-relation between P-proportion and alkaline hydrogen oxidation reaction (HOR) activity. The dominant role of P for regulating hydroxyl binding energy is validated by active sites poisoning experiments, pH-dependent infection-point behavior, in situ surface enhanced infrared absorption spectroscopy, and density functional theory calculations, in which P could tailor the d-band structure of Ru, optimize the hydroxyl adsorption sites across the Ru-P moieties, thereby leading to improved proportion of strongly hydrogen-bonded water and facilitated proton-coupled electron transfer process, which are responsible for the enhanced alkaline HOR performance.
Collapse
Affiliation(s)
- Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Xinran Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenjing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yuheng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
15
|
Li R, Liu F, Xu Q, Yu J, Qi K. Manipulating heterointerface to boost formation and desorption of intermediates for highly efficient alkaline hydrogen evolution. J Colloid Interface Sci 2024; 671:469-476. [PMID: 38815382 DOI: 10.1016/j.jcis.2024.05.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Promoting water dissociation and H intermediate desorption play a pivotal role in achieving highly efficient hydrogen evolution reaction (HER) in alkaline media but remain a great challenge. Herein, we rationally develop a unique W-doped NiSx/Ni heterointerface as a favorable HER electrocatalyst which was directly grown on the Cu nanowire foam substrate (W-NiSx/Ni@Cu) by the electrodeposition strategy. Benefiting from the rational design of the interfaces, the electronic coupling of the W-NiSx/Ni@Cu can be efficiently modulated to lower the HER kinetic barrier. The obtained W-NiSx/Ni@Cu exhibits an enhanced HER activity with a low overpotential of 38 mV at 10 mA cm-2 and a small Tafel value of 27.5 mV dec-1, and high stability during HER catalysis. In addition, in-situ Raman spectra reveal that the Ni2+ active sites preferentially adsorb OH intermediate. The theoretical calculation confirms that the water dissociation is accelerated by the construction of W-NiSx/Ni heterointerface and H intermediate desorption can be also promoted by H spillover from S active sites in W-NiSx to Ni active sites in metal Ni. This work offers a valuable reference for rational designing heterointerface of electrocatalysts and provides an available method to accelerate the HER kinetics for the ampere-level current density under low overpotential.
Collapse
Affiliation(s)
- Ruchun Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan, PR China; National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan, Guangdong 528200, PR China.
| | - Fengyi Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan, PR China
| | - Quanqing Xu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan, PR China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, PR China.
| |
Collapse
|
16
|
Han R, Wang K, Jiang Q, Zhang G, Lu Q, Guo E. 0D/1D CuWO 4/Mn 0.3Cd 0.7S S-scheme heterojunctions for full-spectrum bifunctional photocatalytic degradation and hydrogen production. J Colloid Interface Sci 2024; 671:680-691. [PMID: 38823109 DOI: 10.1016/j.jcis.2024.05.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Integrating photocatalytic oxidation for pollutant removal with hydrogen production via photocatalysis presents a promising approach for sustainable water purification and renewable energy generation, circumventing the sluggish multi-electron transfer inherent in photocatalytic water oxidation. This study introduces novel zero-/one-dimensional (0D/1D) CuWO4/Mn0.3Cd0.7S step-scheme (S-scheme) heterojunctions that exhibit exceptional bifunctional capabilities in photocatalytic degradation and hydrogen production under full-spectrum illumination. The degradation efficiency for tetracycline (TC) using 5 %-CuWO4/Mn0.3Cd0.7S reaches 94.3 % and 94.5 % within 60 min and 6 h, respectively, under ultraviolet-visible (UV-Vis) and near-infrared (NIR) light. Notably, these 0D/1D CuWO4/Mn0.3Cd0.7S S-scheme heterojunctions demonstrate superior hydrogen production, achieving rates of 12442.03 μL g-1h-1 and 2418.54 μL g-1h-1 under UV-Vis light and NIR light irradiation, respectively-these rates are 2.3 times and 55.2 times higher than that of Mn0.3Cd0.7S alone. This performance enhancement is attributed to the intrinsic dimensional effects, transitions of transition metal d-d orbitals, and S-scheme hole/electron (h+/e-) separation characteristics. Additionally, experimental results and density functional theory (DFT) calculations have clarified the modulation of electronic configurations, band alignment, and interfacial interactions via 0D/1D S-scheme heterojunction engineering. This study sheds light on the electron transfer mechanism within S-scheme heterojunction and enhances the effectiveness, economy, and sustainability of recalcitrant pollutant removal and hydrogen production.
Collapse
Affiliation(s)
- Ruoting Han
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Ke Wang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qichuan Jiang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Guangxuan Zhang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Enyan Guo
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
17
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
18
|
Zhou X, Wei G, Liu C, Zhao Q, Gao H, Wang W, Zhao X, Zhao X, Chen H. Coordinated d-p hybridized hcp@fcc NiRu alloy doped by interstitial atoms for boosting urea-assisted simulated seawater electrolysis at industrial current densities. J Colloid Interface Sci 2024; 670:709-718. [PMID: 38788438 DOI: 10.1016/j.jcis.2024.05.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The production of hydrogen through seawater electrolysis has recently garnered increasing concern. However, hydrogen evolution reaction (HER) by alkaline seawater electrocatalysis is severely impeded by the slow H2O adsorption and H* binding kinetics at industrial current densities. Herein, a face-centered cubic/hexagonal close packed (fcc/hcp) NiRu alloy heterojunction was fabricated on Ni foam (N doped NiRu-inf/NF) by a low-temperature nitrogen plasma activation. Simultaneously, nitrogen atoms are introduced into the alloy to facilitate d-p hybridization. When N doped NiRu-inf/NF is integrated into a dual-electrode cell for urea-assisted seawater electrolysis, it achieves 100 mA cm-2 with an ultra-low voltage of 1.36 V and excellent stability. Density functional theory (DFT) verifies that the robust d-p hybridization among Ni, Ru and N exhibits more energy level matching for H2O molecule adsorption at the Ru sites, while simultaneously reducing the interaction between H* and Ni sites in N-doped NiRu-inf.
Collapse
Affiliation(s)
- Xiaofei Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guijuan Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Chang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qian Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hui Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenbo Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xixia Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Honglei Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
19
|
Seok H, Kim M, Cho J, Son S, Megra YT, Lee J, Nam MG, Kim KW, Aydin K, Yoo SS, Lee H, Kanade VK, Kim M, Mun J, Kim JK, Suk JW, Kim HU, Yoo PJ, Kim T. Electron Release via Internal Polarization Fields for Optimal S-H Bonding States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411211. [PMID: 39246277 DOI: 10.1002/adma.202411211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Transition metal dichalcogenides (TMDs) have received considerable attention as promising electrocatalysts for the hydrogen evolution reaction (HER), yet their potential is often constrained by the inertness of the basal planes arising from their poor hydrogen adsorption ability. Here, the relationship between the electronic structure of the WS2 basal plane and HER activity is systemically analyzed to establish a clear insight. The valance state of the sulfur atoms on the basal plane has been tuned to enhance hydrogen adsorption through sequential engineering processes, including direct phase transition and heterostructure that induces work function-difference-induced unidirectional electron transfer. Additionally, an innovative synthetic approach, harnessing the built-in internal polarization field at the W-graphene heterointerface, triggers the in-situ formation of sulfur vacancies in the bottom WSx (x < 2) layers. The resultant modulation of the valance state of the sulfur atom stabilizes the W-S bond, while destabilizing the S-H bond. The electronic structural changes are further amplified by the release and transfer of surplus electrons via sulfur vacancies, filling the valance state of W and S atoms. Consequently, this work provides a comprehensive understanding of the interplay between the electronic structure of the WS2 basal plane and the HER activity, focusing on optimizing S-H bonding state.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yonas Tsegaye Megra
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Keon-Woo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Kubra Aydin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyeonjeong Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Vinit K Kanade
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muyoung Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Ji Won Suk
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Smart-Fab. Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeong-U Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
- Nano-Mechatronics, KIMM Campus, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
20
|
Tian W, Xie X, Zhang X, Li J, Waterhouse GIN, Ding J, Liu Y, Lu S. Synergistic Interfacial Effect of Ru/Co 3O 4 Heterojunctions for Boosting Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309633. [PMID: 38282381 DOI: 10.1002/smll.202309633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3O4 heterojunction catalyst rich in oxygen vacancies (VO) and supported on carbon cloth (RCO-VO@CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2/Co9S8@CC precursor (ROC@CC) is first prepared by loading Co9S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO@CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2. Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO-rich Co3O4. This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.
Collapse
Affiliation(s)
- Wanyu Tian
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xin Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xingang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Jinhong Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | | | - Jie Ding
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yushan Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| |
Collapse
|
21
|
Liang J, Cao G, Zeng M, Fu L. Controllable synthesis of high-entropy alloys. Chem Soc Rev 2024; 53:6021-6041. [PMID: 38738520 DOI: 10.1039/d4cs00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
22
|
Liu X, Yao Y, Li W, Zhang Y, Liu Z, Yin H, Wang D. Molten-Salt Electrochemical Preparation of Co 2B/MoB 2 Heterostructured Nanoclusters for Boosted pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308549. [PMID: 38054764 DOI: 10.1002/smll.202308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Boosting the hydrogen evolution reaction (HER) activity of α-MoB2 at large current densities and in pH-universal medium is significant for efficient hydrogen production. In this work, Co2B/MoB2 heterostructured nanoclusters are prepared by molten-salt electrolysis (MSE) and then used as a HER catalyst. The composition, structure, and morphology of Co2B/MoB2 can be modulated by altering the stoichiometries of raw materials and synthesis temperatures. Impressively, the obtained Co2B/MoB2 at optimized conditions exhibits a low overpotential of 297 and 304 mV at 500 mA cm-2 in 0.5 m H2SO4 and 1 m KOH, respectively. Moreover, the Co2B/MoB2 catalyst possesses a long-term catalytic stability of over 190 h in both acidic and alkaline medium. The excellent HER performance is due to the modified electronic structure at the Co2B/MoB2 heterointerface where electrons are accumulated at the Mo sites to strengthen the H adsorption. Density functional theory (DFT) calculations reveal that the formation of the Co2B/MoB2 heterointerface decreases the H adsorption and H2O dissociation free energies, contributing to the boosted HER intrinsic catalytic activity of Co2B/MoB2. Overall, this work provides an experimental and theoretical paradigm for the design of efficient pH-universal boride heterostructure electrocatalysts.
Collapse
Affiliation(s)
- Xianglin Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuanpeng Yao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenting Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Huayi Yin
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Dihua Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
23
|
Chen L, Wang HY, Tian WW, Wang L, Sun ML, Ren JT, Yuan ZY. Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307252. [PMID: 38054813 DOI: 10.1002/smll.202307252] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2O3/PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Hao Yu Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Wen Wen Tian
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Lei Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Ming Lei Sun
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Jin Tao Ren
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Zhong Yong Yuan
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| |
Collapse
|
24
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
25
|
Zhang W, Yang L, Li Z, Nie G, Cao X, Fang Z, Wang X, Ramakrishna S, Long Y, Jiao L. Regulating Hydrogen/Oxygen Species Adsorption via Built-in Electric Field -Driven Electron Transfer Behavior at the Heterointerface for Efficient Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202400888. [PMID: 38419146 DOI: 10.1002/anie.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Alkaline water electrolysis (AWE) plays a crucial role in the realization of a hydrogen economy. The design and development of efficient and stable bifunctional catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are pivotal to achieving high-efficiency AWE. Herein, WC1-x/Mo2C nanoparticle-embedded carbon nanofiber (WC1-x/Mo2C@CNF) with abundant interfaces is successfully designed and synthesized. Benefiting from the electron transfer behavior from Mo2C to WC1-x, the electrocatalysts of WC1-x/Mo2C@CNF exhibit superior HER and OER performance. Furthermore, when employed as anode and cathode in membrane electrode assembly devices, the WC1-x/Mo2C@CNF catalyst exhibits enhanced catalytic activity and remarkable stability for 100 hours at a high current density of 200 mA cm-2 towards overall water splitting. The experimental characterizations and theoretical simulation reveal that modulation of the d-band center for WC1-x/Mo2C@CNF, achieved through the asymmetric charge distribution resulting from the built-in electric field induced by work function, enables optimization of adsorption strength for hydrogen/oxygen intermediates, thereby promoting the catalytic kinetics for overall water splitting. This work provides promising strategies for designing highly active catalysts in energy conversion fields.
Collapse
Affiliation(s)
- Wenjie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Guangzhi Nie
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zizheng Fang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiaojun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Zhang H, Li K, Guo X, Zhang L, Cao D, Cheng D. Rational Regulation of the Defect Density in Platinum Nanocrystals for Highly Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306694. [PMID: 38044277 DOI: 10.1002/smll.202306694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Constructing structural defects is a promising way to enhance the catalytic activity toward the hydrogen evolution reaction (HER). However, the relationship between defect density and HER activity has rarely been discussed. In this study, a series of Pt/WOx nanocrystals are fabricated with controlled morphologies and structural defect densities using a facile one-step wet chemical method. Remarkably, compared with polygonal and star structures, the dendritic Pt/WOx (d-Pt/WOx) exhibited a richer structural defect density, including stepped surfaces and atomic defects. Notably, the d-Pt/WOx catalyst required 4 and 16 mV to reach 10 mA cm-2, and its turnover frequency (TOF) values are 11.6 and 22.8 times higher than that of Pt/C under acidic and alkaline conditions, respectively. In addition, d-Pt/WOx//IrO2 displayed a mass activity of 5158 mA mgPt -1 at 2.0 V in proton exchange membrane water electrolyzers (PEMWEs), which is significantly higher than that of the commercial Pt/C//IrO2 system. Further mechanistic studies suggested that the d-Pt/WOx exhibited reduced number of antibonding bands and the lowest dz2-band center, contributing to hydrogen adsorption and release in acidic solution. The highest dz2-band center of d-Pt/WOx facilitated the adsorption of hydrogen from water molecules and water dissociation in alkaline medium. This work emphasizes the key role of the defect density in improving the HER activity of electrocatalysts.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kai Li
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Chemistry and Chemical Engineering, Tarim University, Alar, XinJiang, 843300, People's Republic of China
| |
Collapse
|
27
|
Mo Y, Du D, Du Y, Feng Y, Tang P, Li D. Fe(OH) x modified ultra-small Ru nanoparticles for highly efficient hydrogen evolution reaction and its application in water splitting. J Colloid Interface Sci 2024; 659:697-706. [PMID: 38211487 DOI: 10.1016/j.jcis.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Developing highly active electrocatalysts for overall water splitting is of remarkable significance for industrial production of H2. Herein, exceptionally active Fe(OH)x modified ultra-small Ru nanoparticles on Ni(OH)2 nanosheets array (Fe(OH)x-Ru/Ni(OH)2) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are reported. The Fe(OH)x-Ru/Ni(OH)2 nanosheets array prepared with Fe/Ru molar ratio of 5 only requires extremely low overpotentials of 61, 127 and 170 mV to reach current densities of 100, 500 and 800 mA cm-2 in 1 M KOH, respectively, exceeding Pt/C catalyst (75, 160 and 177 mV). Meanwhile, the Fe(OH)x/Ni(OH)2 nanosheets array derived from Fe(OH)x-Ru/Ni(OH)2 exhibits excellent OER activity. It gains current densities of 100, 500 and 800 mA cm-2 at considerably low overpotentials of 265, 285 and 296 mV, respectively, much lower than those of RuO2 and most reported electrocatalysts. The introduction of Fe(OH)x significantly improves the HER activity of Ru nanoparticles by tunning the electronic structure and forming interfaces between Ru and Fe(OH)x. Dramatically, the integrated alkaline electrolyzer based on Fe(OH)x-Ru/Ni(OH)2 and Fe(OH)x/Ni(OH)2 nanosheets array pair just needs 1.649 V to yield a current density up to 500 mA cm-2, exceeding most reported water-splitting electrocatalysts. The strategy reported in this work can be facilely extended to prepare other similar Ru based materials and their derivatives with outstanding catalytic performance for water splitting.
Collapse
Affiliation(s)
- Yufan Mo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyun Du
- State Nuclear Electric Power Planning Design & Research Institute Co., Ltd., State Nuclear Power Technology Corporation: SPIC, Beijing 100095, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Mu XQ, Liu SL, Zhang MY, Zhuang ZC, Chen D, Liao YR, Zhao HY, Mu SC, Wang DS, Dai ZH. Symmetry-Broken Ru Nanoparticles with Parasitic Ru-Co Dual-Single Atoms Overcome the Volmer Step of Alkaline Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202319618. [PMID: 38286759 DOI: 10.1002/anie.202319618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Efficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1 Ru1,n /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2 O. As anticipated, Co1 Ru1,n /rGO exhibits ultrahigh mass activity (7.68 A mgRu -1 ) at 50 mV and exchange current density (0.68 mA cm-2 ), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi-single-atom and metal nanoparticle catalysis.
Collapse
Affiliation(s)
- Xueqin Q Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Suli L Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Mengyang Y Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zechao C Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuru R Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongyu Y Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun C Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Dingsheng S Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihui H Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
29
|
Liu X, Wang X, Li K, Tang J, Zhu J, Chi J, Lai J, Wang L. Diluting the Resistance of Built-in Electric Fields in Oxygen Vacancy-enriched Ru/NiMoO 4-x for Enhanced Hydrogen Spillover in Alkaline Seawater Splitting. Angew Chem Int Ed Engl 2024; 63:e202316319. [PMID: 38095848 DOI: 10.1002/anie.202316319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 12/30/2023]
Abstract
Recently, hydrogen spillover based binary (HSBB) catalysts have received widespread attention due to the sufficiently utilized reaction sites. However, the specific regulation mechanism of spillover intensity is still unclear. Herein, we have fabricated oxygen vacancies enriched Ru/NiMoO4-x to investigate the internal relationship between electron supply and mechanism of hydrogen spillover enhancement. The DFT calculations cooperate with in situ Raman spectrum to uncover that the H* spillover from NiMoO4-x to Ru. Meanwhile, oxygen vacancies weakened the electron supply from Ru to NiMoO4-x , which contributes to dilute the resistance of built-in electric field (BEF) for hydrogen spillover. In addition, the higher ion concentration in electrolyte will promote the H* adsorption step obviously, which is demonstrated by in situ EIS tests. As a result, the Ru/NiMoO4-x exhibits a low overpotential of 206 mV at 3.0 A cm-2 , a small Tafel slope of 28.8 mV dec-1 , and an excellent durability of 550 h at the current density of 0.5 A cm-2 for HER in 1.0 M KOH seawater.
Collapse
Affiliation(s)
- Xiaobin Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuanyi Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Kun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Junheng Tang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Zhu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingqi Chi
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
30
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
31
|
Wu Z, Li Q, Xu G, Jin W, Xiao W, Li Z, Ma T, Feng S, Wang L. Microwave Phosphine-Plasma-Assisted Ultrafast Synthesis of Halogen-Doped Ru/RuP 2 with Surface Intermediate Adsorption Modulation for Efficient Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311018. [PMID: 38101817 DOI: 10.1002/adma.202311018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Anionic modification engineering is a crucial approach to develop highly efficient electrocatalysts for hydrogen evolution reaction. Herein, halogen elements (X = Cl, Br, and I)-modified Ru-based nanosheets (X-Ru/RuP2 ) are designed by rapid and eco-friendly microwave-phosphide plasma approach within 60 s. Experimental and density functional theory calculations verify that the introduced halogen element, especially Br, can optimize the surface intermediates adsorption. Specially, the designed Br-Ru/RuP2 favors the water dissociation and following hydrogen adsorption/desorption process. Then, the as-synthesized Br-Ru/RuP2 exhibits low overpotential of 34 mV to reach 10 mA cm-2 coupled with small Tafel slope of 27 mV dec-1 in alkaline electrolyte with excellent long-term stability. Moreover, the electrocatalytic performances in acid and neutral media are also boosted via Br element modification. This work paves a novel way to regulate the electronic structure of Ru-based compounds, and then can boost the electrocatalytic kinetics.
Collapse
Affiliation(s)
- Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
32
|
Wang M, Du Y, Li S, Sun X, Li B, Gu Y, Wang L. Developing energy-efficient N-doping technology to controllably construct N-Ru 2P@Ru nanospheres for highly efficient hydrogen evolution at an ampere-level current density. MATERIALS HORIZONS 2023; 10:5712-5719. [PMID: 37795798 DOI: 10.1039/d3mh01007d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The N-doping strategy plays a vital role in optimizing electrocatalytic performance, but it often requires high-temperatures accompanied by the emission of irritating gases, which is contrary to the concept of energy saving and environmental protection. Based on this, this work innovatively uses the quenching of waste heat and the non-equilibrium state of materials to realize controllable N-doping. Notably, N dopants stimulate metal-like electroconductivity and accelerate the alkaline HER kinetics by optimizing the electronic structure of Ru2P. Surprisingly, the hydrophilic Ru core and the N-Ru2P shell with a low HER reaction energy barrier synergistically expedite hydrogen release. As anticipated, the current density of N-Ru2P@Ru (963 mA cm-2) is 2.6-fold that of Pt/C (359 mA cm-2) at 150 mV. Overall, the novel N-doping technology greatly simplifies material preparation procedures and reduces energy consumption. Moreover, this unique N-doping strategy provides a new idea for optimizing the catalyst structure and reaction kinetics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yunmei Du
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuangshuang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaoli Sun
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao 266042, P. R. China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuanxiang Gu
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lei Wang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
33
|
Yu Y, Zeng Y, Ouyang Q, Liu X, Zheng Y, Wu S, Tan L. Ultrasound-Induced Abiotic and Biotic Interfacial Electron Transfer for Efficient Treatment of Bacterial Infection. ACS NANO 2023; 17:21018-21029. [PMID: 37899553 DOI: 10.1021/acsnano.3c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Electron transfer plays an important role in various catalytic reactions and physiological activities, whose altered processes may change catalytic efficiency and interfere in physiological metabolic processes. In this study, we design an ultrasound (US)-activated piezoelectric responsive heterojunction (PCN-222-BTO, PCN: porous coordination network), which can change the electron transfer path at the abiotic and abiotic-biotic interfaces under US, thus achieving a rapid (15 min) and efficient bactericidal effect of 99.96%. US-induced polarization of BTO generates a built-in electric field, which promotes the electron transfer excited from PCN-222 to BTO at the PCN-222-BTO interface, thereby increasing the level of reactive oxygen species (ROS) production. Especially, we find that the biological electron transfer from the bacterial membrane to BTO is also activated at the MRSA-BTO interface. This antibacterial mode results in the down-regulated ribosomal, DNA and ATP synthesis related genes in MRSA, while the cell membrane and ion transport related genes are up-regulated due to the synergistic damage effect of ROS and disturbance of the bacterial electron transport chain. This US responsive dual-interface system shows an excellent therapeutic effect for the treatment of the MRSA-infected osteomyelitis model, which is superior to clinical vancomycin therapy.
Collapse
Affiliation(s)
- Yi Yu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Qunle Ouyang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Wei K, Pang S, Meng Y, Feng L, Wang Y, Zhou J, Hu H, Song Y, Gao F. Rapid preparation of high efficiency hydrogen evolution catalyst with hydrophilicity. NANOTECHNOLOGY 2023; 35:035402. [PMID: 37797600 DOI: 10.1088/1361-6528/ad0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The electrolytic water method is an outstanding hydrogen production process because of its high stability and no restriction. A low-priced and efficient catalyst for electro-deposition of Ni-Co microspheres and nanoclusters on carbon steel (Ni-Co/CS) has been prepared by the dynamic hydrogen bubble template. In the 6 M KOH solution, Ni-Co/CS only requires an overpotential of 48 mV to provide a current density of 50 mA cm-2. At the same time, it also has a large electrochemically active specific surface area (ECSA) and a hydrophilic surface. In addition, the study about the influence of carbon steel (CS) on Ni-Co coatings and the comparison experiment for different base materials has been completed. The results prove that CS is an excellent base material for hydrogen production. It can help the Ni-Co catalyst to have a stable electrolysis in 6 M KOH for 500 h. The above properties of Ni-Co/CS catalyst make it a new choice of hydrogen production by electrolysis of water in practical applications.
Collapse
Affiliation(s)
- Kuo Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Shanshan Pang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Ying Meng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Lingling Feng
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Junshuang Zhou
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hao Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Yanli Song
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
| | - Faming Gao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, People's Republic of China
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
35
|
Zhang Q, Tsai HJ, Li F, Wei Z, He Q, Ding J, Liu Y, Lin ZY, Yang X, Chen Z, Hu F, Yang X, Tang Q, Yang HB, Hung SF, Zhai Y. Boosting the Proton-coupled Electron Transfer via Fe-P Atomic Pair for Enhanced Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202311550. [PMID: 37666796 DOI: 10.1002/anie.202311550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Single-atom catalysts exhibit superior CO2 -to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe-P atom paired catalyst onto nitrogen doped graphitic layer (Fe1 /PNG) to accelerate PCET step. Fe1 /PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane-electrode assembly, overperforming the CO current of Fe1 /NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe-P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2 , and enhancing the activity of CO2 reduction. This atom-pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single-atom catalysts.
Collapse
Affiliation(s)
- Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hsin Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Qinye He
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Xiaoju Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaoyang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Fangxin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
36
|
Xue W, Quan L, Liu H, Yu B, Chen X, Xia BY, You B. Bromine-Enhanced Generation and Epoxidation of Ethylene in Tandem CO 2 Electrolysis Towards Ethylene Oxide. Angew Chem Int Ed Engl 2023; 62:e202311570. [PMID: 37699856 DOI: 10.1002/anie.202311570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
The indirect electro-epoxidation of ethylene (C2 H4 ), produced from CO2 electroreduction (CO2 R), holds immense promise for CO2 upcycling to valuable ethylene oxide (EO). However, this process currently has a mediocre Faradaic efficiency (FE) due to sluggish formation and rapid dissociation of active species, as well as reductive deactivation of Cu-based electrocatalysts during the conversion of C2 H4 to EO and CO2 to C2 H4 , respectively. Herein, we report a bromine-induced dual-enhancement strategy designed to concurrently promote both C2 H4 -to-EO and CO2 -to-C2 H4 conversions, thereby improving EO generation, using single-atom Pt on N-doped CNTs (Pt1 /NCNT) and Br- -bearing porous Cu2 O as anode and cathode electrocatalysts, respectively. Physicochemical characterizations including synchrotron X-ray absorption, operando infrared spectroscopy, and quasi in situ Raman spectroscopy/electron paramagnetic resonance with theoretical calculations reveal that the favorable Br2 /HBrO generation over Pt1 /NCNT with optimal intermediate binding facilitates C2 H4 -to-EO conversion with a high FE of 92.2 %, and concomitantly, the Br- with strong nucleophilicity protects active Cu+ species in Cu2 O effectively for improved CO2 -to-C2 H4 conversion with a FE of 66.9 % at 800 mA cm-2 , superior to those in the traditional chloride-mediated case. Consequently, a single-pass FE as high as 41.1 % for CO2 -to-EO conversion can be achieved in a tandem system.
Collapse
Affiliation(s)
- Wenjie Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hongxia Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Bo Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinqing Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
37
|
Wang L, Xu Z, Kuo CH, Peng J, Hu F, Li L, Chen HY, Wang J, Peng S. Stabilizing Low-Valence Single Atoms by Constructing Metalloid Tungsten Carbide Supports for Efficient Hydrogen Oxidation and Evolution. Angew Chem Int Ed Engl 2023; 62:e202311937. [PMID: 37658707 DOI: 10.1002/anie.202311937] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.
Collapse
Affiliation(s)
- Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zipeng Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
38
|
Jiang L, Gu M, Wang H, Huang X, Gao A, Sun P, Liu X, Zhang X. Synergistically Regulating the Electronic Structure of CoS by Cation and Anion Dual-Doping for Efficient Overall Water Splitting. CHEMSUSCHEM 2023; 16:e202300592. [PMID: 37313584 DOI: 10.1002/cssc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Precisely regulating the electronic construction of the reactive center is an essential method to improve the electrocatalysis, but achieving efficient multifunctional characteristics remains a challenge. Herein, CoS sample dual-doped by Cu and F atoms, as bifunctional electrocatalyst, is designed and synthesized for water electrolysis. According to the experimental results, Cu atom doping can perform primary electronic adjustment and obtain bifunctional properties, and then the electronic structure is adjusted for the second time to achieve an optimal state by introducing F atom. Meanwhile, this dual-doping strategy will result in lattice distortion and expose more active sites. As expected, dual-doped Cu-F-CoS show the brilliant electrocatalytic activity, revealing ultralow overpotentials (59 mV for HER, 213 mV for OER) at 10 mA cm-2 in alkaline electrolyte. Besides, it also exhibits distinguished water electrolysis activity with cell voltage as low as 1.52 V at 10 mA cm-2 . Our work can provide an atomic-level perception for adjusting the electronic construction of reactive sites by means of dual-doping engineering and put forward a contributing path for the electrocatalysts with multifunctional designing.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Mingzheng Gu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaomin Huang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - An Gao
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Ping Sun
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xudong Liu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaojun Zhang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei, 230601, China
| |
Collapse
|
39
|
Chen Y, Sui T, Lyu C, Wu K, Wu J, Huang M, Hao J, Lau WM, Wan C, Pang D, Zheng J. Constructing abundant interfaces by decorating MoP quantum dots on CoP nanowires to induce electronic structure modulation for enhanced hydrogen evolution reaction. MATERIALS HORIZONS 2023; 10:3761-3772. [PMID: 37404093 DOI: 10.1039/d3mh00644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Interface engineering is a method of enhancing catalytic activity while maintaining a material's surface properties. Thus, we explored the interface effect mechanism via a hierarchical structure of MoP/CoP/Cu3P/CF. Remarkably, the heterostructure MoP/CoP/Cu3P/CF demonstrates an outstanding overpotential of 64.6 mV at 10 mA cm-2 with a Tafel slope of 68.2 mV dec-1 in 1 M KOH. DFT calculations indicate that the MoP/CoP interface in the catalyst exhibited the most favorable H* adsorption characteristics (-0.08 eV) compared to the pure phases of CoP (0.55 eV) and MoP (0.22 eV). This result can be attributed to the apparent modulation of electronic structures within the interface domains. Additionally, the CoCH/Cu(OH)2/CF‖MoP/CoP/Cu3P/CF electrolyzer demonstrates excellent overall water splitting performance, achieving 10 mA cm-2 in 1 M KOH solution with a modest voltage of only 1.53 V. This electronic structure adjustment via interface effects provides a new and efficient approach to prepare high-performance hydrogen production catalysts.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Tingting Sui
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Jiwen Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Meifang Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Ju Hao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Chubin Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Dawei Pang
- Beijing Key Laboratory of Solid Microstructure and Properties, Department of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|
40
|
Jiang Y, Leng J, Zhang S, Zhou T, Liu M, Liu S, Gao Y, Zhao J, Yang L, Li L, Zhao W. Modulating Water Splitting Kinetics via Charge Transfer and Interfacial Hydrogen Spillover Effect for Robust Hydrogen Evolution Catalysis in Alkaline Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302358. [PMID: 37350571 PMCID: PMC10460870 DOI: 10.1002/advs.202302358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Designing and synthesizing advanced electrocatalysts with superior intrinsic activity toward hydrogen evolution reaction (HER) in alkaline media is critical for the hydrogen economy. Herein, a novel Ir@Rhene heterojunction electrocatalyst is synthesized via epitaxially confining ultrasmall and low-coordinate Ir nanoclusters on the ultrathin Rh metallene accompanying the formation of Ir/IrO2 Janus nanoparticles. The as-prepared heterojunctions display outstanding alkaline HER activity, with an overpotential of only 17 mV at 10 mA cm-2 and an ultralow Tafel slope of 14.7 mV dec-1 . Both structural characterizations and theoretical calculations demonstrate that the Ir@Rhene heterointerfaces induce charge density redistribution, resulting in the increment of the electron density around the O atoms in the IrO2 site and thus delivering much lower water dissociation energy. In addition, the dual-site synergetic effects between IrO2 and Ir/Rh interface trigger and improve the interfacial hydrogen spillover, thereby subtly avoiding the steric blocking of the active site and eventually accelerating the alkaline HER kinetics.
Collapse
Affiliation(s)
- Yiming Jiang
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Juncai Leng
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Mingxuan Liu
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Shuoming Liu
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yahui Gao
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co. Ltd.Shenzhen518055P. R. China
| | - Lei Yang
- Shenzhen HUASUAN Technology Co. Ltd.Shenzhen518055P. R. China
| | - Li Li
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Wei Zhao
- State Key Laboratory of Food Science and ResourcesSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| |
Collapse
|
41
|
Fan X, Liu C, Gao B, Li H, Zhang Y, Zhang H, Gao Q, Cao X, Tang Y. Electronic Structure Engineering of Pt Species over Pt/WO 3 toward Highly Efficient Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301178. [PMID: 37066750 DOI: 10.1002/smll.202301178] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Pt-based supported materials, a widely used electrocatalyst for hydrogen evolution reaction (HER), often experience unavoidable electron loss, resulting in a mismatching of electronic structure and HER behavior. Here, a Pt/WO3 catalyst consisting of Pt species strongly coupled with defective WO3 polycrystalline nanorods is rationally designed. The electronic structure engineering of Pt sites on WO3 can be systematically regulated, and so that the optimal electron-rich Pt sites on Pt/WO3 -600 present an excellent HER activity with only 8 mV overpotential at 10 mA cm-2 . Particularly, the mass activity reaches 7015 mA mg-1 at the overpotential of 50 mV, up to 26-fold higher than that of the commercial Pt/C. The combination of experimental and theoretical results demonstrates that the O vacancies of WO3 effectively mitigate the tendency of electron transfer from Pt sites to WO3 , so that the d-band center could reach an appropriate level relative to Fermi level, endowing it with a suitableΔ G H ∗ $\Delta {G_{{{\rm{H}}^ * }}}$ . This work identifies the influence of the electronic structure on catalytic activity.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Cong Liu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Boxu Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Hongbin Zhang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai, 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoming Cao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
42
|
Sarker S, Choi JH, Lee HH, Kim DS, Cho HK. Surface-Confined Ultra-Low Scale Pd Engineered Layered Co(OH) 2 toward High-Performance Hydrazine Electrooxidation in Alkaline Saline Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300639. [PMID: 37119402 PMCID: PMC10375158 DOI: 10.1002/advs.202300639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Applications of abundant seawater in electrochemical energy conversion are constrained due to the sluggish oxygen evolution reaction and the corrosive chlorine oxidation reaction. Hence, it is imperative to develop an efficient anodic reaction alternative suitable for coupling with the cathodic counterpart. Due to a low thermodynamic oxidation potential, hydrazine oxidation reaction (HzOR) offers a unique pathway to overcome these challenges. Herein, spontaneously in situ reduced atomic scale Pd surface-confined to electrochemically prepared layered Co(OH)2 on carbon cloth is synthesized. This study reveals the hydrazine and Pd-dependent morphological evolution of Co(OH)2 and its Pd hybrids into nanoparticulate form. Unlike various layered double hydroxides, Pd integrated Co(OH)2 benefits from the contribution of Co(OH)2 as an active HzOR catalyst and the reductive support to host Pd, resulting in synergistically improved performances. Mass activities of Pd in alkaline and alkaline saline electrolyte are 11.24 and 9.83 A mgPd -1 at 200 mV, respectively, corresponding to the highest HzOR activities among noble metals. The optimized Pd hybrid demonstrates ≈6.5 times the current density relative to PtC (14.91 mA cm-2 at 200 mV) in alkaline saline water with hydrazine. These findings would be beneficial to realize high overpotential anodic alternatives and reduce over-dependence on freshwater for electrocatalysis.
Collapse
Affiliation(s)
- Swagotom Sarker
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Ji Hoon Choi
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Hak Hyeon Lee
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Dong Su Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Hyung Koun Cho
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| |
Collapse
|