1
|
Wei R, Xie K, Li T, Lin W, Zhao Y, Li J, Lai S, Wei X, Jiang X, Yuan Y, Yang R. Immunity/metabolism dual-regulation via an acidity-triggered bioorthogonal assembly nanoplatform enhances glioblastoma immunotherapy by targeting CXCL12/CXCR4 and adenosine-A2AR pathways. Biomaterials 2025; 319:123216. [PMID: 40037210 DOI: 10.1016/j.biomaterials.2025.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Blocking the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signal offers the potential to induce immunogenic cell death (ICD) and enhance immunotherapy of glioblastoma (GBM). However, traditional intracellular targeted delivery strategies and adenosine-mediated tumor immunosuppression limit its therapeutic efficacy. Herein, we present an acidity-triggered self-assembly nanoplatform based on bioorthogonal reaction to potentiate GBM immunotherapy through dual regulation of metabolism and immune pathways. AMD3100 (CXCR4 antagonist) and CPI-444 (adenosine 2A receptor inhibitor) were formulated into micelles, denoted as AMD@iNPDBCO and CPI@iNPN3, respectively. Upon administration, the pH-sensitive poly(2-azepane ethyl methacrylate) group of AMD@iNPDBCO responds to the acidic tumor microenvironment, exposing the DBCO moiety, resulting in highly efficient bioorthogonal reaction with azide group on CPI@iNPN3 to form large-sized aggregates, ensuring extracellular drug release. The combination of AMD3100 and CPI-444 contributes to ICD induction, dendritic cell maturation, and immunosuppressive milieu alleviation by reducing tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, leading to a robust antitumor response, thereby significantly prolonging survival in orthotopic GBM-bearing mice. Furthermore, the nanoplatform remarkably amplifies immuno-radiotherapy by potently evoking cytotoxic CD8+ T cell priming, and synergized with immune checkpoint blockade by delaying CD8+ T cell exhaustion. Our work highlights the potential of the in situ assembly nanoplatform tailored for delivery of extracellular-targeted therapeutic agents for boosting GBM immunotherapy.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Kunfeng Xie
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Tao Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Wanxian Lin
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Yandong Zhao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Youyong Yuan
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China.
| |
Collapse
|
2
|
Sonzini S, England RM, Kapustin AN, Moss JI, Sutton D, Smith A, Sharma S, Siouve E, Mazza M, Ravn P, Puri S, Ashford M. HER2-targeted star polymer conjugates for improved tumor distribution and efficacy. J Control Release 2025; 382:113654. [PMID: 40122243 DOI: 10.1016/j.jconrel.2025.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Actively targeted nanoparticle systems have the potential to improve delivery to tumors over untargeted systems however the design rules to achieve this have not been fully elucidated. A HER2-targeted polymer drug delivery system composed of a 32-arm star polymer (SD) conjugated with the TOP1 inhibitor molecule SN-38, with a trastuzumab antigen binding fragment (HER2-Fab), has been used to target cancer cells overexpressing this receptor. The HER2-Fab was attached to the SD at two different densities (average of 1 or 3 Fabs per star polymer) and compared to the native star polymer without Fab. In vitro experimentation showed that both the targeted star polymers (HER2-SDs) had better binding and uptake in HER2-positive cell lines (SK-BR3 and HEK293) compared to the non-targeted SD. In vivo biodistribution studies showed enhanced accumulation of HER2-targeted SDs in tumors, but not normal tissues, particularly at the later (96 h post-dose) timepoint. The HER2-SDs demonstrated increased localization with tumor cells rather than in stromal regions, greater penetration into the tumor core and a more homogenous distribution in the tumor section than the untargeted SD. The targeted star polymer conjugated to SN-38 was tested for anti-tumor activity in a HER2-positive gastric cancer xenograft in mice and showed significantly greater efficacy compared to untargeted SDs.
Collapse
Affiliation(s)
- Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Alexander N Kapustin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer I Moss
- OTD Small Molecules, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Soumya Sharma
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Elise Siouve
- Biologic Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Peter Ravn
- Biologic Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sanya Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
3
|
Wang S, Yuan J, Li Y, Wang W, Zhang H, Wang Q, Zhang Y, Shi X, Liu T, He Z, Sun J, Sun B. Engineering stable prodrug self-assemblies by introducing the bromination effect. J Control Release 2025; 382:113699. [PMID: 40189056 DOI: 10.1016/j.jconrel.2025.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Prodrug nano-self-assemblies, composed of the drug, activation, and assembly modules, hold great promise for cancer therapy. However, it remains challenging to formulate stable prodrug nano-self-assemblies to achieve prolonged blood circulation and high tumor accumulation. A critical factor in prodrug self-assembly is the rational design of assembly modules to balance driving and repulsive forces during self-assembly. We have designed and synthesized two paclitaxel prodrugs with a disulfide bond as an activation module and palmitic acid or 2-bromopalmitic acid as assembly modules, respectively. The bromine atom incorporated in the self-assembly module significantly increased the hydrophobicity of the compound. Moreover, the relatively large atomic size of the bromine atom induced steric hindrance. These two factors simultaneously enhanced the driving and the repulsive forces. This chemical structure optimization resulted in highly stable prodrug nano-assemblies (PA(Br)-SS-PTX NPs) with superior blood circulation and tumor accumulation, overall leading to potent anti-cancer efficacy. Our findings demonstrate an important role of the bromination effect in prodrug self-assembly and introducing the bromination effect represents a promising new strategy for developing effective prodrug-based self-assembled nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yuan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenjing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhang Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
4
|
Li Y, Chen Y, Tang Y, Yang T, Zhou P, Miao L, Chen H, Deng Y. Breaking the barriers in effective and safe Toll-like receptor stimulation via nano-immunomodulators for potent cancer immunotherapy. J Control Release 2025; 382:113667. [PMID: 40157608 DOI: 10.1016/j.jconrel.2025.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy is an emerging strategy that awakens the intrinsic immune system for cancer treatment. Generally, successful immunotherapy of malignant tumours relies on the effective production of tumour-associated antigens and their lymph node delivery, antigen processing and presentation for T-cell activation, and the dismantling of the immunosuppressive tumour microenvironment. Toll-like receptor (TLR) agonists are potent stimulants in cancer immunotherapy, which can directly activate antigen-presenting cells (APCs) and further induce T cell activation for antitumour immune response and convert immunosuppressive tumour microenvironment to an immunogenic one for cooperative tumour ablation. However, TLR agonists for effective cancer immunotherapy have encountered essential challenges, such as insufficient immune activation and systemic side effects. In recent years, nano-immunomodulators with TLR agonists have been employed for tumour- and/or lymph node-targeted immune activation to improve the antitumour immune response and alleviate their systemic toxicities, providing a promising strategy for enhanced cancer immunotherapy. Herein, we introduce the recent progress in developing various TLR nano-immunomodulators for cancer immunotherapy via APC activation and tumour microenvironment remodelling. Upon elucidating the rational design principles of nano-immunomodulators, we elucidate the advancement of TLR nanoagonists to break the barriers in effective and safe Toll-like receptor stimulation for potent cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Li
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China.
| | - Huabing Chen
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Gao S, Zhou JR, Yokomizo K, Fang J. Nano-drug delivery system of natural products for disease prevention and treatment. Expert Opin Drug Deliv 2025:1-11. [PMID: 40366774 DOI: 10.1080/17425247.2025.2506830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial. AREAS COVERED This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations. EXPERT OPINION Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.
Collapse
Affiliation(s)
- Shanghui Gao
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
7
|
Li Z, Yu K, Cao Y, Yuan H, Wu L, Xiong L, Tang Y, Liang B. Breaking the Chains of Therapeutic Blockade: Pyroptosis-Induced Photothermal-Chemotherapy with Targeted Nanoprobes in Triple-Negative Breast Cancer. Biomater Res 2025; 29:0200. [PMID: 40376201 PMCID: PMC12079191 DOI: 10.34133/bmr.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 05/18/2025] Open
Abstract
There is an important clinical need and social significance, especially for young patients, to explore a new breast-conserving strategy that is not dependent on biomarkers for anti-triple-negative breast cancer. Disulfiram, historically employed for the treatment of chronic alcoholism, has recently emerged as a promising antitumor agent in combination with Cu2+. However, reported disulfiram-Cu2+ codelivery regimens often suffer from instability as well as inadequate drug metabolism, which is detrimental to the production and action of the antitumor active ingredient copper(II) bis(diethyldithiocarbamate). To address this obstacle, this study tested nanosystems ICG-CuET@PLGA-CS-HA (IC@PCH) nanoparticles (NPs) carrying the chemotherapeutic agent copper(II) bis(diethyldithiocarbamate) and photosensitizer indocyanine green for the efficient delivery of antitumor drugs. Benefiting from the involvement of hyaluronic acid, the prepared IC@PCH NPs not only targeted CD44 on the surface of tumor cells but also showed a longer in vivo circulation time. The in vitro and in vivo results demonstrated that IC@PCH NP-mediated photothermal-chemotherapy treatment led to pyroptosis via the NLRP3/caspase-1 classical pathway, which had a significant therapeutic effect on triple-negative breast cancer. In addition, targeting IC@PCH NPs allows photoacoustic-magnetic resonance-fluorescence trimodal imaging, which is capable of detecting more insidious cancer foci and opens up new avenues for precise cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zuying Li
- Department of Ultrasound of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy,
Children’s Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
- Department of Ultrasound & Chongqing Key Laboratory of Ultrasound Molecular Imaging,
The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital,
The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing 400021, P. R. China
| | - Youde Cao
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center,
Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology,
The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P. R. China
| | - Hui Yuan
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center,
Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology,
The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P. R. China
| | - Lingcheng Wu
- Department of Ultrasound & Chongqing Key Laboratory of Ultrasound Molecular Imaging,
The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center,
Chongqing Medical University, Chongqing 400016, P. R. China
| | - Linyan Xiong
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center,
Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology,
The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P. R. China
| | - Yi Tang
- Department of Ultrasound of Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy,
Children’s Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
| | - Bing Liang
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center,
Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology,
The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P. R. China
| |
Collapse
|
8
|
He J, Li T, Pan X, Deng Z, Huang J, Mo X, Shen X, Qin X, Yang X, Gao M, Yang J. CD44 and αV-integrins dual-targeting bimetallic nanozymes for lung adenocarcinoma therapy via NIR-enhanced ferroptosis/apoptosis. Biomaterials 2025; 323:123407. [PMID: 40403445 DOI: 10.1016/j.biomaterials.2025.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/27/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Combination therapy is a promising strategy for lung adenocarcinoma (LUAD), due to the advantages of overcoming drug resistance, side effects, and tumor heterogeneity. Herein, we report a novel dual-targeting bimetallic nanozyme (MH-iRGD) consisting of nanosized manganese ferrite (MF) after encapsulating with dopamine and methacrylic anhydride to modify hyaluronic acid, followed by integrin receptor targeting peptide (HS-PEG3400-iRGD) modification for LUAD targeted therapy. Our study confirmed that MH-iRGD combined with near-infrared irradiation (NIR) possessed dramatic photothermal effects and reactive oxygen species (ROS) production and GSH depletion abilities. Importantly, MH-iRGD possessed dual-targeting capacities for LUAD cells overexpressed CD44 and αV-integrin receptors owing to hyaluronic acid coating and iRGD modification. Inhibitors of CD44 and integrins could impair the uptake of MH-iRGD in LUAD cells. Moreover, MH-iRGD + NIR displayed excellent anti-LUAD effects as a result of the production of intracellular ROS, consumption of glutathione (GSH) and mitochondrial dysfunction. Mechanistically, NIR robustly strengthened MH-iRGD-induced ferroptosis and apoptosis by down-regulating SLC7A11, GPX4, Bcl-2 levels while up-regulating Bax level. Specifically, ferroptosis and apoptosis were increased while the LUAD progression was inhibited after intravenous injection of MH-iRGD + NIR in xenograft mouse models. Taken together, our results indicate that MH-iRGD + NIR serves as a promising targeted therapy for LUAD, which broadens the applications of highly active dual-targeting bimetallic nanozymes.
Collapse
Affiliation(s)
- Jingchuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Tingting Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoqin Pan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Zhihua Deng
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Department of Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Jifu Huang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiumei Qin
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xingye Yang
- Department of Pharmaceutics, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Drug Basic Research for Prevention and Treatment of Geriatric Diseases, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; The Laboratory of Toxicology of Traditional Chinese Medicine, Level III Laboratory of National Administration of Traditional Chinese Medicine, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
9
|
Cheng Q, Zhong X, Deng L, He X, Luo M, Wang R, Zhang J. RBC Membrane-Camouflaged Nanosystem-Mediated Synergistic Drug Combination for Enhanced Anti-Tumor Therapy. Adv Healthc Mater 2025:e2500446. [PMID: 40331462 DOI: 10.1002/adhm.202500446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/19/2025] [Indexed: 05/08/2025]
Abstract
Achieving direct delivery of drugs to the tumor site is a prerequisite for successful drug development, necessitating that drug molecules be cell permeable. Numerous studies have shown that cell-penetrating peptides (CPPs) can augment the efficacy of various therapeutic agents by enhancing cellular uptake, prompting their advancement into preclinical studies. However, the non-specificity and cationic properties of CPPs impede their clinical application. Attributed to the easily accessible capacity and excellent biocompatibility of red blood cells (RBC), herein, an RBC membrane camouflaged, cell-penetrating peptides R8-(RRRRRRRR)based drug delivery system is constructed to achieve a synergistic combination of natural compounds triptolide (TP) and celastrol (Cel), thus precisely inducing tumor inhibition. The RBC membrane camouflaged nanosystem escaped from the reticuloendothelial system (RES) and is endocytosed by tumor cells mediated by R8. Released TP and Cel-induced tumor cell apoptosis, reducing tumor metastasis invasion and triggering autophagy disorder in breast cancer and liver cancer. Overall, the biomimetic nanosystem realizes enhanced drug combination therapy with high-level biosafety, which provides a facile strategy to improve the clinical application of CPPs-based drug combinations.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xinling He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Miaoxizi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese, Medical Sciences, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
10
|
Barbieri L, Salvioni L, Banfi A, Garbujo S, Fiandra L, Baioni C, Giustra M, Morelli L, Frascotti G, Colombo M, Innocenti M, Prosperi D. Dual-Targeting Strategy to Repurpose Cetuximab with HFn Nanoconjugates for Immunotherapy of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327456 DOI: 10.1021/acsami.5c06626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and treatment-resistant malignancy characterized by the lack of targeted therapies and poor clinical outcomes. Here, we present a dual-targeting strategy combining the anti-EGFR monoclonal antibody cetuximab (CTX) with H-ferritin (HFn), a nanoparticle targeting transferrin receptor 1 (TfR1), for potential immunotherapy in CTX-resistant tumors. The HFn-CTX nanoconjugate exhibited favorable biophysical properties and good tumor accumulation and significantly enhanced antibody-dependent cellular cytotoxicity (ADCC) in TNBC spheroids compared to CTX alone. Conversely, glioblastoma spheroids did not exhibit comparable reactivity. This effect correlated with elevated cell-surface EGFR expression and plasma-membrane lingering of the nanoconjugate in TNBC cells, facilitating robust immune activation. Biodistribution studies showed selective accumulation of the HFn-CTX nanoconjugate in TNBC tumors in vivo. These findings highlight the potential of HFn-CTX nanoconjugates to repurpose CTX for refractory cancers that express EGFR at high levels, such as TNBC, leveraging dual-receptor targeting to amplify immune-mediated cytotoxicity and overcome resistance.
Collapse
Affiliation(s)
- Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Salvioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Andrea Banfi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Garbujo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Chiara Baioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Marco Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Morelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Gianni Frascotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
11
|
Wang Y, Barmin R, Mottaghy FM, Kiessling F, Lammers T, Pallares RM. Nanoparticles in nuclear medicine: From diagnostics to therapeutics. J Control Release 2025; 383:113815. [PMID: 40319914 DOI: 10.1016/j.jconrel.2025.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The use of nanoparticles in nuclear medicine is paradoxical. While several nanoformulations, such as 99mTc colloids, have been used for diagnosis for decades, only a few new radionanomedicines have been able to reach the market, despite extensive preclinical efforts. This contradiction is dictated by the unique features of nanoparticles, such as (potential) prolonged circulation times, slow compartment exchanges, and large accumulations in the mononuclear phagocyte system, which allow for certain specific applications while preventing others. In this review, we discuss the development and clinical application of radiolabeled nanoparticles as imaging agents for disease diagnosis and patient stratification, as well as their promise and potential to be used as next-generation formulations to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
12
|
Zhang N, Zhang H, Yu L, Fu Q. Advances in anti-inflammatory treatment of sepsis-associated acute respiratory distress syndrome. Inflamm Res 2025; 74:74. [PMID: 40298991 DOI: 10.1007/s00011-025-02043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and associated with significant morbidity and mortality, posing a critical challenge to global public health. Among its complications, sepsis frequently causes acute respiratory distress syndrome (ARDS), which has a high incidence and mortality rate, particularly in intensive care units (ICUs). Currently, the management of sepsis-induced ARDS is largely limited to supportive care, as no specific pharmacological treatments are available. The progression of sepsis to ARDS is driven by severe inflammation and cytokine storms, highlighting the importance of anti-inflammatory therapies as a primary treatment focus. We summarize conventional drugs and emerging treatments targeting excessive inflammatory responses in sepsis-associated ARDS, reviewing progress in basic research and clinical trials. Additionally, we discuss current research challenges to propose future directions for anti-inflammatory treatments, aiming to develop highly effective drugs with better clinical translation potential.
Collapse
Affiliation(s)
- Nana Zhang
- The Fourth Central Clinical School, Tianjin Medical University, 300140, Tianjin, China
| | - Hewei Zhang
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, 300140, Tianjin, China
| | - Li Yu
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Qiang Fu
- The Fourth Central Clinical School, Tianjin Medical University, 300140, Tianjin, China.
| |
Collapse
|
13
|
Liu T, Liu F, Li X, Xu S, Wang L. Supramolecular Nanoplatforms with Activable Ultrasound and Magnetic Resonance Imaging for Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412566. [PMID: 40270338 DOI: 10.1002/smll.202412566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Excellent multifunctional platforms for cancer diagnosis and treatment are highly desirable. Herein, multifunctional nanocomposites are constructed by utilizing Mn2+ to coordinate to the imidazole moiety anchored on CuO2 nanoparticles through cyclodextrin-adamantane interaction. The encapsulated CuO2 nanoparticles (NPs) can generate hydrogen peroxide (H2O2) at tumor sites under acidic conditions upon decomposition, which is further turned into oxygen (O2) under Mn2+ catalysis, facilitating both ultrasound and magnetic resonance imaging (MRI). Moreover, the proposed nanomedicine enhances reactive oxygen species (ROS) generation and depletes glutathione (GSH), leading to increased lipid peroxidation (LPO) and effective ferroptosis-mediated cancer therapy. Such a strategy presents a promising approach for the development of theranostics for imaging-guided tumor therapy.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqi Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xindi Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Li Y, Chen X, Tong C, Li L, Qin C, Zhang M, Zhao Y, Chen Q, Wang Y. Double-Helix Duality: Rods Bow, Toroids Wow in the Nuclease Arena. J Phys Chem Lett 2025; 16:3874-3878. [PMID: 40206028 DOI: 10.1021/acs.jpclett.5c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Utilizing polyion complexation, the formation of rod-like DNA condensates is driven by the intrinsic rigidity of supramolecular plasmid DNA. Upon interaction with polycationic block copolymers of poly(ethylene glycol)-polylysine (PEG-PLys), these macromolecules undergo a regular self-folding process, during which double-stranded DNA (dsDNA) transitions into single-stranded DNA (ssDNA) at the kinked junctions. Our investigations, employing transmission electron microscopy (TEM), unprecedentedly reveal the absence of a PEG coating at these critical junctions, rendering them susceptible to nuclease degradation. This finding underscores the critical necessity for comprehensive PEG encapsulation in the engineering of robust gene delivery constructs. In stark contrast to the anisotropic rod-like condensates, our novel isotropic toroidal DNA condensates, characterized by comprehensive PEG shielding and a self-spooling mechanism that preserves dsDNA integrity, exhibit a marked enhancement in enzymatic stability (nearly 30-fold greater). Their favorable condensation process also confers superior transcriptional potential, positioning these toroidal condensates as promising platforms for the next generation of gene delivery systems.
Collapse
Affiliation(s)
- Yanhua Li
- The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116027, China
| | - Xiyi Chen
- School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Changgui Tong
- The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116027, China
| | - Lei Li
- The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116027, China
| | - Chunfang Qin
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Ming Zhang
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Wang
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
15
|
Schelker C, Revaclier L, Borchard G, Nowak-Sliwinska P. Liposomal Tubacin: Strategies for the Formulation of a Highly Hydrophobic Anticancer Drug. Pharmaceutics 2025; 17:491. [PMID: 40284485 PMCID: PMC12030124 DOI: 10.3390/pharmaceutics17040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Clear-cell renal cell carcinoma (ccRCC) is the most prevalent form of kidney cancer, accounting for over 75% of cases worldwide. Histone deacetylase inhibitors (HDACIs) have emerged as promising agents for ccRCC treatment, particularly in combination with immunotherapy or targeted therapies. Tubacin, a potent HDAC6 inhibitor, has demonstrated potent anticancer activity but faces therapeutic limitations due to its hydrophobic nature and poor solubility, which hinder its effective drug delivery. This study explores liposomal encapsulation as a strategy to improve tubacin delivery; Methods: Liposomes were prepared using the ethanol injection method followed by size-exclusion chromatography. Using the Plackett-Burman Design, we identified a promising liposomal formulation and evaluated its biological activity in vitro; Results: However, initial formulations reduced the mitochondrial activity to 30% in healthy renal cell lines. To mitigate this, we optimized the formulation by reducing tocopheryl polyethylene glycol succinate (TPGS) content and incorporating Kolliphor® as an additional surfactant. This optimized formulation significantly reduced toxicity in noncancerous cells, with up to 80% of mitochondrial activity conserved while retaining key properties for therapeutic application; Conclusions: Our findings demonstrate that liposomal encapsulation enhances the safety and delivery of hydrophobic drugs like tubacin. This approach offers a promising strategy for improving the efficacy of HDACIs in ccRCC treatment, potentially overcoming drug delivery challenges associated with hydrophobic molecules.
Collapse
Affiliation(s)
- Cindy Schelker
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Léa Revaclier
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Peng L, Gao Z, Liang Y, Guo X, Zhang Q, Cui D. Nanoparticle-based drug delivery systems: opportunities and challenges in the treatment of esophageal squamous cell carcinoma (ESCC). NANOSCALE 2025; 17:8270-8288. [PMID: 40052671 DOI: 10.1039/d4nr05114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy characterized by limited treatment options and poor prognosis. Nanoparticle-based drug delivery systems have emerged as a promising strategy to enhance cancer therapy efficacy by improving drug targeting, reducing toxicity, and enabling multifunctional applications. This review highlights some key types of nanoparticles, including liposomes, polymeric nanoparticles, metallic nanoparticles, dendrimers, and quantum dots, which could effectively improve the delivery of various drugs used in chemotherapy, radiotherapy, and immunotherapy, offering more precise and effective treatment options. With the ability to improve drug stability and overcome biological barriers, nanoparticle-based systems represent a transformative strategy for ESCC treatment. Despite some challenges, such as biocompatibility and scalability, the future of nanoparticle-based drug delivery holds great promise, particularly in the development of personalized nanomedicine and novel therapeutic approaches targeting the tumor microenvironment. With ongoing advancements, nanoparticle-based drug delivery systems hold immense potential to revolutionize ESCC treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Linjia Peng
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zixuan Gao
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yanfeng Liang
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Xiaonan Guo
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Qiuli Zhang
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Daxiang Cui
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| |
Collapse
|
17
|
Ruan G, Ye L, Ke J, Lin H, Wu M, Liu Z, Fang Y, Zhang S, Wang H, Liu Y, Song H. All-In-One Gadolinium-Doxorubicin Nanoassemblies for Spatial Delivery and Chemoresistance Reversal in Tumor Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19348-19366. [PMID: 40117447 DOI: 10.1021/acsami.4c21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Efficiently overcoming chemoresistance in tumor microenvironments remains a critical hurdle in cancer therapy due to tumor heterogeneity, limited drug penetration, and adaptive resistance mechanisms. Herein, we report the design and application of all-in-one gadolinium-doxorubicin nanoassemblies (GDNAs) for spatially targeted delivery and chemoresistance reversal. These multifunctional nanoassemblies integrate a lanthanide-based component for real-time imaging and doxorubicin for chemotherapy, coupled with bioinformatics-guided small interfering RNAs (siRNAs) to silence key resistance-associated genes such as BCL2 and BIRC5. The GDNAs demonstrate enhanced tumor penetration and specificity for chemoresistant cells, achieving deep tissue delivery and synergistic effects in human-derived organoids and xenograft breast cancer models. Remarkably, GDNAs significantly reduce tumor viability and growth while attenuating invasive potential, showcasing superior therapeutic efficacy compared to conventional treatments. Comprehensive preclinical evaluations confirm their biocompatibility and low systemic toxicity, underscoring the translational potential of this platform. This work introduces a paradigm-shifting strategy by integrating imaging, targeted therapy, and gene silencing to address chemoresistance, offering a versatile approach for personalized cancer treatment.
Collapse
Affiliation(s)
- Guanyu Ruan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Fujian Maternity and Child Health Hospital College of Clinical Medical College for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Lixiang Ye
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Jianxi Ke
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hongyu Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Minxia Wu
- Electron Microscopy Laboratory of Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, Fujian 350025, P. R. China
| | - Yu Fang
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Shuihua Zhang
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Hongmei Wang
- Fujian Maternity and Child Health Hospital College of Clinical Medical College for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, Fujian 350025, P. R. China
| |
Collapse
|
18
|
Linderman SW, DeRidder L, Sanjurjo L, Foote MB, Alonso MJ, Kirtane AR, Langer R, Traverso G. Enhancing immunotherapy with tumour-responsive nanomaterials. Nat Rev Clin Oncol 2025; 22:262-282. [PMID: 40050505 DOI: 10.1038/s41571-025-01000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The targeted delivery of immunotherapies to tumours using tumour-responsive nanomaterials is a promising area of cancer research with the potential to address the limitations of systemic administration such as on-target off-tumour toxicities and a lack of activity owing to the immunosuppressive tumour microenvironment (TME). Attempts to address these challenges include the design and functionalization of nanomaterials capable of releasing their cargoes in response to specific TME characteristics, thus facilitating the targeted delivery of immune-checkpoint inhibitors, cytokines, mRNAs, vaccines and, potentially, chimaeric antigen receptors as well as of agents that modulate the extracellular matrix and induce immunogenic cell death. In this Review, we describe these various research efforts in the context of the dynamic properties of the TME, such as pH, reductive conditions, reactive oxygen species, hypoxia, specific enzymes, high levels of ATP and locoregional aspects, which can be leveraged to enhance the specificity and efficacy of nanomaterial-based immunotherapies. Highlighting preclinical successes and ongoing clinical trials, we evaluate the current landscape and potential of these innovative approaches. We also consider future research directions as well as the most important barriers to successful clinical translation, emphasizing the transformative potential of tumour-responsive nanomaterials in overcoming the barriers that limit the activity of traditional immunotherapies, thus improving patient outcomes.
Collapse
Affiliation(s)
- Stephen W Linderman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Hospital Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Louis DeRidder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucía Sanjurjo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
- IMDEA Nanosciences Institute, Madrid, Spain
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
Krause H, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416838. [PMID: 39985275 PMCID: PMC11967826 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans‐Joachim Krause
- Institute of Biological Information ProcessingBioelectronics (IBI‐3)Forschungszentrum Jülich52425JülichGermany
| | - Ulrich M. Engelmann
- Medical Engineering and Applied MathematicsFH Aachen University of Applied Sciences52428JülichGermany
| |
Collapse
|
20
|
De Caro L, Stoll T, Grandeury A, Gozzo F, Giannini C. Characterization of VitE-TPGS Micelles Linked to Poorly Soluble Pharmaceutical Compounds Exploiting Pair Distribution Function's Moments. Pharmaceutics 2025; 17:431. [PMID: 40284426 PMCID: PMC12030118 DOI: 10.3390/pharmaceutics17040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Micelles have attracted significant interest in nanomedicine as drug delivery systems. This study investigates the morphology of micelles formed by the D-α-tocopherol polyethylene glycol 1000 succinate (VitE-TPGS) surfactant in the presence and absence of, respectively, a poorly soluble pharmaceutical compound (PSC), i.e., Eltrombopag (0.08 wt%) and CaCl2 (0.03 wt%). The aim was to assess the micelles' ability to solubilize the PSC and potentially shield it from Ca2+ ions, simulating in vivo conditions. Methods: For this purpose, we have developed a novel theoretical approach for analyzing Pair Distribution Function (PDF) data derived from Small-Angle X-ray Scattering (SAXS) measurements, based on the use of PDF's moments. Results: Our spheroid-based model was able to characterize successfully the micellar morphology and their interactions with PSC and CaCl2, providing detailed insights into their size, shape, and electron density contrasts. The presence of PSC significantly affected the shape and integral of the PDF curves, indicating incorporation into the micelles. This also resulted in a decrease in the micelle size, regardless of the presence of CaCl2. When this salt was added, it reduced the amount of PSC within the micelles. This is likely due to a decrease in the overall PSC availability in solution, induced by Ca2+ ions. Conclusions: This advanced yet straightforward analytical model represents a powerful tool for characterizing and optimizing micelle-based drug delivery systems.
Collapse
Affiliation(s)
- Liberato De Caro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy;
| | - Thibaud Stoll
- Excelsus Structural Solutions (Swiss) AG, Park Innovaare, Parkstrasse 1, 5234 Villigen, Switzerland; (T.S.); (F.G.)
| | - Arnaud Grandeury
- Novartis Pharma AG, Technical Research and Development, Material Science, Novartis Campus, Virchow 6.3.231, 4056 Basel, Switzerland;
| | - Fabia Gozzo
- Excelsus Structural Solutions (Swiss) AG, Park Innovaare, Parkstrasse 1, 5234 Villigen, Switzerland; (T.S.); (F.G.)
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy;
| |
Collapse
|
21
|
Ma J, Zhu R, Li M, Jiao H, Fan S, Ma X, Xiang G. Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer. Acta Biomater 2025; 195:421-435. [PMID: 39922514 DOI: 10.1016/j.actbio.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/12/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC50 = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs). STATEMENT OF SIGNIFICANCE: We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Junhui Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ruixue Zhu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meijing Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Jiao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sijun Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China; The Higher Education Edible and Medicinal Fungi Engineering Research Center of Guizhou Province, Tongren, Guizhou 554300, China.
| |
Collapse
|
22
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
23
|
Chen D, Du Y, Wang X, Li H, Wu X, Kuang X, Li C, Zhao J, Xiong Y, Sun M, Tu J, Liu S, Sun C. Phase-separating Pt(IV)-graft-glycopeptides sequentially sensing pH and redox for deep tumor penetration and targeting chemotherapy. J Control Release 2025; 379:743-756. [PMID: 39832748 DOI: 10.1016/j.jconrel.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Active-targeting nanomedicines have been widely employed in cancer treatment for increasing therapeutic index. However, the limited permeability caused by the binding site barrier (BSB) and size hindrances compromises their clinical antitumor efficacy in patients. Herein, learning from the liquid-liquid phase separation (LLPS) of bio-macromolecules, we report phase-separating glycopeptides (HEP) from polyhistidine (PHis) grafted hyaluronic acid (HA), which can sense the tumor extracellular pH and concomitantly overcome size and BSB dilemmas for enhanced tumor penetration. HEP aggregates into nanodroplets in solution at neutral pH. Upon reaching the acidic extracellular environment of tumors, the pH-responsive PHis triggers a phase separation, converting the coacervate nanodroplets into monomeric glycopeptides. This enables HEP conjugated with the platinum prodrug (HEPPt) to deeply penetrate into tumors by overcoming the BSB effect arising from the interaction between nanodroplets and cluster of differentiation 44 (CD44), as well as resolving the size challenges. Moreover, HEPPt in monomeric states exhibits promoted cellular uptake after pH-triggered phase separation, attributed to the transmembrane effect of exposed PHis. Subsequently, the rapid release of Pt(II), triggered by tumor intracellular reducing environment, exerts excellent antitumor activity. The phase-separating glycopeptides represent a promising platform for improving tumor penetration and intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Dali Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yunai Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xitong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Huihong Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinjiao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoqin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Chunjiayu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yerong Xiong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Siyan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
24
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
25
|
Cai Q, Guo R, Chen D, Deng Z, Gao J. SynBioNanoDesign: pioneering targeted drug delivery with engineered nanomaterials. J Nanobiotechnology 2025; 23:178. [PMID: 40050980 PMCID: PMC11884119 DOI: 10.1186/s12951-025-03254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Synthetic biology and nanotechnology fusion represent a transformative approach promoting fundamental and clinical biomedical science development. In SynBioNanoDesign, biological systems are reimagined as dynamic and programmable materials to yield engineered nanomaterials with emerging and specific functionalities. This review elucidates a comprehensive examination of synthetic biology's pivotal role in advancing engineered nanomaterials for targeted drug delivery systems. It begins with exploring the fundamental synergy between synthetic biology and nanotechnology, then highlights the current landscape of nanomaterials in targeted drug delivery applications. Subsequently, the review discusses the design of novel nanomaterials informed by biological principles, focusing on expounding the synthetic biology tools and the potential for developing advanced nanomaterials. Afterward, the research advances of innovative materials design through synthetic biology were systematically summarized, emphasizing the integration of genetic circuitry to program nanomaterial responses. Furthermore, the challenges, current weaknesses and opportunities, prospective directions, and ethical and societal implications of SynBioNanoDesign in drug delivery are elucidated. Finally, the review summarizes the transformative impact that synthetic biology may have on drug-delivery technologies in the future.
Collapse
Affiliation(s)
- Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Rui Guo
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dafu Chen
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiangtao Gao
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Zeng SM, Qu WQ, Sun YL, Chen KW, Zhao K, Yan JH, Zhang C, Liang CX, Chen Y, Pan T, Yu A, Zhang XZ. MnO 2-Assisted Photosynthetic Bacteria Interfering with the Adenosine-A2AR Metabolic Pathway to Enhance Tumor Photothermal Immunotherapy. ACS NANO 2025; 19:7962-7980. [PMID: 39976374 DOI: 10.1021/acsnano.4c15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxia-related adenosine (Ado) exerts an immunosuppressive effect in tumors by binding to the metabolic checkpoint Ado A2A receptors (A2AR), thereby hindering the activation of antitumor immunity induced by immunogenic cell death (ICD). In this study, a MnO2-assisted photosynthetic bacteria (PSB) biohybrid (MnO2@PSB) is developed to enhance tumor photothermal immunotherapy by interfering with the Ado-A2AR metabolic pathway. Specifically, manganese dioxide (MnO2) nanoflowers are conjugated onto PSB by the carbodiimide reaction to construct the biohybrid MnO2@PSB. As a photothermal agent, MnO2@PSB generates heat to "burn" tumor cells under 808 nm laser irradiation, inducing tumor cell ICD. Meanwhile, MnO2@PSB catalyzes the decomposition of endogenous hydrogen peroxide into oxygen to alleviate tumor hypoxia, thereby reducing Ado production and downregulating the expression of A2AR, further reversing the tumor immunosuppressive microenvironment and amplifying the ICD effects. In various mouse 4T1 tumor models, MnO2@PSB can enhance antitumor immune responses, prolong mouse survival, and significantly inhibit tumor growth, recurrence, and metastasis under 808 nm laser irradiation. Collectively, this study provides a direction for enhanced antitumor immunotherapy through regulating metabolic pathways.
Collapse
Affiliation(s)
- Si-Min Zeng
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Wen-Qiang Qu
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Liang Sun
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ke-Wei Chen
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Kai Zhao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jian-Hua Yan
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Cheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Chun-Xiao Liang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Chen
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ting Pan
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital & Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
27
|
Tang J, Zhang J, Li Y, Hu Y, He D, Ni H, Zhang J, Wu F, Tang Y, Wang S. Interpretable Radiomics Model Predicts Nanomedicine Tumor Accumulation Using Routine Medical Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416696. [PMID: 39916575 DOI: 10.1002/adma.202416696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Indexed: 03/27/2025]
Abstract
Accurately predicting nanomedicine accumulation is critical for guiding patient stratification and optimizing treatment strategies in the context of precision medicine. However, non-invasive prediction of nanomedicine accumulation remains challenging, primarily due to the complexity of identifying relevant imaging features that predict accumulation. Here, a novel non-invasive method is proposed that utilizes standard-of-care medical imaging modalities, including computed tomography and ultrasound, combined with a radiomics-based model to predict nanomedicine accumulation in tumor. The model is validated using a test dataset consisting of seven tumor xenografts in mice and three sizes of gold nanoparticles, achieving an area under the receiver operating characteristic curve of 0.851. The median accumulation levels of tumors predicted as "high accumulators" are 2.69 times greater than those predicted as "low accumulators". Analysis of this machine-learning-driven interpretable radiomics model revealed imaging features that are strongly correlated with dense stroma, a recognized biological barrier to effective nanomedicine delivery. Radiomics-based prediction of tumor accumulation holds promise for stratifying patient and enabling precise tailoring of nanomedicine treatment strategies.
Collapse
Affiliation(s)
- Jiajia Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Jie Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yang Li
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yongzhi Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Doudou He
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Hao Ni
- Department of Mathematics, University College London, London, WC1H0AY, UK
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yuxia Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
28
|
Luo J, Shang Y, Zhao N, Lu X, Wang Z, Li X, Meng X, Zhao Y. Hypoxia-responsive micelles deprive cofactor of stearoyl-CoA desaturase-1 and sensitize ferroptotic ovarian cancer therapy. Biomaterials 2025; 314:122820. [PMID: 39277948 DOI: 10.1016/j.biomaterials.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ferroptosis has been recognized as a promising therapeutic strategy for cancer due to its unique mechanism of action. However, the upregulation of stearoyl-CoA desaturase 1 (SCD1) in ovarian cancer leads to resistance to ferroptotic therapy. Zinc ion (Zn2+) serves as the cofactor of SCD1. It was hypothesized that selective deprivation of Zn2+ from SCD1 could sensitize ferroptotic ovarian cancer therapy. Here, we report a hypoxia-responsive polymer micelle for enhanced ferroptosis of ovarian cancer cells. A SCD1 inhibitor, PluriSIn 1 (Plu), and a ferroptosis inducer, Auranofin (Aur), were co-encapsulated in nitroimidazole-bearing micelles. Under the hypoxic tumor microenvironment, the conversion of nitroimidazole to aminoimidazole triggered the cargo release and induced the depletion of antioxidant molecules (e.g., glutathione, thioredoxin, and NADPH). Meanwhile, because of the strong coordination between aminoimidazole and Zn2+ compared to that of histidine and Zn2+, such conversion can deprive the metal cofactor of SCD1, hence sensitizing the action of Plu and Aur. The proof-of-concept was demonstrated in cell and animal models with minimal systemic toxicity. The current work integrates ferroptosis induction with SCD1 inhibition in a hypoxia-responsive vehicle, offering a promising strategy for addressing the ferroptosis resistance and opening novel avenues for managing the difficult-to-treat ovarian cancer.
Collapse
Affiliation(s)
- Jiajia Luo
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yaqi Shang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ning Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoying Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
29
|
Jiang L, Wu A, Zeng L, Zhou B, Zhao M, Fan M, Jin Z, He Q. A Slimming/Excavating Strategy for Enhanced Intratumoral Penetration of Acid-Disassemblable NO-Releasing Nanomedicines. Adv Healthc Mater 2025; 14:e2404085. [PMID: 39757461 DOI: 10.1002/adhm.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Poor tumor penetration is the major predicament of nanomedicines that limits their anticancer efficacy. The dense extracellular matrix (ECM) in the tumor is one of the major barriers against the deep penetration of nanomedicines. In this work, a slimming/excavating strategy is proposed for enhanced intratumoral penetration based on an acid-disassemblable nanomicelles-assembled nanomedicine and the NO-mediated degradation of ECM. The nanomedicine is constructed by cross-linking nanomicelles, which are self-assembled with two kinds of dendrimers containing phenylboronic acid and lactobionic acid, through borate esterification. In the acidic tumor microenvironment, the pH-sensitive borate ester bonds among the nanomicelles are hydrolyzed, triggering the disassembly of nanomedicine (≈150 nm) into small nanomicelles (≈25 nm). In response to the intratumoral over-expressed glutathione (GSH), the NO donor loaded in the nanomicelles produces NO, which mediates the expression of matrix metalloproteinases for the degradation of ECM in the tumor. By collaboration of the disassembling behavior of nanomedicine with the NO-mediated degradation of ECM, the designed nanomedicine can penetrate a long distance in tumors. The proposed slimming/excavating strategy will provide inspiration for overcoming the challenge of nanomedicines in tumor penetration.
Collapse
Affiliation(s)
- Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Anbang Wu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Min Zhao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Mingjian Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Hernando-Muñoz C, Revilla-Cuesta A, Abajo-Cuadrado I, Andreini C, Torroba T, Busto N, Fernández D, Perdomo G, Acosta G, Royo M, Gutierrez Reguera J, Spinello A, Barone G, Black D, Pal R. Self-assembling Depsipeptides on Aggregation-Induced Emission Luminogens: A New Way to Create Programmable Nanovesicles and Soft Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10097-10107. [PMID: 39889237 DOI: 10.1021/acsami.4c19123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
We introduce the proof of concept of a new methodology to produce robust hollow nanovesicles stable in water or mixtures of water and organic solvents. The bottom-up produced nanovesicles are formed by the self-assembly of depsipeptide chains of natural origin combined with new aggregation-induced emission luminogens that function as constitutional vesicle-forming moieties and fluorescent indicators of the structure of the nanovesicle. The newly formed nanovesicles are robust enough to be used to carry large molecules such as physiological peptides without losing their structural characteristics, acting as programmable nanocarrier systems within living cells as Trojan horse systems, constituting a new approach to active transport and nanoencapsulation.
Collapse
Affiliation(s)
- Carla Hernando-Muñoz
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Andrea Revilla-Cuesta
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Irene Abajo-Cuadrado
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Camilla Andreini
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Tomás Torroba
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Natalia Busto
- Department of Health Science, Faculty of Health Science, University of Burgos, Burgos 09001, Spain
| | - Darío Fernández
- Department of Health Science, Faculty of Health Science, University of Burgos, Burgos 09001, Spain
| | - German Perdomo
- Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y Universidad de Valladolid, Valladolid 47003, Spain
| | - Gerardo Acosta
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Miriam Royo
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Angelo Spinello
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90128, Sicilia Italy
| | - Giampaolo Barone
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90128, Sicilia Italy
| | - Dominic Black
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Robert Pal
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
31
|
Quan Z, Wang S, Xie H, Zhang J, Duan R, Li M, Zhang J. ROS Regulation in CNS Disorder Therapy: Unveiling the Dual Roles of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410031. [PMID: 39676433 DOI: 10.1002/smll.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
The treatment of brain diseases has always been the focus of attention. Due to the presence of the blood-brain barrier (BBB), most small molecule drugs are difficult to reach the brain, leading to undesirable therapeutic outcomes. Recently, nanomedicines that can cross the BBB and precisely target lesion sites have emerged as thrilling tools to enhance the early diagnosis and treat various intractable brain disorders. Extensive research has shown that reactive oxygen species (ROS) play a crucial role in the occurrence and progression of brain diseases, including brain tumors and neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, stroke, or traumatic brain injury, making ROS a potential therapeutic target. In this review, on the structure and function of BBB as well as the mechanisms are first elaborated through which nanomedicine traverses it. Then, recent studies on ROS production are summarized through photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT) for treating brain tumors, and ROS depletion for treating NDDs. This provides valuable guidance for the future design of ROS-targeted nanomedicines for brain disease treatment. The ongoing challenges and future perspectives in developing nanomedicine-based ROS management for brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Zhengyang Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sa Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanhuan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiayi Zhang
- International department, Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
32
|
Sancho-Albero M, Decio A, Akpinar R, De Luigi A, Giavazzi R, Terracciano LM, De Cola L. Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs. Mater Today Bio 2025; 30:101433. [PMID: 39866783 PMCID: PMC11764275 DOI: 10.1016/j.mtbio.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis. Extracellular vesicles (EVs) have a similar ability in target only certain organs or to return to their original cells, showing home behavior. Here we report a strategy inspired by nature, using a combination of NPs and the targeting cell membranes of EVs. We implement the EV membranes, extracted by the EVs produced by melanoma B16-BL6 cells, as a coating of organosilica porous particles with the aim of targeting tumors and lung metastasis, while avoiding systemic effects and accumulation of the NPs in undesired organs. The tissue-specific fingerprint provided by the EVs-derived membranes from melanoma cells provides preferential uptake into the tumor and selective targeting of lungs. The ability of the EVs hybrid systems to behave as the natural EVs was demonstrated in vitro and in vivo in two different tumor models. As a proof of concept, the loading and release of doxorubicin, was investigated and its accumulation demonstrated in the expected tissues.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Alessandra Decio
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Reha Akpinar
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Raffaella Giavazzi
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Luigi M. Terracciano
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
- Department of Pharmaceutical Science, DISFARM. Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
33
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Zhang J, Lu L, Zhang W, Miao Y, Du H, Xia H, Tao Z, Du Z, Tang Y, Fang Q. Gadolinium ion-loaded mesoporous organosilica nanoplatform for enhanced radiotherapy in breast tumor treatment. Colloids Surf B Biointerfaces 2025; 246:114374. [PMID: 39541910 DOI: 10.1016/j.colsurfb.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited therapeutic options, often exhibiting resistance to standard radiotherapy (RT) and chemotherapy. Recent advancements in nanomedicine provide an opportunity to enhance treatment efficacy through innovative drug delivery systems and radiosensitizers. In this study, we present a novel nanotheranostic platform, MOs-G@DOX, engineered to enhance the therapeutic efficacy of RT in the treatment of TNBC. This platform consists of gadolinium-containing mesoporous organosilica nanoparticles (MOs-G) that serve a dual function as a drug carrier and a radiosensitizer. The MOs-G were synthesized via a surfactant-mediated sol-gel process, followed by gadolinium incorporation through nanoprecipitation. The antitumor drug doxorubicin (DOX) was subsequently loaded into the mesoporous structure, forming the MOs-G@DOX nanoplatform. Comprehensive in vitro and in vivo studies demonstrated that MOs-G@DOX exhibits excellent biocompatibility and significantly enhances the radiosensitivity of TNBC cells, leading to superior tumor growth inhibition compared to conventional treatments. The stability of MOs-G, with minimal gadolinium ion leakage, further underscores its potential as a safe and effective nanomedicine. Additionally, the combination of MOs-G@DOX with RT showed a marked increase in reactive oxygen species (ROS) generation and tumor cell apoptosis, which were confirmed through histological analyses. These findings suggest that MOs-G@DOX is a promising candidate for advancing cancer therapy, particularly in the context of RT for TNBC.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China.
| | - Li Lu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Wenqing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Yuchen Miao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hengda Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Zhaofeng Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Yulong Tang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
35
|
Wang Z, Guo Y, Li G, He M, Li Y, Liu Z, Wang H, Shen M, Shi X. Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4662-4674. [PMID: 39788886 DOI: 10.1021/acsami.4c20103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn2+, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.3 nm and tumor-microenvironment-responsive drug release behavior. The integration of Gos and Mn2+ within the DPGMA resulted in significant tumor inhibition and immunogenic cell death activation through Gos-mediated chemotherapy and Mn2+-catalyzed chemodynamic therapy, respectively, thereby leading to significant dendritic cell maturation due to the role of Mn2+ played to mediate the activation of the stimulator of interferon genes (STING) pathway. Moreover, the complexed anti-PD-L1 promoted the recognition and uptake of nanocomplexes by PD-L1-overexpressed tumors through antibody targeting, thereby achieving combinational chemo/chemodynamic/immune therapy in a mouse melanoma model, where the immunotherapy modes combined three parts of activation via chemotherapy/CDT-mediated ICD, Mn2+-mediated STING activation, and antibody-mediated immune checkpoint blockade. With the Mn2+-endowed r1 relaxivity (1.38 mM-1 s-1), the DPGMA nanocomplexes can also be used for tumor MR imaging. The designed dendrimer-mediated MPN platform may be developed as an advanced nanomedicine to tackle other cancer types.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yanying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Chen H, Tan F, Zhang Y, Xie B, Luo A. Enhancing PARP inhibitor efficacy using reduction-responsive nanoparticles encapsulating NADP. J Mater Chem B 2025; 13:955-964. [PMID: 39624987 DOI: 10.1039/d4tb01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown success in cancer chemotherapy; however, not all tumors respond effectively to PARPi treatment, even in the presence of BRCA1/2 mutations or homologous recombination (HR) repair defects. NADP+ was recently identified as an endogenous inhibitor of ADP-ribosylation with the potential to sensitize cancer cells to PARPi, yet its lack of membrane permeability poses a significant challenge to its clinical application. In this study, we developed reduction-responsive nanoparticles (NPs) containing disulfide bonds, which can be cleaved in the reductive environment of tumor cells. These NPs encapsulate NADP+ and the commercially available PARP inhibitor olaparib. The uptake of these NPs significantly increases the intracellular concentration of NADP+, which negatively regulates DNA damage-induced PARylation and impairs DNA damage repair. The combined effects of elevated NADP+ levels and olaparib synergistically suppress tumor cell growth. Overall, our study offers a promising strategy for the clinical application of NADP+.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yukui Zhang
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
37
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
38
|
Yao J, Xing J, Yao Y, Wu X, Qiu Y, Li Z, Xiong S, Peng H, Yang F, Wu A. Ytterbium Doping-Retooled Prussian Blue for Tumor Metabolism Interference Therapy. ACS NANO 2024; 18:35758-35770. [PMID: 39699092 DOI: 10.1021/acsnano.4c16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Drug repurposing refers to excavating clinically approved drugs for new clinical indications, effectively shortening the cost and time of clinical evaluation due to the established molecular structure, pharmacokinetics, and pharmacodynamics. In this sense, clinically approved Prussian blue (PB) has received considerable attention, by virtue of its unique optical, magnetic, and enzymatic performance. Nevertheless, the clinical transformation of PB-based nanodrugs remains restricted owing to their complex synthetic formulation and constrained therapeutic performance. Herein, inspired by diagnostic and therapeutic superiorities of lanthanide ions, a series of ytterbium (Yb)-containing PB nanoparticles (NPs) are synthesized in one step through interstitial Yb-doping, which aims to improve the anticancer efficacy of PB and expand the biological application orientation of Yb ions. Through a systematic comparative analysis, involving microscopic morphology, size distribution, elemental composition, raw material utilization rate, and crystal structure, Yb-enriched PB NPs with better-balanced indexes are identified as an antineoplastic drug candidate. In parallel, their anticancer mechanisms are associated with the mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) pathways, thus disturbing anabolism, catabolism, and homeostasis. Therefore, this study attempts to implement the concept of drug repurposing and lays the foundation for next-generation theranostic nanodrugs.
Collapse
Affiliation(s)
- Junlie Yao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xing
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuxin Yao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Xiaoxia Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yue Qiu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zihou Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shiyi Xiong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| |
Collapse
|
39
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
40
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
42
|
Zhang L, Li D, Aierken Y, Zhang J, Liu Z, Lin Z, Jiang L, Li Q, Wu Y, Liu Y. KPV and RAPA Self-Assembled into Carrier-Free Nanodrugs for Vascular Calcification Therapy. Adv Healthc Mater 2024; 13:e2402320. [PMID: 39252648 DOI: 10.1002/adhm.202402320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, and vascular calcification (VC) is an important independent risk factor for predicting CVD. Currently, there are no established therapeutic strategies for the treatment of VC. Although recognized combination therapies of nanomedicines can provide effective strategies for disease treatment, the clinical application of nanomedicines is limited because of their complex preparation processes, low drug loading rates, and unpredictable safety risks. Thus, developing a simple, efficient, and safe nanodrug to simultaneously regulate inflammation and autophagy may be a promising strategy for treating VC. Herein, an anti-inflammatory peptide (lysine-proline-valine peptides, KPV) and the autophagy activator rapamycin (RAPA) are self-assembled to form new carrier-free spherical nanoparticles (NPs), which shows good stability and biosafety. In vivo and in vitro, KPV-RAPA NPs significantly inhibit VC in mice compared to the other treatment groups. Mechanistically, KPV-RAPA NPs inhibit inflammatory responses and activated autophagy. Therefore, this study indicates that the new carrier-free KPV-RAPA NPs have great potential as therapeutic agents for VC combination therapy, which can promote the development of nanodrugs for VC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Dongze Li
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yierpani Aierken
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zhenyu Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zipeng Lin
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Longqi Jiang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qingzhu Li
- Department of General Surgery, Gulin People's Hospital, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
43
|
Eugster R, Orsi M, Buttitta G, Serafini N, Tiboni M, Casettari L, Reymond JL, Aleandri S, Luciani P. Leveraging machine learning to streamline the development of liposomal drug delivery systems. J Control Release 2024; 376:1025-1038. [PMID: 39489466 DOI: 10.1016/j.jconrel.2024.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Drug delivery systems efficiently and safely administer therapeutic agents to specific body sites. Liposomes, spherical vesicles made of phospholipid bilayers, have become a powerful tool in this field, especially with the rise of microfluidic manufacturing during the COVID-19 pandemic. Despite its efficiency, microfluidic liposomal production poses challenges, often requiring laborious, optimization on a case-by-case basis. This is due to a lack of comprehensive understanding and robust methodologies, compounded by limited data on microfluidic production with varying lipids. Artificial intelligence offers promise in predicting lipid behaviour during microfluidic production, with the still unexploited potential of streamlining development. Herein we employ machine learning to predict critical quality attributes and process parameters for microfluidic-based liposome production. Validated models predict liposome formation, size, and production parameters, significantly advancing our understanding of lipid behaviour. Extensive model analysis enhanced interpretability and investigated underlying mechanisms, supporting the transition to microfluidic production. Unlocking the potential of machine learning in drug development can accelerate pharmaceutical innovation, making drug delivery systems more adaptable and accessible.
Collapse
Affiliation(s)
- Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Markus Orsi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giorgio Buttitta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Lazio, Italy
| | - Nicola Serafini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
44
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Yao X, Cao X, He J, Hao L, Chen H, Li X, Huang W. Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405816. [PMID: 39246207 DOI: 10.1002/smll.202405816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications. After brief introduction, state-of-the-art advances in the synthesis and applications of UMs are discussed with an emphasis on their bioapplications. It is believed that these UMs have great potential in future fabrication of multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xudong Cao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jiayu He
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haobo Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
46
|
Yu X, Pan H, He Q, Yang J, Xiao M, Xu J, Wang W, Yu X, Shi S. MXene-based dual-gated multifunctional nanodrug induced ferroptosis and modulated tumor microenvironment to treat pancreatic cancer. CHEMICAL ENGINEERING JOURNAL 2024; 500:157233. [DOI: 10.1016/j.cej.2024.157233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
|
47
|
Guo S, Cao Y, Cheng B, Zhou Y, Li X, Zhang M, Huang Y, Wei S, Luo K, Dai R, Wang R. A nanoprodrug derived from branched poly (ethylene glycol) recognizes prostate-specific membrane antigen to precisely suppress prostate cancer progression. Int J Biol Macromol 2024; 282:136831. [PMID: 39454922 DOI: 10.1016/j.ijbiomac.2024.136831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in 80-90 % of prostate cancers (PCa) and is widely used as a diagnostic and therapeutic biomarker. Docetaxel (DTX), an FDA-approved anti-microtubule drug, is commonly employed to manage metastatic castration-resistant PCa; however, DTX therapy is often associated with severe side effects. One promising strategy to mitigate these side effects is the development of nanomedicine by loading small molecules into biocompatible vectors. Poly (ethylene glycol) (PEG) has been extensively used in clinical settings for this purpose, with PEGylated drugs demonstrating significant success. Compared to linear PEG, branched PEG (multi-arm PEG) provides enhanced stability for nanomedicines. In this study, we developed a novel nanoprodrug 4armPEG-Docetaxel DCL (4armPEG-DD) by conjugating a 4-arm PEG with DTX via a reduction-sensitive disulfide bond and further modifying it with 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (DCL), a PSMA-targeting ligand. Both in vitro and in vivo results demonstrated that the designed nanoprodrug specifically recognized PSMA-positive PCa cells and effectively released DTX in response to the intracellular reducing environment, leading to potent cytotoxic effects on PSMA-positive prostate tumors. Importantly, 4armPEG-DD exhibited improved in vivo safety compared to small-molecule DTX. Thus, we propose that 4armPEG-DD represents a promising candidate for the clinical treatment of PSMA-positive PCa.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yu Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Bo Cheng
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Siping Wei
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi Province 541004, China
| | - Kui Luo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637000, China.
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
48
|
Prasad R, Kumari R, Chaudhari R, Kumar R, Kundu GC, Kumari S, Roy G, Gorain M, Chandra P. Emissive Lipid Nanoparticles as Biophotonic Contrast Agent for Site-Selective Solid Tumor Imaging in Pre-Clinical Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53393-53404. [PMID: 39324588 DOI: 10.1021/acsami.4c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Small organic dye-based fluorescent agents are highly potent in solid tumor imaging but face challenges such as poor photostability, nonspecific distribution, low circulation, and weak tumor binding. Nanocarriers overcome these issues with better physicochemical and biological performance, particularly in cancer imaging. Among the various nanosized carriers, lipid formulations are clinically approved but yet to be designed as bright nanocontrast agents for solid tumor diagnosis without affecting surrounding tissues. Herein, indocyanine green (ICG) encapsulated targetable lipid nanoparticles (698 ICG/LNPs) as safe contrast agents (∼200 nm) have been developed and tested for solid tumor imaging and biodistribution. Our findings reveal that nanoprecipitation produces ICG-LNPs with a unique assembly, which contributes to their high brightness with improved quantum yield (3.5%) in aqueous media. The bright, optically stable (30 days) biophotonic agents demonstrate rapid accumulation (within 1 h) and prolonged retention (for up to 168 h) at the primary tumor site, with better signal intensity following a one-time dose administration (17.7 × 109 LNP per dose). Incorporated folic acid (735 folic acid/LNPs) helps in selective tumor binding and the specific biodistribution of intravenously injected nanoparticles without affecting healthy tissues. Designed targetable ICG-LNP (634 MESF) demonstrates high-contrast fluorescence and resolution from the tumor area as compared to the targetable ICG-liposomal nanoparticles (532 MESF). Various in vitro and in vivo findings reveal that the cancer diagnostic efficacy elicited by designed bright lipid nanoparticles are comparable to reported clinically accepted imaging agents. Thus, such LNPs hold translational potential for cancer diagnosis at an early stage.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Simpy Kumari
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Gaurab Roy
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
49
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
50
|
Badparvar F, Poursattar Marjani A, Salehi R, Ramezani F, Beyrampour Basmenj H, Talebi M. Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2220-2249. [PMID: 38944817 DOI: 10.1080/09205063.2024.2371203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (Pvalue<.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Mediciene, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour Basmenj
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|