1
|
Shang J, Li Z, Ma A, Zhu T, Ma G, Gui H, Ren H, Sun B, Wang W, Wang X, Liu C, Li C, Wang Z, Lan J. Hyperlipidemia impairs bone repair and regeneration via miR-193a-3p/STMN1/PI3K/Akt axis. Biochem Pharmacol 2025; 232:116693. [PMID: 39638070 DOI: 10.1016/j.bcp.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Hyperlipidemia, a metabolic disease characterized by excessive blood lipid, disturbs bone metabolism by shifting cell fate of bone marrow stromal cells (BMSCs) towards adipogenic differentiation, thus resulting in poor bone regeneration and osseointegration of implants. Among numerous factors affecting hyperlipidemic bone metabolism, non-coding RNAs play an essential role in post-transcriptional regulation. Our previous study has shown that miR-193a-3p levels were elevated in hyperlipidemia, which hindered implant osseointegration and BMSCs function. However, the downstream targets and pathways of miR-193a-3p warrant further investigation. In this study, we identified STMN1 as the target of miR-193a-3p by miRNA databases and validated their interaction through dual luciferase reporter assays. Models of hyperlipidemia were established in vitro using a high-fat medium and in vivo with a high-fat diet to study these molecular interactions. Besides, miRNA array and PCR analyses confirmed the level of miR-193a and STMN1 in both rats with hyperlipidemia and high-fat-cultured BMSCs. Calvarial defects were used to evaluate STMN1's impact on bone repair and regeneration. As a result, miR-193a-3p levels were highly elevated in hyperlipidemic conditions, whereas the STMN1 levels were reduced sharply. The elevated miR-193a targeted STMN1 and disabled it from activating the PI3K/Akt pathway, thus resulting in delayed bone repair and poor bone regeneration. Additionally, common lipid-lowering drug simvastatin blunted hyperlipidemia's adverse effect on this axis. Our findings underscore the miR-193a-3p/STMN1/PI3K/Akt axis as a novel and promising therapeutic target for hyperlipidemic osteopenia, offering insights into the molecular mechanisms underlying bone metabolism disorders in hyperlipidemia and paving the way for innovative treatments.
Collapse
Affiliation(s)
- Jiaming Shang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China; National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Health Commission Key Laboratory of Digital Technology of Stomatology, 100081 Beijing, China; Institute of Advanced Clinical Medicine, Peking University, 100191 Beijing, China
| | - Anquan Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Tiantian Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Huiping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Baiyu Sun
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chuanhua Li
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhifeng Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| |
Collapse
|
2
|
Li X, Si Y, Liang J, Li M, Wang Z, Qin Y, Sun L. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci 2024; 672:179-199. [PMID: 38838627 DOI: 10.1016/j.jcis.2024.05.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaorong Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunhui Si
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jingxian Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengsha Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Zhiwei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yinying Qin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Yuan H, He M, Yang Q, Niu F, Zou Y, Liu C, Yang Yang, Liu A, Chang X, Chen F, Wu T, Han X, Zhang Y. Obesity-induced upregulation of miR-483-5p impairs the function and identity of pancreatic β-cells. Diabetes Obes Metab 2024; 26:4510-4521. [PMID: 39072950 DOI: 10.1111/dom.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
AIM To assess the expression and function of miR-483-5p in diabetic β cells. METHODS The expression of miR-483-5p was evaluated in the pancreatic islets of obesity mouse models by quantitative reverse transcription polymerase chain reaction. Dual-luciferase activity, and western blotting assays, were utilized for miR-483-5p target gene verification. Mice with β cell-specific miR-483-5p downregulation were studied under metabolic stress (i.e. a high-fat diet) condition. Lineage tracing was used to determine β-cell fate. RESULTS miR-483-5p increased in the islets of obese mouse models. Expression levels of miR-483-5p were significantly upregulated with the treatment of high glucose and palmitate, in both MIN6 cells and mouse islets. Overexpression of miR-483-5p in β cells results in impaired insulin secretion and β-cell identity. Cell lineage-specific analyses revealed that miR-483-5p overexpression deactivated β-cell identity genes (insulin, Pdx1 and MafA) and derepressed β-cell dedifferentiation (Ngn3) genes. miR-483-5p downregulation in β cells of high-fat diet-fed mice alleviated diabetes and improved glucose intolerance by enhancing insulin secretory capacity. These detrimental effects of miR-483-5p relied on its seed sequence recognition and repressed expression of its target genes Pdx1 and MafA, two crucial markers of β-cell maturation. CONCLUSIONS These findings indicate that the miR-483-5p-mediated reduction of mRNAs specifies β-cell identity as a contributor to β-cell dysfunction via the loss of cellular differentiation.
Collapse
Affiliation(s)
- Honglei Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mei He
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Qinnan Yang
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Fandi Niu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yuchen Zou
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Liu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Aiming Liu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
5
|
Della Bella E, Menzel U, Naros A, Kubosch EJ, Alini M, Stoddart MJ. Identification of circulating miRNAs as fracture-related biomarkers. PLoS One 2024; 19:e0303035. [PMID: 38820355 PMCID: PMC11142570 DOI: 10.1371/journal.pone.0303035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/16/2024] [Indexed: 06/02/2024] Open
Abstract
Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing. Serum of fracture patients and healthy volunteers was screened by RNA sequencing to identify differentially expressed miRNA at various times after injury. The results were correlated to miRNA in the conditioned medium of human bone marrow mesenchymal stromal cells (BMSCs) during in vitro osteogenic differentiation. hsa-miR-1246, hsa-miR-335-5p, and miR-193a-5p were identified both in vitro and in fracture patients and their functional role in direct BMSC osteogenic differentiation was assessed. The results showed no influence of the downregulation of the three miRNAs during in vitro osteogenesis. However, miR-1246 may be involved in cell proliferation and recruitment of progenitor cells. Further studies should be performed to assess the role of these miRNA in other processes relevant to fracture healing.
Collapse
Affiliation(s)
| | - Ursula Menzel
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Andreas Naros
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Oral and Maxillofacial Surgery, Tübingen University Hospital, Tübingen, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Martin J. Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
He Y, Zhang L, Huang S, Tang Y, Li Y, Li H, Chen G, Chen X, Zhang X, Zhao W, Deng F, Yu D. Magnetic Graphene Oxide Nanocomposites Boosts Craniomaxillofacial Bone Regeneration by Modulating circAars/miR-128-3p/SMAD5 Signaling Axis. Int J Nanomedicine 2024; 19:3143-3166. [PMID: 38585472 PMCID: PMC10999216 DOI: 10.2147/ijn.s454718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Background The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Lejia Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Siyuan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Yuquan Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, 518107, People’s Republic of China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| |
Collapse
|
7
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
赵 菡, 卫 彦, 张 学, 杨 小, 蔡 晴, 宁 成, 徐 明, 刘 雯, 黄 颖, 何 颖, 郭 亚, 江 圣, 白 云, 吴 宇, 郭 雨, 郑 晓, 李 文, 邓 旭. [Bionic design, preparation and clinical translation of oral hard tissue restorative materials]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:4-8. [PMID: 38318889 PMCID: PMC10845182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/07/2024]
Abstract
Oral diseases concern almost every individual and are a serious health risk to the population. The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour. Based on the principle of "learning from the nature", Deng Xuliang's group of Peking University School and Hospital of Stomatology has proposed a new concept of "microstructural biomimetic design and tissue adaptation of tooth/jaw materials" to address the worldwide problems of difficulty in treating dentine hypersensitivity, poor prognosis of restoration of tooth defects, and vertical bone augmentation of alveolar bone after tooth loss. The group has broken through the bottleneck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects, and invented key technologies such as crystalline/amorphous multi-level assembly, ion-transportation blocking, and multi-physical properties of the micro-environment reconstruction, etc. The group also pioneered the cationic-hydrogel desensitizer, digital stump and core integrated restorations, and developed new crown and bridge restorative materials, gradient functionalisation guided tissue regeneration membrane, and electrically responsive alveolar bone augmentation restorative membranes, etc. These products have established new clinical strategies for tooth/jaw defect repair and achieved innovative results. In conclusion, the research results of our group have strongly supported the theoretical improvement of stomatology, developed the technical system of oral hard tissue restoration, innovated the clinical treatment strategy, and led the progress of the stomatology industry.
Collapse
Affiliation(s)
- 菡 赵
- 北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 彦 卫
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 学慧 张
- 北京大学口腔医学院·口腔医院材料研究室,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 小平 杨
- 北京化工大学材料科学与工程学院生物材料系,有机无机复合材料国家重点实验室,生物医用材料北京实验室,北京,100029College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - 晴 蔡
- 北京化工大学材料科学与工程学院生物材料系,有机无机复合材料国家重点实验室,生物医用材料北京实验室,北京,100029College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - 成云 宁
- 华南理工大学材料科学与工程学院生物材料系,国家人体组织功能重建工程技术研究中心,广东省生物医学工程重点实验室,广州 510641School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - 明明 徐
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 雯雯 刘
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 颖 黄
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 颖 何
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 亚茹 郭
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 圣杰 江
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 云洋 白
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 宇佳 吴
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 雨思 郭
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 晓娜 郑
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 文静 李
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 旭亮 邓
- 北京大学口腔医学院·口腔医院特诊科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
9
|
Li X, Luo X, He Y, Xu K, Ding Y, Gao P, Tao B, Li M, Tan M, Liu S, Liu P, Cai K. Micronano Titanium Accelerates Mesenchymal Stem Cells Aging through the Activation of Senescence-Associated Secretory Phenotype. ACS NANO 2023; 17:22885-22900. [PMID: 37947356 DOI: 10.1021/acsnano.3c07807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Stem cell senescence is one of the most representative events of organism aging and is responsible for many physiological abnormalities and disorders. In the scenario of orthopedic disease treatment, stem cell aging may affect the implantation outcome and even lead to operation failure. To explore whether stem cell aging will affect the osteointegration effect of titanium implant, a widely used micronano titanium (MNT) was fabricated. We first verified the expected osteointegration effect of the MNT, which could be attributed to the improvement of stem cell adhesion and osteogenic differentiation. Then, we obtained aged-derived bone marrow mesenchymal stem cells (BMSCs) and studied their biological behaviors on MNT both in vitro and in vivo. We found that compared with normal rats, MNT did not significantly improve the osteointegration in aged rats. Compared with normal rats, fewer endogenous stem cells were observed at the implant-host interface, and the expression of p21 (senescence marker) was also higher. We further confirmed that MNT promoted the nuclear localization of NF-κB in senescent stem cells through the activation of p38 MAPK, thereby inducing the occurrence of the senescence-associated secretory phenotype (SASP) and ultimately leading to the depletion of the stem-cell pool at the implant-host interface. However, the activation of p38 MAPK can still promote the osteogenic differentiation of nonsenescent BMSCs. These results showed an interesting paradoxical balance between osteogenesis and senescence on MNT surfaces and also provided insights for the design of orthopedic implants for aging patients.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| |
Collapse
|
10
|
Liu Y, Hu J, Wang W, Wang Q. MircroRNA-145 Attenuates Cardiac Fibrosis Via Regulating Mitogen-Activated Protein Kinase Kinase Kinase 3. Cardiovasc Drugs Ther 2023; 37:655-665. [PMID: 35416554 DOI: 10.1007/s10557-021-07312-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to explore the effect of microRNA (miR)-145 on cardiac fibrosis in heart failure mice and its target. METHODS Experiments were carried out in mice receiving left coronary artery ligation, transverse aortic constriction (TAC), or angiotensin (Ang) II to trigger heart failure, and in cardiac fibroblasts (CFs) with Ang II-induced fibrosis. RESULTS The miR-145 levels were decreased in the mice hearts of heart failure induced by myocardial infarction (MI), TAC or Ang II infusion, and in the Ang II-treated CFs. The impaired cardiac function was ameliorated by miR-145 agomiR in MI mice. The increased fibrosis and the levels of collagen I, collagen III, and transforming growth factor-beta (TGF-β) in MI mice were inhibited by miR-145 agomiR or miR-145 transgene (TG). The agomiR of miR-145 also attenuated the increases of collagen I, collagen III, and TGF-β in Ang II-treated CFs. Bioinformatics analysis and luciferase reporter assays indicated that mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was a direct target gene of miR-145. MAP3K3 expression was suppressed by MiR-145 in CFs, while the MAP3K3 over-expression reversed the inhibiting effects of miR-145 agomiR on the Ang II-induced increases of collagen I, collagen III, and TGF-β in CFs. CONCLUSION These results indicated that miR-145 upregulation could improve cardiac dysfunction and cardiac fibrosis by inhibiting MAP3K3 in heart failure. Thus, upregulating miR-145 or blocking MAP3K3 can be used to treat heart failure and cardiac fibrosis.
Collapse
Affiliation(s)
- Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Hu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Pediatric Department, Shanghai General Hospital, No.650 Xinsongjiang Road, Shanghai, 201600, Songjiang District, China.
| |
Collapse
|
11
|
Li S, Kong Z, Ma B, Wang H, Han Y, Zhao H, Shi X, Lv P, Yue H, Grässel S, Yin L. Low miR-182-5p Expressing Extracellular Vesicles Derived From Human Bone Marrow Stromal Cells of Subjects With Steroid-Induced Osteonecrosis of the Femoral Head Aggravate Disease Progression. J Bone Miner Res 2023; 38:976-993. [PMID: 37155311 DOI: 10.1002/jbmr.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory, progressive disease. However, the underlying mechanisms that aggravate femoral head necrosis remain unclear. Extracellular vesicles (EVs) act as molecular carriers in intercellular communication. We hypothesize that EVs derived from human (h) bone marrow stromal cells (BMSC) resident in SONFH lesion areas promote the pathogenesis of SONFH. In the present study, we determined the modulatory effects of SONFH-hBMSCs-derived EVs on the pathogenesis of SONFH in vitro and in vivo. We found that the expression of hsa-miR-182-5p was downregulated in SONFH-hBMSCs and EVs isolated from those hBMSCs. After tail vein injection, EVs isolated from hBMSCs transfected with hsa-miR-182-5p inhibitor aggravated femoral head necrosis in the SONFH mouse model. We conclude that miR-182-5p regulates bone turnover in the SONFH mouse model via targeting MYD88 and subsequent upregulation of RUNX2 expression. We further assume that EVs derived from hBMSCs resident in SONFH lesion areas aggravate femoral head necrosis by downregulating miR-182-5p secreted from hBMSC located outside these lesions. We suggest that miR-182-5p could provide a novel target for future therapeutic approaches to treat or prevent SONFH. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shushan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiheng Kong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baodong Ma
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengju Lv
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Han Yue
- Henan Provincial People's Hospital, Zhengzhou, China
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Li Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Xiao L, Sun Y, Liao L, Su X. Response of mesenchymal stem cells to surface topography of scaffolds and the underlying mechanisms. J Mater Chem B 2023; 11:2550-2567. [PMID: 36852826 DOI: 10.1039/d2tb01875f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) serve as essential components of regenerative medicine. Their destiny is influenced by the interaction of the cells with the external environment. In addition to the biochemical cues in a microenvironment, physical cues of the topography of the surrounding materials such as the extracellular matrix emerge as a crucial regulator of stem cell destiny and function. With recent advances in technologies of materials production and surface modification, surfaces with micro/nanotopographical characteristics can be fabricated to mimic the micro/nanoscale mechanical stimuli of the extracellular matrix environment and regulate the biological behavior of cells. Understanding the interaction of cells with the topography of a surface is conducive to the control of stem cell fate for application in regenerative medicine. However, the mechanisms by which topography affects the biological behavior of stem cells have not been fully elucidated. This review will present the effects of surface topography at the nano/micrometer scale on stem cell adhesion, morphology, proliferation, migration, and differentiation. It also focuses on discussing current theories about the sensing and recognition of surface topology cues, the transduction of the extracellular cues into plasma, and the final activation of related signaling pathways and downstream gene expression in MSCs. These insights will provide a theoretical basis for the future design of biomaterial scaffolds for application in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Li Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
13
|
Vanhie JJ, Kim W, Ek Orloff L, Ngu M, Collao N, De Lisio M. The role of exercise-and high fat diet-induced bone marrow extracellular vesicles in stress hematopoiesis. Front Physiol 2022; 13:1054463. [PMID: 36505084 PMCID: PMC9728614 DOI: 10.3389/fphys.2022.1054463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Exercise and obesity regulate hematopoiesis, in part through alterations in cellular and soluble components of the bone marrow niche. Extracellular vesicles (EVs) are components of the bone marrow niche that regulate hematopoiesis; however, the role of exercise training or obesity induced EVs in regulating hematopoiesis remains unknown. To address this gap, donor EVs were isolated from control diet-fed, sedentary mice (CON-SED), control diet-fed exercise trained mice (CON-EX), high fat diet-fed, sedentary mice (HFD-SED), and high fat diet-fed, exercise trained mice (HFD-EX) and injected into recipient mice undergoing stress hematopoiesis. Hematopoietic and niche cell populations were quantified, and EV miRNA cargo was evaluated. EV content did not differ between the four groups. Mice receiving HFD-EX EVs had fewer hematopoietic stem cells (HSCs) (p < 0.01), long-term HSC (p < 0.05), multipotent progenitors (p < 0.01), common myeloid progenitors (p<0.01), common lymphoid progenitors (p < 0.01), and granulocyte-macrophage progenitors (p < 0.05), compared to mice receiving HFD-SED EVs. Similarly, mice receiving EX EVs had fewer osteoprogenitor cells compared to SED (p < 0.05) but enhanced mesenchymal stromal cell (MSC) osteogenic differentiation in vitro (p < 0.05) compared to SED EVs. HFD EVs enhanced mesenchymal stromal cell (MSC) adipogenesis in vitro (p < 0.01) compared to CON EVs. HFD-EX EVs had lower microRNA-193 and microRNA-331-5p content, microRNAs implicated in inhibiting osteogenesis and leukemic cell expansion respectively, compared to HFD-SED EVs. The results identify alterations in EV cargo as a novel mechanism by which exercise training alters stress hematopoiesis and the bone marrow niche.
Collapse
Affiliation(s)
- James J. Vanhie
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Wooseok Kim
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Lisa Ek Orloff
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Matthew Ngu
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Nicolas Collao
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,*Correspondence: Michael De Lisio,
| |
Collapse
|
14
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
15
|
He Y, Tian M, Li X, Hou J, Chen S, Yang G, Liu X, Zhou S. A Hierarchical-Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Adv Healthc Mater 2022; 11:e2102236. [PMID: 34779582 DOI: 10.1002/adhm.202102236] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Alveolar bone resorption is a major cause of teeth loss and jeopardizes the osseointegration of dental implants, greatly affecting patient's quality of life and health. It is still a great challenge to completely regenerate the alveolar bone defect through traditional guided bone regeneration (GBR) membranes due to their limited bioactivity and regeneration potential. Herein, a new hierarchical-structured mineralized nanofiber (HMF) scaffold, which is combined with both anisotropic and isotropic nanofibrous surface topography and the mineralized particles, is fabricated via a simple template-assisted electrospinning technology and in situ mineralization method. This HMF scaffold can not only directly induce osteogenic differentiation of bone mesenchymal stem cells (osteoinduction), but also stimulate macrophage toward pro-healing (M2) phenotype-polarization with an elevated secretion of the pro-healing cytokines, eventually enhancing the osteogenesis (osteoimmunomodulation). The results of in vivo rat alveolar bone defect repair experiments demonstrate that as compared with the combination of commercial Bio-Gide and Bio-Oss, the single HMF scaffold shows comparable or even superior bone repair effect, with better tissue-integration and more suitable degradation time and accompanied by a simplified operation.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Mi Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xilin Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Song Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Xian Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| |
Collapse
|
16
|
Song CY, Guo Y, Chen FY, Liu WG. Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis. Calcif Tissue Int 2022; 110:117-130. [PMID: 34477918 DOI: 10.1007/s00223-021-00892-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Resveratrol (RES) is a novel dietary phenol compound derived from plants and has been studied extensively for its health benefit and medical potential including osteoporosis. The purpose of this study is to investigate the role of resveratrol in osteoporosis in vivo and in vitro and explore the mechanism of osteogenic differentiation of BMSCs. RT-qPCR, ELISA, and Western blot were used to measure the expression level of miR-193a, SIRT7, and osteogenic markers proteins. The interaction between miR-193a and SIRT7 was validated by dual-luciferase reporter assay. Moreover, MTT assay was conducted to detect cell viability. Alizarin red s staining was used to examine bone formation and calcium deposits. The ovariectomized rat model was set up successfully and HE staining was used to examine femoral trabeculae tissue. Our results showed that miR-193a was overexpressed, while SIRT7 was downregulated in osteoporosis. RES suppressed miR-193a to promote osteogenic differentiation. Mechanically, miR-193a targeted and negative regulated SIRT7. Additionally, it was confirmed that SIRT7 promoted osteogenic differentiation of BMSCs through NF-κB signaling pathway. Further study indicated that RES exerted its beneficial function through miR-193a/SIRT7-mediated NF-κB signaling to alleviate osteoporosis in vivo. Our research suggested that the RES-modulated miR-193a inhibition is responsible for the activation of SIRT7/NF-κB signaling pathway in the process of osteogenic differentiation, providing a novel insight into diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Chen-Yang Song
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yu Guo
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Fen-Yong Chen
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Wen-Ge Liu
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
17
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
19
|
Ye G, Wang P, Xie Z, Li J, Zheng G, Liu W, Cao Q, Li M, Cen S, Li Z, Yu W, Wu Y, Shen H. IRF2-mediated upregulation of lncRNA HHAS1 facilitates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by acting as a competing endogenous RNA. Clin Transl Med 2021; 11:e429. [PMID: 34185419 PMCID: PMC8214856 DOI: 10.1002/ctm2.429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are the major source of osteoblasts. Long noncoding RNAs (lncRNAs) are abundantly expressed RNAs that lack protein-coding potential and play an extensive regulatory role in cellular biological activities. However, the regulatory network of lncRNAs in MSC osteogenesis needs further investigation. METHODS QRT-PCR, western blot, immunofluorescence, and immunohistochemistry assays were used to determine the levels of relevant genes. The osteogenic differentiation capability was evaluated by using Alizarin Red S (ARS) staining, alkaline phosphatase activity assays, hematoxylin & eosin staining or micro-CT. RNA fluorescence in situ hybridization (FISH) and RNAscope were used to detect HHAS1 expression in cells and bone tissue. A microarray assay was performed to identify differentially expressed microRNAs. RNA immunoprecipitation and RNA pull-down were used to explore the interactions between related proteins and nucleic acids. RESULTS The level of lncRNA HHAS1 increased during bone marrow-derived MSC (BMSC) osteogenesis and was positively related to the levels of osteogenic genes and ARS intensity. HHAS1 was located in both the cytoplasm and the nucleus and was expressed in human bone tissue. HHAS1 facilitated BMSC osteogenic differentiation by downregulating miR-204-5p expression and enhancing the level of RUNX family transcription factor 2 (RUNX2). In addition, interferon regulatory factor 2 (IRF2) was increased during BMSC osteogenic differentiation and interacted with the promoter of HHAS1, which resulted in the transcriptional activation of HHAS1. Furthermore, IRF2 and HHAS1 helped improve bone defect repair in vivo. CONCLUSIONS Our study identified a novel lncRNA, HHAS1, that facilitates BMSC osteogenic differentiation and proposed a role for the IRF2/HHAS1/miR-204-5p/RUNX2 axis in BMSC osteogenesis regulation. These findings help elucidate the regulatory network of BMSC osteogenesis and provide potential targets for clinical application.
Collapse
Affiliation(s)
- Guiwen Ye
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Qian Cao
- Center for BiotherapyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP.R. China
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP.R. China
| | - Zhaofeng Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP.R. China
| | - Wenhui Yu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Yanfeng Wu
- Center for BiotherapyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
- Center for BiotherapyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenP.R. China
| |
Collapse
|
20
|
Liu C, Gen Y, Tanimoto K, Muramatsu T, Inoue J, Inazawa J. Concurrent targeting of MAP3K3 and BRD4 by miR-3140-3p overcomes acquired resistance to BET inhibitors in neuroblastoma cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:83-92. [PMID: 34258104 PMCID: PMC8253920 DOI: 10.1016/j.omtn.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Neuroblastoma (NB) harboring MYCN amplification is a refractory disease with a poor prognosis. As BRD4, an epigenetic reader belonging to the bromodomain and extra terminal domain (BET) family, drives transcription of MYCN in NB cells, BET inhibitors (BETis) are considered useful for NB therapy. However, clinical trials of BETis suggested that early acquired resistance to BETis limits their therapeutic benefit. MicroRNAs are small non-coding RNAs that mediate post-transcriptional silencing of target genes. We previously identified miR-3140-3p as a potent candidate for nucleic acid therapeutics for cancer, which directly targets BRD4. We demonstrated that miR-3140-3p suppresses tumor cell growth in MYCN-amplified NB by downregulating MYCN and MYC through BRD4 suppression. We established BETi-acquired resistant NB cells to evaluate the mechanism of resistance to BETi in NB cells. We revealed that activated ERK1/2 stabilizes MYCN protein by preventing ubiquitin-mediated proteolysis via phosphorylation of MYCN at Ser62 in BETi-acquired resistant NB cells, thereby attenuating the effects of BETi in these cells. miR-3140-3p efficiently downregulated MYCN expression by directly targeting the MAP3K3-ERK1/2 pathway in addition to BRD4 suppression, inhibiting tumor cell growth in BETi-acquired resistant NB cells. This study suggests that miR-3140-3p has the potential to overcome resistance to BETi in NB.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuyuki Gen
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Medical Research Institute, TMDU, Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Wang S, Xing J, Xiong B, Han H, Hu M, Li Q. Fluoropolymer-Mediated Intracellular Delivery of miR-23b for the Osteocyte Differentiation in Osteoblasts. Macromol Biosci 2021; 21:e2100024. [PMID: 33713529 DOI: 10.1002/mabi.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Indexed: 11/06/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) play key roles in the regulation of multiple biological processes, including the differentiation of osteoblasts. Although miRNA-based gene therapy holds immense potential in the treatment of a variety of diseases, the intracellular delivery of miRNA remains challenging owing to the lack of efficient and safe gene carriers. In this study, a fluoropolymer (FP) is constructed through the modification of polyamidoamine (PAMAM) using heptafluorobutyric anhydride and then is used as a carrier for miR-23b transfection to induce osteocyte differentiation of osteoblasts. The derivative FP is found to facilitate miR-23b transfection due to its favorable endosomal escape from the "proton sponge" effect. Compared to PAMAM/miR-23b, the FP/miR-23b nanocomplex efficiently promotes the differentiation of osteoblasts and formation of calcified nodules, attributable to enhanced expression of various osteogenesis genes (runt-related transfection factor 2 [RUNX2], alkaline phosphatase [ALP], osteopontin [OPN], and osteocalcin [OCN]). Thus, FP-mediated miR-23b transfection may be used as an effective strategy to facilitate osteogenic differentiation.
Collapse
Affiliation(s)
- Sihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Liu Y, Wang Y, Cheng X, Zheng Y, Lyu M, Di P, Lin Y. MiR-181d-5p regulates implant surface roughness-induced osteogenic differentiation of bone marrow stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111801. [PMID: 33579448 DOI: 10.1016/j.msec.2020.111801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Constructing moderate surface roughness is a widely used, non-toxic, cost-effective, and outcome-predictable approach to accelerate implant osteointegration in clinical settings. MicroRNAs (miRNAs) play vital regulatory roles in the osteogenic differentiation of bone marrow stem cells (BMSCs). However, their specific contribution to the influence of surface roughness on osteoblastic behavior remains unknown. Therefore, applying the smooth titanium surface as a control, a typical titanium surface with moderate roughness was prepared here to reveal the mechanism through which surface roughness regulates cell osteogenic behavior by altering miRNA expression. First, the morphology and roughness of two surfaces were characterized, and the enhanced osteogenic differentiation of BMSCs on rough surfaces was verified. Then, twenty-nine differentially expressed miRNAs in BMSCs cultured on different surfaces were selected via miRNA chip and corresponding functional prediction. After verifying the expression of these miRNAs using quantitative real-time polymerase chain reaction, four were considered eligible candidates. Among these, only miR-181d-5p significantly affected RUNX2 gene expression based on overexpression and knockdown experiments. From the osteogenesis-related gene and protein expression, as well as alkaline phosphatase and alizarin red experiments, we further confirmed that the downregulation of miR-181d-5p promoted osteogenic differentiation of BMSCs, and vice versa. In addition, rescue assays showed that the knockdown of miR-181d-5p improved the inferior osteogenesis observed on smooth surfaces, whereas the overexpression of miR-181d-5p suppressed the superior osteogenesis observed on rough surfaces. These results indicate that the moderate surface roughness of the implant stimulates the osteogenic differentiation of BMSCs by remarkably downregulating miR-181d-5p. These findings provide helpful information and a theoretical basis for the development of advanced implant materials for fast osteointegration.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yixiang Wang
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Xian Cheng
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Yan Zheng
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Mingyue Lyu
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Ping Di
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Ye Lin
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| |
Collapse
|
23
|
Cen X, Pan X, Zhang B, Huang W, Xiong X, Huang X, Liu J, Zhao Z. Mechanosensitive Non-Coding RNAs in Osteogenesis of Mesenchymal Stem Cells. Cell Transplant 2021; 30:9636897211051382. [PMID: 34628953 PMCID: PMC8504269 DOI: 10.1177/09636897211051382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
In bone tissue engineering, tailored biomaterials mimicking mesenchymal stem cells (MSCs) niche could regulate cell behavior and fate decision. The mechanisms, however, remain obscure. Recently, increasing evidence has shown that non-coding RNAs (ncRNAs) are critical modulators of the mechano-induced MSCs' responses. Mechanosensitive ncRNAs could convert various physical forces into biochemical signals, and orchestrate signaling networks that regulate the osteogenic differentiation of MSCs in their unique microenvironment. In this review, we focus on the mechanosensitive ncRNAs which could interpret mechanical stimuli during the osteogenesis of MSCs, summarize the signaling pathway networks by which these ncRNAs drive MSCs fate, and point out the limitations and the areas waiting for further exploration.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiner Xiong
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Zhu J, Wang H, Liu H. Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 529:35-42. [PMID: 32560816 DOI: 10.1016/j.bbrc.2020.05.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a frequent bone disorder responsible for an increased risk of disability to millions of individuals in the world. For identifying novel and effective targets to treat this disease, it is essential to explore the underlying molecular mechanisms. MicroRNAs (miRNAs) have been widely investigated due to their involvement in the pathophysiology of bone loss. In this study, we attempted to elucidate the role of miR-301-b in murine osteoclastogenesis. We found that miR-301-b expression was increased in the bone tissues from PMOP patients, along with up-regulated nuclear factor of activated T cells c1 (NFATC1), which were confirmed in ovariectomy (OVX)-induced mouse bone specimens and bone marrow-derived macrophages (BMMs). Osteoclastogenesis was found to be obviously suppressed by miR-301-b inhibitor, whereas being further promoted in BMMs transfected with miR-301-b mimic. The animal studies showed that osteoclastic miR-301-b knockout markedly up-regulated the bone mass by reducing osteoclastogenesis. Mechanistically, we found that cylindromatosis (CYLD) was a direct target of miR-301-b at the post-transcriptional level during osteoclastogenesis. The enhanced expression of CYLD led to a reduction of phosphorylated nuclear factor κB (NF-κB), along with remarkably decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Finally, osteoclastic miR-301-b ablation evidently inhibited OVX-induced osteoclastogenesis, exhibiting protective effects against bone loss in rodent animals. Therefore, results in the study reported an important mechanism for osteoclastogenesis progression regulated by miR-301-b/CYLD/NF-κB pathway, which may be an effective therapeutic target for PMOP treatment.
Collapse
Affiliation(s)
- Jungao Zhu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, 310030, China
| | - Haisheng Wang
- Department of Orthopedics, Division of Orthopedics, Hainan Hospital, Chinese PLA (people's Liberation Army) General Hospital, Sanya City, Hainan Province, 572014, China
| | - Huashun Liu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|