1
|
Song W, Ye Q, Chen Z, Ge J, Xie L, Ge Z. Advances in Stretchable Organic Photovoltaics: Flexible Transparent Electrodes and Deformable Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311170. [PMID: 38813892 DOI: 10.1002/adma.202311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Stretchable organic photovoltaics (OPVs) have attracted significant attention as promising power sources for wearable electronic systems owing to their superior robustness under repetitive tensile strains and their good compatibility. However, reconciling a high power-conversion efficiency and a reasonable flexibility is a tremendous challenge. In addition, the development of stretchable OPVs must be accelerated to satisfy the increasing requirements of niche markets for mechanical robustness. Stretchable OPV devices can be classified as either structurally or intrinsically stretchable. This work reviews recent advances in stretchable OPVs, including the design of mechanically robust transparent electrodes, photovoltaic materials, and devices. Initially, an overview of the characteristics and recent research progress in the areas of structurally and intrinsically stretchable OPVs is provided. Subsequently, research into flexible and stretchable transparent electrodes that directly affect the performances of stretchable OPVs is summarized and analyzed. Overall, this review aims to provide an in-depth understanding of the intrinsic properties of highly efficient and deformable active materials, while also emphasizing advanced strategies for simultaneously improving the photovoltaic performance and mechanical flexibility of the active layer, including material design, multi-component settings, and structural optimization.
Collapse
Affiliation(s)
- Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Cheng Y, Huang B, Mao Q, Huang X, Liu J, Zhou C, Zhou W, Ren X, Kim S, Kim W, Sun Z, Wu F, Yang C, Chen L. Three-in-One Strategy Enables Single-Component Organic Solar Cells with Record Efficiency and High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312938. [PMID: 38320218 DOI: 10.1002/adma.202312938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Single-component organic solar cells (SCOSCs) with covalently bonding donor and acceptor are becoming increasingly attractive because of their superior stability over traditional multicomponent blend organic solar cells (OSCs). Nevertheless, the efficiency of SCOSCs is far behind the state-of-the-art multicomponent OSCs. Herein, by combination of the advantages of three-component and single-component devices, this work reports an innovative three-in-one strategy to boost the performance of SCOSCs. In this three-in-one strategy, three independent components (PM6, D18, and PYIT) are covalently linked together to create a new single-component active layer based on ternary conjugated block copolymer (TCBC) PM6-D18-b-PYIT by a facile polymerization. Precisely manipulating the component ratios in the polymer chains of PM6-D18-b-PYIT is able to broaden light utilization, promote charge dynamics, optimize, and stabilize film morphology, contributing to the simultaneously enhanced efficiency and stability of the SCOSCs. Ultimately, the PM6-D18-b-PYIT-based device exhibits a power conversion efficiency (PCE) of 14.89%, which is the highest efficiency of the reported SCOSCs. Thanks to the aggregation restriction of each component and chain entanglement in the three-in-one system, the PM6-D18-b-PYIT-based SCOSC displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT). These results demonstrate that the three-in-one strategy is facile and promising for developing SCOSCs with superior efficiency and stability.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Road, Ganzhou, 341000, China
| | - Qilong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xuexiang Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunxiang Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Wen Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xinyuan Ren
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Wonjun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Zhe Sun
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
3
|
Theunissen D, Smeets S, Maes W. Single-component organic solar cells-Perspective on the importance of chemical precision in conjugated block copolymers. Front Chem 2023; 11:1326131. [PMID: 38694020 PMCID: PMC11061845 DOI: 10.3389/fchem.2023.1326131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 05/03/2024] Open
Abstract
Organic photovoltaics (OPV) present a promising thin-film solar cell technology with particular benefits in terms of weight, aesthetics, transparency, and cost. However, despite being studied intensively since the mid 90's, OPV has not entered the mass consumer market yet. Although the efficiency gap with other thin-film photovoltaics has largely been overcome, active layer stability and performance reproducibility issues have not been fully resolved. State-of-the-art OPV devices employ a physical mixture of electron donor and acceptor molecules in a bulk heterojunction active layer. These blends are prone to morphological changes, leading to performance losses over time. On the other hand, in "single-component" organic solar cells, the donor and acceptor constituents are chemically connected within a single material, preventing demixing and thereby enhancing device stability. Novel single-component materials affording reasonably high solar cell efficiencies and improved lifetimes have recently emerged. In particular, the combination of donor and acceptor structures in conjugated block copolymers (CBCs) presents an exciting approach. Nevertheless, the current CBCs are poorly defined from a structural point of view, while synthetic protocols remain unoptimized. More controlled synthesis followed by proper structural analysis of CBCs is, however, essential to develop rational structure-property-device relations and to drive the field forward. In this perspective, we provide a short overview of the state-of-the-art in single-component organic solar cells prepared from CBCs, reflect on their troublesome characterization and the importance of chemical precision in these structures, give some recommendations, and discuss the potential impact of these aspects on the field.
Collapse
Affiliation(s)
- Dries Theunissen
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| | - Sander Smeets
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| | - Wouter Maes
- Design and Synthesis of Organic Semiconductors, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
- Associated Lab IMOMEC, IMEC, Diepenbeek, Belgium
- Energyville, Genk, Belgium
| |
Collapse
|
4
|
Cheng Y, Mao Q, Zhou C, Huang X, Liu J, Deng J, Sun Z, Jeong S, Cho Y, Zhang Y, Huang B, Wu F, Yang C, Chen L. Regulating the Sequence Structure of Conjugated Block Copolymers Enables Large-Area Single-Component Organic Solar Cells with High Efficiency and Stability. Angew Chem Int Ed Engl 2023; 62:e202308267. [PMID: 37539636 DOI: 10.1002/anie.202308267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qilong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunxiang Zhou
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xuexiang Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiabin Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiawei Deng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhe Sun
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Youhui Zhang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology 156 Ke Jia Road, Ganzhou, 341000 (China)
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
5
|
Pankow RM, Harbuzaru A, Zheng D, Kerwin B, Forti G, Duplessis ID, Musolino B, Ponce Ortiz R, Facchetti A, Marks TJ. Oxidative-Reductive Near-Infrared Electrochromic Switching Enabled by Porous Vertically Stacked Multilayer Devices. J Am Chem Soc 2023. [PMID: 37279083 DOI: 10.1021/jacs.3c03702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we demonstrate for the first time the ability of a porous π-conjugated semiconducting polymer film to enable facile electrolyte penetration through vertically stacked redox-active polymer layers, thereby enabling electrochromic switching between p-type and/or n-type polymers. The polymers P1 and P2, with structures diketopyrrolopyrrole (DPP)-πbridge-3,4,-ethylenedioxythiophene (EDOT)-πbridge [πbridge = 2,5-thienyl for P1 and πbridge = 2,5-thiazolyl for P2] are selected as the p-type polymers and N2200 (a known naphthalenediimide-dithiophene semiconductor) as the n-type polymer. Single-layer porous and dense (control) polymer films are fabricated and extensively characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. The semiconducting films are then incorporated into single and multilayer electrochromic devices (ECDs). It is found that when a p-type (P2) porous top layer is used in a multilayer ECD, it enables electrolyte penetration to the bottom layer, enabling oxidative electrochromic switching of the P1 bottom layer at low potentials (+0.4 V versus +1.2 V with dense P2). Importantly, when using a porous P1 as the top layer with an n-type N2200 bottom layer, dynamic oxidative-reductive electrochromic switching is also realized. These results offer a proof of concept for development of new types of multilayer electrochromic devices where precise control of the semiconductor film morphology and polymer electronic structure is essential.
Collapse
Affiliation(s)
- Robert M Pankow
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brendan Kerwin
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Giacomo Forti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Isaiah D Duplessis
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | | | - Rocio Ponce Ortiz
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Park SH, Kwon NY, Jung SH, Harit AK, Woo HY, Cho MJ, Choi DH. Enhanced Efficiency and Stability of Novel Pseudo-ternary Polymer Solar Cells Enabled by a Conjugated Donor Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20266-20277. [PMID: 37043738 DOI: 10.1021/acsami.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The recent breakthrough in power conversion efficiencies (PCEs) of polymer solar cells (PSCs) that contain an active layer of a ternary system has achieved values of 18-19%; this has sparked interest for further research. However, this system has difficulties in optimizing the composition and controlling the interaction between the three active materials. In this study, we investigated the use of a donor1 (D1)-donor2 (D2) conjugated block copolymer (CBP), PM6-b-TT, to replace the physical blend of two donors. PM6-b-TT, which exhibits an extended absorption range, was synthesized by covalently bonding PM6, a medium-band gap polymer, with PBDT-TT, a wide-band gap polymer. The blend films containing PM6-b-TT and Y6-BO acceptor, demonstrated excellent crystallinity and a film morphology favorable for PSCs. The corresponding pseudo-ternary PSC exhibited significantly higher PCE and thermal stability than the PM6:PBDT-TT-based ternary device. This study unambiguously demonstrates that the novel D1-D2 CBP strategy, combined with the conventional binary and ternary system advantages, is a promising material production strategy that can boost the performance of future PSCs.
Collapse
Affiliation(s)
- Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung Hoon Jung
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Hu H, Mu X, Li B, Gui R, Shi R, Chen T, Liu J, Yuan J, Ma J, Gao K, Hao X, Yin H. Desirable Uniformity and Reproducibility of Electron Transport in Single-Component Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205040. [PMID: 36658728 PMCID: PMC10015880 DOI: 10.1002/advs.202205040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Despite the simplified fabrication process and desirable microstructural stability, the limited charge transport properties of block copolymers and double-cable conjugated polymers hinder the overall performance of single-component photovoltaic devices. Based on the key distinction in the donor (D)-acceptor (A) bonding patterns between single-component and bulk heterojunction (BHJ) devices, rationalizing the difference between the transport mechanisms is crucial to understanding the structure-property correlation. Herein, the barrier formed between the D-A covalent bond that hinders electron transport in a series of single-component photovoltaic devices is investigated. The electron transport in block copolymer-based devices is strongly dependent on the electric field. However, these devices demonstrate exceptional advantages with respect to the charge transport properties, involving high stability to compositional variations, improved film uniformity, and device reproducibility. This work not only illustrates the specific charge transport behavior in block copolymer-based devices but also clarifies the enormous commercial viability of large-area single-component organic solar cells (SCOSCs).
Collapse
Affiliation(s)
- Haixia Hu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xinyu Mu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
| | - Ruohua Gui
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Rui Shi
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Tao Chen
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Jianqiang Liu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Kun Gao
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xiaotao Hao
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hang Yin
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| |
Collapse
|
8
|
Liu B, Sun H, Lee JW, Jiang Z, Qiao J, Wang J, Yang J, Feng K, Liao Q, An M, Li B, Han D, Xu B, Lian H, Niu L, Kim BJ, Guo X. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat Commun 2023; 14:967. [PMID: 36810743 PMCID: PMC9944902 DOI: 10.1038/s41467-023-36413-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Degradation of the kinetically trapped bulk heterojunction film morphology in organic solar cells (OSCs) remains a grand challenge for their practical application. Herein, we demonstrate highly thermally stable OSCs using multicomponent photoactive layer synthesized via a facile one-pot polymerization, which show the advantages of low synthetic cost and simplified device fabrication. The OSCs based on multicomponent photoactive layer deliver a high power conversion efficiency of 11.8% and exhibit excellent device stability for over 1000 h (>80% of their initial efficiency retention), realizing a balance between device efficiency and operational lifetime for OSCs. In-depth opto-electrical and morphological properties characterizations revealed that the dominant PM6-b-L15 block polymers with backbone entanglement and the small fraction of PM6 and L15 polymers synergistically contribute to the frozen fine-tuned film morphology and maintain well-balanced charge transport under long-time operation. These findings pave the way towards the development of low-cost and long-term stable OSCs.
Collapse
Affiliation(s)
- Bin Liu
- grid.411863.90000 0001 0067 3588Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006 P.R. China ,grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Huiliang Sun
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China. .,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P.R. China.
| | - Jin-Woo Lee
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Zhengyan Jiang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Junqin Qiao
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 P.R. China
| | - Junwei Wang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Jie Yang
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Kui Feng
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Qiaogan Liao
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Mingwei An
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Bolin Li
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Dongxue Han
- grid.411863.90000 0001 0067 3588Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006 P.R. China
| | - Baomin Xu
- grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 P.R. China
| | - Hongzhen Lian
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 P.R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China.
| | - Bumjoon J. Kim
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P.R. China. .,Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, P.R. China.
| |
Collapse
|
9
|
Phan TNL, Lee JW, Oh ES, Lee S, Lee C, Kim TS, Li S, Kim BJ. Efficient and Nonhalogenated Solvent-Processed Organic Solar Cells Enabled by Conjugated Donor-Acceptor Block Copolymers Containing the Same Benzodithiophene Unit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57070-57081. [PMID: 36515660 DOI: 10.1021/acsami.2c16908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic solar cells (OSCs) based on conjugated block copolymers (CBCs) have gained considerable attention owing to their simple one-pot solution process. However, their power conversion efficiencies (PCEs) require significant improvement. Furthermore, the majority of efficient CBC-based OSCs are processed using environmentally toxic halogenated solvents. Herein, we develop a new CBC (PBDB-T-b-PY5BDT) and demonstrate efficient and stable OSCs achieved by a halogen-free solution process. We design a (D1-A1)-b-(D1-A2)-type CBC (PBDB-T-b-PY5BDT) that shares the same benzodithiophene (BDT) units in donor and acceptor blocks. This alleviates unfavorable molecular interactions between the blocks at their interfaces. The PBDB-T-b-PY5BDT-based devices exhibit a high PCE (10.55%), and they show good mechanical, thermal, and storage stabilities. Importantly, we discuss the potential of our OSCs by preparing two different control systems: one based on a binary polymer blend (PBDB-T:PY5BDT) and another based on a conjugated random copolymer (CRC, PBDB-T-r-PY5BDT). We demonstrate that the photovoltaic performance, device stability, and mechanical robustness of the CBC-based OSCs exceed those of the binary all-polymer solar cells and CRC-based OSCs.
Collapse
Affiliation(s)
- Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Sung Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changyeon Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Aubele A, He Y, Kraus T, Li N, Mena-Osteritz E, Weitz P, Heumüller T, Zhang K, Brabec CJ, Bäuerle P. Molecular Oligothiophene-Fullerene Dyad Reaching Over 5% Efficiency in Single-Material Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103573. [PMID: 34463391 DOI: 10.1002/adma.202103573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
A novel donor-acceptor dyad, 4, in which the conjugated oligothiophene donor is covalently connected to fullerene PC71 BM by a flexible alkyl ester linker, is synthesized and applied as photoactive layer in solution-processed single-material organic solar cells (SMOSCs). Excellent photovoltaic performance, including a high short-circuit current density (JSC ) of 13.56 mA cm-2 , is achieved, leading to a power conversion efficiency of 5.34% in an inverted cell architecture, which is substantially increased compared to other molecular single materials. Furthermore, dyad 4-based SMOSCs display excellent stability maintaining 96% of the initial performance after 750 h (one month) of continuous illumination and operation under simulated AM 1.5G irradiation. These results will strengthen the rational molecular design to further develop SMOSCs for potential industrial application.
Collapse
Affiliation(s)
- Anna Aubele
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yakun He
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Teresa Kraus
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Paul Weitz
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Kaicheng Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
11
|
Liu BQ, Xu YH, Liu F, Xie CC, Liang SJ, Chen QM, Li WW. Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2732-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Ma S, Zhang H, Feng K, Guo X. Polymer Acceptors for High-Performance All-Polymer Solar Cells. Chemistry 2022; 28:e202200222. [PMID: 35266214 DOI: 10.1002/chem.202200222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/11/2022]
Abstract
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China.,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
13
|
Tseng YC, Kato A, Chang JF, Chen WC, Higashihara T, Chueh CC. Impact of the segment ratio on a donor-acceptor all-conjugated block copolymer in single-component organic solar cells. NANOSCALE 2022; 14:5472-5481. [PMID: 35322845 DOI: 10.1039/d2nr00437b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of single-component organic solar cells (SCOSCs) using only one photoactive component with a chemically bonded D/A structure has attracted increasing research attention in recent years. At represent, most relevant studies focus on comparing the performance difference between a donor-acceptor (D-A) conjugated block copolymer (CBC) and the commensurate blending systems based on the same donor and acceptor segments, and still there are no reports on the impact of the segment ratio for a certain D-A CBC on the resultant photovoltaic performance. In this study, we synthesized a D-A all-conjugated polymers based on an n-type PNDI2T block and a p-type PBDB-T donor block but with three different segment ratios (P1-P3) and demonstrate the significance of the D/A segment ratio on photovoltaic performance. Our results reveal that the n-type PNDI2T block plays a more critical role in the inter/intra-chain charge transfer. P1 with a higher content of PNDI2T delivers superior exciton dissociation and charge transfer behavior than P2 and P3, benefitting from its more balanced hole/electron mobility. In addition, a higher packing regularity associated with a more dominant face-on orientation is also observed for P1. As a result, SCOSC based on P1 exhibits the highest PCE among the synthesized CBCs. It also possesses a minimal energy loss due to the better suppressed non-radiative recombination loss. This work provides the first discussion of the impact of the segment ratio for a D-A all-conjugated block copolymer and signifies the critical role of the n-type segment in designing high-performance single-component CBCs.
Collapse
Affiliation(s)
- Yu-Cheng Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Aoto Kato
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Jia-Fu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
14
|
Ahluwalia G, Subbiah J, Mitchell VD, Saker Neto N, Jones DJ. One-Pot Synthesis of Fully Conjugated Amphiphilic Block Copolymers Using Asymmetrically Functionalized Push–Pull Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gagandeep Ahluwalia
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Jegadesan Subbiah
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Valerie D. Mitchell
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Nicolau Saker Neto
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - David J. Jones
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Yoshida K, Chang JF, Chueh CC, Higashihara T. Hybridization of an n-type semiconducting polymer with PbS quantum dots and their photovoltaic investigation. Polym J 2022. [DOI: 10.1038/s41428-021-00597-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Lee YW, Yeop J, Kim JY, Woo HY. Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromol Res 2022. [DOI: 10.1007/s13233-021-9100-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Kwon NY, Park SH, Cho S, Lee DW, Harit AK, Woo HY, Cho MJ, Choi DH. Polymer solar cells made with photocrosslinkable conjugated donor–acceptor block copolymers: improvement in the thermal stability and morphology with a single-component active layer. Polym Chem 2022. [DOI: 10.1039/d2py00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New photocrosslinkable conjugated donor–acceptor block copolymer bearing oxetane side chains is synthesized by one-pot polymerization to improve the thermal and morphological properties.
Collapse
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seunguk Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Won Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
18
|
|
19
|
Li S, Zhang H, Yue S, Yu X, Zhou H. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. NANOTECHNOLOGY 2021; 33:072002. [PMID: 34822343 DOI: 10.1088/1361-6528/ac020b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Solution-processed organic photovoltaic (OPV) as a new energy device has attracted much attention due to its huge potential in future commercial manufacturing. However, so far, most of the studies on high-performance OPV have been treated with halogenated solvents. Halogenated solvents not only pollute the environment, but are also harmful to human health, which will negatively affect the large-scale production of OPV in the future. Therefore, it is urgent to develop low-toxic or non-toxic non-halogen solvent-processable OPV. Compared with conventional fullerene OPVs, non-fullerene OPVs exist with stronger absorption, better-matched energy levels and lower energy loss. Processing photoactive layers with non-fullerenes as the acceptor material has broad potential advantages in non-halogenated solvents. This review introduces the research progress of non-fullerene OPV treated by three different kinds of green solvents as the non-halogenated and aromatic solvent, the non-halogenated and non-aromatic solvent, alcohol and water. Furthermore, the effects of different optimization strategies on the photoelectric performance and stability of non-fullerene OPV are analyzed in detail. The current optimization strategy can increase the power conversion efficiency of non-fullerene OPV processed with non-halogen solvents up to 17.33%, which is close to the performance of processing with halogen-containing solvents. Finally, the commercial potential of non-halogen solvent processing OPVs is discussed. The green solvent processing of non-fullerene-based OPVs will become a key development direction for the future of the OPV industry.
Collapse
Affiliation(s)
- Shilin Li
- Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Hong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Shengli Yue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Xi Yu
- Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| |
Collapse
|
20
|
Lee YW, Yeop J, Lim H, Park WW, Joung JF, Park S, Kwon OH, Kim JY, Woo HY. Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43174-43185. [PMID: 34460240 DOI: 10.1021/acsami.1c14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two kinds of dumbbell-shaped acceptor-donor-acceptor (A-D-A)-type triad single-component (SC) photovoltaic molecules based on a benzodithiophene-rhodanine (BDTRh) core and [6,6]-phenyl-C61 butyric acid (PC61BA) termini, BDTRh-C2-PC61BA and BDTRh-C10-PC61BA, were synthesized by modulating the alkyl (C2 and C10) spacer lengths. Both SC photovoltaic structures had similar UV-vis spectra in solution, but BDTRh-C10-PC61BA showed a significantly higher absorption coefficient as a thin film. In films, a more facile intermolecular photo-induced charge transfer was observed for BDTRh-C10-PC61BA in the broad-band transient absorption measurements. BDTRh-C10-PC61BA also exhibited a higher hole mobility (by 25 times) and less bimolecular recombination than BDTRh-C2-PC61BA. By plotting the normalized external quantum efficiency data, a higher charge-transfer state was measured for BDTRh-C10-PC61BA, reducing its voltage loss. A higher power conversion efficiency of ∼2% was obtained for BDTRh-C10-PC61BA, showing higher open-circuit voltage, short-circuit current density, and fill factor than those of BDTRh-C2-PC61BA devices. The different carrier dynamics, voltage loss, and optical and photoelectrical characteristics depending on the spacer length were interpreted in terms of the film morphology. The longer decyl spacer in BDTRh-C10-PC61BA afforded a significantly enhanced intermolecular ordering of the p-type core compared to BDTRh-C2-PC61BA, suggesting that the alkyl spacer length plays a critical role in controlling the intermolecular packing interaction.
Collapse
Affiliation(s)
- Young Woong Lee
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Jiwoo Yeop
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyojin Lim
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joonyoung Francis Joung
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Kim
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Young Woo
- Department of Chemistry and Research Institute for Natural Science (RINS), Korea University, Anam-ro 145, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Li S, Yuan X, Zhang Q, Li B, Li Y, Sun J, Feng Y, Zhang X, Wu Z, Wei H, Wang M, Hu Y, Zhang Y, Woo HY, Yuan J, Ma W. Narrow-Bandgap Single-Component Polymer Solar Cells with Approaching 9% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101295. [PMID: 34176171 DOI: 10.1002/adma.202101295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Two narrow-bandgap block conjugated polymers with a (D1-A1)-(D2-A2) backbone architecture, namely PBDB-T-b-PIDIC2T and PBDB-T-b-PTY6, are designed and synthesized for single-component organic solar cells (SCOSCs). Both polymers contain same donor polymer, PBDB-T, but different polymerized nonfullerene molecule acceptors. Compared to all previously reported materials for SCOSCs, PBDB-T-b-PIDIC2T and PBDB-T-b-PTY6 exhibit narrower bandgap for better light harvesting. When incorporated into SCOSCs, the short-circuit current density (Jsc ) is significantly improved to over 15 mA cm-2 , together with a record-high power conversion efficiency (PCE) of 8.64%. Moreover, these block copolymers exhibit low energy loss due to high charge transfer (CT) states (Ect ) plus small non-radiative loss (0.26 eV), and improved stability under both ambient condition and continuous 80 °C thermal stresses for over 1000 h. Determination of the charge carrier dynamics and film morphology in these SCOSCs reveals increased carrier recombination, relative to binary bulk-heterojunction devices, which is mainly due to reduced ordering of both donor and acceptor fragments. The close structural relationship between block polymers and their binary counterparts also provides an excellent framework to explore further molecular features that impact the photovoltaic performance and boost the state-of-the-art efficiency of SCOSCs.
Collapse
Affiliation(s)
- Siying Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xin Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Qilin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jianguo Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Yifeng Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xuning Zhang
- HEEGER Beijing Research & Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Mei Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yuan Zhang
- HEEGER Beijing Research & Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
|
23
|
Liang S, Jiang X, Xiao C, Li C, Chen Q, Li W. Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Acc Chem Res 2021; 54:2227-2237. [PMID: 33852280 DOI: 10.1021/acs.accounts.1c00070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ConspectusConjugated polymers for application in organic solar cells (OSCs) have been developed from poly(phenylenevinylene) to poly(3-hexylthiophene) and then to "donor-acceptor" structures, providing power conversion efficiencies (PCEs) over 18% when blending with the electron acceptor as a two-component photoactive layer. Besides, graft-structural double-cable conjugated polymers that use an electron donor as conjugated backbones and an electron acceptor as pendant side units are one kind of conjugated polymer, in which charge carriers are generated in a single polymer. Therefore, double-cable conjugated polymers can be used as a single photoactive layer in single-component OSCs (SCOSCs). The covalently linked electron donor and acceptor enable double-cable polymers to maintain stable microstructures during long-term operation compared to two-component systems, which is very important for OSCs toward large-area applications. However, SCOSCs based on double-cable conjugated polymers provided PCEs below 3% in a long period, which is lagging far behind PCEs of two-component OSCs. The key reason for this is the limited number of chemical structures and the difficulty to tune the morphology in these polymers.In this Account, we provide an overview about our efforts on developing new double-cable conjugated polymers with rylene diimides as side units, and how to realize high PCEs in SCOSC devices. The studies start from developing a "functionalization-polymerization" method to synthesize the polymers containing rylene diimide acceptors, so that large amounts of double-cable conjugated polymers with distinct physical and electrochemical properties were obtained. Then, we will discuss how to control the nanophase separation in the crystalline region and optimize the miscibility in the amorphous region of double-cable polymers, simultaneously facilitating exciton dissociation and charge transport. With these efforts, a high PCE of 8.4% has been obtained, representing the record PCE in SCOSCs. In addition, the physical process and the stability of SCOSCs will be discussed. We hope that this account will inspire many innovative studies in this field and push the PCEs of SCOSCs to a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xudong Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
24
|
Kwon NY, Park SH, Kang H, Kim YU, Chau HD, Harit AK, Woo HY, Yoon HJ, Cho MJ, Choi DH. Improved Stability of All-Polymer Solar Cells Using Crosslinkable Donor and Acceptor Polymers Bearing Vinyl Moieties in the Side-Chains. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16754-16765. [PMID: 33793188 DOI: 10.1021/acsami.1c00960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crosslinkable polymers have attracted tremendous attention in various fields of science and technology, owing to their potential utilization in applications requiring dimensional and morphological stability under thermal and mechanical stress. In this study, random terpolymers were successfully synthesized by introducing thiophene-based monomers bearing vinyl functional groups in the side-chain of the polymer donor (PBDBT-BV20) and polymer acceptor (N2200-TV10) structures. The physical properties of the blend films of PBDBT-BV20 and N2200-TV10 before and after thermal crosslinking were extensively investigated and compared to those of the homogeneous individual polymer films. The results revealed that a network polymer with donor and acceptor polymer chains, which can lock the internal morphology, could be achieved by inducing crosslinking between the vinyl groups in the mixed state of PBDBT-BV20 and N2200-TV10. In addition, the power conversion efficiency (PCE) of the polymer solar cells (PSCs) containing the blend films that were crosslinked by a two-step thermal annealing process was improved. The enhanced PCE could be attributed to the individual crystallization of PBDBT-BV20 and N2200-TV10 in the blend phase at 120 °C and then thermal crosslinking at 140 °C. In addition, the PSCs with the crosslinked blend film exhibited an excellent shelf-life of over 1200 h and a thermally stable PCE. Furthermore, the crosslinked blend film exhibited excellent mechanical stability under bending stress in flexible PSCs using plastic substrates.
Collapse
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hungu Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Young Un Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hong Diem Chau
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
25
|
Xiao LL, Zhou X, Yue K, Guo ZH. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers (Basel) 2020; 13:E110. [PMID: 33383927 PMCID: PMC7796117 DOI: 10.3390/polym13010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
In the past two decades, conjugated polymers (CPs) have drawn great attention due to their excellent conductivity and charge mobility, rendering them broad applications in organic electronics. Controlling over the morphologies and nanostructures of CPs is very important to improve the performance of CP-based devices, which is still a tremendously difficult task. Conjugated block copolymers (cBCPs), composed of different CP blocks or CP coupled with coiled polymeric blocks, not only maintain the advantages of high conductivity and mobility but also demonstrate features of morphological versatility and tunability. Due to the strong π-π interaction and crystallinity of the conjugated backbones, the self-assembly behaviors of cBCPs are very complicated and largely remain to be explored. In this tutorial review, we first summarize the general synthetic methods for different types of cBCPs. Then, recent studies on the self-assembly behaviors of cBCPs are discussed, with an emphasis on the structural factors that affect the morphologies of cBCPs both in bulk and thin film states. Finally, we briefly provide our outlook on the future research of the self-assembly of cBCPs.
Collapse
Affiliation(s)
- Lin-Lin Xiao
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
| | - Xu Zhou
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
| | - Kan Yue
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zi-Hao Guo
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Schraff S, Maity S, Schleeper L, Dong Y, Lucas S, Bakulin AA, von Hauff E, Pammer F. All-conjugated donor–acceptor block copolymers featuring a pentafulvenyl-polyisocyanide-acceptor. Polym Chem 2020. [DOI: 10.1039/c9py01879d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fulvenyl-functionalized polyisocyanide (PIC2) with a high electron mobility of μe = 10−2 cm2 V−1 s−1 has been incorporated into donor–acceptor block copolymers. Their self-assembly and bulk-morphology have been studied, and potential device applications have been explored.
Collapse
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Sudeshna Maity
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
| | - Laura Schleeper
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
- Department of Chemistry
| | - Yifan Dong
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Sebastian Lucas
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | | | - Elizabeth von Hauff
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|