1
|
Tian L, Long G, Zhu S, Wang Y, Xu P, Liu L, Yao H, Fang S, Chen S, Li S. Nanoimmunomodulation of the Aβ-STING feedback machinery in microglia for Alzheimer's disease treatment. Proc Natl Acad Sci U S A 2025; 122:e2427257122. [PMID: 40434641 DOI: 10.1073/pnas.2427257122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
Imbalanced production and clearance of amyloid-β (Aβ) is a hallmark pathological feature of Alzheimer's disease (AD). While several monoclonal antibodies targeting Aβ have shown reductions in amyloid burden, their impact on cognitive function remains controversial, with the added risk of inflammatory side effects. Dysregulated stimulator of interferon genes (STING) signaling is implicated in neurodegenerative disorders, yet the biological interaction between this pathway and Aβ, as well as their combined influence on AD progression, is poorly understood. Here, we show that while microglia play a protective role in clearing extracellular Aβ, excessive Aβ engulfment triggers the cytosolic leakage of mitochondrial DNA for cGAS-STING cascade. This creates a negative feedback loop that not only exacerbates neuroinflammation but also impairs further Aβ clearance. To address this, we present a nanomedicine approach termed "Aβ-STING Synergistic ImmunoSilencing Therapy (ASSIST)". ASSIST comprises STING inhibitors encapsulated within a blood-brain barrier (BBB)-permeable polymeric micelle that also serves as an Aβ scavenger. Through a multivalent interaction mechanism, ASSIST efficiently destabilizes Aβ plaques and prevents monomer aggregation, subsequently promoting the engulfment of the dissociated Aβ by microglia rather than neurocytes. Furthermore, the STING signaling induced by excessive Aβ uptake is blocked, reducing inflammation and restoring microglial homeostatic functions involved in Aβ clearance. Intravenous administration of ASSIST significantly reduces Aβ burden and improves cognition in AD mice, with minimal cerebral amyloid angiopathy or microhemorrhages. We provide a proof-of-concept nanoengineering strategy to target the maladaptive immune feedback loop arising from conventional immunotherapy for AD treatment.
Collapse
Affiliation(s)
- Limin Tian
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyu Long
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Zhu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuelong Wang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pengcheng Xu
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Lifeng Liu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Yao
- Department of Medicinal Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suxin Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210009, China
| |
Collapse
|
2
|
Han G, Jin Y, Bai K, Du Q, Gu X, Tao L, Zhou J, Zhang H, Ding Y. Biomimetic elasticity compressed assembly controls rapid intracerebral drug release to reverse microglial dysfunction. SCIENCE ADVANCES 2025; 11:eadr0656. [PMID: 40305624 PMCID: PMC12042905 DOI: 10.1126/sciadv.adr0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
The regulation of microglial dysfunction has become increasingly prominent in treatment of Alzheimer's disease (AD). Herein, we develop a scalable polymer-involved biomimetic assembly that responds to intracerebral reactive oxygen species (ROS) for elastic spreading and concentration-dependent drug therapy. Structurally, a polymer of thermally sensitive deformation is selected for hydrophobic loading of curcumin (Cur) and coordinative grafting onto ultrasmall ceria (CeO2) by elastic compression at transition temperature, which is further sealed by self-polymerized dopamine with apolipoprotein decoration to improve intracerebral shuttling. When triggered by ROS in the lesions, burst exposure of Cur and polymer-linked CeO2 (PCeO2) is achieved. The concentrated Cur switches amyloid-β (Aβ)-activated microglia into normal for mobilizing phagocytosis, and CeO2 has sustainable antioxidant capacity to prevent microglial mitochondrial damage after phagocytosis of PCeO2-captured Aβ. After administration, our findings reveal microglia-mediated Aβ clearance, neuroprotection, and ROS elimination in AD mice. Collectively, this biomimetic assembly provides a promising approach in AD treatments.
Collapse
Affiliation(s)
- Guochen Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kaiwen Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiaofei Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaochen Gu
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
3
|
Zhao L, Cao Y, Xin Y, Liu C, Yang J, Li Y, Tian S, Liu Z, Jia H, Liu M, Hu M, Luo L, Meng F. Targeted Raman Visualization and Mitigation of α-Synuclein Amyloidogenesis in Living Zebrafish by a Nanobody-Decorated Polydiacetylene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411419. [PMID: 39996265 DOI: 10.1002/smll.202411419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
α-Synuclein (α-Syn) amyloidogenesis is considered a promising diagnostic marker and therapeutic target for Parkinson's disease (PD). Simultaneously visualizing and mitigating α-Syn amyloidogenesis are essential for future PD theranostics, yet they continue to pose an insurmountable challenge. This study have herein developed a nanobody-decorated polydiacetylene to approach a straightforward solution. Grafting α-Syn61-95 segment into the third complementary determining region of a parent nanobody generates an engineered nanobody X30 that can bind with α-Syn and prevent its amyloidogenesis through homotypic interaction. It next use X30 to decorate poly(deca-4,6-diynedioic acid) (PDDA), a polydiacetylene with an ultrastrong alkyne Raman signal (2120 cm-1) in the cellular silent region, to create an α-Syn targeting Raman probe PX30. The binding affinity between X30 and α-Syn can be further boosted for over 150 times attributed to the rigidity of PDDA backbone and the multivalent effect. Therefore, PX30 not only enables real-time Raman visualization of α-Syn amyloidogenesis with a high signal-to-noise ratio in living zebrafish, but also alleviates amyloidogenesis-mediated damage to zebrafish embryos by effectively inhibiting α-Syn amyloidogenesis at low stoichiometric concentrations and scavenging pathologic reactive oxygen species.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chenxi Liu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Jin Yang
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Yanan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Hu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
5
|
Wang C, Zhang X, Zhuang Y, Song X, Sun S, Chen Y, Qi G, Yang Y, Li P, Wei W. Natural Bioactive Compounds Solanesol and Chlorogenic Acid Assembled Nanomicelles for Alzheimer's Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14591-14603. [PMID: 39995296 DOI: 10.1021/acsami.4c22621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Solanesol (Sol) and chlorogenic acid (CHA) are naturally active compounds. Sol exhibits a significant free radical absorption ability and strong antioxidant activity. CHA, a typical phenolic acid, exhibits excellent anticancer, anti-inflammation, and antibacterial properties. Herein, bifunctional nanomicelles (CI@SPK) were skillfully designed to take advantage of the unique properties of Sol and CHA to treat Alzheimer's disease (AD). Hydrophobic Sol was modified with poly(ethylene glycol) to self-assemble into stable nanomicelles (SP). CHA could be encapsulated into the hydrophobic core of these nanomicelles, which increased its bioavailability greatly. Short peptide K (CKLVFFAED) was incorporated (CI@SPK) to facilitate their crossing the blood-brain barrier. Then, CI@SPK targeted the AD lesion area, and CHA was released in greater quantities with the help of IR780 under irradiation with an 808 nm laser, resulting in synergistically scavenging reactive oxygen species (ROS) with Sol. Consequently, the nanomicelles CI@SPK demonstrated capabilities in scavenging ROS, inhibiting β-amyloid (Aβ) aggregation, and eventually modulating microglia phenotype from M1 to M2 to promote Aβ phagocytosis and clearance. In vivo studies indicated that nanomicelles CI@SPK improved the learning and cognitive impairments of APP/PS1 mice by reducing Aβ plaque and inflammation, signifying the potential value of CI@SPK in clinical application for AD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaowan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yurong Zhuang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yong Chen
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Guihong Qi
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yinan Yang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Wei Wei
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
6
|
Zhou S, Fang X, Luo Y, Yang Y, Wei W, Huang G, Zhang X, Wu C. Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting. Bioconjug Chem 2025; 36:291-301. [PMID: 39787419 DOI: 10.1021/acs.bioconjchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their in vivo efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies. Here, we describe a post-translational modification strategy to produce precisely engineered and homogeneous nanobody-glucoside conjugates for effective BBB penetration and brain tumor targeting. Specifically, we employ an enzymatic method and click chemistry to functionalize nanobodies with glucoside and poly(ethylene glycol) (PEG), facilitating efficient transcytosis into the brain via glucose transporter-1 (GLUT1). Furthermore, we rationally select a near-infrared (NIR) fluorophore for labeling to maintain the metabolic pathway and biodistribution of nanobodies and assess their potency in two tumor models. The resulting nanobody-glucoside conjugates demonstrate a remarkable increase in BBB penetration and brain tumor accumulation, which are ∼2.9-fold higher in the transgenic mouse model and ∼5.7-fold higher in the orthotopic glioma model compared to unmodified nanobodies. This study provides a promising approach for the production of nanobody therapeutic agents for central nervous system (CNS) delivery.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaofeng Fang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yunhe Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicheng Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Liu J, Wu L, Xie A, Liu W, He Z, Wan Y, Mao W. Unveiling the new chapter in nanobody engineering: advances in traditional construction and AI-driven optimization. J Nanobiotechnology 2025; 23:87. [PMID: 39915791 PMCID: PMC11800653 DOI: 10.1186/s12951-025-03169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Nanobodies (Nbs), miniature antibodies consisting solely of the variable region of heavy chains, exhibit unique properties such as small size, high stability, and strong specificity, making them highly promising for disease diagnosis and treatment. The engineering production of Nbs has evolved into a mature process, involving library construction, screening, and expression purification. Different library types, including immune, naïve, and synthetic/semi-synthetic libraries, offer diverse options for various applications, while display platforms like phage display, cell surface display, and non-surface display provide efficient screening of target Nbs. Recent advancements in artificial intelligence (AI) have opened new avenues in Nb engineering. AI's exceptional performance in protein structure prediction and molecular interaction simulation has introduced novel perspectives and tools for Nb design and optimization. Integrating AI with traditional experimental methods is anticipated to enhance the efficiency and precision of Nb development, expediting the transition from basic research to clinical applications. This review comprehensively examines the latest progress in Nb engineering, emphasizing library construction strategies, display platform technologies, and AI applications. It evaluates the strengths and weaknesses of various libraries and display platforms and explores the potential and challenges of AI in predicting Nb structure, antigen-antibody interactions, and optimizing physicochemical properties.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Wu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Anqi Xie
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, 13850, USA.
- Department of Biomedical Engineering, The Pq Laboratory of BiomeDx/Rx, Binghamton University, Binghamton, NY, 13902, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China.
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, No. 299 Qingyang Rd., Wuxi, 214023, China.
| |
Collapse
|
8
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
9
|
Cheng L, Zhuang Z, Yin M, Lu Y, Liu S, Zhan M, Zhao L, He Z, Meng F, Tian S, Luo L. A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds. Nat Commun 2024; 15:9786. [PMID: 39532879 PMCID: PMC11557877 DOI: 10.1038/s41467-024-54075-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic wounds are usually entangled in a disorganized and self-perpetuating microenvironment and accompanied by a prolonged delay in tissue repair. Sustained and coordinated microenvironment regulation and tissue regeneration are key to the healing process of diabetic wounds, yet they continue to pose a formidable challenge. Here we report a rational double-layered dressing design based on chitosan and a degradable conjugated polymer polydiacetylene, poly(deca-4,6-diynedioic acid) (PDDA), that can meet this intricate requirement. With an alternating ene-yne backbone, PDDA degrades when reacting with various types of reactive oxygen species (ROS), and more importantly, generates proliferative succinic acid as a major degradant. Inheriting from PDDA, the developed PDDA-chitosan double layer dressing (PCD) can eliminate ROS in the microenvironment of diabetic wounds, alleviate inflammation, and downregulate gene expression of innate immune receptors. PCD degradation also triggers simultaneous release of succinic acid in a sustainable manner, enabling long-term promotion on tissue regeneration. We have validated the biocompatibility and excellent performance of PCD in expediting the wound healing on both diabetic mouse and porcine models, which underscores the significant translational potential of this microenvironment-modulating, growth-promoting wound dressing in diabetic wounds care.
Collapse
Affiliation(s)
- Lianghui Cheng
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Zhuang
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Lu
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sujuan Liu
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liyuan Zhao
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
11
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
12
|
Zhang Y, Yu W, Zhang L, Li P. Application of engineered antibodies (scFvs and nanobodies) targeting pathological protein aggregates in Alzheimer's disease. Expert Opin Investig Drugs 2024; 33:1047-1062. [PMID: 39177331 DOI: 10.1080/13543784.2024.2396911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The misfolding and aggregation of proteins are associated with various neurodegenerative diseases, such as Alzheimer's disease (AD). The small-molecule engineered antibodies, such as single-chain fragment variable (scFv) antibodies and nanobodies (Nbs), have gained attention in recent years due to their strong conformational specificity, ability to cross the blood-brain barrier (BBB), low immunogenicity, and enhanced proximity to active sites within aggregates. AREAS COVERED We have reviewed recent advances in therapies involving scFvs and Nbs that efficiently and specifically target pathological protein aggregates. Relevant publications were searched for in MEDLINE, GOOGLE SCHOLAR, Elsevier ScienceDirect and Wiley Online Library. EXPERT OPINION We reviewed the recent and specific targeting of pathological protein aggregates by scFvs and Nbs. These engineered antibodies can inhibit the aggregation or promote the disassembly of misfolded proteins by recognizing antigenic epitopes or through conformational specificity. Additionally, we discuss strategies for improving the effective application of engineered antibodies in treating AD. These technological strategies will lay the foundation for the clinical application of small-molecule antibody drugs in developing effective treatments for neurological diseases. Through rational application strategies, small-molecule engineered antibodies are expected to have significant potential in targeted therapy for neurological disorders.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
14
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
15
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Li WB, Xu LL, Wang SL, Wang YY, Pan YC, Shi LQ, Guo DS. Co-Assembled Nanoparticles toward Multi-Target Combinational Therapy of Alzheimer's Disease by Making Full Use of Molecular Recognition and Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401918. [PMID: 38662940 DOI: 10.1002/adma.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The complex pathologies in Alzheimer's disease (AD) severely limit the effectiveness of single-target pharmic interventions, thus necessitating multi-pronged therapeutic strategies. While flexibility is essentially demanded in constructing such multi-target systems, for achieving optimal synergies and also accommodating the inherent heterogeneity within AD. Utilizing the dynamic reversibility of supramolecular strategy for conferring sufficient tunability in component substitution and proportion adjustment, amphiphilic calixarenes are poised to be a privileged molecular tool for facilely achieving function integration. Herein, taking β-amyloid (Aβ) fibrillation and oxidative stress as model combination pattern, a supramolecular multifunctional integration is proposed by co-assembling guanidinium-modified calixarene with ascorbyl palmitate and loading dipotassium phytate within calixarene cavity. Serial pivotal events can be simultaneously addressed by this versatile system, including 1) inhibition of Aβ production and aggregation, 2) disintegration of Aβ fibrils, 3) acceleration of Aβ metabolic clearance, and 4) regulation of oxidative stress, which is verified to significantly ameliorate the cognitive impairment of 5×FAD mice, with reduced Aβ plaque content, neuroinflammation, and neuronal apoptosis. Confronted with the extremely intricate clinical realities of AD, the strategy presented here exhibits ample adaptability for necessary alterations on combinations, thereby may immensely expedite the advancement of AD combinational therapy through providing an exceptionally convenient platform.
Collapse
Affiliation(s)
- Wen-Bo Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Lin-Lin Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Si-Lei Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ying-Yue Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Lin-Qi Shi
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300090, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| |
Collapse
|
17
|
Ke J, Yu C, Li S, Hong Y, Xu Y, Wang K, Meng T, Ping Y, Fu Q, Yuan H, Hu F. Combining Multifunctional Delivery System with Blood-Brain Barrier Reversible Opening Strategy for the Enhanced Treatment of Alzheimer's Disease. Adv Healthc Mater 2024; 13:e2302939. [PMID: 38117094 DOI: 10.1002/adhm.202302939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness characterized by intracellular tau-phosphorylation, β-amyloid (Aβ) plaques accumulation, neuroinflammation, and impaired behavioral ability. Owing to the lack of effective brain delivery approaches and the presence of the blood-brain barrier (BBB), current AD therapeutic endeavors are severely limited. Herein, a multifunctional delivery system (RVG-DDQ/PDP@siBACE1) is elaborately combined with a protein kinase B (AKT) agonist (SC79) for facilitating RVG-DDQ/PDP@siBACE1 to target and penetrate BBB, enter brain parenchyma, and further accumulate in AD brain lesion. Moreover, compared with the unitary dose of RVG-DDQ/PDP@siBACE1, this collaborative therapy strategy exhibits a distinctive synergistic function including scavenging reactive oxygen species (ROS), decreasing of Aβ production, alleviating neuroinflammation by promoting the polarized microglia into the anti-inflammatory M2-like phenotype and significantly enhancing the cognitive functions of AD mice. More strikingly, according to these results, an innovative signaling pathway "lncRNA MALAT1/miR-181c/BCL2L11" is found that can mediate the neuronal apoptosis of AD. Taken together, combining the brain targeted delivery system with noninvasive BBB opening can provide a promising strategy and platform for targeting treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Ke
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Sufen Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiling Hong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yichong Xu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ping
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
18
|
Sun M, Sun Y, Yang Y, Zhao M, Cao D, Zhang M, Xia D, Wang T, Gao Y, Wang S, Wang H, Cai X, An T. Multivalent nanobody-based sandwich enzyme-linked immunosorbent assay for sensitive detection of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2024; 258:128896. [PMID: 38143067 DOI: 10.1016/j.ijbiomac.2023.128896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
The pandemic of the porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses and continues to threaten the swine industry worldwide. Nucleocapsid protein (N protein) is the primary antigen of PRRSV for development of sensitive diagnostic assays. Two high affinity nanobodies against N protein, Nb12 and Nb35, were selected and employed to develop a sandwich ELISA. Further we improved the ELISA method to obtain greater sensitivity, a trivalent nanobody (3 × Nb35) and a bivalent nanobody-HRP fusion protein (2 × Nb12-HRP) were expressed and used. This modified ELISA was found to have high sensitivity for detecting PRRSV, with a detection limit of 10 TCID50/ml (median tissue culture infectious dose), which was approximately 200-fold greater than the single-copy nanobody-based sandwich ELISA. The developed assay shows high specificity and can detect almost all circulating lineages of PRRSV-2 in China. This study provides suggestions for reforming nanobodies and for the further development of multivalent nanobody-based ELISAs for other various viruses.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Man Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dan Cao
- Soybean Research Institute, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
| | - Minmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanfei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shanghui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Research Center of Veterinary Biopharmaceutical Technology, Harbin 150069, China.
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| |
Collapse
|
19
|
Li Z, Zhang W, Zhang Q, Li P, Tang X. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay. ACS NANO 2023; 17:19359-19371. [PMID: 37782130 DOI: 10.1021/acsnano.3c06930] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The multimodal lateral flow immunoassay (LFIA) has provided accurate and reliable results for fast and immediate detection. Nonetheless, multimodal LFIA remains challenging to develop biosensors with high sensitivity and tolerance to matrix interference in agro-food. In this study, we developed a self-assembled multivalent fluorescence-nanobody (Nb26-EGFP-H6) with 16.5-fold and 30-fold higher affinity and sensitivity than a monovalent nanobody (Nb26). Based on the Nb26-EGFP-H6, we synthesized enhanced immune-probes Zn-CN@Nb26-EGFP-H6 by pyrolyzing and oxidizing an imidazolating zeolite framework-8 (ZIF-8) to obtain photothermal metal-carbon nanomaterials (Zn-CN) for immobilizing Nb26-EGFP-H6. The rough and porous structure of Zn-CN with a large surface area facilitates the enrichment and immobilization of antibodies. A trimodal lateral flow immunoassay (tLFIA) with colorimetric, fluorescent, and photothermal triple signal outputs was constructed for the detection of aflatoxin B1 (AFB1) in maize. Attractively, the Zn-CN-based tLFIA's multiplex guarantees accurate and sensitive detection of AFB1, with triple signal detection limits of 0.0012 ng/mL (colorimetric signals), 0.0094 ng/mL (fluorescent signals), and 0.252 ng/mL (photothermal signals). The sensitivity of the trimode immunosensor was 628-fold and 42-fold higher than that of the original Nb26-based ELISA (IC50) and the unimodal LFIA (LOD). This work provides an idea for constructing a sensitive, tolerant matrix and efficient and accurate analytical platform for rapidly detecting AFB1 in food.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
| |
Collapse
|