1
|
Hu X, Shen Z, Hao H, Ma K, Zhen A, Yang Y, Liang K, Chen Z, Li J, Lv Y, Chao S, Pei Y, Qu Z, Pei Z. NIR II light-driven nanomotor synergistically enhances immunogenic cell death through photothermal and chemodynamic therapy for melanoma immunotherapy. J Colloid Interface Sci 2025; 694:137688. [PMID: 40300374 DOI: 10.1016/j.jcis.2025.137688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Melanoma is a highly invasive and metastatic malignant skin tumor. Recently, immunogenic cell death (ICD) has attracted great attention as a promising approach to immunotherapy. However, efficiently and comprehensively activating ICD throughout the dense tumor tissue is a key challenge. Herein, we designed a NIR II light-driven asymmetric nanomotor drug delivery system (Sor@CS-ZIF-8@MO1) to achieve deep penetration into the tumor tissue. By combining photothermal therapy (PTT) and chemodynamic therapy (CDT) to synergistically induce ICD, the immunotherapeutic efficacy against melanoma is enhanced. The research results showed that Sor@CS-ZIF-8@MO1 exhibited good photothermal performance and motor-driven performance, and was able to effectively penetrate 3D tumor cell spheroids deeply. Sor@CS-ZIF-8@MO1 targeted tumor tissues through mannose and controllably released sorafenib under the low pH conditions in tumor tissues and photothermal stimulation, thereby promoting tumor tissue angiogenesis to improve its hypoxic microenvironment and effectively enhancing the CDT effect induced by Cu+/2+. This could synergistically enhance the ICD of tumor cells with the PTT. Meanwhile, the tumor-associated antigens released by ICD, together with ovalbumin and mannose, stimulated immune response, reshaped the tumor immune microenvironment, enhanced tumor immunity, and ultimately effectively inhibited the growth and metastasis of melanoma tumors. In this work, a nanomotor delivery system that integrates multiple modalities and is capable of deeply penetrating tumor tissues to efficiently and comprehensively induce immunogenic cell death (ICD) has been designed, providing a new strategy to address the problem of insufficient induction of ICD in melanoma immunotherapy.
Collapse
Affiliation(s)
- Xuan Hu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziyan Shen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huahua Hao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China
| | - Ke Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Aihua Zhen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Shandong Sheelian Pharmaceutical Co., Ltd., Yuncheng, Shandong 274700, PR China
| | - Yibo Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kai Liang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuang Chao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zhican Qu
- Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Adachi Y, Miyake K, Ohira K, Satoh S, Masuhiro K, Edahiro R, Shirai Y, Naito M, Naito Y, Shiroyama T, Koyama S, Hirata H, Iwahori K, Nagatomo I, Takeda Y, Kumanogoh A. Enhancing the efficacy of near-infrared photoimmunotherapy through intratumoural delivery of CD44-targeting antibody-photoabsorber conjugates. EBioMedicine 2025; 112:105566. [PMID: 39848206 PMCID: PMC11795636 DOI: 10.1016/j.ebiom.2025.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Photoimmunotherapy (PIT) is a potent modality for cancer treatment. The conventional PIT regimen involves the systemic delivery of an antibody-photoabsorber conjugate, followed by a 24-h waiting period to ensure adequate localisation on the target cells. Subsequent exposure to near-infrared (NIR) light selectively damages the target cells. We aimed to improve the efficacy of PIT in vivo by evaluating the effects of the different routes of conjugate administration on treatment outcomes. METHODS Subcutaneous Lewis lung carcinoma tumours were established in mice, targeting cluster of differentiation (CD)44 with an anti-CD44 antibody conjugated to IRDye700DX (IR700). The conjugate was administered via the intravenous or intratumoural route followed by the assessment of antibody binding and therapeutic effects of PIT. FINDINGS Compared to intravenous administration, intratumoural delivery of the CD44-IR700 conjugate significantly increased the number of cells binding to the conjugate by >five-fold. This method, combined with NIR light irradiation, halved tumour growth when compared to intravenous delivery. Reducing the interval between intratumoural injection and NIR light exposure to 30 min did not diminish efficacy, thereby demonstrating the feasibility of a 1-h procedure. INTERPRETATION Intratumoural administration of the antibody-photoabsorber conjugate enhanced the efficacy of PIT in vivo. A simplified, 1-h procedure involving conjugate tumour injection followed by irradiation emerged as a potent cancer treatment strategy. FUNDING This study was supported by the Japan Society for the Promotion of Science, the Japan Agency for Medical Research and Development, Japan Science and Technology Agency, and the Osaka Medical Research Foundation for Intractable Diseases.
Collapse
Affiliation(s)
- Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kika Ohira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Shingo Satoh
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Guo X, Hu M, Zhang Q, Liu J, Shi J, Tang Y, Liu S, Guo J, Kong Y, Zhu H, Yang Z. Preclinical ImmunoPET Imaging Using a Zr-89-Labeled Anti-CD146 Monoclonal Antibody for Diagnosis of Melanoma. Mol Pharm 2024; 21:4490-4497. [PMID: 39077827 DOI: 10.1021/acs.molpharmaceut.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The aim of this study was to evaluate the preclinical efficacy of [89Zr]Zr-DFO-Ab253 as a novel positron emission tomography (PET) tracer for CD146-positive malignant melanoma imaging. Considering the high expression of CD146 in malignant melanoma, this study investigated the effect of different CD146 expression levels on the tumor uptake of [89Zr]Zr-DFO-Ab253. CD146 selectivity was investigated by using the CD146-positive human melanoma cell A375 and the CD146-negative human alveolar epithelial cell A549. The cell uptake of [89Zr]Zr-DFO-Ab253 tracers was investigated, and receptor-binding affinities were measured by radioactive enzyme-linked immunosorbent assay. Biodistribution studies and micro-PET imaging of the radiotracers were performed on mice bearing A375 and A549 xenografts under baseline and blocking conditions. An immunohistochemical test was performed using A375 and A549 tissue sections for CD146 expression level analysis. [89Zr]Zr-DFO-Ab253 was obtained with a high radiochemical yield (87.86 ± 4.66%) and a satisfactory radiochemical purity (>98.0%). The specificity and affinity of [89Zr]Zr-DFO-Ab253 were confirmed in melanoma A375 cells and in vivo PET imaging of A375 tumor models. [89Zr]Zr-DFO-IgG and A549 lung tumors were prepared as control radiotracers and negative models to verify the specificity of [89Zr]Zr-DFO-Ab253 on CD146. [89Zr]Zr-DFO-Ab253 has a Kd of 4.01 ± 0.50 nM. PET imaging and biodistribution showed a higher uptake of [89Zr]Zr-DFO-Ab253 in A375 melanomas than that in A549 tumors (42.1 ± 4.04% vs 7.87 ± 1.30% ID/g at 120 h, P < 0.05). A low tumor uptake of [89Zr]Zr-DFO-IgG was observed with uptakes of 1.91 ± 0.41 and 2.80 ± 0.14 ID%/g when blocked at 120 h. The radiation-absorbed dose was calculated to be 0.13 mSv/MBq. This study demonstrates the synthesis and preclinical evaluation of [89Zr]Zr-DFO-Ab253 and indicates that the novel tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma. It also provides feasibility for the development of integrated molecular probes for diagnosis and treatment based on the CD146 target.
Collapse
Affiliation(s)
- Xiaoyi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Muye Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- Guizhou University Medicine College, Guiyang 550025, Guizhou, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Shi
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - Yanfang Tang
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - ShuHui Liu
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
4
|
Volety P, Shirley CA, Chhabra G, Ahmad N. The fusion of light and immunity: Advancements in photoimmunotherapy for melanoma. Photochem Photobiol 2024; 100:910-922. [PMID: 38623955 DOI: 10.1111/php.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Metastatic melanoma is an aggressive skin cancer with high mortality and recurrence rates. Despite the clinical success of recent immunotherapy approaches, prevailing resistance rates necessitate the continued development of novel therapeutic options. Photoimmunotherapy (PIT) is emerging as a promising immunotherapy strategy that uses photodynamic therapy (PDT) to unleash systemic immune responses against tumor sites while maintaining the superior tumor-specificity and minimally invasive nature of traditional PDT. In this review, we discuss recent advances in PIT and strategies for the management of melanoma using PIT. PIT can strongly induce immunogenic cell death, inviting the concomitant application of immune checkpoint blockade or adoptive cell therapies. PIT can also be leveraged to selectively remove the suppressive immune populations associated with immunotherapy resistance. The modular nature of PIT therapy design combined with the potential for patient-specific antigen selection or drug co-delivery makes PIT an alluring option for future personalized melanoma care.
Collapse
Affiliation(s)
- Pranav Volety
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Yao Y, Ren Y, Hou X, Zhu J, Ma X, Liu S, Liu T, Zhang Q, Ma X, Yang Z, Zhu H, Li N. Construction and preclinical evaluation of a zirconium-89 labelled monoclonal antibody targeting PD-L2 in lung cancer. Biomed Pharmacother 2023; 168:115602. [PMID: 37852097 DOI: 10.1016/j.biopha.2023.115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVES The aim of this study was to design a novel tracer targeting programmed cell death-ligand 2 (PD-L2) to dynamically monitor PD-L2 expression and perform preclinical screening to identify patients who may benefit from immune checkpoint inhibitor therapy (ICI) therapy. METHODS 89Zr labelling of DFO-conjugated PD-L2 antibody (ATL2) was carried out in Na2CO3 buffer at pH 7 (37 °C, 1 h). In vitro stability was analysed using radio-thin layer chromatography (radio-TLC). The affinity of [89Zr]Zr-DFO-ATL2 was evaluated by radio-ELISA. Cell uptake, pharmacokinetic, and biodistribution experiments were used to evaluate the biological properties. Micro-PET/CT imaging with [89Zr]Zr-DFO-ATL2 was conducted at different time points. Immunohistochemical and HE staining studies were carried out using tumour tissues from tumour-bearing mice. RESULTS The radiochemical yield of [89Zr]Zr-DFO-ATL2 was 65.6 ± 3.9%, and the radiochemical purity (RCP) of the tracer was greater than 99%. The tracer maintained relatively high stability and had a high affinity for the PD-L2 protein (Kd = 31.85 nM, R2 = 0.94). The uptake of [89Zr]Zr-DFO-ATL2 in A549-PD-L2 cells was higher than that in A549 cells at each time point. Micro-PET/CT showed significant uptake in the tumour region of mice bearing tumours derived from A549-PD-L2 (SUVmax = 3.53 ± 0.09 at 96 h) and H2228 (SUVmax = 2.30 ± 0.12 at 48 h) cells. CONCLUSION The high tumour uptake at early imaging time points demonstrates the feasibility of applying [89Zr]Zr-DFO-ATL2 to image PD-L2 expression in tumours and is encouraging for further clinical application in the screening of patients who may benefit from ICI therapy.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Yanan Ren
- Guizhou University School of Medicine, Guiyang 550025 Guizhou, People's Republic of China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Jinyu Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Xiaokun Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China
| | - Qian Zhang
- Guizhou University School of Medicine, Guiyang 550025 Guizhou, People's Republic of China
| | - Xiaopan Ma
- Guizhou University School of Medicine, Guiyang 550025 Guizhou, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China.
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China.
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, No. 52 Fu-Cheng Rd., 100142 Beijing, People's Republic of China.
| |
Collapse
|
6
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
7
|
Nakajima K, Sugikawa A, Yasui H, Higashikawa K, Suzuki C, Natsume T, Suzuki M, Takakura H, Tomita M, Takahashi S, Hirata K, Magata Y, Kuge Y, Ogawa M. In vivo imaging of acute physiological responses after treatment of cancer with near-infrared photoimmunotherapy. Mol Imaging Biol 2023:10.1007/s11307-023-01822-9. [PMID: 37193805 DOI: 10.1007/s11307-023-01822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy using an antibody-photosensitizer conjugate (Ab-IR700). By NIR light irradiation, Ab-IR700 forms a water-insoluble aggregation on the plasma membrane of cancer cells, leading to lethal membrane damage of cancer cells with high selectivity. However, IR700 produces singlet oxygen, which induces non-selective inflammatory responses such as edema in normal tissues around the tumor. Understanding such treatment-emergent responses is important to minimize side effects and improve clinical outcomes. Thus, in this study, we evaluated physiological responses during NIR-PIT by magnetic resonance imaging (MRI) and positron emission tomography (PET). PROCEDURES Ab-IR700 was intravenously injected into tumor-bearing mice with two tumors on the right and left sides of the dorsum. At 24 h after injection, a tumor was irradiated with NIR light. Edema formation was examined by T1/T2/diffusion-weighted MRI and inflammation was investigated by PET with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Because inflammation can increase vascular permeability via inflammatory mediators, we evaluated changes in oxygen levels in tumors using a hypoxia imaging probe, [18F]fluoromisonidazole ([18F]FMISO). RESULTS The uptake of [18F]FDG in the irradiated tumor was significantly decreased compared to the control tumor, indicating the impairment of glucose metabolism induced by NIR-PIT. MRI and [18F]FDG-PET images showed that inflammatory edema with [18F]FDG accumulation was present in the surrounding normal tissues of the irradiated tumor. Furthermore, [18F]FMISO accumulation in the center of the irradiated tumor was relatively low, indicating the enhancement of oxygen supply due to increased vascular permeability. In contrast, high [18F]FMISO accumulation was observed in the peripheral region, indicating enhancement of hypoxia in the region. This could be because inflammatory edema was formed in the surrounding normal tissues, which blocked blood flow to the tumor. CONCLUSIONS We successfully monitored inflammatory edema and changes in oxygen levels during NIR-PIT. Our findings on the acute physiological responses after light irradiation will help to develop effective measures to minimize the side effects in NIR-PIT.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiyo Sugikawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Natsume
- Promotion Center for Medical Collaboration & Intellectual Property, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Mayu Tomita
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Sachi Takahashi
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
8
|
Zhang D, Huang G, Liu J, Wei W. Claudin18.2-targeted cancer theranostics. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:64-69. [PMID: 37214268 PMCID: PMC10193197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023]
Abstract
Claudin 18.2 (CLDN18.2) is an emerging target for the treatment of CLDN18.2-expressing cancers such as gastric and pancreatic cancers. Cell and antibody therapies targeting CLDN18.2 are under intensive clinical trials. In this setting, how to efficiently and specifically detect CLDN18.2 expression before and after the therapies is a clinical challenge. In recent years, molecular imaging with radiolabeled antibodies or antibody fragments have shown promise in noninvasively annotating antigen expression across the body. In this Perspective, we will bring together the most recent progress on CLDN18.2-targeted imaging and therapy of solid tumors.
Collapse
Affiliation(s)
- Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
9
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
10
|
Zhang Y, Zhang D, An S, Liu Q, Liang C, Li J, Liu P, Wu C, Huang G, Wei W, Liu J. Development and Characterization of Nanobody-Derived CD47 Theranostic Pairs in Solid Tumors. RESEARCH (WASHINGTON, D.C.) 2023; 6:0077. [PMID: 36939440 PMCID: PMC10017100 DOI: 10.34133/research.0077] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Overexpression of CD47 is frequently observed in various types of human malignancies, inhibiting myeloid-mediated elimination of tumor cells and affecting the prognosis of cancer patients. By mapping biomarker expression, immuno-positron emission tomography has been increasingly used for patient screening and response monitoring. By immunization alpacas with recombinant human CD47, we prepared a CD47-targeting nanobody C2 and developed [68Ga]Ga-NOTA-C2, followed by an exploration of the diagnostic value in CD47-expressing tumor models including gastric-cancer patient-derived xenograft models. By fusing C2 to an albumin binding domain (ABD), we synthesized ABDC2, which had increased in vivo half-life and improved targeting properties. We further labeled ABDC2 with 68Ga/89Zr/177Lu to develop radionuclide theranostic pairs and evaluated the pharmacokinetics and theranostic efficacies of the agents in cell- and patient-derived models. Both C2 and ABDC2 specifically reacted with human CD47 with a high K D value of 23.50 and 84.57 pM, respectively. [68Ga]Ga-NOTA-C2 was developed with high radiochemical purity (99 >%, n = 4) and visualized CD47 expression in the tumors. In comparison to the rapid renal clearance and short half-life of [68Ga]Ga-NOTA-C2, both [68Ga]Ga-NOTA-ABDC2 and [89Zr]Zr-DFO-ABDC2 showed prolonged circulation and increased tumor uptake, with the highest uptake of [89Zr]Zr-DFO-ABDC2 occurring at 72 h post-injection. Moreover, [177Lu]Lu-DOTA-ABDC2 radioimmunotherapy suppressed the tumor growth but was associated with toxicity, warranting further optimization of the treatment schedules. Taken together, we reported a series of nanobody-derived CD47-targeted agents, of which [68Ga]Ga-NOTA-C2 and [89Zr]Zr-DFO-ABDC2 are readily translatable. Optimization and translation of CD47-targeted theranostic pair may provide new prospects for CD47-targeted management of solid tumors.
Collapse
Affiliation(s)
- You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center,
Fudan University, Shanghai 200030, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences,
The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute,
Shanghai Jiao Tong University, Shanghai 200030, China
| | - Changfeng Wu
- Department of Biomedical Engineering,
Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| |
Collapse
|
11
|
Development and comparison of 68Ga/ 18F/ 64Cu-labeled nanobody tracers probing Claudin18.2. Mol Ther Oncolytics 2022; 27:305-314. [PMID: 36570796 PMCID: PMC9747674 DOI: 10.1016/j.omto.2022.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Claudin 18.2 (CLDN18.2) is an emerging target for the treatment of gastric cancers. We aim to develop tracers to image the expression of CLDN18.2. A humanized nanobody targeting CLDN18.2 (clone hu19V3) was produced and labeled with 68Ga, 64Cu, and 18F. The tracers were investigated in subcutaneous and metastatic models established using two different mouse types (nude and Balb/c mice) and two different cell lines (CHO-CLDN18.2 and CT26-CLDN18.2). Gastric cancer patient-derived xenograft (PDX) models were further established for validation experiments. Three novel CLDN18.2-targeted tracers (i.e., [68Ga]Ga-NOTA-hu19V3, [64Cu]Cu-NOTA-hu19V3, and [18F]F-hu19V3) were developed with good radiochemical yields and excellent radiochemical purities. [68Ga]Ga-NOTA-hu19V3 immuno-positron emission tomography (immunoPET) rapidly delineated subcutaneous CHO-CLDN18.2 lesions and CT26-CLDN18.2 tumors, as well as showing excellent diagnostic value in PDX models naturally expressing CLDN18.2. While [68Ga]Ga-NOTA-hu19V3 had high kidney accumulation, [64Cu]Cu-NOTA-hu19V3 showed reduced kidney accumulation and improved image contrast at late time points. Moreover, [18F]F-hu19V3 was developed via click chemistry reaction under mild conditions and precisely disseminated CHO-CLDN18.2 lesions in the lungs. Furthermore, region of interest analysis, biodistribution study, and histopathological staining results correlated well with the in vivo imaging results. Taken together, immunoPET imaging with the three tracers can reliably visualize CLDN18.2 expression.
Collapse
|
12
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
13
|
Li H, Huang M, Wei Z, He J, Ma Y, Lu C, Jin A, Wang Z, Wen L. Hydrogen sulfide activatable metal-organic frameworks for Fluorescence Imaging-Guided Photodynamic Therapy of colorectal cancer. Front Bioeng Biotechnol 2022; 10:1032571. [PMID: 36277384 PMCID: PMC9585166 DOI: 10.3389/fbioe.2022.1032571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising alternative and palliative therapeutic strategy for colorectal cancer (CRC). A novel photosensitizer with higher selectivity for CRC and fewer side effects is vital for clinical application. Given that the overexpression of hydrogen sulfide (H2S) in CRC, it is expected to provide a selective stimulus for activatable photosensitizers that in respond to the specific microenvironment. Herein, we report a novel development of metal-organic frameworks (MOFs) composed of meso-Tetra (4-carboxyphenyl) porphine (TCPP) and ferric ion (Fe3+) through a facile one-pot process. Experiments both in vitro and in vivo reveal that the MOF is capable of depredating in response to the high content of H2S in tumor microenvironment of CRC. Accompanying with the degradation and release of TCPP, the fluorescence and photosensitivity effect is switched from “off” to “on”, enabling the MOF to serve as a H2S activatable nano-photosensitizer for real-time fluorescence imaging-guided and targeted PDT of CRC.
Collapse
Affiliation(s)
- Honghui Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- Medical College, Guangxi University, Nanning, China
| | - Mao Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
| | - Zixuan Wei
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- Medical College, Guangxi University, Nanning, China
| | - Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
| | - Yunong Ma
- Medical College, Guangxi University, Nanning, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, China
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Albert Jin, ; Zhixiong Wang, ; Liewei Wen, ,
| | - Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Albert Jin, ; Zhixiong Wang, ; Liewei Wen, ,
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- *Correspondence: Albert Jin, ; Zhixiong Wang, ; Liewei Wen, ,
| |
Collapse
|
14
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
15
|
Li F, Mao C, Yeh S, Xin J, Wang P, Shi Q, Ming X. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer. Int J Pharm 2022; 625:122076. [PMID: 35931394 DOI: 10.1016/j.ijpharm.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022]
Abstract
Small cell lung cancer (SCLC), considered a mortal recalcitrant cancer, is a severe healthcare issue because of its poor prognosis, early metastasis, drug resistance and limited clinical treatment options. In our previous study, we established a MRP1-targeted antibody-IR700 system (Mab-IR700) for near infrared photoimmunotherapy (NIR-PIT) which exhibited a promising therapeutic effect on drug resistant H69AR cells both in vitro and in vivo, though the tumor growth suppression effect did not last long with a single round of PIT treatment. To achieve a better anticancer effect, we have combined Mab-IR700-mediated NIR-PIT with liposomal doxorubicin (Doxil®) and investigated the in vitro and in vivo cytotoxicity by using a H69AR/3T3 cell co-culture model in which 3T3 cells were used to mimic stromal cells. Cytotoxicity experiments demonstrated the specificity of Mab-IR700 to H69AR cells, while cytotoxicity and flow cytometry experiments confirmed that H69AR cells were doxorubicin-resistant. Compared with Mab-IR700-mediated PIT or Doxil-mediated chemotherapy, the combination therapy exhibited the best cell killing effect in vitro and superior tumor growth inhibition and survival prolongation effect in vivo. Super enhanced permeability and retention (SUPR) effect was observed in both co-culture spheroids and tumor-bearing mice. Owing to an approximately 9-fold greater accumulation of Doxil within the tumors, NIR-PIT combined with Doxil resulted in enhanced antitumor effects compared to NIR-PIT alone. This photoimmunochemotherapy is a practical strategy for the treatment of chemoresistant SCLC and should be further investigated for clinical translation.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Peng Wang
- School of Pharmaceutical Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
16
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
17
|
Shao F, Pan Z, Long Y, Zhu Z, Wang K, Ji H, Zhu K, Song W, Song Y, Song X, Gai Y, Liu Q, Qin C, Jiang D, Zhu J, Lan X. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J Nanobiotechnology 2022; 20:243. [PMID: 35614462 PMCID: PMC9131648 DOI: 10.1186/s12951-022-01444-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.
Collapse
Affiliation(s)
- Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, 643000, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ke Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, 300467, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China.
| |
Collapse
|
18
|
Zhou C, Shen Y, Jin Y, Shen Z, Ye D, Shen Y, Deng H. A novel Pyroptosis-related long non-coding RNA signature for predicting the prognosis and immune landscape of head and neck squamous cell carcinoma. Cancer Med 2022; 11:5097-5112. [PMID: 35567376 PMCID: PMC9761069 DOI: 10.1002/cam4.4819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Pyroptosis plays an essential function in carcinogenesis and the antitumor immune response. Herein, we constructed a pyroptosis-related long noncoding RNA (prLncRNA) signature to predict therapeutic effects and outcomes for head and neck squamous cell carcinoma (HNSCC) patients. METHODS Patients obtained from the TCGA-HNSC project were divided randomly into the training as well as the validation sets at a ratio of 7:3. A novel prognostic prLncRNA signature was constructed from the results of the training set using the least absolute shrinkage and selection operation. The medium value was used as the basis for categorizing all HNSCC patients into a low- or high-risk cohort. Cox regression and Kaplan-Meier (KM) survival analyses were executed to estimate the prognostic value. We also evaluated the functional enrichment, tumor microenvironment, immune cell infiltration, and the sensitivity to chemotherapy and immunotherapy between the high- and low-risk cohorts. RESULTS Nineteen prognostic prlncRNAs were identified to establish the prognostic signature. Multivariate Cox regression and KM survival analyses confirmed that this prlncRNA signature might serve as an independent prognostic indicator of patient survival, which was subsequently confirmed using a validating dataset. Multiple ROC curves indicated the prlncRNA signature presented a more predictive power than clinicopathological factors (age, sex, tumor grade, and tumor stage). GO, KEGG, and GSEA enrichment analysis disclosed several immune-related pathways which appeared to be enhanced in the low-risk cohort. ESTIMATE, CIBERSORT, and ssGSEA algorithms indicated considerable differences in the tumor microenvironment and immune cell infiltration in the low- and high-risk cohorts. Furthermore, the low-risk cohort was predicted to achieve a better response to immunotherapeutic drugs, while in contrast, the high-risk cohort would be more sensitive to chemotherapy drugs. CONCLUSIONS Our findings robustly demonstrate that our constructed prlncRNA signature could serve as an efficient indicator of prognosis, immunotherapy response, and chemosensitivity for HNSCC patients.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yangli Jin
- Department of UltrasonographyNingbo Yinzhou Second HospitalNingboChina
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| |
Collapse
|
19
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
20
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Luo Q, Duan Z, Li X, Gu L, Ren L, Zhu H, Tian X, Chen R, Zhang H, Gong Q, Gu Z, Luo K. Branched Polymer‐Based Redox/Enzyme‐Activatable Photodynamic Nanoagent to Trigger STING‐Dependent Immune Responses for Enhanced Therapeutic Effect. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202110408] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiang Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Long Ren
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
22
|
Wei W, Zhang D, Wang C, Zhang Y, An S, Chen Y, Huang G, Liu J. Annotating CD38 Expression in Multiple Myeloma with [ 18F]F-Nb1053. Mol Pharm 2021; 19:3502-3510. [PMID: 34846151 DOI: 10.1021/acs.molpharmaceut.1c00733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noninvasive diagnosis of multiple myeloma (MM) is a clinical challenge. CD38 is an established biomarker for MM, and the development of CD38-targeted radiotracers may improve the management of MM. By taking the advantages of bioorthogonal click chemistry, a nanobody (i.e., Nb1053-LLQS) specific for CD38 was successfully labeled with 18F. The diagnostic efficacy and specificity of the developed tracer (i.e., [18F]F-Nb1053) were evaluated by immuno-positron emission tomography (immunoPET) imaging in disseminated MM.1S-bearing models. [18F]F-Nb1053 was developed with high radiochemical purity (>98%) and excellent immunoreactivity. [18F]F-Nb1053 immunoPET successfully delineated disseminated MM lesions in preclinical MM models. The uptake in the humerus, femur, and tibia was 1.42 ± 0.50%ID/g, 1.35 ± 0.53%ID/g, and 1.48 ± 0.67%ID/g (n = 6), respectively. Tumor uptake of [18F]F-Nb1053 decreased after daratumumab premedication, indicating the superior specificity of the reported probe. This work successfully developed a novel CD38-specific probe [18F]F-Nb1053 that may potentially optimize the management of MM upon clinical translation.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
23
|
Wei W, Zhang Y, Zhang D, Liu Q, An S, Chen Y, Huang G, Liu J. Annotating BCMA Expression in Multiple Myelomas. Mol Pharm 2021; 19:3492-3501. [PMID: 34843261 DOI: 10.1021/acs.molpharmaceut.1c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B cell maturation antigen (BCMA) is a promising theranostic target for multiple myeloma (MM). BCMA-targeted therapeutics, such as antibody-drug conjugates and chimeric antigen receptor T-cell immunotherapies, are rapidly reshaping the treatment landscape of MM. Along with the progress, a critical challenge is to noninvasively visualize the dynamic change of BCMA for a better-personalized prescription of the above-mentioned therapeutics. We aim to develop immuno-positron emission tomography (immunoPET) imaging strategies to visualize BCMA expression and realize target-specific diagnosis of MM in the work. A series of BCMA-targeting nanobodies were produced and two of them were successfully labeled with gallium-68 (68Ga). MM models were established using MM.1S cell line and NOD-Prkdcem26Cd52Il2rgem26Cd22/Nju mice. The diagnostic efficacies of the developed probes (i.e., [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3) were investigated in disseminated MM models by immunoPET imaging, region of interest analysis on PET images, biodistribution study, and histopathological staining study. [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3 were developed with radiochemical purities of >99%. ImmunoPET imaging with either [68Ga]Ga-NOTA-MMBC2 or [68Ga]Ga-NOTA-MMBC3 precisely visualized BCMA expression and delineated MM lesions throughout the bone marrows. Moreover, [68Ga]Ga-NOTA-MMBC3 immunoPET successfully detected remnant MM after treatment with daratumumab, a prescription medicine used to treat MM. The immunoPET imaging data correlated well with the biodistribution and immunohistochemistry staining results. The work successfully developed two state-of-the-art BCMA-targeted radiotracers for annotating BCMA expression and diagnosing MM. Translational studies interpreting the diagnostic efficacies of the immunoPET radiotracers are warranted.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
24
|
Nakajima K, Miyazaki F, Terada K, Takakura H, Suzuki M, Ogawa M. Comparison of low-molecular-weight ligand and whole antibody in prostate-specific membrane antigen targeted near-infrared photoimmunotherapy. Int J Pharm 2021; 609:121135. [PMID: 34571072 DOI: 10.1016/j.ijpharm.2021.121135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cancer phototherapy that uses antibody-IR700 conjugate (Ab-IR700) and NIR light. Ab-IR700 forms aggregates on the plasma membranes of targeted cancer cells after light exposure, inducing lethal physical damage within the membrane. Low-molecular-weight (LMW) ligands are candidate targeting moieties instead of antibodies, but whether LMW-IR700 conjugates induce cell death by aggregation, the same mechanism as Ab-IR700, is unknown. Thus, we investigated differences in cytotoxicity and mechanisms between LMW-IR700 and Ab-IR700 targeting prostate-specific membrane antigen (PSMA). Both conjugates decreased cell viability to the same degree after light irradiation, but different morphological changes were observed in PSMA-positive LNCaP cells by microscopy. Cell swelling and bleb formation were induced by Ab-IR700, but only swelling was observed in cells treated with LMW-IR700, suggesting the cells were damaged via different cytotoxic mechanisms. However, LMW-IR700 induced bleb formation, a hallmark of NIR-PIT with Ab-IR700, when singlet oxygen was quenched or LMW-IR700 was localized only on the plasma membrane. Moreover, the water-soluble axial ligands of LMW-IR700 were cleaved, consistent with previous reports on Ab-IR700. Thus, the main cytotoxic mechanisms of Ab-IR700 and LMW-IR700 differ, although LMW-IR700 on the plasma membrane can cause aggregation-mediated cytotoxicity as well as Ab-IR700.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuka Miyazaki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Terada
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
25
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
26
|
Lee J, Kim B, Park B, Won Y, Kim SY, Lee S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci Rep 2021; 11:16864. [PMID: 34413447 PMCID: PMC8376886 DOI: 10.1038/s41598-021-96531-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
A biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.
Collapse
Affiliation(s)
- Jooran Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
- Intek-Medi, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
27
|
D’Arcy C, Kiel C. Cell Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021; 11:biom11081213. [PMID: 34439879 PMCID: PMC8391223 DOI: 10.3390/biom11081213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, especially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier formation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and strategies for novel anti-melanoma therapies.
Collapse
|
28
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|
29
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
30
|
Chen D, Ganesh S, Wang W, Lupieri A, Amiji M. Role of vitronectin-rich protein corona on tumor-specific siRNA delivery and transfection with lipid nanoparticles. Nanomedicine (Lond) 2021; 16:535-551. [PMID: 33683145 DOI: 10.2217/nnm-2020-0428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the role of vitronectin-enriched protein corona on systemic delivery of siRNA-encapsulated cationic lipid nanoparticles (LNPs) to αvβ3 integrin expressing solid tumors. Materials & methods: 1,2-Dioleoyl-3-trimethylammonium-propane LNPs were formulated, protein corona formed in nude mice serum and its impact on drug delivery were analyzed. Results: 1,2-Dioleoyl-3-trimethylammonium-propane-containing LNP led to enhanced recruitment of vitronectin and showed preferential transfection to αvβ3-expressed cells relative to controls. Upon systemic administration in mice, the LNPs accumulated in the αvβ3-expressing endothelial lining of the tumor blood vessels before reaching tumor cells. Conclusion: These results present an optimized LNP that selectively recruits endogenous proteins in situ to its corona which may lead to enhanced delivery and transfection in tissues of interest.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Weimin Wang
- Dicerna Pharmaceuticals, Lexington, MA 02421, USA
| | | | - Mansoor Amiji
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA.,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Zhao H, Wang C, Yang Y, Sun Y, Wei W, Wang C, Wan L, Zhu C, Li L, Huang G, Liu J. ImmunoPET imaging of human CD8 + T cells with novel 68Ga-labeled nanobody companion diagnostic agents. J Nanobiotechnology 2021; 19:42. [PMID: 33563286 PMCID: PMC7871532 DOI: 10.1186/s12951-021-00785-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Although immunotherapy has revolutionized treatment strategies for some types of cancers, most patients failed to respond or obtain long-term benefit. Tumor-infiltrating CD8+ T lymphocytes are closely related to the treatment outcome and prognosis of patients. Therefore, noninvasive elucidation of both systemic and tumor-infiltrating CD8+ T lymphocytes is of extraordinary significance for patients during cancer immunotherapy. Herein, a panel of 68Ga-labeled Nanobodies were designed and investigated to track human CD8+ T cells in vivo through immuno-positron emission tomography (immunoPET). RESULTS Among the screened Nanobodies, SNA006a showed the highest binding affinity and specificity to both human CD8 protein and CD8+ cells in vitro, with the equilibrium dissociation constant (KD) of 6.4 × 10-10 M and 4.6 × 10-10 M, respectively. 68Ga-NOTA-SNA006 was obtained with high radiochemical yield and purity, and stayed stable for at least 1 h both in vitro and in vivo. Biodistribution and Micro-PET/CT imaging studies revealed that all tracers specifically concentrated in the CD8+ tumors with low accumulation in CD8- tumors and normal organs except the kidneys, where the tracer was excreted and reabsorbed. Notably, the high uptake of 68Ga-NOTA-SNA006a in CD8+ tumors was rapid and persistent, which reached 24.41 ± 1.00% ID/g at 1.5 h after intravenous injection, resulting in excellent target-to-background ratios (TBRs). More specifically, the tumor-to-muscle, tumor-to-liver, and CD8+ to CD8- tumor was 28.10 ± 3.68, 5.26 ± 0.86, and 19.58 ± 2.70 at 1.5 h, respectively. Furthermore, in the humanized PBMC-NSG and HSC-NPG mouse models, 68Ga-NOTA-SNA006a accumulated in both CD8+ tumors and specific tissues such as liver, spleen and lung where human CD8 antigen was overexpressed or CD8+ T cells located during immunoPET imaging. CONCLUSIONS 68Ga-NOTA-SNA006a, a novel Nanobody tracer targeting human CD8 antigen, was developed with high radiochemical purity and high affinity. Compared with other candidates, the long retention time, low background, excellent TBRs of 68Ga-NOTA-SNA006a make it precisely track the human CD8+ T cells in mice models, showing great potential for immunotherapy monitoring and efficacy evaluation.
Collapse
Affiliation(s)
- Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Chao Wang
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, China
| | - Yanling Yang
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, China
- School of Pharmacy, Yantai University, No. 32 Road QingQuan, Laishan District, Yantai, 264005 China
| | - Yan Sun
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Liangrong Wan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Cheng Zhu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 1630 Dongfang Rd, Shanghai, 200127 China
| |
Collapse
|
32
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
33
|
ImmunoPET imaging of multiple myeloma with [ 68Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging 2021; 48:2749-2760. [PMID: 33543326 DOI: 10.1007/s00259-021-05218-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/24/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Multiple myeloma (MM) remains incurable and its diagnosis relies heavily on bone marrow aspiration and biopsy. CD38 is a glycoprotein highly specific for MM. Antibody therapeutics (e.g., daratumumab) targeting CD38 have shown encouraging efficacy in treating MM, either as a monotherapy agent or in combination with other regimens. However, efficient stratification of patients who might benefit from daratumumab therapy and timely monitoring of the therapeutic responses are still clinical challenges. This work aims to devise a CD38-targeted imaging strategy and assess its value in diagnosing MMs. METHODS By labeling a CD38-specific single domain antibody (Nb1053) with 68Ga (t1/2 = 1.1 h), we developed a CD38-targeted immuno-positron emission tomography (immunoPET) imaging probe [68Ga]Ga-NOTA-Nb1053. The probe was developed with good radiochemical yield (> 50%), excellent radiochemical purity (> 99%), and immunoreactivity (> 95%). The diagnostic accuracy of the probe was thoroughly investigated in preclinical MM models. RESULTS ImmunoPET imaging with [68Ga]Ga-NOTA-Nb1053 specifically depicted all the subcutaneous and orthotopic MM lesions, outperforming the traditional 18F-fluorodeoxyglucose PET and the nonspecific [68Ga]Ga-NOTA-NbGFP immunoPET. More importantly, daratumumab preloading significantly reduced [68Ga]Ga-NOTA-Nb1053 uptake in the disseminated bone lesions, indicating the overlapping targeting epitopes of [68Ga]Ga-NOTA-Nb1053 with that of daratumumab. Furthermore, premedication with sodium maleate or fructose significantly decreased kidney retention of [68Ga]Ga-NOTA-Nb1053 and improved the diagnostic value of the probe in lymphoma models. CONCLUSION This work successfully developed a novel CD38-targeted immunoPET imaging approach that enabled precise visualization of CD38 and diagnosis of MMs. Upon clinical translation, [68Ga]Ga-NOTA-Nb1053 immunoPET may serve as a valuable CD38-targeted molecular imaging toolbox, facilitating early diagnosis of MM and precise assessment of the therapeutic responses.
Collapse
|
34
|
Li C, Kang L, Fan K, Ferreira CA, Becker KV, Huo N, Liu H, Yang Y, Engle JW, Wang R, Xu X, Jiang D, Cai W. ImmunoPET of CD146 in Orthotopic and Metastatic Breast Cancer Models. Bioconjug Chem 2021; 32:1306-1314. [PMID: 33475350 DOI: 10.1021/acs.bioconjchem.0c00649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The overexpression of CD146 in breast cancer is considered a hallmark of tumor progression and metastasis, particularly in triple negative breast cancer. Aimed at imaging differential CD146 expressions in breast cancer, a noninvasive method for predictive prognosis and diagnosis was investigated using a 64Cu-labeled CD146-specific monoclonal antibody, YY146. CD146 expression was screened in human breast cancer cell lines using Western blotting. Binding ability was evaluated using flow cytometry and immunofluorescent staining. YY146 was conjugated with 1,4,7-triazacyclononane-triacetic acid (NOTA) and radiolabeled with 64Cu following standard procedures. Serial PET or PET/CT imaging was performed in orthotopic and metastatic breast cancer tumor models. Biodistribution was performed after the final time point of imaging. Finally, tissue immunofluorescent staining and hematoxylin and eosin (H&E) staining were performed on tumor tissues. The MDA-MB-435 cell line showed the highest CD146 expression level, whereas MCF-7 had the lowest level at the cellular level. ImmunoPET showed that MDA-MB-435 orthotopic tumors had high and clear radioactive accumulation after the administration of 64Cu-NOTA-YY146. The tumor uptake of 64Cu-NOTA-YY146 in MDA-MB-435 was significantly higher than that in MCF-7 and nonspecific IgG control groups (P < 0.01). Biodistribution verified the PET imaging results. For metastatic models, 64Cu-NOTA-YY146 allowed for the visualization of high radioactivity accumulation in metastatic MDA-MB-435 tumors, which was confirmed by ex vivo biodistribution of lung tissues. H&E staining proved the successful building of metastatic tumor models. Immunofluorescent staining verified the differential expression of CD146 in orthotopic tumors. Therefore, 64Cu-NOTA-YY146 could be used as an immunoPET probe to visualize CD146 in the breast cancer model and is potentially useful for cancer diagnosis, prognosis prediction, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034.,Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Nan Huo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China 100850
| | - Hanxiao Liu
- Department of Oncology, Harbin Medical University Affiliated Cancer Hospital, Harbin, China 150081
| | - Yunan Yang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China 100850
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430022
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Kobayashi H, Furusawa A, Rosenberg A, Choyke PL. Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity. Int Immunol 2021; 33:7-15. [PMID: 32496557 PMCID: PMC7771006 DOI: 10.1093/intimm/dxaa037] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed hybrid cancer therapy that directly kills cancer cells as well as producing a therapeutic host immune response. Conventional immunotherapies, such as immune-activating cytokine therapy, checkpoint inhibition, engineered T cells and suppressor cell depletion, do not directly destroy cancer cells, but rely exclusively on activating the immune system. NIR-PIT selectively destroys cancer cells, leading to immunogenic cell death that initiates local immune reactions to released cancer antigens from dying cancer cells. These are characterized by rapid maturation of dendritic cells and priming of multi-clonal cancer-specific cytotoxic T cells that kill cells that escaped the initial direct effects of NIR-PIT. The NIR-PIT can be applied to a wide variety of cancers either as monotherapy or in combination with conventional immune therapies to further activate anti-cancer immunity. A global Phase 3 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03769506) of NIR-PIT targeting the epidermal growth factor receptor (EGFR) in patients with recurrent head and neck cancer is underway, employing RM1929/ASP1929, a conjugate of anti-EGFR antibody (cetuximab) plus the photo-absorber IRDye700DX (IR700). NIR-PIT has been given fast-track recognition by regulators in the USA and Japan. A variety of imaging methods, including direct IR700 fluorescence imaging, can be used to monitor NIR-PIT. As experience with NIR-PIT grows, additional antibodies will be employed to target additional antigens on other cancers or to target immune-suppressor cells to enhance host immunity. NIR-PIT will be particularly important in patients with localized and locally advanced cancers and may help such patients avoid side-effects associated with surgery, radiation and chemotherapy.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Rosenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
37
|
Nakajima K, Ogawa M. Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-IR700. Photodiagnosis Photodyn Ther 2020; 31:101926. [DOI: 10.1016/j.pdpdt.2020.101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
38
|
Wei W, Liu Q, Jiang D, Zhao H, Kutyreff CJ, Engle JW, Liu J, Cai W. Tissue Factor-Targeted ImmunoPET Imaging and Radioimmunotherapy of Anaplastic Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903595. [PMID: 32670751 PMCID: PMC7341097 DOI: 10.1002/advs.201903595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/04/2020] [Indexed: 05/30/2023]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive subtype of thyroid cancers with a dismal prognosis. It is aimed to explore a new biomarker and devise a marker-dependent theranostic pair for ATC. Flow cytometry is used to determine tissue factor (TF) expression in thyroid cancer cell lines. ALT-836, a TF-specific monoclonal antibody, is radiolabeled with 64Cu to develop 64Cu-NOTA-ALT-836. The diagnostic utility is assessed by immuno-positron emission tomography (immunoPET) imaging in ATC models. To facilitate total surgical removal of orthotopic ATCs, a near-infrared fluorescent imaging probe IRDye 800CW-ALT-836 is designed. As the therapeutic component, 131I-ALT-836 is further developed and the radioimmunotherapy (RIT) efficacy of this agent is interrogated in orthotopic ATC models. The results demonstrate that TF is highly expressed on the ATC cell line THJ-16T. 64Cu-NOTA-ALT-836 immunoPET imaging clearly delineates both subcutaneous and orthotopic ATCs, with a peak tumor uptake of 19.93 ± 2.17% ID per g (n = 3) and 37.20 ± 1.71% ID per g (n = 3), respectively. Fluorescent imaging with IRDye 800CW-ALT-836 facilitates the total resection of orthotopic ATCs. Moreover, 131I-ALT-836 RIT prolongs the survival of ATC-bearing mice. Taken together, TF is a promising marker for ATC and successive use of 64Cu-NOTA-ALT-836 and 131I-ALT-836 can realize precise management of ATC.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear MedicineInstitute of Clinical Nuclear MedicineRenji Hospital, School of MedicineShanghai Jiao Tong University State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute1630 Dongfang RdShanghai200127China
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Qiufang Liu
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterFudan University270 Dongan RdShanghai200032China
| | - Dawei Jiang
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Haitao Zhao
- Department of Nuclear MedicineInstitute of Clinical Nuclear MedicineRenji Hospital, School of MedicineShanghai Jiao Tong University State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute1630 Dongfang RdShanghai200127China
| | - Christopher J. Kutyreff
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Jonathan W. Engle
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Jianjun Liu
- Department of Nuclear MedicineInstitute of Clinical Nuclear MedicineRenji Hospital, School of MedicineShanghai Jiao Tong University State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute1630 Dongfang RdShanghai200127China
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
- University of Wisconsin Carbone Cancer CenterMadisonWI53705USA
| |
Collapse
|
39
|
Wei W, Jiang D, Lee HJ, Engle JW, Akiba H, Liu J, Cai W. ImmunoPET Imaging of TIM-3 in Murine Melanoma Models. ADVANCED THERAPEUTICS 2020; 3:2000018. [PMID: 33889713 PMCID: PMC8057702 DOI: 10.1002/adtp.202000018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/15/2022]
Abstract
T cell immunoglobulin and mucin domain-containing-3 (TIM-3) is an immune checkpoint expressed mainly on CD4+ and CD8+ T cells. In addition to negatively regulating inflammatory T cell function, TIM-3 is a promising immunotherapy target. Herein, the aim is to develop an immuno-positron emission tomography (immunoPET) probe for noninvasively characterizing TIM-3 expression. Flow cytometry is used to detect the expression levels of TIM-3 in B16F10 cells. RMT3-23, a rat antimouse TIM-3-specific monoclonal antibody, is radiolabeled with 64Cu and the performance of 64Cu-NOTA-RMT3-23 is interrogated by immunoPET in murine melanoma models before and after radiation therapies. Biodistribution and immunofluorescent staining studies are carried out after the immunoPET imaging studies. TIM-3 is negatively expressed in B16F10 cells, and its expression is not induced by radiation therapies. ImmunoPET imaging with 64Cu-NOTA-RMT3-23 precisely tracks the unique distribution of TIM-3-positive lymphocytes in immunocompetent melanoma models, and tumor uptake of the radiotracer is not affected by either single-dose or fractionated radiation therapies. The 64Cu-NOTA-RMT3-23 immunoPET imaging results are further mirrored by the immunofluorescent staining studies. These results demonstrate the feasibility of 64Cu-NOTA-RMT3-23 immunoPET in tracking TIM-3 and highlight a new opportunity to optimize TIM-3-targeted immunotherapies with this novel imaging strategy.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai 200127, China
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hye Jin Lee
- School of Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai 200127, China
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
40
|
Xu X, Lu H, Lee R. Near Infrared Light Triggered Photo/Immuno-Therapy Toward Cancers. Front Bioeng Biotechnol 2020; 8:488. [PMID: 32528941 PMCID: PMC7264102 DOI: 10.3389/fbioe.2020.00488] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Nanomaterials-based phototherapies, mainly including photothermal therapy (PTT), photodynamic therapy (PDT) and photoimmunotherapy (PIT), present high efficacy, minimal invasion and negligible adverse effects in cancer treatment. The integrated phototherapeutic modalities can enhance the efficiency of cancer immunotherapy for clinical application transformation. The near-infrared (NIR) light source enables phototherapies with the high penetration depth in the biological tissues, less toxic to normal cells and tissues and a low dose of light irradiation. Mediated via the novel NIR-responsive nanomaterials, PTT and PDT are able to provoke cancer cells apoptosis from the generated heat and reactive oxygen species, respectively. The released cancer-specific antigens and membrane damage danger signals from the damaged cancer cells trigger immune responses, which would enhance the antitumor efficacy via a variety of immunotherapy. This review summarized the recent advances in NIR-triggered photo-/immune-therapeutic modalities and their synergistic mechanisms and applications toward cancers. Furthermore, the challenges, potential solutions and future directions of NIR-triggered photo-/immunotherapy were briefly discussed.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
41
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
42
|
Wei W, Jiang D, Lee HJ, Li M, Kutyreff CJ, Engle JW, Liu J, Cai W. Development and characterization of CD54-targeted immunoPET imaging in solid tumors. Eur J Nucl Med Mol Imaging 2020; 47:2765-2775. [PMID: 32279097 DOI: 10.1007/s00259-020-04784-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Intercellular adhesion molecule-1 (ICAM-1, CD54) is an emerging therapeutic target for a variety of solid tumors including melanoma and anaplastic thyroid cancer (ATC). This study aims to develop an ICAM-1-targeted immuno-positron emission tomography (immunoPET) imaging strategy and assess its diagnostic value in melanoma and ATC models. METHODS Flow cytometry was used to screen ICAM-1-positive melanoma and ATC cell lines. Melanoma and ATC models were established using A375 cell line and THJ-16T cell line, respectively. An ICAM-1-specific monoclonal antibody (R6-5-D6) and a nonspecific human IgG were radiolabeled with 64Cu and the diagnostic efficacies were interrogated in tumor-bearing mouse models. Biodistribution and fluorescent imaging studies were performed to confirm the specificity of the ICAM-1-targeted imaging probes. RESULTS ICAM-1 was strongly expressed on melanoma and advanced thyroid cancer cell lines. 64Cu-NOTA-ICAM-1 immunoPET imaging efficiently delineated A375 melanomas with a peak tumor uptake of 21.28 ± 6.56 %ID/g (n = 5), significantly higher than that of 64Cu-NOTA-IgG (10.63 ± 2.58 %ID/g, n = 3). Moreover, immunoPET imaging with 64Cu-NOTA-ICAM-1 efficiently visualized subcutaneous and orthotopic ATCs with high clarity and contrast. Fluorescent imaging with IRDye 800CW-ICAM-1 also visualized orthotopic ATCs and the tumor uptake could be blocked by the ICAM-1 parental antibody R6-5-D6, indicating the high specificity of the developed probe. Finally, blocking with the human IgG prolonged the circulation of the 64Cu-NOTA-ICAM-1 in R2G2 mice without compromising the tumor uptake. CONCLUSION ICAM-1-targeted immunoPET imaging could characterize ICAM-1 expression in melanoma and ATC, which holds promise for optimizing ICAM-1-targeted therapies in the future.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.,Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Hye Jin Lee
- School of Pharmacy, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Miao Li
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.,Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, Shanxi, China
| | - Christopher J Kutyreff
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA. .,School of Pharmacy, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA. .,University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
43
|
Elekonawo FMK, Bos DL, Goldenberg DM, Boerman OC, Rijpkema M. Carcinoembryonic antigen-targeted photodynamic therapy in colorectal cancer models. EJNMMI Res 2019; 9:108. [PMID: 31828541 PMCID: PMC6906275 DOI: 10.1186/s13550-019-0580-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In colorectal cancer, survival of patients is drastically reduced when complete resection is hampered by involvement of critical structures. Targeted photodynamic therapy (tPDT) is a local and targeted therapy which could play a role in eradicating residual tumor cells after incomplete resection. Since carcinoembryonic antigen (CEA; CEACAM5) is abundantly overexpressed in colorectal cancer, it is a potential target for tPDT of colorectal cancer. METHODS To address the potential of CEA-targeted PDT, we compared colorectal cancer cell lines with different CEA-expression levels (SW-48, SW-480, SW-620, SW-1222, WiDr, HT-29, DLD-1, LS174T, and LoVo) under identical experimental conditions. We evaluated the susceptibility to tPDT by varying radiant exposure and concentration of our antibody conjugate (DTPA-hMN-14-IRDye700DX). Finally, we assessed the efficacy of tPDT in vivo in 18 mice (BALB/cAnNRj-Foxn1nu/nu) with subcutaneously xenografted LoVo tumors. RESULTS In vitro, the treatment effect of tPDT varied per cell line and was dependent on both radiant exposure and antibody concentration. Under standardized conditions (94.5 J/cm2 and 0.5 μg/μL antibody conjugate concentration), the effect of tPDT was higher in cells with higher CEA availability: SW-1222, LS174T, LoVo, and SW-48 (22.8%, 52.8%, 49.9%, and 51.9% reduction of viable cells, respectively) compared to cells with lower CEA availability. Compared to control groups (light or antibody conjugate only), tumor growth rate was reduced in mice with s.c. LoVo tumors receiving tPDT. CONCLUSION Our findings suggest cells (and tumors) have different levels of susceptibility for tPDT even though they all express CEA. Furthermore, tPDT can effectively reduce tumor growth in vivo.
Collapse
Affiliation(s)
- Fortuné M K Elekonawo
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Desirée L Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - David M Goldenberg
- Center for Molecular Medicine and Immunology, Mendham, NJ, USA
- Immunomedics, Inc. and IBC Pharmaceuticals, Inc., Morris Plains, NJ, USA
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Li S, England CG, Ehlerding EB, Kutyreff CJ, Engle JW, Jiang D, Cai W. ImmunoPET imaging of CD38 expression in hepatocellular carcinoma using 64Cu-labeled daratumumab. Am J Transl Res 2019; 11:6007-6015. [PMID: 31632568 PMCID: PMC6789222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
CD38 is expressed on the surface of many immune cells, which are closely associated with antitumor immunity and immune tolerance of tumor cells. Therefore, monitoring CD38 expression has gained great attention for tracking the progression of tumors and cancer treatment. Herein, we aim to develop a PET tracer using an anti-CD38 monoclonal antibody (daratumumab) to monitor CD38 expression in hepatocellular carcinoma (HCC). In this study, daratumumab was radiolabeled with 64Cu (t1/2=12.7 h) to obtain 64Cu-NOTA-daratumumab. Relative CD38 expression in HepG2 and Huh7 HCC cell lines was assessed using western blot. The specificity of 64Cu-NOTA-daratumumab to both cell lines was examined using an in vitro cell-binding assay. PET imaging in subcutaneous models of HCC was performed to evaluate the capability and specificity of 64Cu-NOTA-daratumumab to target CD38 in vivo. Region-of-interest analysis and ex vivo biodistribution were performed to verify the tracer targeting capability of CD38. Through cellular studies of two HCC cell lines, CD38 expression was found to be higher in HepG2 and minimal in Huh7 cells. 64Cu-NOTA-daratumumab showed relatively high affinity to CD38 (Ka=18.21 ± 1.74 nM), while the affinity of Huh7 was in the micromolar range for daratumumab binding to the cells (Ka=3.98 ± 0.87 μM). At 48 h post-injection, PET imaging of subcutaneous models with 64Cu-NOTA-daratumumab revealed tumor uptakes of 12.23 ± 2.4 and 2.7 ± 1.2 %ID/g for HepG2 and Huh7, respectively (n=4), which correlated well with relative CD38 expression of the cells. Moreover, the 64Cu-NOTA-IgG nonspecific analogue showed a significantly lower uptake in HepG2 subcutaneous model in mice, suggesting a specific binding of daratumumab with CD38 in vivo. Our cellular studies and PET imaging confirmed the capability and specificity of 64Cu-NOTA-daratumumab for the imaging of CD38 in murine models of HCC. This study supports our claim that 64Cu-NOTA-daratumumab is an effective PET tracer for the non-invasive evaluation of CD38 expression and sensitive detection of CD38-positive tumor lesions in HCC.
Collapse
Affiliation(s)
- Shiyong Li
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Christopher G England
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Emily B Ehlerding
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Christopher J Kutyreff
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Jonathan W Engle
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Dawei Jiang
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| |
Collapse
|