1
|
Liu RN, Huang JH, Qi X, Pan Y, Wu E, Nizamutdinov D. Tumor Treating Fields and Combination Therapy in Management of Brain Oncology. Cancers (Basel) 2025; 17:1211. [PMID: 40227773 PMCID: PMC11987984 DOI: 10.3390/cancers17071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma (GBM) remains a challenging cancer to treat with limited effective therapies. Standard treatments, including surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, offer marginal survival benefits but are often limited by side effects and drug resistance. Temozolomide is the most commonly used chemotherapy; however, resistance and lack of efficacy in recurrent GBM hinder its success. Tumor treating fields (TTFields), a novel non-invasive modality that utilizes alternating electric fields, have recently emerged as a promising treatment for GBM. TTFields work by disrupting the function of the mitotic spindle and inducing apoptosis in cancer cells. They can be especially effective when combined with other therapies. TTFields enhance drug delivery when paired with chemotherapy by increasing the permeability of the blood-brain barrier and cell membranes, leading to more effective tumor inhibition. Similarly, TTFields increase cancer cell sensitivity to radiation therapy and improve the efficacy of targeted therapies, such as sorafenib and immunotherapy, particularly in extra-cranial tumors. The Optune device, the primary medical device for TTFields' delivery, offers a convenient and versatile treatment option, allowing remote care and exhibiting fewer adverse effects. This review discusses the potential of TTFields as a valuable addition to GBM treatment, particularly in combination therapies, and highlights the device's clinical applications.
Collapse
Affiliation(s)
- Ruisi Nicole Liu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
| | - James H. Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
| | - Xiaoming Qi
- Department of Neurology, Baylor Scott & White Health, Temple, TX 76508, USA
| | - Yizhong Pan
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX 76508, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
| |
Collapse
|
2
|
Jones C, Carvalho MS, Jain A, Rodriguez-Lejarraga P, Pires F, Morgado J, Lanceros-Mendez S, Ferreira FC, Esteves T, Sanjuan-Alberte P. Wireless Stimulation of Barium Titanate@PEDOT Nanoparticles Toward Bioelectrical Modulation in Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8836-8848. [PMID: 39880384 PMCID: PMC11827599 DOI: 10.1021/acsami.4c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231. Upon US stimulation, the viability of MCF-7 and MDA-MB-231 cells treated with 200 μg mL-1 BTO@PEDOT NPs and US reduced significantly to 31% and 24%, respectively, while healthy human mammary fibroblasts (HMF) were unaffected by the treatment. Subsequent assays shed light on how this approach could interact with cell's bioelectrical mechanisms, namely, by increasing intracellular reactive oxygen species (ROS) and calcium concentrations. Furthermore, this system was able to polarize cancer cell membranes, halting their cell cycle and potentially harnessing their tumorigenic characteristics. These findings underscore the crucial role of bioelectricity in cancer progression and highlight the potential of nanobioelectronic systems as an emerging and promising strategy for cancer intervention.
Collapse
Affiliation(s)
- Catarina
Franco Jones
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Marta S. Carvalho
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Akhil Jain
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Paula Rodriguez-Lejarraga
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
| | - Filipa Pires
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Jorge Morgado
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Senentxu Lanceros-Mendez
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
- Centre
of
Physics Universities of Minho and Porto (CFUM-UP), University of Minho and Laboratory of Physics for Materials and Emergent
Technologies, LapMET, Campus de Gualtar, Braga 4710-057, Portugal
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Frederico Castelo Ferreira
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Teresa Esteves
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Paola Sanjuan-Alberte
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
3
|
Zhang G, Levin M. Bioelectricity is a universal multifaced signaling cue in living organisms. Mol Biol Cell 2025; 36:pe2. [PMID: 39873662 PMCID: PMC11809311 DOI: 10.1091/mbc.e23-08-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
The cellular electrical signals of living organisms were discovered more than a century ago and have been extensively investigated in the neuromuscular system. Neuronal depolarization and hyperpolarization are essential for our neuromuscular physiological and pathological functions. Bioelectricity is being recognized as an ancient, intrinsic, fundamental property of all living cells, and it is not limited to the neuromuscular system. Instead, emerging evidence supports a view of bioelectricity as an instructional signaling cue for fundamental cellular physiology, embryonic development, regeneration, and human diseases, including cancers. Here, we highlight the current understanding of bioelectricity and share our views on the challenges and perspectives.
Collapse
Affiliation(s)
- GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155
| |
Collapse
|
4
|
Brady Á, Forster RJ. Electric Field Distribution in Bipolar Electrochemical Cells: Effects on the Wirefree Electrodeposition of Conducting Polymer Films. Anal Chem 2025; 97:410-418. [PMID: 39699874 PMCID: PMC11740180 DOI: 10.1021/acs.analchem.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wirefree, or bipolar electrochemistry, is advancing key fields, including (nano)materials, human health, and energy. Central to these applications is an understanding of the potential distribution induced in the bipolar electrode, BPE. Here, the impact of the electric field distribution is reported for the wirefree deposition of the conducting polymer, poly(3,4-ethylenedioxythiophene), PEDOT, in the absence of deliberately added electrolytes. PEDOT films with a gradient thickness are deposited, and the films formed at 10 V cm-1 for 20 min have an average film thickness of 350 nm. Significantly, the quantity of the polymer deposited increases proportionally to the deposition time up to approximately 20 min, suggesting that the presence of a thin PEDOT film does not change the interfacial potential distribution or driving force for heterogeneous electron transfer. For electric field strengths ≥5 V cm-1, PEDOT is deposited on regions of the BPE where the voltage is predicted to be insufficient to drive electropolymerization. This result demonstrates that local intensification of the field, e.g., at edges, and migration of the cationic radicals can significantly affect the electrodeposition profile. These results provide an enhanced understanding of the potential profiles for applications from multianalyte detection devices to wirefree electroceuticals.
Collapse
Affiliation(s)
- Áine Brady
- National
Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 V209, Ireland
- FutureNeuro,
SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9 D09 V209, Ireland
| | - Robert J. Forster
- National
Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 V209, Ireland
- FutureNeuro,
SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9 D09 V209, Ireland
| |
Collapse
|
5
|
Ramaswamy VD, Keidar M. Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms. Bioelectromagnetics 2025; 46:e22540. [PMID: 39865345 DOI: 10.1002/bem.22540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues. Additionally, the study probes the transformative potential of these diagnostic modalities in recalibrating personalized cancer treatment paradigms. These modalities offer real-time insights into tumor dynamics, paving the way for precision-guided therapeutic interventions. By emphasizing the quest for continuous in vivo monitoring, these techniques herald a pivotal advancement in the overarching endeavor to combat cancer globally.
Collapse
Affiliation(s)
- Viswambari Devi Ramaswamy
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Michael Keidar
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Brady Á, Wagner M, Forster RJ. Regio selective deposition of conducting polymers using wireless electropolymerisation. Chem Commun (Camb) 2024; 60:13000-13003. [PMID: 39302154 DOI: 10.1039/d4cc03996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The ability to induce different potentials in different regions of a (bipolar) electrode could transform applications such as on-demand drug delivery, the electrostimulation of biological cells, the development of advanced electroceuticals, and multi-analyte detection devices where different analytes could be wirelessly detected in different regions of a single sensing surface dramatically simplifying the device design. Here, we demonstrate the use of multiple feeder electrodes to control the electric field distribution in solution thus changing the potential induced in different regions of the bipolar electrode depending on the feeder voltage, polarity and feeder electrode position. The principle is demonstrated for the deposition of films of the conducting polymer, Poly(3,4-EthyleneDiOxyThiophene) (PEDOT), without the need for a physical template to control the regions in which polymer deposits.
Collapse
Affiliation(s)
- Áine Brady
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Michal Wagner
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Robert J Forster
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Dieper A, Scheidegger S, Füchslin RM, Veltsista PD, Stein U, Weyland M, Gerster D, Beck M, Bengtsson O, Zips D, Ghadjar P. Literature review: potential non-thermal molecular effects of external radiofrequency electromagnetic fields on cancer. Int J Hyperthermia 2024; 41:2379992. [PMID: 39019469 DOI: 10.1080/02656736.2024.2379992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Collapse
Affiliation(s)
- Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Scheidegger
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Rudolf M Füchslin
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Mathias Weyland
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olof Bengtsson
- Ferdinand-Braun-Institut (FBH), Leibnitz-Institut für Höchstfrequenztechnik, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
9
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
10
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
11
|
Jain A, Gosling J, Liu S, Wang H, Stone EM, Chakraborty S, Jayaraman PS, Smith S, Amabilino DB, Fromhold M, Long YT, Pérez-García L, Turyanska L, Rahman R, Rawson FJ. Wireless electrical-molecular quantum signalling for cancer cell apoptosis. NATURE NANOTECHNOLOGY 2024; 19:106-114. [PMID: 37709951 PMCID: PMC10796273 DOI: 10.1038/s41565-023-01496-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biological functions. Here we merge wireless nano-electrochemical tools with cancer cells for control over electron transfer to trigger cancer cell death. Gold bipolar nanoelectrodes functionalized with redox-active cytochrome c and a redox mediator zinc porphyrin are developed as electric-field-stimulating bio-actuators, termed bio-nanoantennae. We show that a remote electrical input regulates electron transport between these redox molecules, which results in quantum biological tunnelling for electron transfer to trigger apoptosis in patient-derived cancer cells in a selective manner. Transcriptomics data show that the electric-field-induced bio-nanoantenna targets the cancer cells in a unique manner, representing electrically induced control of molecular signalling. The work shows the potential of quantum-based medical diagnostics and treatments.
Collapse
Affiliation(s)
- Akhil Jain
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan Gosling
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Shaochuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haowei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Eloise M Stone
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Sajib Chakraborty
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stuart Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Neurosurgery, Nottingham University Hospitals, Nottingham, UK
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Cerdanyola, Barcelona, Spain
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (IN2UB), Barcelona, Spain
| | | | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Frankie J Rawson
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
13
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
14
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Bory Prevez H, Soutelo Jimenez AA, Roca Oria EJ, Heredia Kindelán JA, Morales González M, Villar Goris NA, Hernández Mesa N, Sierra González VG, Infantes Frometa Y, Montijano JI, Cabrales LEB. Simulations of surface charge density changes during the untreated solid tumour growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220552. [PMID: 36465673 PMCID: PMC9709566 DOI: 10.1098/rsos.220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
Collapse
Affiliation(s)
- Henry Bory Prevez
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Eduardo José Roca Oria
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Narciso Antonio Villar Goris
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana
| | | | | | | | - Juan Ignacio Montijano
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Luis Enrique Bergues Cabrales
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
16
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
17
|
Zhan L, Xiao C, Li C, Zhai J, Yang F, Piao J, Ning C, Zhou Z, Yu P, Qi S. Internal Wireless Electrical Stimulation from Piezoelectric Barium Titanate Nanoparticles as a New Strategy for the Treatment of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45032-45041. [PMID: 36153948 DOI: 10.1021/acsami.2c12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive BC subtype with a higher metastatic rate and a worse 5-year survival ratio than the other BC. It is an urgent need to develop a noninvasive treatment with high efficiency to resist TNBC cell proliferation and invasion. Internal wireless electric stimulation (ES) based on piezoelectric materials is an emerging noninvasive strategy, with adjustable ES intensity and excellent biosafety. In this study, three different barium titanate nanoparticles (BTNPs) with different crystal phases and piezoelectric properties were studied. Varying intensities of internal ES were generated from the three BTNPs (i.e., BTO, U-BTO, P-BTO). In vitro tests revealed that the internal ES from BTNPs was efficient at reducing the proliferative potential of cancer cells, particularly BC cells. In vitro experiments on MDA-MB-231, a typical TNBC cell line, further revealed that the internal wireless ES from BTNPs significantly inhibited cell growth and migration up to about 82% and 60%, respectively. In vivo evaluation of MDA-MB-231 tumor-bearing mice indicated that internal ES not only resisted almost 70% tumor growth but also significantly inhibited lung metastasis. More importantly, in vitro and in vivo studies demonstrated a favorable correlation between the anticancer impact and the intensities of ES. The underlying mechanism of MDA-MB-231 cell proliferation and metastasis inhibition caused by internal ES was also investigated. In summary, our results revealed the effect and mechanism of internal ES from piezoelectric nanoparticles on TNBC cell proliferation and migration regulation and proposed a promising noninvasive therapeutic strategy for TNBC with minimal side effects while exhibiting good therapeutic efficiency.
Collapse
Affiliation(s)
- Lizhen Zhan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cairong Xiao
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Changhao Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Fabang Yang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou 511365, China
| | - Zhengnan Zhou
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou 511365, China
| | - Suijian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
18
|
Lu B, Xiao T, Zhang C, Jiang J, Wang Y, Diao X, Zhai J. Brain Wave-Like Signal Modulator by Ionic Nanochannel Rectifier Bridges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203104. [PMID: 35931455 DOI: 10.1002/smll.202203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Smart modulation of bioelectric signals is of great significance for the development of brain-computer interfaces, bio-computers, and other technologies. The regulation and transmission of bioelectrical signals are realized through the synergistic action of various ion channels in organisms. The bionic nanochannels, which have similar physiological working environment and ion rectification as their biological counterparts, can be used to construct ion rectifier bridges to modulate the bioelectric signals. Here, the artificial smart ionic rectifier bridge with light response is constructed by anodic aluminum oxide (AAO)/poly (spiropyran acrylate) (PSP) nanochannels. The output ion current of the rectifier bridge can be switched between "ON" and "OFF" states by irradiation with UV and visible (Vis) light, and the conversion efficiency (η) of the system in "ON" state is ≈70.5%. The controllable modulation of brain wave-like signal can be realized by ionic rectifier bridge. The ion transport properties and processes of ion rectifier bridges are explained using theoretical calculations based on Poisson-Nernst-Planck (PNP) equations. These findings have significant implications for the understanding of the intelligent ionic circuit and combination of artificial smart ionic channels to organisms, which provide new avenues for development of intelligent ion devices.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Caili Zhang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Jiaqiao Jiang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Yuting Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| |
Collapse
|
19
|
Yoon J, Kim HW, Shin M, Lim J, Lee JY, Lee SN, Choi JW. 3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. SMALL METHODS 2022; 6:e2200127. [PMID: 35595685 DOI: 10.1002/smtd.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Indexed: 06/15/2023]
Abstract
There have been several studies for demonstration of 2D neural network using living cells or organic/inorganic molecules, but to date, there is no report of development of a 3D neural network in vitro. Based on developed bionanohybrid composed of protein, DNA, molybdenum disulfide nanoparticles, and peptides for controlling electrophysiological states of living cells, here, the in vitro 3D neural network composed of the bionanohybrid, 3D neurospheroid and the microelectrode array (MEA) is developed. After production of the 3D neurospheroid derived from human neural stem cells, the bionanohybrid developed on the MEA successfully semi-penetrates the neurites of the 3D neurospheroid and forms the 3D neural network. The developed 3D neural network successfully exhibited the electrophysiological output signals of the 3D neurospheroid by transmitting the input signal applied by the bionanohybrid. Moreover, by using the selectively immobilized bionanohybrid on the MEA, the spatial input signal recognition in the neurospheroid of 3D neural network is realized for the first time. This newly developed in vitro 3D neural network provides a promising strategy to be applied in brain-on-a-chip, brain disease-related drug efficacy evaluation, bioelectronics, and bioelectronic medicine.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., Seoul, 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
20
|
Yoon J, Shin M, Kim D, Lim J, Kim HW, Kang T, Choi JW. Bionanohybrid composed of metalloprotein/DNA/MoS 2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosens Bioelectron 2022; 196:113725. [PMID: 34678652 DOI: 10.1016/j.bios.2021.113725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
The development of cell-based bioelectronic devices largely depends on the direct control of intracellular redox states. However, most related studies have focused on the accurate measurement of electrical signals from living cells, whereas direct intracellular state control remains largely unexplored. Here, we developed a biocompatible transmembranal bionanohybrid structure composed of a recombinant metalloprotein, DNA, molybdenum disulfide nanoparticles (MoS2), and peptides to control intracellular redox states, which can be used as a cell-based biomemory device. Using the capacitance of MoS2 located inside the cell, the bionanohybrid controled the intracellular redox states of living cells by recording and extracting intracellular charges, which inturn was achieved by activating (writing) and deactivating (erasing) the cells. As a proof of concept, cell-based biomemory functions including writing, reading, and erasing were successfully demonstrated and confirmed via electrochemical methods and patch-clamp analyses, resulting in the development of the first in vitro cell-based biomemory device. This newly developed bionanohybrid provides a novel approach to control cellular redox states for cell-based bioelectronic applications, and can be applicable in a wide range of biological fields including bioelectronic medicine and intracellular redox status regulation.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Dongyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Taewook Kang
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
21
|
Thrane SE, Williams E, Grossoehme DH, Friebert S. Reiki Therapy for Very Young Hospitalized Children Receiving Palliative Care. JOURNAL OF PEDIATRIC HEMATOLOGY/ONCOLOGY NURSING 2022; 39:15-29. [PMID: 35722865 DOI: 10.1177/27527530211059435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background: Approximately half of children receiving palliative care are under age five; however, there are a few studies exploring palliative care interventions for this population. The purpose of this study was to evaluate the effects of Reiki on pain, stress, heart, and respiratory rates, oxygenation, and quality of life (QoL) in hospitalized young children receiving palliative care services. Methods: In this single-group pilot study, hospitalized children receiving palliative care who were aged 1-5 years received two Reiki sessions per week for 3 weeks. Physiologic measures were assessed pre/post each session, and parent report measures of pain and QOL were collected at baseline, 3 weeks, and 6 weeks. The parent rating of Reiki's perceived efficacy and their own symptoms were also measured. Results: Sixteen families consented. Children had a mean age of 26 months and included nine boys and seven girls. Results were not significant but there were medium-to-large clinical effect sizes for children's QoL, stress, oxygenation, heart, and respiratory rates. Parents' physical and mental health scores decreased over time. Children exhibited signs of relaxation such as quiet sleep post-Reiki versus active awake pre-Reiki session. Conclusion: Reiki is a noninvasive relaxing therapy that is useful for hospitalized young children receiving palliative care. The children reacted positively in both action and outcome measures. Multisite studies with larger sample sizes are needed to be able to generate enough scientific evidence to fully recommend Reiki as an adjunct for pain management.
Collapse
Affiliation(s)
- Susan E Thrane
- College of Nursing, Martha S. Pitzer Center for Women, Children and Youth, 2647The Ohio State University, Columbus, OH, USA
| | | | - Daniel H Grossoehme
- Haslinger Family Pediatric Palliative Care Center, 1079Akron Children's Hospital, Akron, OH, USA
- Department of Family and Community Medicine, 6969Northeast Ohio Medical University, Rootstown, OH, USA
| | - Sarah Friebert
- Haslinger Family Pediatric Palliative Care Center, 1079Akron Children's Hospital, Akron, OH, USA
- College of Medicine, Northeast Ohio University, Rootstown, OH, USA
| |
Collapse
|
22
|
Bennett MR, Jain A, Kovacs K, Hill PJ, Alexander C, Rawson FJ. Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Adv 2021; 12:451-457. [PMID: 35424487 PMCID: PMC8978702 DOI: 10.1039/d1ra06403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in E. coli. We show that this engineering altered the rate of extracellular electron transfer coincided with an effect on cell-mediated polymerisation using a model monomer. A plasmid with arabinose inducible PBAD promoters were shown to upregulate NapC protein upon induction at total arabinose concentrations of 0.0018% and 0.18%. These clones (E. coli (IP_0.0018%) and E. coli (IP_0.18%), respectively) were used in iron-mediated atom transfer radical polymerisation (Fe ATRP), affecting the nature of the polymerisation, than cultures containing suppressed or empty plasmids (E. coli (IP_S) and E. coli (E), respectively). These results lead to the hypothesis that EET (Extracellular Electron Transfer) in part modulates cell instructed polymerisations.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Katalin Kovacs
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Bioscience, University of Nottingham Sutton Bonington Campus Nottingham LE15 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, Boots Science Building, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
23
|
Robinson A, Jain A, Rahman R, Abayzeed S, Hague RJM, Rawson FJ. Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS OMEGA 2021; 6:29495-29505. [PMID: 34778621 PMCID: PMC8581971 DOI: 10.1021/acsomega.1c03547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applications in biosensing, tissue engineering, and bioelectronic medicine. However, studies investigating the electrical effects when merging wireless conductive nanoelectrodes with biology are lacking. Consequently, a tool is required to develop a greater understanding of merging conductive nanoparticles with cells. Herein, this challenge is addressed by developing an impedimetric method to evaluate bipolar electrode (BPE) systems that could report on electrical input. A theoretical framework is provided, using impedance to determine if conductive nanoparticles can be polarized and used to drive current. It is then demonstrated that 125 nm of gold nanoparticle (AuNP) bipolar electrodes (BPEs) could be sensed in the presence of cells when incorporated intracellularly at 500 μg/mL using water and phosphate-buffered saline (PBS) as electrolytes. These results highlight how nanoscale BPEs act within biological systems. This research will impact the rational design of using BPE systems in cells for both sensing and actuating applications.
Collapse
Affiliation(s)
- Andie
J. Robinson
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Akhil Jain
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Ruman Rahman
- Children’s
Brain Tumour Research Centre (CBTRC), Biodiscovery Institute, School
of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sidahmed Abayzeed
- Optics
and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Richard J. M. Hague
- Centre
for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, U.K.
| | - Frankie J. Rawson
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
24
|
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers (Basel) 2021; 13:cancers13215300. [PMID: 34771463 PMCID: PMC8582473 DOI: 10.3390/cancers13215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.
Collapse
|
25
|
Hicks JM, Yao YC, Barber S, Neate N, Watts JA, Noy A, Rawson FJ. Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102517. [PMID: 34269516 DOI: 10.1002/smll.202102517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, the ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aims to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, it is shown that by using membrane inserted carbon nanotube porins (CNTPs) that can act as bipolar nanoelectrodes, one can control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. It is shown that bipolar electrochemical reaction via gold reduction at the nanotubes can be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. The authors provide new mechanistic insight into this newly describe phenomena at the nanoscale. The results presented give rise to a new method using CNTPs to modulate cell behavior via wireless control of membrane electron transfer.
Collapse
Affiliation(s)
- Jacqueline M Hicks
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yun-Chiao Yao
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Sydney Barber
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
- United States Naval Academy, Annapolis, 21402, USA
| | - Nigel Neate
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie A Watts
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aleksandr Noy
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Frankie J Rawson
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|