1
|
Quan Y, Shao H, Wang N, Gao Z, Jin M. Microenvironment-sensitive hydrogels as promising drug delivery systems for co-encapsulating microbial homeostasis probiotics and anti-inflammatory drugs to treat periodontitis. Mater Today Bio 2025; 32:101711. [PMID: 40230648 PMCID: PMC11994392 DOI: 10.1016/j.mtbio.2025.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Developing and utilizing effective local antimicrobial agents can help treat periodontitis while minimizing the risks associated with systemic antibiotic use. Recent studies have shown that the mucosal adhesion properties of hydrogels can play a potential role in the treatment of periodontitis. The hydrogel can improve the contact and retention time of drugs in the periodontal pocket. Through the adhesion of mucosa, it interacts with the mucin coating surface of epithelium and teeth to form a specific interface force. The hydrogel exhibits strong mucosal adhesion (adhesion strength: 5-6 N/cm2) and prolonged retention in periodontal pockets (≥6 h), enabling sustained drug release through dynamic sol-gel transitions triggered by pH and reactive oxygen species (ROS). This design overcomes the limitations of poor mechanical stability in conventional formulations. The dynamic balance of oral microbiota plays an important role in maintaining oral health. Probiotics, by colonizing the oral cavity, transform the infected site from an environment rich in inflammatory cytokines to a more benign environment, inhibit harmful pathogenic microorganisms, and contribute to overall health. Microenvironment sensitive hydrogels can perform dynamic sol gel transformation in situ, and can accurately control drug release when exposed to various stimuli (such as temperature change, light, pH change, reactive oxygen species, etc.). Oral probiotics and anti-inflammatory drugs are encapsulated in hydrogels to inhibit the proliferation and adhesion of oral pathogens by planting in the mouth and producing metabolites, effectively preventing and treating oral diseases.
Collapse
Affiliation(s)
- Yi Quan
- Peking University People's Hospital, Beijing, 100044, China
| | - Huihui Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Ma N, Cai K, Zhao J, Liu C, Li H, Tan P, Li Y, Li D, Ma X. Mannosylated MOF Encapsulated in Lactobacillus Biofilm for Dual-Targeting Intervention Against Mammalian Escherichia coli Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503056. [PMID: 40277329 DOI: 10.1002/adma.202503056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Pathogenic bacterial infections pose a major concern, especially concerning mammalian enteritis and diarrhea. Compared to conventional antibiotic intervention, metal-organic frameworks (MOFs) exhibit superior antibacterial properties and lower cytotoxicity, demonstrating great promise in the treatment of pathogen-induced diarrhea. However, the achievement of their precise targeted delivery is still a significant challenge. Herein, a novel precision nano-system with a dual-targeting approach for treating intestinal infections caused by Escherichia coli (E. coli) is designed. First, Zn-MOF was synthesized based on ZnO, which possessed enhanced elimination of planktonic bacteria and biofilms. Through mannosylation, Zn-MOF@Man specifically recognized the FimH pili of E. coli, leading to its aggregation and subsequent eradication. Second, guided by whole genome sequencing, the encapsulation of Lactobacillus biofilm exertd immunomodulatory function, overcomed challenges related to intestinal targeting, and facilitated sustained drug release. Furthermore, Zn-MOF@Man/LRB maintaind microbiota equilibrium and promoted stem cell differentiation and barrier stability, ensuring consistent anti-diarrheal and anti-inflammatory efficacy in mice, piglets, and humans. This approach represents a novel dual-targeting antimicrobial strategy, combining probiotic biofilms and E. coli-oriented delivery, advancing safe and effective treatment that restores intestinal homeostasis for potential applications in both human medicine and animal husbandry.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Cai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Chunchen Liu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Huahui Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
He Y, Jin Z, Wang Y, Wu C, He X, Weng W, Cai X, Cheng K. Multifunctional Double-Loaded Oral Nanoplatform for Computed Tomography Imaging-Guided and Integrated Treatment of Inflammatory Bowel Disease. ACS NANO 2025; 19:14893-14913. [PMID: 40106686 DOI: 10.1021/acsnano.4c18865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Excessive reactive oxygen species, disruption of the epithelial barrier, immune dysregulation, and gut microbiota imbalance are key factors driving the onset of inflammatory bowel disease (IBD) and complicating its treatment. Prompt diagnosis of diseases and precise delivery of therapeutic agents to inflamed intestinal sites offer promising targeted strategies for effectively treating IBD. Here, a barium sulfate-based nanoplatform (BaSO4@PDA@CeO2/DSP, BPCD) for synergistic delivery of nanozymes and drugs was developed. With enhanced colonic retention after oral drug delivery, this nanoplatform enables precise and effective targeting of inflammatory sites and CT imaging guidance to address multiple factors contributing to IBD. A comprehensive therapeutic effect was achieved through the synergistic action of cerium oxide with the optimized Ce3+/Ce4+ ratio and sustained release of dexamethasone sodium phosphate. Benefiting from superior gastrointestinal stability, the nanoplatform is highly effective in treating IBD by alleviating oxidative stress, modulating macrophage polarization balance, gut flora composition, and repairing the epithelial barrier. BPCD inhibits the development of IBD through multiple mechanisms and has superior biocompatibility, emerging as a practical alternative to traditional IBD therapies.
Collapse
Affiliation(s)
- Yaoting He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Jin
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - YiFan Wang
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chengwei Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xiujun Cai
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Zhao Z, Xu Y, Hu Y. Acid-resistant chemotactic DNA micromotors for probiotic delivery in inflammatory bowel disease. Nat Commun 2025; 16:3778. [PMID: 40263286 PMCID: PMC12015548 DOI: 10.1038/s41467-025-59172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
Microcapsules composed of synthetic polymeric matrices have attracted considerable attention in delivering oral probiotics. However, existing polymeric microcapsules demonstrate inadequate acid resistance and adaptability, as well as deficiency in the inflamed colon-specificity and uncontrolled release of probiotics therein. Herein, a DNA microcapsule is prepared as a probiotic-transporting micromotor through photo-crosslinking of hyaluronic acid methacrylate and acrydite-modified A-/C-rich oligomers within the microfludically generated droplets in the presence of nitric oxide-cleavable crosslinker and gas donor manganese carbonyl (MnCO). As the microcapsules traverse stomach, duodenum, and ultimately colon, the formation and dissociation of A-motif and i-motif structures instigate a reversible shrinking-swelling transition of microcapsules to preserve probiotic viability. Subsequently, the microcapsules exhibit chemotaxis towards inflamed colon site, driven by a gas-generating reaction between MnCO and elevated reactive oxygen species. Following disintegration of the microcapsules, triggered by endogenous nitric oxide, probiotics are released to reshape the dysbiosis of intestinal microflora. This advanced delivery system offers significant promise for the effective clinical management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Zinan Zhao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yao Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.
| |
Collapse
|
5
|
Yang H, Zhang X, Wu J, Xiao Y, Dai L, Wang G, Zhang X, Hu C, He S, Yuan Z. Probiotic Membrane-Modified Nanocomposite Alleviates Inflammation and Microbiota Dysbiosis in Colitis by Scavenging Oxidative Stress and Restoring Immune Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22245-22265. [PMID: 40184333 DOI: 10.1021/acsami.4c22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex chronic intestinal disorder in which excessive oxidative stress, dysregulated immune response, and microbiota dysbiosis contribute to recurrent episodes of inflammation in the colonic mucosa. Current clinical treatments focusing solely on inflammation resolution often exhibit limited efficacy due to the inability to fundamentally improve the pathological microenvironment. Herein, a probiotic membrane-modified drug delivery nanocomposite, namely, MPDA@Cur@EM, is developed for the comprehensive treatment of IBD. It contains two components: the curcumin-loaded mesoporous polydopamine nanoparticle (MPDA@Cur) as the core and the Escherichia coli Nissle 1917 outer membrane (EM) as the surface. For MPDA@Cur, the pathological microenvironment triggers the responsive release of curcumin. Importantly, MPDA@Cur can effectively alleviate the inflammatory response of LPS-activated macrophages through MPDA-mediated ROS scavenging and curcumin-induced M2 polarization. In the dextran sulfate sodium (DSS)-induced colitis model, the EM coating not only allows for the targeting enrichment of orally administered MPDA@Cur@EM to the inflamed colonic mucosa, but also participates in the regulation of intestinal flora. Consequently, MPDA@Cur@EM efficiently attenuates the inflammatory reaction and restores the intestinal barrier functions, demonstrated by the multipronged manner of restoring redox balance, remodeling immune homeostasis, and reshaping the gut microecology. Collectively, this work provides a safe and promising codelivery strategy of probiotic product, antioxidative nanoenzyme, and therapeutic drug for comprehensive management of IBD.
Collapse
Affiliation(s)
- Huan Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Xu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Jianshuang Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Yao Xiao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Liangliang Dai
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Gaoyang Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaohong Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Chenghu Hu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
6
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Ye Z, Tan Q, Woltemate S, Tan X, Römermann D, Grassl GA, Vital M, Seidler U, Kini A. Escherichia coli Nissle Improves Short-Chain Fatty Acid Absorption and Barrier Function in a Mouse Model for Chronic Inflammatory Diarrhea. Inflamm Bowel Dis 2025; 31:1109-1120. [PMID: 39708301 PMCID: PMC11985405 DOI: 10.1093/ibd/izae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Defects in SLC26A3, the major colonic Cl-/HCO3- exchanger, result in chloride-rich diarrhea, a reduction in short-chain fatty acid (SCFA)-producing bacteria, and a high incidence of inflammatory bowel disease in humans and in mice. Slc26a3-/- mice are, therefore, an interesting animal model for spontaneous but mild colonic inflammation and for testing strategies to reverse or prevent the inflammation. This study investigates the effect of Escherichia coli Nissle (EcN) application on the microbiome, SCFA production, barrier integrity, and mucosal inflammation in slc26a3-/- mice. METHODS In vivo fluid absorption and bicarbonate secretion were assessed in the gut of slc26a3+/+ and slc26a3-/- mice before and during luminal perfusion with 100 mM sodium acetate. Age-matched slc26a3+/+ and slc26a3-/- mice were intragastrically gavaged twice daily with 2 × 108 CFU/100 µL of EcN for 21 days. Body weight and stool water content were assessed daily, and stool and tissues were collected for further analysis. RESULTS Addition of sodium acetate to the lumen of the proximal colon significantly increased fluid absorption and luminal alkalinization in the slc26a3-/- mice. Gavage with EcN resulted in a significant increase in SCFA levels and the expression of SCFA transporters in the slc26a3-/- cecum, the predominant habitat of EcN in mice. This was accompanied by an increase in mucus-producing goblet cells and a decrease in the expression of inflammatory markers as well as host defense antimicrobial peptides. EcN did not improve the overall diversity of the luminal microbiome but resulted in a significant increase in SCFA producers Lachnospiraceae and Ruminococcaceae in the slc26a3-/- feces. CONCLUSIONS These findings suggest that EcN is able to proliferate in the inflamed cecum, resulting in increased microbial SCFA production, decreased inflammation, and improved gut barrier properties. In sufficient dosage, probiotics may thus be an effective anti-inflammatory strategy in the diseased gut.
Collapse
Affiliation(s)
- Zhenghao Ye
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinghai Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Xinjie Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dorothee Römermann
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Guntram A Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research DZIF, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Archana Kini
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Zhao X, Wang L, Fu YJ, Yu F, Li K, Wang YQ, Guo Y, Zhou S, Yang W. Inflammatory Microenvironment-Responsive Microsphere Vehicles Modulating Gut Microbiota and Intestinal Inflammation for Intestinal Stem Cell Niche Remodeling in Inflammatory Bowel Disease. ACS NANO 2025; 19:12063-12079. [PMID: 40125581 DOI: 10.1021/acsnano.4c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intestinal stem cells (ISCs) engage in proliferation to maintain a stable stem cell population and differentiate into functional epithelial subpopulations. This intricate process is upheld by various signals derived from the host and gut microbiota, establishing an ISC niche. However, during inflammatory bowel disease (IBD), this signaling niche undergoes dramatic changes, leading to impaired ISC and hindered restoration of the damaged intestinal epithelial barrier. This study introduces intestinal inflammatory microenvironment-responsive microsphere vehicles designed to remodel the ISC niche, offering an approach to treat IBD. Using an advanced emulsion technique, these microsphere vehicles specifically target colonic inflammation sites, delivering a responsive release of MXene and l-arginine. This delivery system is formulated to modulate intestinal flora and immune responses effectively. l-arginine is converted into nitric oxide to regulate the gut microbiome, while MXene serves as a nanoimmunomodulator to stabilize immune homeostasis. Our findings demonstrate that the anti-inflammatory properties of the microspheres are key to promoting epithelial repair and remodeling of the ISC niche. This study highlights the role of antioxidant microspheres as anti-inflammatory agents that indirectly support ISC function and gut regeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Yu
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 , China
| | - Yu-Qiang Wang
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Khizar Y, Farooq U, Attia KA, Rehman OU, Abushady AM, Fiaz S, Zeb U, Iqbal R, Uzair M. Genome-wide identification and characterization of stress-responsive genes in Chlorella vulgaris. BMC Genom Data 2025; 26:20. [PMID: 40119272 PMCID: PMC11927275 DOI: 10.1186/s12863-025-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Chlorella vulgaris is a significant green alga that has a role in the bioremediation of environmental pollutants, especially heavy metals. Therefore, to meet the emerging needs of sustainable bioremediation, it is the need of the hour to improve the bioremediation potential of Chlorella vulgaris. Stress-related genes play significant roles in homeostasis and stress management in algal species, including C. vulgaris. It deals with varying pH and temperature, toxic heavy metals, oxidative stress, and many others. While certain stress-responsive proteins such as Heat Shock Proteins (HSPs) and Antioxidant Enzymes have been previously reported in C. vulgaris, this study aims to expand the scope by identifying and characterizing a diverse range of genes from various gene families, many of which have not been studied before in C. vulgaris. METHOD A comprehensive analysis of the stress-related genes was conducted in which comparative phylogenetic analysis; conserved motif detection, determination of gene structure, and their subcellular localization were performed. RESULTS As a result of this study, 15 stress-related genes in C. vulgaris were annotated and characterized. The phylogenetic analysis represented that these genes evolved independently in C. vulgaris. Twenty highly conserved motifs amino acid structures have been exhibited. These motifs have a potential role in stress management. The proteins are localized at different locations in the cells. In parallel to genome-wide analysis, an experiment was conducted in a wet lab to evaluate the growth curve of C. vulgaris under Cd and pH stress. CONCLUSIONS The results revealed a probability that C. vulgaris has some mechanisms and genes that act as key players for survival. Moreover, this study not only provides identification and characterization of stress-related genes but also lays the foundation for further identification, annotation, and confirmation by expression profiling under different stress conditions such as toxic heavy metals and pH.
Collapse
Affiliation(s)
- Yasmeen Khizar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Umer Farooq
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Park Road, Islamabad, 45500, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Obaid Ur Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Park Road, Islamabad, 45500, Pakistan
| | - Asmaa M Abushady
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Umar Zeb
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
11
|
Chen G, Li X, Xu W, Wang H, Jiang Y, Shi R, Zhu C, Xiao Z. Inflammation Targeting-Triggered Healing Hydrogel for In Situ Reconstruction of Colonic Mucosa. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411010. [PMID: 39815450 PMCID: PMC11904975 DOI: 10.1002/advs.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by intestinal mucosal damage that exacerbates inflammation and promotes disease recurrence. Although hydrogel-based therapies have shown potential for mucosal repair, challenges remain due to inadequate targeting and low hydrogel density, leading to ongoing infiltration of harmful substances and delayed mucosal healing. In this study, an inflammation-targeting-triggered healing hydrogel (ITTH hydrogel) is developed, composed of polyvinyl alcohol-alginate microgels (PALMs) and a cyclodextrin polymer crosslinker (CPC). This hydrogel specifically targets inflamed colonic sites and crosslinks in situ to form a dense network. The results demonstrate that the ITTH hydrogel adheres effectively to inflamed colonic tissue in both IBD mouse models and human samples. The dense crosslinked network acts like the mucosal barrier, preventing the penetration of detrimental substances such as bacteria and small molecules, thereby protecting the underlying mucosal tissue. Furthermore, the ITTH hydrogel significantly improved therapeutic outcomes in mice with dextran sulfate sodium (DSS)-induced colitis. These findings suggest that the ITTH hydrogel is a promising candidate for in situ reconstruction of colonic mucosa and the treatment of IBD.
Collapse
Affiliation(s)
- Gaoxian Chen
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Xinyi Li
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Wei Xu
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Haoze Wang
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Yichao Jiang
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Ruofan Shi
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Chengying Zhu
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Zeyu Xiao
- Collaborative Innovation Center for Clinical and Translational ScienceDepartment of Pharmacology and Chemical Biology, & Institute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| |
Collapse
|
12
|
Huang Y, Xu J, Sun G, Cheng X, An Y, Yao X, Nie G, Zhang Y. Enteric-coated cerium dioxide nanoparticles for effective inflammatory bowel disease treatment by regulating the redox balance and gut microbiome. Biomaterials 2025; 314:122822. [PMID: 39270625 DOI: 10.1016/j.biomaterials.2024.122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Reactive oxygen species (ROS) play crucial roles in the pathogenesis of inflammatory bowel disease (IBD) by disrupting the mucosal barrier and subsequently leading to the dysregulation of the gut microbiome. Therefore, ROS scavengers present a promising and comprehensive strategy for the effective IBD treatment. In the current work, we explored the therapeutic potential of cerium dioxide (CeO2) nano-enzyme, which is well-known for their potent antioxidant properties and capability to mimic natural antioxidant enzymes in the regulation of oxidative stress. We developed a novel enteric-coated nanomedicine (CeO2@S100) aiming at improving the oral delivery efficacy of CeO2 in the complex gastrointestinal environment. CeO2@S100 is composed of a CeO2 nanoparticle core and a protective polyacrylic acid resin shell (Eudragit S100), ensuring targeted delivery of the core specifically at inflamed intestinal sites due to the negative surface charge. In vivo experiments revealed CeO2@S100 significantly alleviates the IBD by balancing oxidative stress and regulating gut microbiota in a dextran sulfate sodium-induced mouse colitis model. The uncomplicated synthesis of CeO2@S100 highlights its promise for clinical use, presenting an effective and safe approach to managing IBD.
Collapse
Affiliation(s)
- Yubiao Huang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiaqi Xu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ge Sun
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaoyu Cheng
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang An
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Xin Yao
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guangjun Nie
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlong Zhang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
13
|
Shi Z, Wang D, Yu J, Zhou M, Du J, Qin H, Zhu H. Association between dietary oxidative balance score and constipation: evidence from National Health and Nutrition Examination Survey. Front Nutr 2025; 12:1509687. [PMID: 40083887 PMCID: PMC11905529 DOI: 10.3389/fnut.2025.1509687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Background Numerous researches have revealed a correlation between dietary factors and the development of constipation. This study aimed to investigate the association between dietary oxidative balance score (DOBS) and constipation. Materials and methods A cross-sectional study was conducted by us based on the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010 including 31,034 individuals who completed a constipation questionnaire. The DOBS was calculated based on 16 dietary factors, containing 14 antioxidants and two prooxidants. Multiple logistic regression and restricted cubic spline (RCS) analyses were employed to examine the correlation between DOBS and constipation. Meanwhile, propensity score matching (PSM) was chosen to eliminate the effect of confounding variables. Results A total of 11,019 participants were identified as constipation. After adjusting for potential confounding variables, multiple logistic regression analysis indicated that decreasing DOBS (OR = 0.977, 95% CI: 0.966-0.987, p < 0.001) was apparently associated with increased risk of constipation incidence. Notably, the occurrence of constipation increased with reduced level of DOBS, as compared to Q1 (Q2, OR = 0.820, 95% CI, 0.682-0.988, p = 0.037; Q3, OR = 0.797, 95% CI, 0.653-0.973, p = 0.026; Q4, OR = 0.648, 95% CI, 0.528-0.797, p < 0.001). Conclusion Low levels of DOBS were positively associated with the risk of constipation development, demonstrating that DOBS could be employed as a dietary indicator of constipation prevention.
Collapse
Affiliation(s)
- Zhangpeng Shi
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Dandan Wang
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiacheng Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Mengting Zhou
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiahao Du
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhang X, Yang H, He Y, Zhang D, Lu G, Ren M, Lyu Y, Yuan Z, He S. Yeast-Inspired Orally-Administered Nanocomposite Scavenges Oxidative Stress and Restores Gut Immune Homeostasis for Inflammatory Bowel Disease Treatment. ACS NANO 2025; 19:7350-7369. [PMID: 39943645 DOI: 10.1021/acsnano.4c18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Excessive oxidative stress, dysregulated immune homeostasis, and disruption of the intestinal epithelial barrier are crucial features of inflammatory bowel disease (IBD). Traditional treatments focusing solely on inflammation resolution remain unsatisfactory. Herein, a yeast-inspired orally administered nanocomposite was developed. First, the MD@MPDA core was fabricated by integrating manganese dioxide (MnO2) nanozymes onto diallyl trisulfide (H2S prodrug)-loaded mesoporous polydopamine nanoparticles (MPDA). Then, yeast cell wall (YCW) was chosen to encapsulate MD@MPDA, namely, YMD@MPDA. The β-glucan embedded in the YCW shell not only protected the nanocomposite from the harsh gastrointestinal environment but also allowed the targeting enrichment in the inflamed colon. Furthermore, M1 macrophages triggered the intracellular GSH-responsive H2S release in the pathological microenvironment. MD@MPDA effectively alleviated inflammatory responses by MnO2-mediated ROS-scavenging and H2S-participated immunomodulation. The synergistic action contributed to macrophage mitochondrial function restoration and M2 polarization by suppressing NOX4 signaling and p38 MAPK pro-inflammatory signaling. In the mice model of dextran sulfate sodium (DSS)-induced IBD, the multipronged manner of scavenging oxidative stress, remodeling innate and adaptive immune homeostasis, and reshaping gut microbiota caused by YMD@MPDA effectively ameliorated inflammation and restored intestinal barrier functions. Overall, the YMD@MPDA nanocomposite provides a promising codelivery strategy of antioxidative nanozymes and gas prodrugs for the comprehensive management of IBD.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Huan Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an 710061, P. R. China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
15
|
Pan C, Jiang X, Wei J, Liu C, Zhang M, Gao C, Chen R, Yang C, Wang B, Yu M, Gan Y. Ameba-inspired strategy enhances probiotic efficacy via prebound nutrient supply. Nat Commun 2025; 16:1827. [PMID: 39979278 PMCID: PMC11842784 DOI: 10.1038/s41467-025-57071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Nutrient competition with indigenous microbes or pathogens presents a significant challenge for oral probiotic efficacy. To address this issue, we develop an ameba-inspired food-carrying strategy (AIFS) by prebinding ginger-derived exosome-like nanoparticles (GELNs) onto probiotics as food depots. AIFS enables probiotics to efficiently and exclusively consume GELNs in situ, even in the presence of competing bacteria. This results in up to 21 times higher uptake efficiency compared to unengineered probiotics, dramatically accelerating probiotic proliferation. Meanwhile, AIFS potentiates probiotics' resistance to multiple GI stressors. In a murine model of colitis, AIFS can improve the abundance of probiotics and inhibit pathogens, maintaining intestinal flora homeostasis. Additionally, it can upregulate the anti-inflammatory IL-10, reduce the proinflammatory IL-1β, and repair damaged intestinal mucus. Thereby, AIFS displays potently elevated prophylactic and therapeutic efficacy for colitis mice. This work provides a method for microbial engineering, with broad implications for microbiotherapy and gut health.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiuxian Jiang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Junchao Wei
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Henan University, Kaifeng, PR China
| | - Chang Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Min Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chuan Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Rongrong Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Canyu Yang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Bingqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Miaorong Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yong Gan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, PR China.
| |
Collapse
|
16
|
Lu F, Sun X, Dai X, Zhang P, Ma Y, Xu Y, Wang L, Zhang J. Integrated Multi-Omics Analysis to Investigate the Molecular Mechanisms Underlying the Response of Auricularia heimuer to High-Temperature Stress. J Fungi (Basel) 2025; 11:167. [PMID: 40137205 PMCID: PMC11943417 DOI: 10.3390/jof11030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
High-temperature stress is a key factor that reduces the yields of edible fungi. Auricularia heimuer (A. heimuer) is a nutrient-rich edible fungus that is widely cultivated in China. In this study, we analyzed the physiological, transcriptomic, and metabolomic results of A. heimuer (variety "Hei29") under high-temperature stress. Our findings revealed that high temperatures (30 °C and 35 °C) significantly reduced hyphal growth, increased malondialdehyde content and antioxidant enzyme activity, and enhanced the accumulation of secondary metabolites, such as phenolic compounds and flavonoids. A total of 15 candidate genes potentially responsive to high-temperature stress were identified through transcriptomic analysis, including those involved in regulating antioxidant defense, heat shock response, sugar metabolism, amino acid metabolism, and accumulating secondary metabolites. Metabolomic analysis identified three candidate metabolites potentially responsive to high-temperature stress, including kinetin, flavonoids, and caffeic acid, as well as several metabolic pathways, including nucleotide metabolism, ABC transporters, and cofactor biosynthesis. These mechanisms help mitigate oxidative damage to cellular structures and energy deficits caused by elevated temperatures, enabling the fungus to maintain cellular stability, metabolic function, and growth under heat stress. This study is the first to explore the molecular mechanism of A. heimuer in response to high-temperature stress. The results provide valuable insights into the molecular mechanisms of heat stress tolerance in A. heimuer, highlighting potential targets for developing heat-tolerant strains for industrial application.
Collapse
Affiliation(s)
- Fang Lu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
| | - Xin Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China;
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
| | - Yinpeng Ma
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
| | - Yafei Xu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
| | - Lei Wang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China;
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.L.); (X.D.); (P.Z.); (Y.M.); (Y.X.)
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China;
| |
Collapse
|
17
|
Jiang GY, Yang HR, Li C, Liu N, Ma SJ, Jin BX, Yan C, Gong HD, Li JY, Yan HC, Ye GX, Wang WY, Gao C. Ginsenoside Rd alleviates early brain injury by inhibiting ferroptosis through cGAS/STING/DHODH pathway after subarachnoid hemorrhage. Free Radic Biol Med 2025; 228:299-318. [PMID: 39746578 DOI: 10.1016/j.freeradbiomed.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a recently identified form of regulated cell death, is characterized by lipid peroxidation and iron accumulation, plays a critical role in early brain injury after subarachnoid hemorrhage. Ginsenoside Rd, an active compound isolated from ginseng, is known for its neuroprotective properties. However, its influence on SAH-induced ferroptosis remains unclear. In this study, we constructed an SAH model using intravascular perforation in vivo and treated HT22 cells with oxyhemoglobin to simulate the condition in vitro. We observed significant changes in ferroptosis markers, including GPX4 and ACSL4, following SAH. Administration of ginsenoside Rd to both rats and HT22 cells effectively inhibited neuronal ferroptosis induced by SAH, alleviating neurological deficits and cognitive dysfunction in rats. Notably, the neuroprotective properties of ginsenoside Rd were countered by the STING pathway agonist 2'3'-cGAMP. Experiments conducted in vitro and in vivo illustrated that the impacts of ginsenoside Rd were counteracted by the BQR inhibitor. Our findings suggest that ginsenoside Rd mitigates EBI after SAH by suppressing neuronal ferroptosis through the cGAS/STING pathway while upregulating DHODH levels. These outcomes emphasize the potential of ginsenoside Rd as a therapeutic candidate for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Guang-You Jiang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Liu
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng-Ji Ma
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing-Xuan Jin
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cong Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Dong Gong
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guang-Xi Ye
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Yu Wang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheng Gao
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Du Y, Fan Y, Li X, Chen F. Novel anti-inflammatory properties of mannose oligosaccharides in the treatment of inflammatory bowel disease via LGALS3 modulation. NPJ Biofilms Microbiomes 2025; 11:26. [PMID: 39920168 PMCID: PMC11806110 DOI: 10.1038/s41522-025-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
This study investigates the role of Gum Arabic Mannose Oligosaccharides (GA-MOS) in modulating gut microbiota and alleviating symptoms of Inflammatory Bowel Disease (IBD). Employing both in vitro and in vivo models, we explored how GA-MOS influences microbial communities, particularly focusing on their capacity to enhance health-associated bacteria and reduce pathogenic species within the gut environment. Our findings reveal that GA-MOS treatment significantly altered the gut microbiota composition, increasing the abundance of anti-inflammatory bacteria while decreasing pro-inflammatory species, thus contributing to a reduction in gut inflammation and an improvement in intestinal barrier function. Detailed molecular analyses further demonstrated that these changes in microbiota were associated with modifications in the host's immune response, particularly through the suppression of key inflammatory pathways and cytokines involved in IBD progression. These results underscore the potential of dietary polysaccharides like GA-MOS as therapeutic agents in managing dysbiosis and inflammatory conditions in the gut, offering a promising approach for enhancing microbial health and overall disease management in IBD. This study provides novel insights into the bioactive properties of MOS and their interactions with gut microbiota, suggesting broader implications for their use in microbiome-centered therapies.
Collapse
Affiliation(s)
- Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, P.R. China.
| | - Fenqin Chen
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
19
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
20
|
Chen W, Chen R, Sun Y, Wang H, Chen Z, Chen L, Huang G, Lin G, Hong D. Facile Labeling of Gram-Negative Bacteria with NIR-II Fluorescent Nanoprobes for Intestinal Bacteria Imaging. ACS OMEGA 2025; 10:2044-2050. [PMID: 39866610 PMCID: PMC11755162 DOI: 10.1021/acsomega.4c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
The gut bacteria not only play a crucial role in maintaining human health but also exhibit close associations with the occurrence of numerous diseases. Understanding the physiological and pathological functions of gut bacteria and enabling early diagnosis of gut diseases heavily relies on accurate knowledge about their in vivo distribution. Consequently, there is a significant demand for noninvasive imaging techniques capable of providing real-time localization information regarding gut bacteria. In this work, we developed a second near-infrared (NIR-II) fluorescent nanoprobe labeling-based visualization strategy for real-time tracking of the biodistribution of Gram-negative bacteria in the gastrointestinal tract of mice. By utilizing positively charged silver sulfide quantum dots (Ag2S QDs) as NIR-II nanoprobes and exploiting electrostatic interactions to efficiently label the Gram-negative probiotic Escherichia coli Nissle 1917 with negative surface charges, we have achieved rapid and effective labeling. Leveraging the exceptional NIR-II fluorescent performance of Ag2S QDs, our approach enables high spatiotemporal resolution visualization via NIR-II imaging in mouse gastrointestinal areas where Ag2S QD-labeled probiotics are present, facilitating real-time in vivo tracking capabilities for these labeled probiotics. This work not only establishes a powerful intestinal bacterial imaging strategy but also introduces novel concepts for constructing nanomaterial-bacteria hybrid systems.
Collapse
Affiliation(s)
- Wenwen Chen
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Rong Chen
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Yutong Sun
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Han Wang
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Zhenyu Chen
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Liqun Chen
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Guoming Huang
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Guifang Lin
- Department
of Radiology, Fujian Medical University
Union Hospital, Fuzhou 350001, P. R. China
| | - Dengke Hong
- Department
of Vascular Surgery, Fujian Medical University
Union Hospital, Fuzhou 350001, P. R. China
| |
Collapse
|
21
|
Wu D, Ye X, Hu W, Yu C, Zhu K, Pan H, Chen J, Cheng H, Chen S. Diverse domains of raspberry pectin: critical determinants for protecting against IBDs. Food Funct 2025; 16:657-672. [PMID: 39716902 DOI: 10.1039/d4fo03363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic conditions characterized by periods of intestinal inflammation and have become global diseases. Dietary pectins have shown protective effects on IBD models. However, the development of pectin-based diet intervention for IBD individuals requires knowledge of both the bioactive structural patterns and the mechanisms underlying diet-microbiota-host interactions. Here, dextran sulfate sodium (DSS) induced colitis mice were fed with different pectins with various domain compositions, including AG, P37, P55 and P85, in order to understand why different structural patterns function differently on colitis mouse models. The structural diversity of pectin manifests in the different percentages of the homogalacturonan (HG) backbone, Ara sidechains, and Gal sidechains. AG comprises only neutral sugar chains consisting of 14% Ara and 86% Gal, and P85 is a commercial HG pectin mainly composed of 85% HG. P37 and P55 were isolated from raspberry pulps with different domain ratios (P37 = 37% HG + 22% Ara + 32% Gal; P55 = 55% HG + 16% Ara + 18% Gal). Compared to the monotonous structure of AG and P85, the domain-diverse pectins P37 and P55 show superior protective effects against colitis through inhibiting the proliferation of the mucin-consuming bacteria and the pro-inflammatory microorganisms, potentiating the MUC2 expression and the mucus layer and regulating the gut-spleen axis. The HG structure promoted the proliferation of the mucin-degrading microbiota and potentiated mucus erosion. AG enhanced the mucus thickness but increased the growth of the pro-inflammatory microbiota. Our study revealed that the specific domain composition of pectic fibers was a key factor on which the diet-induced alterations in the gut microbiota and the intestinal barrier function highly depended.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Yang B, Luo G, Nie T, Ban Z, Ning Q, Zhang J, Liu X, Lin Y, Xie X, Chen Q, Zhong H, Huang Y, Liao P, Liu Y, Guo C, Cheng C, Sun E. Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout. Front Bioeng Biotechnol 2025; 12:1520663. [PMID: 39840134 PMCID: PMC11746906 DOI: 10.3389/fbioe.2024.1520663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (H2O2) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety. Methods We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes. This design aims to reduce immunogenicity, extend systemic circulation, and maintain enzymatic activity. In vitro assays were conducted to evaluate biocompatibility, anti-inflammatory effects, and oxidative stress protection. In vivo experiments in hyperuricemia and gout models assessed therapeutic efficacy, biodistribution, and biosafety. Results RBC@SeMSN@Uri effectively degraded uric acid (UA) into allantoin and converted H2O2 into water, preventing oxidative damage and inflammation. In vitro assays demonstrated excellent biocompatibility and reduced H2O2-induced inflammatory responses compared to free uricase. In vivo, the bioreactor prolonged circulation time, significantly reduced uric acid levels, alleviated kidney damage, and mitigated symptoms of hyperuricemia and gout. It also targeted inflamed joints, reducing swelling and inflammation in gouty arthritis models. Discussion This study presents RBC@SeMSN@Uri as a novel biomimetic strategy for enzyme replacement therapy in hyperuricemia and gout. By integrating uricase and selenium-based nano-scavenger within RBC membranes, the bioreactor addresses key limitations of traditional therapies, offering enhanced stability, reduced immunogenicity, and superior therapeutic efficacy. This platform holds potential for broader applications in protein or antibody delivery for enzyme replacement therapies in other diseases.
Collapse
Affiliation(s)
- Bin Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Tailei Nie
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Quanxin Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Jialin Zhang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiangru Liu
- Xingtan Hospital Affiliated of Southern Medical University Shunde Hospital, Foshan, China
| | - Yanhua Lin
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qianyun Chen
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Han Zhong
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Pan Liao
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, China
| | - Yan Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chenyang Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| |
Collapse
|
23
|
Udaipuria N, Bhattacharya S. Novel Carbohydrate Polymer-Based Systems for Precise Drug Delivery in Colon Cancer: Improving Treatment Effectiveness With Intelligent Biodegradable Materials. Biopolymers 2025; 116:e23632. [PMID: 39340194 DOI: 10.1002/bip.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Due to their biocompatibility, biodegradability, and controlled release, carbohydrates polymers are crucial to targeted drug delivery systems, notably for colon cancer treatment. This article examines how carbohydrate polymers like chitosan, pectin, guar gum, alginate, hyaluronic acid, dextran, and chondroitin sulfate are used in improved drug delivery. Modifying these polymers improves drug loading, stability, and release patterns, enhancing chemotherapeutic drugs' therapeutic index. Chitosan nanoparticles are pH-responsive, making them perfect for cancer treatment. Pectin's resistance to gastric enzymes and colonic bacteria makes it a promising colon-specific medication delivery agent. The combination of these polymers with nanotechnology, 3D printing, and AI allows the creation of stimuli-responsive systems that release drugs precisely in response to environmental signals like pH, redox potential, or colon enzymatic activity. The review highlights intelligent delivery system design advances that reduce systemic toxicity, improve treatment efficacy, and improve patient adherence. Carbohydrate polymers will revolutionize colon cancer treatment with personalized and accurate alternatives.
Collapse
Affiliation(s)
- Nikita Udaipuria
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
24
|
Wang Z, Wang ZX, Xu KF, An Y, Cui M, Zhang X, Tian L, Li C, Wu FG. A Metal-Polyphenol-Based Antidepressant for Alleviating Colitis-Associated Mental Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410993. [PMID: 39623787 DOI: 10.1002/adma.202410993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/26/2024] [Indexed: 01/24/2025]
Abstract
Emerging evidence suggests that patients with inflammatory bowel diseases (IBDs) are predisposed to psychosocial disturbances, such as depression and anxiety. Regrettably, clinical antidepressants exhibit unsatisfactory therapeutic efficacy in IBD-associated psychosocial disturbances, primarily attributed to the inherent intestinal disorders and intricate bidirectional relationship between the gut and the brain. Herein, we report a metal-polyphenol-based antidepressant to alleviate mental disorders in dextran sulfate sodium-induced experimental acute colitis mice via modulating the microbiota-gut-brain axis. The antidepressant, termed CSMTC, comprises a core of melittin-encapsulated natural antioxidant enzymes (i.e., catalase and superoxide dismutase) and a protective shell composed of tannic acid-cerium ion network. Upon oral administration to colitis mice, CSMTC can effectively restore colonic redox balance, reinforce the intestinal barrier, modulate gut microbiota composition, maintain the blood-brain barrier integrity, and regulate systemic immune responses. Notably, behavioral test results reveal that CSMTC significantly alleviates the colitis-associated mental disorder (e.g., depression-like behavior) via the microbiota-gut-brain axis by reducing neuroinflammation, enhancing hippocampal neural plasticity, modulating hippocampal immune responses, and restoring neurotransmitter homeostasis. This work may have implications for the development of new nanodrugs for treating inflammation-associated complications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yaolong An
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Macheng Cui
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Linan Tian
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Department of Obstetrics and Gynaecology, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
25
|
Yu T, Bai R, Wang Z, Qin Y, Wang J, Wei Y, Zhao R, Nie G, Han B. Colon-targeted engineered postbiotics nanoparticles alleviate osteoporosis through the gut-bone axis. Nat Commun 2024; 15:10893. [PMID: 39738035 PMCID: PMC11686147 DOI: 10.1038/s41467-024-55263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site. These engineered postbiotics nanoparticles can effectively suppress macrophage inflammatory activation, modulate the redox balance, and regulate the composition of the gut microbiota, thereby restoring epithelial barriers, inhibiting bacterial invasion, and down-regulating pro-inflammatory responses. As a result, the remission of systemic inflammation is accompanied by a rebalancing of osteoblast and osteoclast activity, alleviating inflammatory bowel disease-related and post-menopausal bone loss. Specifically, the treatment of engineered postbiotics nanoparticles can also improve the quality and quantity of bone with restoration of deteriorative mechanical properties, which indicating a therapeutic potential on fracture prevention. This study provides valuable insights into the gut-bone axis and establishes a promising and safe therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zeming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jingwei Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
26
|
Cheng X, Sui H, Chen F, Li C, Du M, Zhang S, Chen J, Dou J, Huang Y, Xie X, Cheng C, Yang R, Yang C, Shi B, Shao D, Leong KW, Huang H. Nanomaterial-Mediated Reprogramming of Macrophages to Inhibit Refractory Muscle Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410368. [PMID: 39548911 PMCID: PMC11849413 DOI: 10.1002/adma.202410368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Orofacial muscles are particularly prone to refractory fibrosis after injury, leading to a negative effect on the patient's quality of life and limited therapeutic options. Gaining insights into innate inflammatory response-fibrogenesis homeostasis can aid in the development of new therapeutic strategies for muscle fibrosis. In this study, the crucial role of macrophages is identified in the regulation of orofacial muscle fibrogenesis after injury. Hypothesizing that orchestrating macrophage polarization and functions will be beneficial for fibrosis treatment, nanomaterials are engineered with polyethylenimine functionalization to regulate the macrophage phenotype by capturing negatively charged cell-free nucleic acids (cfNAs). This cationic nanomaterial reduces macrophage-related inflammation in vitr and demonstrates excellent efficacy in preventing orofacial muscle fibrosis in vivo. Single-cell RNA sequencing reveals that the cationic nanomaterial reduces the proportion of profibrotic Gal3+ macrophages through the cfNA-mediated TLR7/9-NF-κB signaling pathway, resulting in a shift in profibrotic fibro-adipogenic progenitors (FAPs) from the matrix-producing Fabp4+ subcluster to the matrix-degrading Igf1+ subcluster. The study highlights a strategy to target innate inflammatory response-fibrogenesis homeostasis and suggests that cationic nanomaterials can be exploited for treating refractory fibrosis.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Sui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meijun Du
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiming Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiali Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinfeng Dou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Yang
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
27
|
Qian D, Xu J, Zhang X, Hu F, Cao S, Dong Y, Liu X, Yao Y, Yu H, Lu Y, Ma X, Cheng K, Zhao X, Nie G, Zhang X. Microenvironment Self-Adaptive Nanomedicine Promotes Spinal Cord Repair by Suppressing Inflammation Cascade and Neural Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307624. [PMID: 39478649 DOI: 10.1002/adma.202307624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2024] [Indexed: 12/13/2024]
Abstract
Despite various biomaterial-based strategies are tried in spinal cord injury (SCI), developing safe and effective microinvasive pharmacotherapy strategies is still an unmet clinical need. Stimuli-responsive nanomedicine has emerged as a promising non-invasion technology, which enhances drug delivery and promotes functional recovery following SCI. Considering the multiple progressive pathological events and the blood spinal cord barrier (BSCB) associating SCI, a microenvironment self-adaptive nanoparticle (custom-designed with rabies virus glycoprotein 29-RVG29 and hyaluronic acid-HA, RHNP) capable of consistently crossing the BSCB and selectively targeting inflammatory cells and neural cells based on different stages of SCI are developed. The data indicated that RHNP can effectively traverse the BSCB through RVG29, and adaptively modulate cellular internalization by selectively exposing either HA or RVG29 through diselenide bonds, depending on pathological reactive oxygen species (ROS) signals. Furthermore, curcumin is loaded into RHNP (RHNP-Cur) to improve motor function and coordination of hind-limbs in a traumatic SCI mouse model. This study finds that RHNP-Cur exhibited inhibitory effects on the inflammatory cascade originating from M1 microglia/macrophages and neurotoxic astrocytes, and protected neural cells from inflammation-induced apoptosis during nerve regeneration. Collectively, the work provides a microenvironment self-adaptive nanomedicine which enables efficient microinvasive treatment of SCI.
Collapse
Affiliation(s)
- Dingfei Qian
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiaqi Xu
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xuelian Zhang
- China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Fanqi Hu
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shiqi Cao
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yuan Dong
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaole Liu
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yawei Yao
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haichao Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yichao Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Zhang
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
28
|
Yang W, Lin P, Gao R, Fang Z, Wang Z, Ma Z, Shi J, Yu W. Cell-derived biomimetic drug delivery system for inflammatory bowel disease therapy. Mater Today Bio 2024; 29:101332. [PMID: 39606424 PMCID: PMC11600033 DOI: 10.1016/j.mtbio.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent disease with an increasing incidence year by year. At present, no safe and effective treatment for IBD exists. Thus, there is an urgent need to create new therapeutic options that have decreased adverse effects and positive clinical efficacy. A range of nanomaterials have fueled the advancement of nanomedicine in recent years, which is establishing more appealing and prospective treatment approaches for IBD. However, traditional synthetic nanomaterials still have some problems in the IBD drug delivery process, such as weak targeting ability of vectors, difficulty escaping immune surveillance, and poor biosecurity. Natural sources of biological nanomaterials have been identified to solve the above problems. A drug delivery system based on bionic technology is expected to achieve a new breakthrough in the targeted therapy of IBD by nanotechnology due to its organic integration of low immunogenicity and natural targeting of biological materials and the controllability and versatility of synthetic nanocarrier design. We begin this review by outlining the fundamental traits of both inflammatory and healthy intestinal microenvironments. Subsequently, we review the latest application of a cell-derived bionic drug delivery system in IBD therapy. Finally, we discuss the development prospects of this delivery system and challenges to its clinical translation. Biomimetic nanotherapy is believed to offer a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhouru Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhen Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| |
Collapse
|
29
|
Gu C, Fang S, Liu L, Chen B, Xu L, Shao M, Sun J, Qian H, Wang W. Local Release of Copper Manganese Oxide Using HA Microneedle for Improving the Efficacy of Drug-Resistant Wound Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406377. [PMID: 39370574 DOI: 10.1002/smll.202406377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The production of bacterial toxins and excessive accumulation of reactive oxygen species (ROS) can induce localized oxidative stress, triggering an exaggerated immune response that impedes wound healing and culminates in chronic wounds. To address this issue, a microneedle (MN) system loaded with copper-manganese oxide (CMO) is developed to modulate the hyperimmune response in wounds. CMO@MN exhibits excellent antimicrobial and anti-inflammatory properties by effectively killing bacteria, scavenging ROS, and modulating macrophage polarization through their multiple enzymatic activities and photothermal properties. RNA sequencing revealed that CMO@MN improved the therapeutic effect on the infected skin of mice by balancing the ratio of M1/M2 macrophages and promoting cell migration and angiogenesis through the regulation of relevant pathways. Overall, this CMO@MN patch skillfully balances the complex issues between the immune response and wound healing and has potential applications in the treatment of other serious bacterial infections.
Collapse
Affiliation(s)
- Cheng Gu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Shu Fang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| |
Collapse
|
30
|
Lei Y, Liu Y, Xie W, Wei Y, Zhuang X, Zhang H, Cao H, Wang X. Cardiovascular developmental hazards of valproic acid in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117165. [PMID: 39405976 DOI: 10.1016/j.ecoenv.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024]
Abstract
Valproic acid (VPA) is predominantly prescribed for epilepsy, convulsions, and other psychiatric disorders. As an epigenetic regulator, it is also used to treat various forms of cancer. The clinical demand for the drug may pose an environmental hazard. Evidence indicates that VPA's significant therapeutic value comes at the cost of possible side toxic effects, as symptoms of birth defects have been confirmed in animal experiments using VPA. However, the effects of VPA during the development of the circulatory system remain unclear. In this study, zebrafish embryos were exposed to a series of concentrations of VPA between three hours post fertilization (hpf) and five days post fertilization (dpf). The results demonstrated time- and dose-dependent developmental delays in the zebrafish, including cardiovascular malformation and decreased movement and reaction time. Consistent with the in vivo results, exposure to VPA increased the levels of myocardial reactive oxygen species (ROS) and cell apoptosis through cardiac mitochondrial turnover disorders. The expression levels of genes related to cardiovascular development and antioxidant response were downregulated, while genes related to apoptosis pathways were upregulated. Overall, our toxicological studies of VPA exposure illustrate the damage to cardiovascular development, raising concerns about the hazard of VPA exposure in early pregnancy. Our study provides novel insights into the potential environmental risks of VPA.
Collapse
Affiliation(s)
- Yuqing Lei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yingying Liu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Wenpeng Xie
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Yalan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xudong Zhuang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Haitao Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hua Cao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
31
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
32
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
33
|
Liu Y, Lv X, Yuan H, Wang X, Huang J, Wang L. Selenomethionine and Allicin Synergistically Mitigate Intestinal Oxidative Injury by Activating the Nrf2 Pathway. TOXICS 2024; 12:719. [PMID: 39453138 PMCID: PMC11510923 DOI: 10.3390/toxics12100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Oxidative stress frequently contributes to intestinal barrier injury in animals and humans. It was reported that both Selenomethionine (SeMet) and allicin exhibit protective effects against a range of diseases caused by oxidative stress. This study aimed to investigate the synergistic antioxidant effects and underlying mechanisms of SeMet and allicin on a H2O2-induced intestinal barrier injury model using IPEC-J2 cells and mice. The results showed that H2O2 induced severe oxidative stress, including a decrease in cell viability, antioxidant level, migration capacity, and cell integrity. SeMet and allicin exhibited significant synergistic anti-oxidative effects on intestinal epithelial cells. The combined use of SeMet and allicin increased SOD activity, GSH content, and GSH/GSSG ratio while decreasing MDA, NO, and ROS content levels. Furthermore, we found that SeMet and allicin synergistically activated the nuclear factor erythroid-related factor 2 (Nrf2)-NAD(P)H dehydrogenase [quinone] 1 (NQO1) signaling pathway and down-regulated endoplasmic reticulum stress (ER stress)-related proteins. However, the synergistic antioxidative and intestinal barrier protective effects of SeMet and allicin were abolished by Nrf2 inhibitor ML385 in vitro and in vivo. In conclusion, SeMet and allicin synergistically attenuate intestinal barrier injury induced by excessively oxidative stress through the activation of the Nrf2 signaling pathway and inhibition ER stress. These findings support that the combined use of SeMet and allicin could enhance antioxidative properties and alleviate intestinal injury in further clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (X.L.); (H.Y.); (X.W.); (J.H.)
| |
Collapse
|
34
|
Zhu Y, Huang X, Deng Z, Bai T, Gao B, Xu C, Fu J, Zhao Y, Zhang Y, Zhang M, Zhang M, Yang M, Chen L. Orally biomimetic metal-phenolic nanozyme with quadruple safeguards for intestinal homeostasis to ameliorate ulcerative colitis. J Nanobiotechnology 2024; 22:545. [PMID: 39238009 PMCID: PMC11378530 DOI: 10.1186/s12951-024-02802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is defined by persistent inflammatory processes within the gastrointestinal tract of uncertain etiology. Current therapeutic approaches are limited in their ability to address oxidative stress, inflammation, barrier function restoration, and modulation of gut microbiota in a coordinated manner to maintain intestinal homeostasis. RESULTS This study involves the construction of a metal-phenolic nanozyme (Cur-Fe) through a ferric ion-mediated oxidative coupling of curcumin. Cur-Fe nanozyme exhibits superoxide dismutase (SOD)-like and •OH scavenging activities, demonstrating significant anti-inflammatory and anti-oxidant properties for maintaining intracellular redox balance in vitro. Drawing inspiration from Escherichia coli Nissle 1917 (EcN), a biomimetic Cur-Fe nanozyme (CF@EM) is subsequently developed by integrating Cur-Fe into the EcN membrane (EM) to improve the in vivo targeting ability and therapeutic effectiveness of the Cur-Fe nanozyme. When orally administered, CF@EM demonstrates a strong ability to colonize the inflamed colon and restore intestinal redox balance and barrier function in DSS-induced colitis models. Importantly, CF@EM influences the gut microbiome towards a beneficial state by enhancing bacterial diversity and shifting the compositional structure toward an anti-inflammatory phenotype. Furthermore, analysis of intestinal microbial metabolites supports the notion that the therapeutic efficacy of CF@EM is closely associated with bile acid metabolism. CONCLUSION Inspired by gut microbes, we have successfully synthesized a biomimetic Cur-Fe nanozyme with the ability to inhibit inflammation and restore intestinal homeostasis. Collectively, without appreciable systemic toxicity, this work provides an unprecedented opportunity for targeted oral nanomedicine in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumgi, 830001, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710077, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Junlong Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yuanru Zhao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
35
|
Xia K, Gao R, Li L, Wu X, Wu T, Ruan Y, Yin L, Chen C. Transformation of colitis and colorectal cancer: a tale of gut microbiota. Crit Rev Microbiol 2024; 50:653-662. [PMID: 37671830 DOI: 10.1080/1040841x.2023.2254388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.
Collapse
Affiliation(s)
- Kai Xia
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Li
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Li Huili Hospital, Ningbo, China
| | - Xiaocai Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Li M, Wang L, Lin D, Liu Z, Wang H, Yang Y, Sun C, Ye J, Liu Y. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation. ACS NANO 2024; 18:20886-20933. [PMID: 39080827 DOI: 10.1021/acsnano.4c05013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gut microbiota plays a crucial role in maintaining host homeostasis, impacting the progression and therapeutic outcomes of diseases, including inflammatory bowel disease, cancer, hepatic conditions, obesity, cardiovascular pathologies, and neurologic disorders, via immune, neural, and metabolic mechanisms. Hence, the gut microbiota is a promising target for disease therapy. The safety and precision of traditional microbiota regulation methods remain a challenge, which limits their widespread clinical application. This limitation has catalyzed a shift toward the development of multifunctional delivery systems that are predicated on microbiota modulation. Guided by bioinspired strategies, an extensive variety of naturally occurring materials and mechanisms have been emulated and harnessed for the construction of platforms aimed at the monitoring and modulation of gut microbiota. This review outlines the strategies and advantages of utilizing bioinspired principles in the design of gut microbiota intervention systems based on traditional regulation methods. Representative studies on the development of bioinspired therapeutic platforms are summarized, which are based on gut microbiota modulation to confer multiple pharmacological benefits for the synergistic management of diseases. The prospective avenues and inherent challenges associated with the adoption of bioinspired strategies in the refinement of gut microbiota modulation platforms are proposed to augment the efficacy of disease treatment.
Collapse
Affiliation(s)
- Muqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - LuLu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Demin Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunmeng Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
37
|
Wang Z, Chen F, Cao Y, Zhang F, Sun L, Yang C, Xie X, Wu Z, Sun M, Ma F, Shao D, Leong KW, Pei R. An Engineered Nanoplatform with Tropism Toward Irradiated Glioblastoma Augments Its Radioimmunotherapy Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314197. [PMID: 38713519 DOI: 10.1002/adma.202314197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Indexed: 05/09/2024]
Abstract
Combining radiotherapy with immune checkpoint blockade therapy offers a promising approach to treat glioblastoma multiforme (GBM), yet challenges such as limited effectiveness and immune-related adverse events (irAEs) persist. These issues are largely due to the failure in targeting immunomodulators directly to the tumor microenvironment. To address this, a biomimetic nanoplatform that combines a genetically modified mesenchymal stem cell (MSC) membrane with a bioactive nanoparticle core for chemokine-directed radioimmunotherapy of GBM is developed. The CC chemokine receptor 2 (CCR2)-overexpressing MSC membrane acts as a tactical tentacle to achieve radiation-induced tropism toward the abundant chemokine (CC motif) ligand 2 (CCL2) in irradiated gliomas. The nanoparticle core, comprising diselenide-bridged mesoporous silica nanoparticles (MSNs) and PD-L1 antibodies (αPD-L1), enables X-ray-responsive drug release and radiosensitization. In two murine models with orthotopic GBM tumors, this nanoplatform reinvigorated immunogenic cell death, and augmented the efficacy and specificity of GBM radioimmunotherapy, with reduced occurrence of irAEs. This study suggests a promising radiation-induced tropism strategy for targeted drug delivery, and presents a potent nanoplatform that enhances the efficacy and safety of radio-immunotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fan Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chao Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Madi Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
38
|
Huang L, Hu W, Huang LQ, Zhou QX, Song ZY, Tao HY, Xu B, Zhang CY, Wang Y, Xing XH. "Two-birds-one-stone" oral nanotherapeutic designed to target intestinal integrins and regulate redox homeostasis for UC treatment. SCIENCE ADVANCES 2024; 10:eado7438. [PMID: 39047093 PMCID: PMC11268407 DOI: 10.1126/sciadv.ado7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.
Collapse
Affiliation(s)
- Long Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Hu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Long Qun Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qin Xuan Zhou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zheng Yang Song
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Heng Yu Tao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Wang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
40
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
41
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
42
|
Shen Q, Cao M, Yu C, Tang J, Song L, Ding Y, Ju L, Wei JF, Li L, Huang W. Biodegradable Mesoporous Organosilica-Based Nanostabilizer Targeting Mast Cells for Long-Term Treatment of Allergic Diseases. ACS NANO 2024; 18:16934-16946. [PMID: 38907988 DOI: 10.1021/acsnano.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Allergic diseases are immune system dysfunctions mediated by mast cell (MC) activation stimulated by specific allergens. However, current small molecular MC stabilizers for allergic disease prevention often require multiple doses over a long period of time and are associated with serious side effects. Herein, we develop a diselenide-bridged mesoporous silica nanostabilizer, proving that it could specifically target sensitized MCs via the recognition of IgE aptamer and IgE. Meantime, the IgE aptamer can also mitigate allergic reactions by preventing re-exposure of allergens from the surface of sensitized MCs. Furthermore, the diselenide-bridged scaffold can be reduced by the intracellular excessive ROS, subsequently achieving redox homeostasis via ROS depletion. Finally, the precise release of small molecular MC stabilizers along with the biodegradation of nanocarrier can stabilize the membranes of MCs. In vivo assays in passive cutaneous anaphylactic (PCA) and allergic rhinitis (AR) mice indicated that our current strategy further endowed it with a high efficacy, long-term therapeutic time window, as well as negligible inflammatory side effects for allergic diseases, offering a promising therapeutic strategy for the clinical generalization of allergic diseases.
Collapse
Affiliation(s)
- Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Mengda Cao
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210044, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Tang
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lebin Song
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yanan Ding
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Cong Y, Liu K, Huang Z, Lu J, Wang HH, Hong Y, Xie Z, Li H. A Bivalent Aptamer-Based DNA Agonist for EGFR Signaling Effectively Alleviates Ulcerative Colitis In Vivo. ACS Chem Biol 2024; 19:1280-1290. [PMID: 38837175 DOI: 10.1021/acschembio.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
While epidermal growth factor (EGF) shows promise in addressing the clinical manifestations of intestinal ulcerative diseases by activating the EGF receptor (EGFR)-mediated cell signaling, its clinical application is hampered by poor protein hydrolytic stability, low thermostability, and difficulty in modification. The development of a novel EGFR agonist for ulcerative colitis remains an urgent need, necessitating innovative solutions to overcome the limitations of current therapies via recombinant EGF protein. Herein, we introduce a novel DNA agonist for EGFR, Dimer-YL, which employs a bivalent aptamer to induce stable receptor dimerization, thereby activating the EGFR signaling and related cell behaviors. Dimer-YL has been demonstrated to recapitulate the EGF-promoted cellular behaviors, including proliferation and migration, as well as repair the damage of intercellular tight junctions. Furthermore, our findings demonstrate the potent therapeutic function of Dimer-YL in alleviating DSS-induced ulcerative colitis in vivo. Together, the present work has revealed Dimer-YL as an innovative DNA molecule for effective EGFR activation, offering promise for the development of EGFR-agonistic agents for therapeutic purposes.
Collapse
Affiliation(s)
- Yulin Cong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Kun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Zihong Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Junjun Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
44
|
Zhang Y, Lin X, Chen X, Fang W, Yu K, Gu W, Wei Y, Zheng H, Piao J, Li F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024; 19:5859-5878. [PMID: 38887691 PMCID: PMC11182361 DOI: 10.2147/ijn.s451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted extensive attention as drug delivery systems because of their unique meso-structural features (high specific surface area, large pore volume, and tunable pore structure), easily modified surface, high drug-loading capacity, and sustained-release profiles. However, the enduring and non-specific enrichment of MSNs in healthy tissues may lead to toxicity due to their slow degradability and hinder their clinical application. The emergence of degradable MSNs provided a solution to this problem. The understanding of strategies to regulate degradation and clearance of these MSNs for promoting clinical trials and expanding their biological applications is essential. Here, a diverse variety of degradable MSNs regarding considerations of physiochemical properties and doping strategies of degradation, the biodistribution of MSNs in vivo, internal clearance mechanism, and adjusting physical parameters of clearance are highlighted. Finally, an overview of these degradable and clearable MSNs strategies for biosafety is provided along with an outlook of the encountered challenges.
Collapse
Affiliation(s)
- Yuelin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xue Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xinxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wenting Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
45
|
Liu D, Liu J, Ran L, Yang Z, He Y, Yang H, Yu Y, Fu L, Zhu M, Chen H. Oleanolic Acid Promotes the Formation of Probiotic Escherichia coli Nissle 1917 (EcN) Biofilm by Inhibiting Bacterial Motility. Microorganisms 2024; 12:1097. [PMID: 38930479 PMCID: PMC11205495 DOI: 10.3390/microorganisms12061097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotic biofilms have been beneficial in the fight against infections, restoring the equilibrium of the host's gut microbiota, and enhancing host health. They are considered a novel strategy for probiotic gut colonization. In this case, we evaluated the effects of various active substances from traditional Chinese medicine on Escherichia coli Nissle 1917 (EcN) to determine if they promote biofilm formation. It was shown that 8-64 μg/mL of oleanolic acid increased the development of EcN biofilm. Additionally, we observed that oleanolic acid can effectively suppress biofilm formation in pathogenic bacteria such as Salmonella and Staphylococcus aureus. Next, we assessed the amount of EcN extracellular polysaccharides, the number of live bacteria, their metabolic activity, the hydrophobicity of their surface, and the shape of their biofilms using laser confocal microscopy. Through transcriptome analysis, a total of 349 differentially expressed genes were identified, comprising 134 upregulated and 215 downregulated genes. GO functional enrichment analysis and KEGG pathway enrichment analysis revealed that oleanolic acid functions are through the regulation of bacterial motility, the iron absorption system, the two-component system, and adhesion pathways. These findings suggest that the main effects of oleanolic acid are to prevent bacterial motility, increase initial adhesion, and encourage the development of EcN biofilms. In addition, oleanolic acid interacts with iron absorption to cooperatively control the production of EcN biofilms within an optimal concentration range. Taking these results together, this study suggests that oleanolic acid may enhance probiotic biofilm formation in the intestines, presenting new avenues for probiotic product development.
Collapse
Affiliation(s)
- Dan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Jingjing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Lei Ran
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Zhuo Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
46
|
Song C, Wu J, Wu J, Wang F. MnO 2 and roflumilast-loaded probiotic membrane vesicles mitigate experimental colitis by synergistically augmenting cAMP in macrophage. J Nanobiotechnology 2024; 22:294. [PMID: 38807127 PMCID: PMC11131305 DOI: 10.1186/s12951-024-02558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is one chronic and relapsing inflammatory bowel disease. Macrophage has been reputed as one trigger for UC. Recently, phosphodiesterase 4 (PDE4) inhibitors, for instance roflumilast, have been regarded as one latent approach to modulating macrophage in UC treatment. Roflumilast can decelerate cyclic adenosine monophosphate (cAMP) degradation, which impedes TNF-α synthesis in macrophage. However, roflumilast is devoid of macrophage-target and consequently causes some unavoidable adverse reactions, which restrict the utilization in UC. RESULTS Membrane vesicles (MVs) from probiotic Escherichia coli Nissle 1917 (EcN 1917) served as a drug delivery platform for targeting macrophage. As model drugs, roflumilast and MnO2 were encapsulated in MVs (Rof&MnO2@MVs). Roflumilast inhibited cAMP degradation via PDE4 deactivation and MnO2 boosted cAMP generation by activating adenylate cyclase (AC). Compared with roflumilast, co-delivery of roflumilast and MnO2 apparently produced more cAMP and less TNF-α in macrophage. Besides, Rof&MnO2@MVs could ameliorate colitis in mouse model and regulate gut microbe such as mitigating pathogenic Escherichia-Shigella and elevating probiotic Akkermansia. CONCLUSIONS A probiotic-based nanoparticle was prepared for precise codelivery of roflumilast and MnO2 into macrophage. This biomimetic nanoparticle could synergistically modulate cAMP in macrophage and ameliorate experimental colitis.
Collapse
Affiliation(s)
- Chengjun Song
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jiamin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Institution of Drug R&D, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Fangyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China.
- Department of Gastroenterology and Hepatology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
47
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
48
|
Fu YJ, Zhao X, Wang LY, Li K, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A Gas Therapy Strategy for Intestinal Flora Regulation and Colitis Treatment by Nanogel-Based Multistage NO Delivery Microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309972. [PMID: 38324725 DOI: 10.1002/adma.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Current approaches to treating inflammatory bowel disease focus on the suppression of overactive immune responses, the removal of reactive intestinal oxygen species, and regulation of the intestinal flora. However, owing to the complex structure of the gastrointestinal tract and the influence of mucus, current small-molecule and biologic-based drugs for treating colitis cannot effectively act at the site of colon inflammation, and as a result, they tend to exhibit low efficacies and toxic side effects. In this study, nanogel-based multistage NO delivery microcapsules are developed to achieve NO release at the inflammation site by targeting the inflammatory tissues using the nanogel. Surprisingly, oral administration of the microcapsules suppresses the growth of pathogenic bacteria and increases the abundance of probiotic bacteria. Metabolomics further show that an increased abundance of intestinal probiotics promotes the production of metabolites, including short-chain fatty acids and indole derivatives, which modulate the intestinal immunity and restore the intestinal barrier via the interleukin-17 and PI3K-Akt signaling pathways. This work reveals that the developed gas therapy strategy based on multistage NO delivery microcapsules modulates the intestinal microbial balance, thereby reducing inflammation and promoting intestinal barrier repair, ultimately providing a new therapeutic approach for the clinical management of colitis.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li-Ya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Yi-Fan Zhao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
49
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
50
|
Jin T, Lu H, Zhou Q, Chen D, Zeng Y, Shi J, Zhang Y, Wang X, Shen X, Cai X. H 2S-Releasing Versatile Montmorillonite Nanoformulation Trilogically Renovates the Gut Microenvironment for Inflammatory Bowel Disease Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308092. [PMID: 38308198 PMCID: PMC11005690 DOI: 10.1002/advs.202308092] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Abnormal activation of the intestinal mucosal immune system, resulting from damage to the intestinal mucosal barrier and extensive invasion by pathogens, contributes to the pathogenesis of inflammatory bowel disease (IBD). Current first-line treatments for IBD have limited efficacy and significant side effects. An innovative H2S-releasing montmorillonite nanoformulation (DPs@MMT) capable of remodeling intestinal mucosal immune homeostasis, repairing the mucosal barrier, and modulating gut microbiota is developed by electrostatically adsorbing diallyl trisulfide-loaded peptide dendrimer nanogels (DATS@PDNs, abbreviated as DPs) onto the montmorillonite (MMT) surface. Upon rectal administration, DPs@MMT specifically binds to and covers the damaged mucosa, promoting the accumulation and subsequent internalization of DPs by activated immune cells in the IBD site. DPs release H2S intracellularly in response to glutathione, initiating multiple therapeutic effects. In vitro and in vivo studies have shown that DPs@MMT effectively alleviates colitis by eliminating reactive oxygen species (ROS), inhibiting inflammation, repairing the mucosal barrier, and eradicating pathogens. RNA sequencing revealed that DPs@MMT exerts significant immunoregulatory and mucosal barrier repair effects, by activating pathways such as Nrf2/HO-1, PI3K-AKT, and RAS/MAPK/AP-1, and inhibiting the p38/ERK MAPK, p65 NF-κB, and JAK-STAT3 pathways, as well as glycolysis. 16S rRNA sequencing demonstrated that DPs@MMT remodels the gut microbiota by eliminating pathogens and increasing probiotics. This study develops a promising nanoformulation for IBD management.
Collapse
Affiliation(s)
- Ting Jin
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Hongyang Lu
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Qiang Zhou
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Dongfan Chen
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Youyun Zeng
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Jiayi Shi
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yanmei Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xianwen Wang
- School of Biomedical EngineeringResearch and Engineering Center of Biomedical MaterialsAnhui Medical UniversityHefei230032China
| | - Xinkun Shen
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Xiaojun Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|