1
|
Zhang L, Zhan M, Sun H, Zou Y, Laurent R, Mignani S, Majoral JP, Cao X, Shen M, Shi X. Mesenchymal Stem-Cell-Derived Exosomes Loaded with Phosphorus Dendrimers and Quercetin Treat Parkinson's Disease by Modulating Inflammatory Immune Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40388599 DOI: 10.1021/acsami.5c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The intricate pathologic features of Parkinson's disease (PD) coupled with the obstacle posed by the blood-brain barrier (BBB) significantly limit the efficacy of most medications, leading to difficulties in PD treatments. Herein, we have developed a nanomedicine based on stem-cell-derived exosomes coloaded with hydroxyl-terminated phosphorus dendrimers (AK76) and quercetin (Que) for combined therapeutic intervention of PD. The engineered nanocomplexes (for short, QAE NPs) exhibit an optimal size of 269.7 nm, favorable drug release profile, and desired cytocompatibility, enabling penetration of the nasal mucosa to accumulate in the brain without BBB crossing. The developed QAE NPs can scavenge reactive oxygen species, promote M2 microglial polarization, attenuate inflammation, and protect neurons by inducing autophagy and restoring mitochondrial homeostasis through the integrated anti-inflammatory and antioxidant properties of exosomes, Que and AK76, collectively leading to improved motor functions, coordination, and alleviation of depression-like symptoms in PD mice. The formulated QAE NPs combined with several therapeutic components are able to simultaneously modulate both microglia and neurons, offering promising potential for the treatment of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mengsi Zhan
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Huxiao Sun
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yu Zou
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d'Etudes et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Xueyan Cao
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
2
|
Huang Y, Zhan M, Sun H, Zhang C, Shen M, Ma J, Zhang G, Shi X. Electrosprayed core-shell microspheres co-deliver fibronectin and resveratrol for combined treatment of acute lung injury. J Colloid Interface Sci 2025; 686:498-508. [PMID: 39914295 DOI: 10.1016/j.jcis.2025.01.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
The facile development of advanced formulations capable of scavenging excess reactive oxygen species (ROS) and sustainably inhibiting inflammatory cytokine secretion is imminent for effective treatment of acute lung injury (ALI), but still remains a great challenge. This study presents an innovative core-shell carrier system via electrospray technology, characterized by a shell of poly(lactic acid-co-glycolic acid) (PLGA) and a core consisting of polycaprolactone-polyethylene glycol (PCL-PEG) micelles encapsulating resveratrol (Res), and surface modified with fibronectin (FN). The created drug-loaded core-shell microspheres (for short, RPG@FN) with a size of 1.30 μm, are stable under physiological conditions and specifically target macrophages through the Arg-Gly-Asp peptide sequence of FN. We show that the RPG@FN microspheres can synergistically reduce inflammatory responses through ROS scavenging and macrophage M2 polarization, thus facilitating mitochondrial homeostasis restoration and modulating NF-κB and PI3K/Akt pathways by virtue of the integrated antioxidant and anti-inflammatory properties of FN and Res. In an ALI mouse model, the developed RPG@FN significantly alleviates pulmonary edema and inflammatory cell infiltration, while repairing the inflammatory lung injury. This innovative RPG@FN system fully capitalizes on the therapeutic benefits of Res and FN with improved bioavailability, thus offering a promising option for effective ALI treatment.
Collapse
Affiliation(s)
- Yifan Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China
| | - Caiyun Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China
| | - Jing Ma
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092 China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434 China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China; CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada 9020-105 Funchal, Portugal.
| |
Collapse
|
3
|
Ma Y, Lai P, Sha Z, Li B, Wu J, Zhou X, He C, Ma X. TME-responsive nanocomposite hydrogel with targeted capacity for enhanced synergistic chemoimmunotherapy of MYC-amplified osteosarcoma. Bioact Mater 2025; 47:83-99. [PMID: 39897587 PMCID: PMC11783017 DOI: 10.1016/j.bioactmat.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The oncogene MYC is one of the most commonly activated oncogenic proteins in human tumors, with nearly one-fourth of osteosarcoma showing MYC amplification and exhibiting the worst clinical outcomes. The clinical efficacy of single radiotherapy, chemotherapy, and immunotherapy for such osteosarcoma is poor, and the dysregulation of MYC amplification and immune-suppressive tumor microenvironment (TME) may be potential causes of anti-tumor failure. To address the above issues, we developed an injectable TME-responsive nanocomposite hydrogel to simultaneously deliver an effective MYC inhibitor (NHWD-870) and IL11Rα-targeted liposomes containing cisplatin-loaded MnO2 (Cis/Mn@Lipo-IL11). After in situ administration, NHWD-870 effectively degrades MYC and downregulates CCL2 and IL13 cytokines to trigger M1 type activation of macrophages. Meanwhile, targeted delivery of Cis/Mn@Lipo-IL11 reacts with excess intratumoral GSH to generate Mn2+ and thus inducing excess active oxygen species (ROS) production through Fenton-like reaction, along with cisplatin, thereby inducing immunogenic cell death (ICD) to promote dendritic cell maturation. Through synergistic regulation of MYC and ICD levels, the immune microenvironment was reshaped to enhance immune infiltration. In the osteosarcoma-bearing model, the nanocomposite hydrogel significantly enhanced tumor T cell infiltration, induced effective anti-tumor immunity and attenuated lung metastasis. Therefore, our results reveal a powerful strategy for targeted combination therapy of MYC-amplified osteosarcoma.
Collapse
Affiliation(s)
- Yichao Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peng Lai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhou Sha
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bing Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiangpeng Wu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
4
|
Ding M, Chen H, He L, Wang Z, Zhao X, Sun P, Mei Q, Li D, Fan Q. NIR-II D-A-D-Type Small-Molecule Coordination with Carboxylatopillar[5]Arene: a Multifunctional Phototheranostic for Low-Temperature NIR-II Photothermal/Platinum-Based/Chemodynamic Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501903. [PMID: 40255101 DOI: 10.1002/smll.202501903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Low-temperature second near-infrared region (NIR-II) photothermal therapy (PTT) has shown significant potential in minimizing damage to normal tissues and reducing inflammation. However, it still faces challenge of insufficient immune response. Thus, a multifunctional phototheranostic nanoparticle (BDPB/Pt/Fe@P[5]) is developed by co-loading BDPB, CDHPt, and Fe2⁺ with a pH-sensitive lipid DSPE-PEOz2K. The carboxylatopillar[5]arene (CP[5]) used to construct this nanoparticle exhibits strong host-guest recognition with pyridine salts, alleviating aggregation caused quench (ACQ) effect and enhancing the NIR-II emission of the donor-acceptor-donor (D-A-D)-type organic small molecule (BDPB). CP[5] provides suitable vehicles for encapsulating platinum (IV) prodrugs (CDHPt) and Fe2⁺ ions via metal coordination for controllable reactive oxygen species (ROS) release. Under low-intensity NIR-II laser irradiation and an acidic tumor microenvironment, the nanoparticles degrade, releasing CDHPt and Fe2⁺ ions for platinum-based therapy and chemodynamic therapy (CDT). CDHPt facilitates the direct production of superoxide anions (O₂·⁻) from O₂ and partially converts it into the highly cytotoxic hydroxyl radicals, thereby promoting the Fenton reaction process. The therapeutic efficacy is further synergized by immunogenic cell death (ICD) effect.
Collapse
Affiliation(s)
- Miaomiao Ding
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Haoran Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhichao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianghua Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Pengfei Sun
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qunbo Mei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
5
|
Tao S, Song Y, Liu L, Ma W, Zhou B, Hu F. Herbal polysaccharide-based carrier enhances immunogenic cell death in cancer chemotherapy. Int J Biol Macromol 2025; 302:140501. [PMID: 39892542 DOI: 10.1016/j.ijbiomac.2025.140501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Breast cancer is a significant global health burden, with growth and metastasis contributing to its high mortality rate, highlighting the need for innovative treatment strategies. This study aims to develop breast cancer-targeted nanoparticles loaded with Doxorubicin (Dox) to combat both primary tumors and metastasis. By utilizing Dendrobium officinale polysaccharide (DOP), an herb polysaccharide with immunomodulatory activity, as a carrier, and incorporating folic acid (FA) as an active targeting ligand, we've achieved advancements in chemoimmunotherapy. After delivery of resulting FA@Dox nanoparticles to solid tumors by passive and active targeting, the tumor cells were killed by released Dox, and the immunogenic cell death was enhanced by the DOP, which promotes the proliferation of natural killer (NK) cells, facilitates dendritic cell maturation, and synergistically modulates various immune cells, preventing lung metastasis. The comprehensive assessments included material characterizations, in vitro and in vivo efficacy evaluations, biosafety analysis, and immune response studies. Given that DOP is derived from the medicinal and edible Dendrobium officinale, the developed DOP-based carrier holds great promise as an advanced nanomedicine platform. This offers promising prospects for synergistic modulation of multiple immune cells, particularly through NK cell proliferation, amplifying the efficacy of chemoimmunotherapy across diverse tumor types.
Collapse
Affiliation(s)
- Shengchang Tao
- Department of Pharmacy, Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medial Image Processing, Southern Medical University, Guangzhou 510515, China
| | - Yuchen Song
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medial Image Processing, Southern Medical University, Guangzhou 510515, China
| | - Liuyi Liu
- Department of Pharmacy, Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wenwen Ma
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medial Image Processing, Southern Medical University, Guangzhou 510515, China
| | - Benjie Zhou
- Department of Pharmacy, Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medial Image Processing, Southern Medical University, Guangzhou 510515, China; Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
6
|
Jang D, Choi H, Lee J, Chun Y, Heo YH, Lee LP, Ahn DJ, Shin IS, Kim DH, Seo YH, Kim S. Inflamed Tissue-Targeting Polyphenol-Condensed Antioxidant Nanoparticles with Therapeutic Potential. Adv Healthc Mater 2025; 14:e2500495. [PMID: 40033968 DOI: 10.1002/adhm.202500495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Inflammation is essential for pathogen eradication and tissue repair; However, chronic inflammation can bring on multi-organ dysfunction due to an overproduction of reactive oxygen species (ROS). Among various anti-inflammatory agents, polyphenol-based nanotherapeutics offer potential advantages, including enhanced stability, targeted delivery, multiple therapeutic functions, and personalized therapy tailored to the severity. Despite these advantages, the development of biocompatible nanomedicines capable of selective accumulation in inflamed tissues and efficient inhibition of ROS-induced inflammatory signaling pathways remains a considerable challenge. In this study, a novel anti-inflammatory nanotherapeutic is engineered through the temperature-dependent condensation of polyphenolic catechin facilitated by hydrothermal reactions. The resulting catechin-condensed nanotherapeutic (CCN150), synthesized at a relatively low temperature, retains physicochemical and functional properties akin to its precursor, catechin, but with a marked enhancement in water solubility. CCN150 protects cells from oxidative stress by eliminating intracellular ROS and augmenting antioxidant enzymes. In vivo studies reveal that intravenously administered CCN150 predominantly accumulates in inflamed tissues, with minimal distribution to healthy regions. Furthermore, CCN150 effectively reduces systemic inflammation in mouse models by disrupting the cycles of ROS instigated by a pro-inflammatory oxidative milieu. Exhibiting negligible toxicity, CCN150 holds substantial promise for extensive therapeutic applications in the treatment of various ROS-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Dohyub Jang
- Department of Biomicrosystem Technology, Korea University, Seoul, 02792, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juhyang Lee
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, 66123, Saarbrücken, Germany
| | - Yousun Chun
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon-Ho Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Luke P Lee
- Harvard Institute of Medicine, Harvard Medical School Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Dong June Ahn
- Department of Biomicrosystem Technology, Korea University, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ik-Soo Shin
- Department of Chemistry, College of Natural Science, Soongsil University, 3, Seoul, 15674, Republic of Korea
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Nanobio·Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Young Hun Seo
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, 66123, Saarbrücken, Germany
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Gao F, Qiu X, Baddi S, He S, Wang S, Zhao C, Dou X, Feng C. Chiral Nanofibers of Camptothecin Trigger Pyroptosis for Enhanced Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202423446. [PMID: 39803865 DOI: 10.1002/anie.202423446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis. The CNF exhibits high chiral asymmetry factor (gabs) (~0.11) and remarkable structure stability under pH 6.5 condition. By formulating chiral CNF with mitochondrial-targeted DSPE-PEG-TPP, CNF accumulates specifically in the mitochondria of cancer cells, leading to mitochondrial dysfunction and a 3.42-fold increase in reactive oxygen species (ROS) generation compared to the CPT molecule. This ROS amplification activates the caspase-1/gasdermin D (GSDMD) pathway, inducing pyroptosis that promotes M1 macrophage polarization and enhances CD8+ T-cell-dependent antitumor immunity. Consequently, CNF achieves 1.8-fold greater growth inhibition of distant tumor and reduces tumor metastasis compared to the CPT molecule. Our innovative platform, assembling CPT molecules into chiral CNF structure, is highly anticipated to overcome the current clinical limitations of CPT molecules and offer a new direction for the development of next-generation immunotherapy strategies.
Collapse
Affiliation(s)
- Fengli Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Qiu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuting Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Jiang M, Liao L, Zhang J, Wei X, Yu CY, Wei H. Peptide core spherical nucleic acids circumvent tumor immunosuppression via supplementing methionine for enhanced photodynamic/gene immune/therapy of hepatocellular carcinoma. J Colloid Interface Sci 2025; 682:653-670. [PMID: 39642551 DOI: 10.1016/j.jcis.2024.11.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Spherical nucleic acids (SNAs) with functional peptide cores are an emerging nanoplatform for synergistic cancer therapy but have been rarely reported. We construct herein the first SNA nanoplatform based on a biodegradable binary peptide backbone of methionine (Met) and cysteine (Cys) for codelivery of a photosensitizer, Chlorin e6 (Ce6) and human liver-specific miR122 for synergistic photodynamic-gene therapy of hepatic cell carcinoma (HCC). Met supplementation by the peptide core improves the infiltration of T cells and enhances the effector function of T cells for turning a "cold" tumor into a "hot" one. The resulting SNA(+) shows the most significant inhibitory effect in a Hepa1-6 HCC primary/distal tumor model, with tumor growth inhibition (TGI) values of 98.5 ± 0.5 % and 99.1 ± 0.4 % for the primary and distant tumors, respectively. This SNA nanoplatform achieves superior high TGI values reported thus far to our knowledge with almost complete eradication for both tumors due to the simultaneous adaptive and innate immunity activation via photodynamic therapy (PDT) induced immunogenic cell death (ICD) and Met supplementation-promoted adaptive immunity, and miR122-enhanced innate immunity. Overall, this study not only develops a reliable synthetic strategy toward peptide-backboned multifunctional SNA nanoplatform, but also reports the modulation of amino acid metabolism for enhanced innate immunity for highly efficient HCC immunotherapy.
Collapse
Affiliation(s)
- Mingchao Jiang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Luanfeng Liao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Jinyan Zhang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Xiaojie Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China; Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China.
| |
Collapse
|
9
|
Li M, Zhang H, Xiong P, He Y, Zhou W, Wu C, Liao X, Zhang W, Yang H, Liu Y. DNA origami-based composite nanosandwich for iteratively potentiated chemo-immunotherapy. J Control Release 2025; 379:452-465. [PMID: 39809421 DOI: 10.1016/j.jconrel.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Developing effective nanoplatforms for chemo-immunotherapy to achieve enhanced tumor suppression and systemic antitumor immunity has recently received extensive attention. Herein, we formulated a multifunctional DNA sandwich nanodevice, DSWAC/siPD-L1, based on triangular DNA origami, to implement enhanced cancer chemo-immunotherapy. Taking advantage of the tumor-targeting ability of the AS1411 aptamer, DSWAC/siPD-L1 efficiently delivered doxorubicin (DOX), CpG, and siPD-L1 into tumor cells. Moreover, the sandwich cavity spatially protects siPD-L1 from degradation, and the featured design of the DNA/RNA duplex linkers ensures effective intracellular release of siPD-L1. The pH-responsive release of cytotoxic DOX induces apoptosis and initial mild immunogenic cell death of tumor cells, presenting antigens to enhance the maturation of dendritic cells (DCs) with the assistance of the immune adjuvant CpG, thereby activating cytotoxic T lymphocytes to amplify antitumor immunity. Simultaneously, siPD-L1 downregulated the endogenous expression of PD-L1 to inhibit adaptive tumor immune escape. DSWAC/siPD-L1 initiated the iterative revolution of the cancer-immunity cycle, leading to the inhibition of primary and metastatic tumors, as demonstrated by DC maturation and T-cell infiltration in established subcutaneous primary tumor model and metastatic lung tumor model. Furthermore, the superior antitumor effect of DSWAC/siPD-L1 resulted in approximately 91 % inhibition of primary tumor growth and 93 % prevention of lung metastasis. Collectively, this study describes a siPD-L1-based sandwich DNA nanodevice functionalized with AS1411/CpG for enhanced cancer chemo-immunotherapy, inspiring the creation of more innovative drug nanocarriers and the exploitation of novel cancer therapies.
Collapse
Affiliation(s)
- Mengyue Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hanxi Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Yuhan He
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Wanyi Zhou
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China; Department of Urology, Deyang People's Hospital, Deyang 618099, Sichuan, PR China.
| |
Collapse
|
10
|
Qiu P, Wen M, Zhuang Z, Niu S, Tao C, Yu N, Chen Z. Biomimetic polymeric nanoreactors with photooxidation-initiated therapies and reinvigoration of antigen-dependent and antigen-free immunity. Biomaterials 2025; 314:122884. [PMID: 39405823 DOI: 10.1016/j.biomaterials.2024.122884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
Immune cell-mediated anticancer modalities usually suffer from immune cell exhaustion and limited efficacy in solid tumors. Herein, the oxygen-carrying biomimetic nanoreactors (BNR2(O2)) have been developed with photooxidation-driven therapies and antigen-dependent/antigen-free immune reinvigoration against xenograft tumors. The BNR2(O2) composes polymeric nanoreactors camouflaged with cancer cell membranes can efficiently target homotypic tumors. It continuously releases O2 to boost intracellular reactive oxygen species (ROS) to oxide diselenide bonds, which controllably releases seleninic acids and anti-folate Pemetrexed compared to hydrogen peroxide and glutathione incubation. The O2-rich microenvironment sensitizes Pemetrexed and blocks programmed cell-death ligand 1 (PD-L1) to reverse T cell immunosuppression. The ROS and Pemetrexed upregulate pro-apoptosis proteins and inhibit folate-related enzymes, which cause significant apoptosis and immunogenic cell death to stimulate dendritic cell maturation for improved secretion of cytokines, expanding antigen-dependent T cell immunity. Furthermore, by regulating the release of seleninic acids, the checkpoint receptor human leukocyte antigen E of tumor cells can be blocked to reinvigorate antigen-free natural killer cell immunity. This work offers an advanced antitumor strategy by bridging biomimetic nanoreactors and modulation of multiple immune cells.
Collapse
Affiliation(s)
- Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zixuan Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
11
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
12
|
shaikh R, Bhattacharya S, Saoji SD. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024; 10:e39632. [PMID: 39559212 PMCID: PMC11570312 DOI: 10.1016/j.heliyon.2024.e39632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h. Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.
Collapse
Affiliation(s)
- Rehan shaikh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Amravati Road, Nagpur, 440033, Maharashtra, India
| |
Collapse
|
13
|
Geng S, Fang B, Wang K, Wang F, Zhou Y, Hou Y, Iqbal MZ, Chen Y, Yu Z. Polydopamine Nanoformulations Induced ICD and M1 Phenotype Macrophage Polarization for Enhanced TNBC Synergistic Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59814-59832. [PMID: 39450881 DOI: 10.1021/acsami.4c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time. Herein, we select polydopamine (PDA) nanoparticles to serve as the carrier for our nanomedicine as well as a potent photothermal agent and modulator of macrophage polarization. PDA nanoparticles are loaded with the insoluble immune adjuvant Imiquimod (R837) to construct PDA(R837) nanoformulations. These straightforward yet highly effective nanoformulations demonstrate excellent performance, allowing for successful triple-negative breast cancer (TNBC) treatment through synergistic photothermal immunotherapy. Moreover, experimental results showed that PDA(R837) implementation of PTT is effective in the thermal ablation of primary tumors while causing ICD and releasing R837, further promoting dendritic cell (DC) maturation and activating the systemic antitumor immune response. Furthermore, PDA(R837) nanoformulations inhibit tumor metastasis and recurrence and achieve M1 phenotype macrophage polarization, achieving long-term and excellent antitumor efficacy. Therefore, the structurally simple PDA(R837) nanoformulations provide cancer treatment and have excellent clinical translational application prospects.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Fang Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| |
Collapse
|
14
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Zhang B, Zhou S, Lu S, Xiang X, Yao X, Lei W, Pei Q, Xie Z, Chen X. Paclitaxel Prodrug Enables Glutathione Depletion to Boost Cancer Treatment. ACS NANO 2024; 18:26690-26703. [PMID: 39303096 DOI: 10.1021/acsnano.4c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Herein, we constructed a paclitaxel (PTX) prodrug (PA) by conjugating PTX with acrylic acid as a cysteine-depleting agent. The as-synthesized PA can assemble with diacylphosphatidylethanolamine-PEG2000 to form stable nanoparticles (PA NPs). After endocytosis into cells, PA NPs can specifically react with cysteine and trigger release of PTX for chemotherapy. On the other hand, the depletion of cysteine can greatly downregulate the intracellular content of glutathione and lead to oxidative stress outburst-provoking ferroptosis. The released PTX can elicit antitumor immune response by inducing immunogenic cell death, thus promoting dendritic cells maturation and cascaded cytotoxic T lymphocytes activation, which not only produces a robust immunotherapy effect but also synergizes the ferroptosis therapy by inhibiting cysteine transport via the release of interferon-γ in the activated immune system. As a result, PA NPs exhibit favorable in vitro and in vivo antitumor performance with reduced systemic toxicity. Our work highlights the potential of simple molecular design of prodrugs for enhancing the therapeutic efficacy toward malignant cancer.
Collapse
Affiliation(s)
- Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Zhou
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiumin Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wentao Lei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
He M, Xu W, Dan Y, Pan Y, Li Y, Chen M, Dong CM. Mannosylated Fluoropolypeptide Nanovaccines Remodeling Tumor Immunosuppressive Microenvironment to Achieve Highly Potent Cancer Immunotherapy. Adv Healthc Mater 2024:e2401354. [PMID: 39233541 DOI: 10.1002/adhm.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Indexed: 09/06/2024]
Abstract
It is challenging for nanovaccines (NVs) to effectively deliver antigens/neoantigens to prime specifically potent immunities and remodel immunosuppressive tumor microenvironment (TME) for combating immune "cold" cancers. Herein, a novel kind of mannosylated fluoropolypeptide NVs of MFPCOFG (i.e., mannosylated fluoropoly(D,L-cysteine) ovalbumin-loaded Fe2+-gallic acid) is designed that synergistically integrates triple antigen-metal-thermoimmunity to remodel immunosuppressive TME and achieve highly potent immunities. MFPCOFG plus near-infrared irradiation (NIR) effectively facilitated antigen uptake and escape, induced the maturation and antigen cross-presentations of dendritic cells and macrophages, polarized anti-inflammatory macrophage phenotype M2 into tumoricial M1, primed potent CD4+/CD8+T cells responses, proinflammatory cytokines secretion and immune memory effects, showcasing triple antigen-metal-thermoimmunity outperforming combo/mono-immunity. Importantly, both MFPCOFG + NIR and personalized NVs can remarkably enhance the tumor infiltration of CD4+/CD8+T and NK cells to boost potent immunities and long-lasting memory effects, reduce regulatory T (Tregs) and M2 to remodel immunosuppressive TME in B16-OVA and 4T1 models, achieving superior tumor prevention, ablation, and tumor relapse and metastasis inhibition, as further orchestrated with anti-PD-1. Consequently, this work opens up a new avenue to design biocompatible polypeptide nanovaccines with potent immune-priming and TME-remodeling capabilities, holding great potentials to combat immune "cold" cancers with clinic-used anti-PD-1 for cancer immunotherapy and personalized immunotherapy.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yue Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Yingying Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, 201508, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
18
|
Zhou Z, Luo W, Zheng C, Wang H, Hu R, Deng H, Shen J. Mitochondrial metabolism blockade nanoadjuvant reversed immune-resistance microenvironment to sensitize albumin-bound paclitaxel-based chemo-immunotherapy. Acta Pharm Sin B 2024; 14:4087-4101. [PMID: 39309498 PMCID: PMC11413680 DOI: 10.1016/j.apsb.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/25/2024] Open
Abstract
Currently, the efficacy of albumin-bound paclitaxel (PTX@Alb) is still limited due to the impaired PTX@Alb accumulation in tumors partly mediated by the dense collagen distribution. Meanwhile, acquired immune resistance always occurs due to the enhanced programmed cell death-ligand 1 (PD-L1) expression after PTX@Alb treatment, which then leads to immune tolerance. To fill these gaps, we newly revealed that tamoxifen (TAM), a clinically widely used adjuvant therapy for breast cancer with mitochondrial metabolism blockade capacity, could also be used as a novel effective PD-L1 and TGF-β dual-inhibitor via inducing the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) protein. Following this, to obtain a more significant effect, TPP-TAM was prepared by conjugating mitochondria-targeted triphenylphosphine (TPP) with TAM, which then further self-assembled with albumin (Alb) to form TPP-TAM@Alb nanoparticles. By doing this, TPP-TAM@Alb nanoparticles effectively decreased the expression of collagen in vitro, which then led to the enhanced accumulation of PTX@Alb in 4T1 tumors. Besides, TPP-TAM@Alb also effectively decreased the expression of PD-L1 and TGF-β in tumors to better sensitize PTX@Alb-mediated chemo-immunotherapy by enhancing T cell infiltration. All in all, we newly put forward a novel mitochondrial metabolism blockade strategy to inhibit PTX@Alb-resistant tumors, further supporting its better clinical application.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Hu
- Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
19
|
Chen M, Hei J, Huang Y, Liu X, Huang Y. In vivo safety evaluation method for nanomaterials for cancer therapy. Clin Transl Oncol 2024; 26:2126-2141. [PMID: 38573443 DOI: 10.1007/s12094-024-03466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.
Collapse
Affiliation(s)
- Mengqi Chen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingyi Hei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Ma J, Zhan M, Sun H, He L, Zou Y, Huang T, Karpus A, Majoral JP, Mignani S, Shen M, Shi X. Phosphorus Dendrimers Co-deliver Fibronectin and Edaravone for Combined Ischemic Stroke Treatment via Cooperative Modulation of Microglia/Neurons and Vascular Regeneration. Adv Healthc Mater 2024:e2401462. [PMID: 39101311 DOI: 10.1002/adhm.202401462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
The development of new multi-target combination treatment strategies to tackle ischemic stroke (IS) remains to be challenging. Herein, a proof-of-concept demonstration of an advanced nanomedicine formulation composed of macrophage membrane (MM)-camouflaged phosphorous dendrimer (termed as AK137)/fibronectin (FN) nanocomplexes (NCs) loaded with antioxidant edaravone (EDV) to modulate both microglia and neurons for effective IS therapy is showcased. The created MM@AK137-FN/EDV (M@A-F/E) NCs with a mean size of 260 nm possess good colloidal stability, sustained EDV release kinetics, and desired cytocompatibility. By virtue of MM decoration, the M@A-F/E NCs can cross blood-brain barrier, act on microglia to exert the anti-inflammatory (AK137 and FN) and antioxidative (FN and EDV) effects in vitro for oxidative stress alleviation, microglia M2 polarization, and reduction of pro-inflammatory cytokine secretion, and act on neuron cells to be anti-apoptotic. In a transient middle cerebral artery occlusion rat model, the developed M@A-F/E NCs can exert enhanced antioxidant/anti-inflammatory/anti-apoptotic therapeutic effects to comprehensively regulate the brain microenvironment and promote vascular regeneration to collaboratively restore the blood flow after ischemia-reperfusion. The designed MM-coated NCs composed of all-active ingredients of phosphorous dendrimers, FN, and EDV that can fully regulate the brain inflammatory microenvironment may expand their application scope in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Liangyu He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Tianyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal, 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal, 9020-105, Portugal
| |
Collapse
|
21
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
22
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
23
|
Zang J, Mei Y, Zhu S, Yin S, Feng N, Ci T, Lyu Y. Natural Killer-Based Therapy: A Prospective Thought for Cancer Treatment Related to Diversified Drug Delivery Pathways. Pharmaceutics 2024; 16:939. [PMID: 39065636 PMCID: PMC11279587 DOI: 10.3390/pharmaceutics16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yaqi Lyu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| |
Collapse
|
24
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
25
|
Qiu H, Wang S, Huang R, Liu X, Li L, Liu Z, Wang A, Ji S, Liang H, Jiang BP, Shen XC. Acidity-responsive polyphenol-coordinated nanovaccines for improving tumor immunotherapy via bidirectional reshaping of the immunosuppressive microenvironment and controllable release of antigens. Biomater Sci 2024; 12:3175-3192. [PMID: 38742916 DOI: 10.1039/d4bm00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The tumor immunosuppressive microenvironment (TIME) and uncontrollable release of antigens can lower the efficacy of nanovaccine-based immunotherapy (NBI). Therefore, it is necessary to develop a new strategy for TIME reshaping and controllable release of antigens to improve the NBI efficacy. Herein, an acidity-responsive Schiff base-conjugated polyphenol-coordinated nanovaccine was constructed for the first time to realize bidirectional TIME reshaping and controllable release of antigens for activating T cells. In particular, an acidity-responsive tannic acid-ovalbumin (TA-OVA) nanoconjugate was prepared via a Schiff base reaction. FeIII was coordinated with TA-OVA to produce a FeIII-TA-OVA nanosystem, and 1-methyltryptophan (1-MT) as an indoleamine 2,3-dioxygenase inhibitor was loaded to form a polyphenol-coordinated nanovaccine. The coordination between FeIII and TA could cause photothermal ablation of primary tumors, and the acidity-triggered Schiff base dissociation of TA-OVA could controllably release OVA to realize lysosome escape, initiating the body's immune response. More importantly, oxidative stress generated by a tumor-specific Fenton reaction of Fe ions could promote the polarization of tumor-associated macrophages from the M2 to M1 phenotype, resulting in the upregulation of cytotoxic T cells and helper T cells. Meanwhile, 1-MT could downregulate immunosuppressive regulatory T cells. Overall, such skillful combination of bidirectional TIME reshaping and controllable antigen release into one coordination nanosystem could effectively enhance the NBI efficacy of tumors.
Collapse
Affiliation(s)
- Huimin Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Shuman Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Rimei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xingyu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Liqun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
26
|
Ren J, Hu J, Dong F, Xu Y, Peng Y, Qian Y, Zhang G, Wang M, Wang Y. A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma. NANO RESEARCH 2024; 17:5424-5434. [DOI: 10.1007/s12274-024-6438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2025]
|
27
|
Kim D, Javius-Jones K, Mamidi N, Hong S. Dendritic nanoparticles for immune modulation: a potential next-generation nanocarrier for cancer immunotherapy. NANOSCALE 2024; 16:10208-10220. [PMID: 38727407 DOI: 10.1039/d4nr00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Immune activation, whether occurring from direct immune checkpoint blockade or indirectly as a result of chemotherapy, is an approach that has drastically impacted the way we treat cancer. Utilizing patients' own immune systems for anti-tumor efficacy has been translated to robust immunotherapies; however, clinically significant successes have been achieved in only a subset of patient populations. Dendrimers and dendritic polymers have recently emerged as a potential nanocarrier platform that significantly improves the therapeutic efficacy of current and next-generation cancer immunotherapies. In this paper, we highlight the recent progress in developing dendritic polymer-based therapeutics with immune-modulating properties. Specifically, dendrimers, dendrimer hybrids, and dendronized copolymers have demonstrated promising results and are currently in pre-clinical development. Despite their early stage of development, these nanocarriers hold immense potential to make profound impact on cancer immunotherapy and combination therapy. This overview provides insights into the potential impact of dendrimers and dendron-based polymers, offering a preview of their potential utilities for various aspects of cancer treatment.
Collapse
Affiliation(s)
- DaWon Kim
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
- Lachman Institute for Drug Development, University of Wisconsin-Madison, Madison, WI, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
28
|
Yang Y, Wang Y, Zeng F, Chen Y, Chen Z, Yan F. Ultrasound-visible engineered bacteria for tumor chemo-immunotherapy. Cell Rep Med 2024; 5:101512. [PMID: 38640931 PMCID: PMC11148858 DOI: 10.1016/j.xcrm.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Our previous work developed acoustic response bacteria, which enable the precise tuning of transgene expression through ultrasound. However, it is still difficult to visualize these bacteria in order to guide the sound wave to precisely irradiate them. Here, we develop ultrasound-visible engineered bacteria and chemically modify them with doxorubicin (DOX) on their surfaces. These engineered bacteria (Ec@DIG-GVs) can produce gas vesicles (GVs), providing a real-time imaging guide for remote hyperthermia high-intensity focused ultrasound (hHIFU) to induce the expression of the interferon (IFN)-γ gene. The production of IFN-γ can kill tumor cells, induce macrophage polarization from the M2 to the M1 phenotype, and promote the maturation of dendritic cells. DOX can be released in the acidic tumor microenvironment, resulting in immunogenic cell death of tumor cells. The concurrent effects of IFN-γ and DOX activate a tumor-specific T cell response, producing the synergistic anti-tumor efficacy. Our study provides a promising strategy for bacteria-mediated tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Yaozhang Yang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengyi Zeng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuhao Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410028, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
29
|
Jiang MC, Fang ZL, Zhang JY, Ma W, Liao LF, Yu CY, Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater 2024; 180:407-422. [PMID: 38614414 DOI: 10.1016/j.actbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.
Collapse
Affiliation(s)
- Ming-Chao Jiang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhou-Long Fang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Yan Zhang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Luan-Feng Liao
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan, Academy of Chinese Medicine, Changsha 410013, China; Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
30
|
Zhan M, Sun H, Wang Z, Li G, Yang R, Mignani S, Majoral JP, Shen M, Shi X. Nanoparticle-Mediated Multiple Modulation of Bone Microenvironment To Tackle Osteoarthritis. ACS NANO 2024; 18:10625-10641. [PMID: 38563322 DOI: 10.1021/acsnano.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
31
|
Peng Y, Zhan M, Karpus A, Zou Y, Mignani S, Majoral JP, Shi X, Shen M. Brain Delivery of Biomimetic Phosphorus Dendrimer/Antibody Nanocomplexes for Enhanced Glioma Immunotherapy via Immune Modulation of T Cells and Natural Killer Cells. ACS NANO 2024; 18:10142-10155. [PMID: 38526307 DOI: 10.1021/acsnano.3c13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and β1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yamin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
32
|
Zhang C, Guo Y, Shen M, Shi X. Dendrimer‐Based Nanodrugs for Chemodynamic Therapy of Tumors. ADVANCED NANOBIOMED RESEARCH 2024; 4. [DOI: 10.1002/anbr.202300149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
To realize precise tumor treatment, chemodynamic therapy (CDT) that utilizes metal element to trigger Fenton or Fenton‐like reaction to generate cytotoxic hydroxyl radicals in tumor region has been widely investigated. Recently, the dendrimers featured with abundant surface functional groups and excellent biocompatibility are regarded as promising carriers of metal elements for tumor delivery. Much effort has been devoted to design dendrimer‐based nanodrugs for CDT and CDT‐involved synergistic therapy of tumors. Herein, the recent advances in the construction of dendrimer‐based nanodrugs (in most cases, poly(amidoamine) dendrimers) for CDT, CDT/chemotherapy, CDT/phototherapy, CDT/gene therapy, or CDT‐involved multimodal therapy are reviewed. Furthermore, the future perspectives with regard to the development of dendrimer‐based nanodrugs for CDT‐involved tumor treatment are also briefly discussed.
Collapse
Affiliation(s)
- Caiyun Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P. R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
33
|
Lin Y, Chen Y, Luo Z, Wu YL. Recent advances in biomaterial designs for assisting CAR-T cell therapy towards potential solid tumor treatment. NANOSCALE 2024; 16:3226-3242. [PMID: 38284230 DOI: 10.1039/d3nr05768b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells have shown promising outcomes in the treatment of hematologic malignancies. However, CAR-T cell therapy in solid tumor treatment has been significantly hindered, due to the complex manufacturing process, difficulties in proliferation and infiltration, lack of precision, or poor visualization ability. Fortunately, recent reports have shown that functional biomaterial designs such as nanoparticles, polymers, hydrogels, or implantable scaffolds might have potential to address the above challenges. In this review, we aim to summarize the recent advances in the designs of functional biomaterials for assisting CAR-T cell therapy for potential solid tumor treatments. Firstly, by enabling efficient CAR gene delivery in vivo and in vitro, functional biomaterials can streamline the difficult process of CAR-T cell therapy manufacturing. Secondly, they might also serve as carriers for drugs and bioactive molecules, promoting the proliferation and infiltration of CAR-T cells. Furthermore, a number of functional biomaterial designs with immunomodulatory properties might modulate the tumor microenvironment, which could provide a platform for combination therapies or improve the efficacy of CAR-T cell therapy through synergistic therapeutic effects. Last but not least, the current challenges with biomaterials-based CAR-T therapies will also be discussed, which might be helpful for the future design of CAR-T therapy in solid tumor treatment.
Collapse
Affiliation(s)
- Yuting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Gao Y, Ouyang Z, Li G, Yu Q, Dai W, Rodrigues J, Pich A, Abdul Hameed MM, Shen M, Shi X. Poly(alkylideneamine) Dendrimer Nanogels Codeliver Drug and Nucleotide To Alleviate Anticancer Drug Resistance through Immunomodulation. ACS MATERIALS LETTERS 2024; 6:517-527. [DOI: 10.1021/acsmaterialslett.3c01426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuyu Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
35
|
Sun H, Zhan M, Karpus A, Zou Y, Li J, Mignani S, Majoral JP, Shi X, Shen M. Bioactive Phosphorus Dendrimers as a Universal Protein Delivery System for Enhanced Anti-inflammation Therapy. ACS NANO 2024; 18:2195-2209. [PMID: 38194222 DOI: 10.1021/acsnano.3c09589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
36
|
Xi Y, Chen L, Tang J, Yu B, Shen W, Niu X. Amplifying "eat me signal" by immunogenic cell death for potentiating cancer immunotherapy. Immunol Rev 2024; 321:94-114. [PMID: 37550950 DOI: 10.1111/imr.13251] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
Immunogenic cell death (ICD) is a unique mode of cell death, which can release immunogenic damage-associated molecular patterns (DAMPs) and tumor-associated antigens to trigger long-term protective antitumor immune responses. Thus, amplifying "eat me signal" during tumor ICD cascade is critical for cancer immunotherapy. Some therapies (radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), etc.) and inducers (chemotherapeutic agents, etc.) have enabled to initiate and/or facilitate ICD and activate antitumor immune responses. Recently, nanostructure-based drug delivery systems have been synthesized for inducing ICD through combining treatment of chemotherapeutic agents, photosensitizers for PDT, photothermal transformation agents for PTT, radiosensitizers for radiotherapy, etc., which can release loaded agents at an appropriate dosage in the designated place at the appropriate time, contributing to higher efficiency and lower toxicity. Also, immunotherapeutic agents in combination with nanostructure-based drug delivery systems can produce synergetic antitumor effects, thus potentiating immunotherapy. Overall, our review outlines the emerging ICD inducers, and nanostructure drug delivery systems loading diverse agents to evoke ICD through chemoradiotherapy, PDT, and PTT or combining immunotherapeutic agents. Moreover, we discuss the prospects and challenges of harnessing ICD induction-based immunotherapy, and highlight the significance of multidisciplinary and interprofessional collaboration to promote the optimal translation of this treatment strategy.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen, China
- China Medical University, Shenyang, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xing Niu
- China Medical University, Shenyang, China
| |
Collapse
|
37
|
Zhang T, Li N, Wang R, Sun Y, He X, Lu X, Chu L, Sun K. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity. Drug Deliv 2023; 30:2189118. [PMID: 36919676 PMCID: PMC10026743 DOI: 10.1080/10717544.2023.2189118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX), a commonly used anti-cancer drug, is limited by its cardiotoxicity and multidrug resistance (MDR) of tumor cells. Epigallocatechin gallate (EGCG), a natural antioxidant component, can effectively reduce the cardiotoxicity of DOX. Meanwhile, EGCG can inhibit the expression of P-glycoprotein (P-gp) and reverse the MDR of tumor cells. In this study, DOX is connected with low molecular weight polyethyleneimine (PEI) via hydrazone bond to get the pH-sensitive PEI-DOX, which is then combined with EGCG to prevent the cardiotoxicity of DOX and reverse the MDR of cancer cells. In addition, folic acid (FA) modified polyethylene glycol (PEG) (PEG-FA) is added to get the targeted system PEI-DOX/EGCG/FA. The MDR reversal and targeting ability of PEI-DOX/EGCG/FA is performed by cytotoxicity and in vivo anti-tumor activity on multidrug resistant MCF-7 cells (MCF-7/ADR). Additionally, we investigate the anti-drug resistant mechanism by Western Blot. The ability of EGCG to reduce DOX cardiotoxicity is confirmed by cardiotoxicity assay. In conclusion, PEI-DOX/EGCG/FA can inhibit the expression of P-gp and reverse the MDR in tumor cells. It also shows the ability of remove oxygen free radicals effectively to prevent the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Xiaoyan He
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
38
|
Zhan M, Wang D, Zhao L, Chen L, Ouyang Z, Mignani S, Majoral JP, Zhao J, Zhang G, Shi X, Shen M. Phosphorus core-shell tecto dendrimers for enhanced tumor imaging: the rigidity of the backbone matters. Biomater Sci 2023; 11:7387-7396. [PMID: 37791576 DOI: 10.1039/d3bm01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.
Collapse
Affiliation(s)
- Mengsi Zhan
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Serge Mignani
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
39
|
Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer Immunotherapy Based on Cell Membrane-Coated Nanocomposites Augmenting cGAS/STING Activation by Efferocytosis Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302758. [PMID: 37381095 DOI: 10.1002/smll.202302758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
40
|
Zhang G, Zhan M, Zhang C, Wang Z, Sun H, Tao Y, Shi Q, He M, Wang H, Rodrigues J, Shen M, Shi X. Redox-Responsive Dendrimer Nanogels Enable Ultrasound-Enhanced Chemoimmunotherapy of Pancreatic Cancer via Endoplasmic Reticulum Stress Amplification and Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301759. [PMID: 37350493 PMCID: PMC10460845 DOI: 10.1002/advs.202301759] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.
Collapse
Affiliation(s)
- Guizhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yuchen Tao
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Qiusheng Shi
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Meijuan He
- Department of RadiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Han Wang
- Department of RadiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - João Rodrigues
- CQM – Centro de Química da MadeiraMMRGUniversidade da MadeiraCampus Universitário da PenteadaFunchal9020‐105Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
- CQM – Centro de Química da MadeiraMMRGUniversidade da MadeiraCampus Universitário da PenteadaFunchal9020‐105Portugal
| |
Collapse
|
41
|
Dong H, Gao M, Lu L, Gui R, Fu Y. Doxorubicin-Loaded Platelet Decoys for Enhanced Chemoimmunotherapy Against Triple-Negative Breast Cancer in Mice Model. Int J Nanomedicine 2023; 18:3577-3593. [PMID: 37409026 PMCID: PMC10319348 DOI: 10.2147/ijn.s403339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is a highly aggressive subtype with a poor prognosis. Current single-agent checkpoint therapy has limited effectiveness in TNBC patients. In this study, we developed doxorubicin-loaded platelet decoys (PD@Dox) for chemotherapy and induction of tumor immunogenic cell death (ICD). By combining PD-1 antibody, PD@Dox has the potential to enhance tumor therapy through chemoimmunotherapy in vivo. Methods Platelet decoys were prepared using 0.1% Triton X-100 and co-incubated with doxorubicin to obtain PD@Dox. Characterization of PDs and PD@Dox was performed using electron microscopy and flow cytometry. We evaluated the properties of PD@Dox to retain platelets through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, flow cytometry, and thromboelastometry. In vitro experiments assessed drug-loading capacity, release kinetics, and the enhanced antitumor activity of PD@Dox. The mechanism of PD@Dox was investigated through cell viability assays, apoptosis assays, Western blot analysis, and immunofluorescence staining. In vivo studies were performed using a TNBC tumor-bearing mouse model to assess the anticancer effects. Results Electron microscopic observations confirmed that platelet decoys and PD@Dox exhibited a round shape similar to normal platelets. Platelet decoys demonstrated superior drug uptake and loading capacity compared to platelets. Importantly, PD@Dox retained the ability to recognize and bind tumor cells. The released doxorubicin induced ICD, resulting in the release of tumor antigens and damage-related molecular patterns that recruit dendritic cells and activate antitumor immunity. Notably, the combination of PD@Dox and immune checkpoint blockade therapy using PD-1 antibody achieved significant therapeutic efficacy by blocking tumor immune escape and promoting ICD-induced T cell activation. Conclusion Our results suggest that PD@Dox, in combination with immune checkpoint blockade therapy, holds promise as a potential strategy for TNBC treatment.
Collapse
Affiliation(s)
- Hang Dong
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Meng Gao
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lu Lu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
42
|
Tang Y, Qian C. Research progress in leveraging biomaterials for enhancing NK cell immunotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:267-278. [PMID: 37476938 PMCID: PMC10409897 DOI: 10.3724/zdxbyxb-2022-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Collapse
Affiliation(s)
- Yingqi Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| | - Chenggen Qian
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| |
Collapse
|
43
|
Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. NANOSCALE 2023. [PMID: 37161583 DOI: 10.1039/d3nr00542a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.
Collapse
Affiliation(s)
- Qinjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| |
Collapse
|