1
|
Xu W, Li W, Kuai D, Li Y, Sun W, Liu X, Xu B. Identification of endoplasmic reticulum stress-related genes as prognostic markers in colon cancer. Cancer Biol Ther 2025; 26:2458820. [PMID: 40169935 PMCID: PMC11970746 DOI: 10.1080/15384047.2025.2458820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) has been implicated in the pathogenesis of various cancers, including colon cancer, by regulating tumor cell survival, growth, and immune response. However, the specific genes involved in ERS that could serve as prognostic markers in colon cancer remain underexplored. This study aims to identify and validate endoplasmic reticulum stress related genes (ERSRGs) in colon cancer that correlate with patient prognosis, thereby enhancing the understanding of ERS in oncological outcomes and potential therapeutic targeting. We utilized bioinformatics analyses to identify ERSRGs from publicly available colon cancer datasets. Differential expression analysis and survival analysis were performed to assess the prognostic significance of these genes. Validation was conducted through quantitative real-time PCR (RT-qPCR) on selected colon cancer cell lines. Our study identified nine ERS related genes (ASNS, ATF4, ATF6B, BOK, CLU, DDIT3, MANF, SLC39A14, TRAF2) involved in critical pathways including IL-12, PI3K-AKT, IL-7, and IL-23 signaling, and linked to 1-, 3-, and 5-year survival of patients with colon cancer. A multivariate Cox model based on these ERS related genes demonstrated significant prognostic power. Further, TRAF2 strong correlated with immune cells infiltration, suggesting its potential roles in modulating immune responses in the tumor microenvironment. The RT-qPCR validation confirmed the differential expression of these genes in human colon cancer cell lines versus human normal colonic epithelial cell line. The identified ERSRGs could serve as valuable prognostic markers and may offer new insights into the therapeutic targeting of ERS in colon cancer.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dayu Kuai
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yaqiang Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xian Liu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xiao H, Zhou T, Yang Y, Yang X, Bi Y, Cheng X. LncRNA-DANCR Promotes ESCC Progression and Function as ceRNA to Regulate DDIT3 Expression by Sponging microRNA-3193. Cancer Sci 2025; 116:1324-1338. [PMID: 40071783 DOI: 10.1111/cas.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 05/02/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer development and progression. Among them, Differentiation Antagonizing Non-Protein Coding RNA (DANCR) has been implicated in various malignancies, including esophageal squamous cell carcinoma (ESCC). This study explores the clinical characteristics, prognostic implications, functional roles, and molecular mechanisms of DANCR in ESCC. Our results demonstrate that DANCR is highly expressed in ESCC, and acts as an oncogene in ESCC both in vitro and in vivo. Through bioinformatics analysis and experimental validation, we revealed that DANCR promotes ESCC progression by sponging miR-3193 and regulating its target gene DDIT3 expression. These findings highlight the critical role of DANCR in the development of ESCC and suggest its potential as a prognostic predictor and drug therapeutic target.
Collapse
Affiliation(s)
- Heng Xiao
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tong Zhou
- Shanxi Academy of Medical Science, Shanxi Medical University, Taiyuan, China
| | - Yanfang Yang
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi, China
- The School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xin Yang
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
AlMaazmi FI, Bou Malhab LJ, ElDohaji L, Saber-Ayad M. Deciphering the Controversial Role of TP53 Inducible Glycolysis and Apoptosis Regulator (TIGAR) in Cancer Metabolism as a Potential Therapeutic Strategy. Cells 2025; 14:598. [PMID: 40277923 PMCID: PMC12025843 DOI: 10.3390/cells14080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor metabolism has emerged as a critical target in cancer therapy, revolutionizing our understanding of how cancer cells grow, survive, and respond to treatment. Historically, cancer research focused on genetic mutations driving tumorigenesis, but in recent decades, metabolic reprogramming has been recognized as a hallmark of cancer. The TP53 inducible glycolysis and apoptosis regulator, or TIGAR, affects a wide range of cellular and molecular processes and plays a key role in cancer cell metabolism by regulating the balance between glycolysis and antioxidant defense mechanisms. Cancer cells often exhibit a shift towards aerobic glycolysis (the Warburg effect), which allows rapid energy production and gives rise to biosynthetic intermediates for proliferation. By inhibiting glycolysis, TIGAR can reduce the proliferation rate of cancer cells, particularly in early-stage tumors or specific tissue types. This metabolic shift may limit the resources available for rapid cell division, thereby exerting a tumor-suppressive effect. However, this metabolic shift also leads to increased levels of reactive oxygen species (ROS), which can damage the cell if not properly managed. TIGAR helps protect cancer cells from excessive ROS by promoting the pentose phosphate pathway (PPP), which generates NADPH-a key molecule involved in antioxidant defense. Through its actions, TIGAR decreases the glycolytic flux while increasing the diversion of glucose-6-phosphate into the PPP. This reduces ROS levels and supports biosynthesis and cell survival by maintaining the balance of nucleotides and lipids. The role of TIGAR has been emerging as a prognostic and potential therapeutic target in different types of cancers. This review highlights the role of TIGAR in different types of cancer, evaluating its potential role as a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Fatima I. AlMaazmi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Immunology and NAT, Dubai Blood Donation Center, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Leen ElDohaji
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
4
|
Leng X, Yang Y, Jiang T, Zheng J, Zhang L, Huang J, Xu H, Fang M, Li X, Wang Z, Ge M, Lin H. An Energy Metabolism Nanoblocker for Cutting Tumor Cell Respiration and Inhibiting Mitochondrial Hijacking from Cytotoxic T Lymphocyte. Adv Healthc Mater 2025:e2405174. [PMID: 40091400 DOI: 10.1002/adhm.202405174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Energy metabolism modulation emerges as a highly regarded strategy for tumor therapy. However, the efficacy of targeting energy metabolism in tumor cells remains unsatisfactory due to the alternate energy production pathways by switching between mitochondrial respiration and glycolysis. In addition, tumor cells can hijack mitochondria from peripheral immune cells to maintain their energy metabolism as an extra respiratory pathway. In this study, a CD44 receptor-targeted hyaluronic acid energy metabolism nanoblocker is developed to achieve bidirectional blockade of basal respiration in tumor cells with the loaded mitochondrial oxidative phosphorylation (OXPHOS) inhibitor nebivolol hydrochloride, and the glycolysis inhibitor 3-bromopyruvate. Furthermore, combined intraperitoneal injection of L-778123 hydrochloride inhibits mitochondrial transfer, thus blocking the extra respiratory pathway of tumor cells and the depletion of cytotoxic T lymphocytes. This emerging strategy, which involves depleting tumor cell energy through inhibition of basal respiration (OXPHOS/glycolysis) and extra respiration, while synergistically enhancing effector immune cells to maintain systemic anti-tumor immune effects, demonstrates high efficacy and safety in both in vitro and in vivo experiments. It provides a conceptual paradigm shift in nanomedicine-mediated energy metabolism-based tumor therapy.
Collapse
Affiliation(s)
- Xiaojing Leng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Yang
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Tao Jiang
- Department of Anaesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ju Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Han Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Mingxiao Fang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Xingsheng Li
- Geriatric Clinical Research Center of Chongqing, Geriatric department of the Second Affiliated Hospital Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Min Ge
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, HKSAR, 999077, China
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| |
Collapse
|
5
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Xie X, Liu W, Yuan Z, Chen H, Mao W. Bridging epigenomics and tumor immunometabolism: molecular mechanisms and therapeutic implications. Mol Cancer 2025; 24:71. [PMID: 40057791 PMCID: PMC11889836 DOI: 10.1186/s12943-025-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic modifications-such as DNA methylation, histone acetylation, and histone methylation-and their implications in tumorigenesis, progression, and treatment have emerged as a pivotal field in cancer research. Tumors undergo metabolic reprogramming to sustain proliferation and metastasis in nutrient-deficient conditions, while suppressing anti-tumor immunity in the tumor microenvironment (TME). Concurrently, immune cells within the immunosuppressive TME undergo metabolic adaptations, leading to alterations in their immune function. The complicated interplay between metabolites and epigenomic modulation has spotlighted the significance of epigenomic regulation in tumor immunometabolism. In this review, characteristics of the epigenomic modification associated with tumors are systematically summarized alongside with their regulatory roles in tumor metabolic reprogramming and immunometabolism. Classical and emerging approaches are delineated to broaden the boundaries of research on the crosstalk research on the crosstalk between tumor immunometabolism and epigenomics. Furthermore, we discuss potential therapeutic strategies that target tumor immunometabolism to modulate epigenomic modifications, highlighting the burgeoning synergy between metabolic therapies and immunotherapy as a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Xie
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Hanqing Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
7
|
Cheng Q, Chen Y, Zou D, Li Q, Shi X, Qin Q, Liu M, Wang L, Wang Z. Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409329. [PMID: 39739629 PMCID: PMC11831457 DOI: 10.1002/advs.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Danyi Zou
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Qushuhua Qin
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
8
|
Li C, Pan Y, Wang Y, Li X, Tie Y, Li S, Wang R, Zhao X, Fan J, Yan X, Wang Y, Sun X. Single-cell RNA sequencing of the carotid artery and femoral artery of rats exposed to hindlimb unloading. Cell Mol Life Sci 2025; 82:50. [PMID: 39833543 PMCID: PMC11747068 DOI: 10.1007/s00018-024-05572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats. METHODS Firstly, we leveraged scRNA-seq to perform clustering analysis to identify diverse cell populations and sub-clusters within CA and FA from rats subjected to 3 months of hindlimb unloading. The dysregulated genes specific for artery types and cell types in HU group compared to Con were unraveled. Then R package "Cellchat" was used to reveal ligand-receptor cellular communication. At last, the TF network analysis was performed using the SCENIC R package to predict the pivotal TFs in rat artery remodeling induced by hindlimb unloading. RESULTS Clustering analysis identified ECs, SMCs, fibroblasts, and a spectrum of immune cells, as well as neuronal and stem cells. Notably, an increased percentage of ECs in the CA and a diminished proportion of SMCs in both CA and FA were observed following tail suspension. Intersection of dysregulated genes specific for artery type and cell type after tail suspension revealed several gene sets involved in ECM remodeling, inflammation, vasoconstriction, etc. Fibroblasts, in particular, exhibited the most significant gene expression variability, highlighting their plasticity. Subclustering within ECs, SMCs and fibroblasts revealed specialized subsets engaged in processes such as EndoMT and cell cycle checkpoint regulation. Additionally, enhanced intercellular interactions among major cell types, especially between SMC and fibroblast, underscored the importance of cell communication in vascular remodeling. Several TFs were identified as potentially influential in the vascular remodeling process under simulated microgravity conditions. CONCLUSIONS This study presents the first cellular atlas of the conductive arteries in hindlimb-unloaded rats, revealing a spectrum of dysregulated gene profiles. The identification of the subclusters of ECs, SMCs and fibroblasts, cellular communication analysis and transcription factors prediction are also included in this work. The findings provide a reference for future research on vascular deconditioning following long-duration spaceflight.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yateng Tie
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Shuhan Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Ruonan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Jieyi Fan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| |
Collapse
|
9
|
Sun Z, Wei S, Guo Q, Ouyang H, Mao Z, Wang W, Tong Z, Ding Y. V9302-loaded copper-polyphenol hydrogel for enhancing the anti-tumor effect of disulfiram. J Colloid Interface Sci 2025; 678:866-877. [PMID: 39270387 DOI: 10.1016/j.jcis.2024.08.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Disulfiram (DSF) is a safe drug with negligible toxicity and Cu-dependent anti-tumor efficacy. However, the accumulation and combination of DSF and Cu in non-tumor tissues leads to systemic toxicity owing to the formation of highly poisonous diethyldithiocarbamate (CuET). In addition, CuET-mediated tumor-killing reactive oxygen species may be weakened by intra-tumoral glutathione (GSH). Herein, a synergistic treatment was developed that utilized the oral delivery of DSF and an injectable polyphenol-copper (PA-Cu) hydrogel loaded with the glutamine uptake inhibitor 2-amino-4-bis(phenoxymethyl)aminobutane (V9302). The injectable hydrogels were synthesized by the Schiff base reaction of hydroxypropyl chitosan (HPCS) with a PA-Cu reversible cross-linking agent. Because of the dynamic coordination between PA and Cu, the PA-Cu/HPCS hydrogel gradually releases Cu2+, forming CuET with DSF. The released V9302 inhibits glutamine uptake, thereby suppressing GSH synthesis and enhancing the therapeutic efficacy of the in situ formed CuET. The synergistic effect of PA-Cu/HPCS/V9302 and DSF in eliminating intracellular GSH and killing tumor cells was validated by in vitro cell experiments. Animal experiments further confirmed that PA-Cu/HPCS/V9302 and DSF have an inhibitory effect on tumor growth while maintaining the biosafety of main organs.
Collapse
Affiliation(s)
- Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Quanshi Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Hanxiang Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Zongrui Tong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
10
|
Chen H, Qiao H, Xv Z, Song G, Liu S, Luo C, Long Y, Lin S. Assessing Heat Resistance and Selecting Heat-Resistant Individuals of Largemouth Bass ( Micropterus salmoides) with Tiered Thermal Exposure. Animals (Basel) 2025; 15:128. [PMID: 39858128 PMCID: PMC11758336 DOI: 10.3390/ani15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Largemouth bass (LMB, Micropterus salmoides), a commercially important farmed fish, is vulnerable to heat stress. Breeding heat-resistant LMB is highly desirable in the face of global warming. However, we still lack an efficient method to assess the heat resistance of LMB. In this study, the critical thermal maximum (CTmax) and static exposure methods were first performed to assess the heat resistance of LMB juveniles. The CTmax values of the experimental fish (average body weight 9.87 ± 3.14 g) ranged from 39 to 40 °C but were too close together to differentiate the individual heat resistance. Static exposure experiments with varying temperatures and fish groups also did not provide a clear method for determining the heat resistance. To address these limitations, we developed a tiered exposure method, where the temperature was increased step-wise, starting from 28 to 34 °C at 2 °C increments and then at 0.5 °C increments above 34 °C, with each step lasting one day. The heat resistance of the fish was quantified as the lethal cumulative temperature (LCT), allowing for the classification of fish as sensitive or resistant to heat stress based on their LCT values. To correlate the changes in tissue structure and gene expression with the heat resistance, a new batch of LMB juveniles (average body weight 23.66 ± 6.98 g) were subjected to tiered heat exposure. Brain and liver tissues were collected from the control (without heat exposure), resistant and sensitive (still alive but demonstrated abnormal symptoms) individuals when the temperature was maintained at 35.5 °C for 24 h. The liver tissues of the heat-sensitive individuals showed significant damage and increased cell apoptosis (p < 0.05) relative to those of the resistant ones. The ddit3/chop, bax and casp3 genes demonstrated differential expressions in the liver of the sensitive and resistant fish. Additionally, the LMB juveniles (average body weight 84.06 ± 20.95 g) were found to be more heat resistant than the adults from different sources (average body weight 364.29 ± 84.43 g and 545.71 ± 184.56 g). Through the tiered exposure method, extremely heat-resistant individuals were successfully selected from the population (average body weight 22.69 ± 6.89 g). These findings provide valuable insights into the thermal biology of LMB and the potential for breeding heat-resistant LMB varieties.
Collapse
Affiliation(s)
- Haijie Chen
- College of Fisheries, Southwest University, Chongqing 400715, China; (H.C.); (Z.X.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
| | - Hui Qiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhicheng Xv
- College of Fisheries, Southwest University, Chongqing 400715, China; (H.C.); (Z.X.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
| | - Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
| | - Shuning Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
| | - Cheng Luo
- Xiaogan Academy of Agricultural Sciences, Xiaogan 432100, China;
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Q.); (G.S.); (S.L.)
| | - Shimei Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; (H.C.); (Z.X.)
| |
Collapse
|
11
|
Liao K, Liu K, Wang Z, Zhao K, Mei Y. TRIM2 promotes metabolic adaptation to glutamine deprivation via enhancement of CPT1A activity. FEBS J 2025; 292:275-293. [PMID: 38949993 DOI: 10.1111/febs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kaimin Liao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kailiang Zhao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Yang Y, Zhang B, Xu Y, Zhu W, Zhu Z, Zhang X, Wu W, Chen J, Yu Z. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma. Bioact Mater 2024; 42:178-193. [PMID: 39285910 PMCID: PMC11402546 DOI: 10.1016/j.bioactmat.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death. In addition, GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment, recruiting more tumor-infiltrating T lymphocytes. GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance. Benefiting from the amplified systemic antitumor immunity, GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors. Moreover, GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections, thereby promoting postsurgical wound healing. Hence, this immunotherapeutic hydrogel booster, as a facile and effective postoperative adjuvant, possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Bo Zhang
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yangtao Xu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenxiang Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zinian Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Xibo Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Jierong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| |
Collapse
|
13
|
Chen X, Wang Y, Dou X, Wan J, Zhou J, Li T, Yu J, Ye F. Integrative metabolomics and proteomics reveal the effect and mechanism of Zi Qi decoction on alleviating liver fibrosis. Sci Rep 2024; 14:28943. [PMID: 39578538 PMCID: PMC11584741 DOI: 10.1038/s41598-024-80616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024] Open
Abstract
Liver fibrosis is a common progressive liver disease that can cause liver dysfunction and lead to serious complications. Zi Qi decoction (ZQ) is a traditional formulation that exerts pharmacological effects on the treatment of liver fibrosis. However, precise intervention mechanisms remain unclear. The aim of this study was to synergistically harness proteomics and metabolomics techniques to elucidate the specific target of ZQ and its potential mechanism of action. A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was established. Subsequently, the protective effect of ZQ on liver fibrosis mice was evaluated according to histopathological examination and biochemical indicators. Quantitative proteomics based on data independent acquisition (DIA) and non-targeted metabolomic analyses revealed the pharmacodynamic mechanism of ZQ. In addition, various cellular and molecular assays were used to detect changes in glycolysis levels in LSECs and mouse liver fibrosis models. The study results showed that ZQ significantly alleviated CCl4-induced liver injury and fibrosis in mice. DIA-based quantitative proteomics and non-targeted metabolomics analyses indicated that ZQ treatment downregulated glycolysis-related proteins such as PKM2, PFKP, and HK2, while regulating glycolysis-related metabolites and pathways. In addition, ZQ down-regulated glycolytic activity in mice with liver fibrosis and in LSECs, and inhibited CXCL1 secretion and neutrophil recruitment. ZQ inhibited LSEC glycolysis and mitigated neutrophil infiltration, thereby playing a therapeutic role in liver fibrosis.
Collapse
Affiliation(s)
- Xiaoying Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Yifan Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaoyun Dou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jie Wan
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jingwen Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Tianci Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jun Yu
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Fang Ye
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
14
|
Zhang S, He R, Zhang M, Zhang J, Wu M, Zhang G, Jiang T. Elucidation of the Role of SHMT2 in L-Serine Homeostasis in Hypoxic Hepa1-6 Cells. Int J Mol Sci 2024; 25:11786. [PMID: 39519335 PMCID: PMC11545941 DOI: 10.3390/ijms252111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hypoxia is a characteristic feature of malignancy; however, its effect on metabolism remains unclear. In this study, Hepa1-6 cells were cultured under hypoxic conditions and their metabolites were analyzed. Elevated levels of L-serine along with increased glycolytic activity are prominent features of hypoxia. Transcriptome sequencing revealed the downregulation of genes involved in L-serine synthesis and metabolism, which was confirmed by PCR analysis and comparison with public databases. Further experimental evidence indicates that the accumulation of L-serine under hypoxic conditions is attributable not only to enhanced glycolysis but also to a reduction in the catabolism of L-serine mediated by serine hydroxymethyltransferase 2 (SHMT2).
Collapse
Affiliation(s)
- Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Ruoxu He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Mingsi Zhang
- Musculoskeletal Sport Science and Health, Loughborough University, Loughborough LE11 3TU, UK;
| | - Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
15
|
Duan R, Zhai Y, Wang Q, Zhao L, Wang Y, Yu N, Zhang J, Guo W. LINC01764 promotes colorectal cancer cells proliferation, metastasis, and 5-fluorouracil resistance by regulating glucose and glutamine metabolism via promoting c-MYC translation. MedComm (Beijing) 2024; 5:e70003. [PMID: 39534558 PMCID: PMC11555016 DOI: 10.1002/mco2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Few biomarkers are available for predicting chemotherapeutic response and prognosis in colorectal cancer (CRC). Long-noncoding RNAs (lncRNAs) are essential for CRC development and growth. Therefore, studying lncRNAs may reveal potential predictors of chemotherapy response and prognosis in CRC. LINC01764 was analyzed using datasets from Fudan University Shanghai Cancer Center's advanced CRC patients' RNA-seq and The Cancer Genome Atlas datasets. Gene set enrichment analysis was employed to detect related pathways. Cotransfection experiments, RNA pulldown assays, RNA-binding protein immunoprecipitation, protein synthesis activity, and dual-luciferase reporter assays were performed to determine interactions among LINC01764, hnRNPK, and c-MYC. High LINC01764 expression correlates with metastasis, a poor response to FOLFOX/XELOX chemotherapy, and a poor prognosis in CRC. LINC01764 enhance glycolysis and glutamine metabolism to promote CRC cells proliferation, metastasis, and 5-fluorouracil (5-FU) resistance. LINC01764 specifically binds to hnRNPK, facilitating its interaction with c-MYC mRNA and promoting internal ribosome entry site (IRES)-dependent translation of c-MYC, thereby exerting oncogenic effects. LINC01764 induced 5-FU chemoresistance by upregulating the c-MYC, glucose, and glutamine metabolism pathways, which downregulated UPP1, crucial for activating 5-FU. Conclusively, LINC01764 promotes CRC progression and 5-FU resistance through hnRNPK-mediated-c-MYC IRES-dependent translational regulation, which suggests its potential as a predictor of CRC chemotherapy response and prognosis.
Collapse
Affiliation(s)
- Ran Duan
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFujian Cancer Hospital and Fujian Medical University Cancer HospitalFujian Medical UniversityFuzhouChina
| | - Yujia Zhai
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiushuang Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Liqin Zhao
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Nuoya Yu
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jieyun Zhang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Westfall AK, Gopalan SS, Kay JC, Tippetts TS, Cervantes MB, Lackey K, Chowdhury SM, Pellegrino MW, Castoe TA. Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2405463121. [PMID: 39423244 PMCID: PMC11513969 DOI: 10.1073/pnas.2405463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell-cell interactions underlying the python's regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.
Collapse
Affiliation(s)
- Aundrea K. Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | | | - Jarren C. Kay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Trevor S. Tippetts
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Margaret B. Cervantes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kimberly Lackey
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| |
Collapse
|
17
|
Rytkönen KT, Adossa N, Zúñiga Norman S, Lönnberg T, Poutanen M, Elo LL. Gene Regulatory Network Analysis of Decidual Stromal Cells and Natural Killer Cells. Reprod Sci 2024; 31:3159-3174. [PMID: 39090334 PMCID: PMC11438719 DOI: 10.1007/s43032-024-01653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Human reproductive success relies on the proper differentiation of the uterine endometrium to facilitate implantation, formation of the placenta, and pregnancy. This process involves two critical types of decidual uterine cells: endometrial/decidual stromal cells (dS) and uterine/decidual natural killer (dNK) cells. To better understand the transcription factors governing the in vivo functions of these cells, we analyzed single-cell transcriptomics data from first-trimester terminations of pregnancy, and for the first time conducted gene regulatory network analysis of dS and dNK cell subpopulations. Our analysis revealed stromal cell populations that corresponded to previously described in vitro decidualized cells and senescent decidual cells. We discovered new decidualization driving transcription factors of stromal cells for early pregnancy, including DDIT3 and BRF2, which regulate oxidative stress protection. For dNK cells, we identified transcription factors involved in the immunotolerant (dNK1) subpopulation, including IRX3 and RELB, which repress the NFKB pathway. In contrast, for the less immunotolerant (dNK3) population we predicted TBX21 (T-bet) and IRF2-mediated upregulation of the interferon pathway. To determine the clinical relevance of our findings, we tested the overrepresentation of the predicted transcription factors target genes among cell type-specific regulated genes from pregnancy disorders, such as recurrent pregnancy loss and preeclampsia. We observed that the predicted decidualized stromal and dNK1-specific transcription factor target genes were enriched with the genes downregulated in pregnancy disorders, whereas the predicted dNK3-specific targets were enriched with genes upregulated in pregnancy disorders. Our findings emphasize the importance of stress tolerance pathways in stromal cell decidualization and immunotolerance promoting regulators in dNK differentiation.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Nigatu Adossa
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Sebastián Zúñiga Norman
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Qie S, Xiong H, Liu Y, Yan C, Wang Y, Tian L, Wang C, Sang N. Stanniocalcin 2 governs cancer cell adaptation to nutrient insufficiency through alleviation of oxidative stress. Cell Death Dis 2024; 15:567. [PMID: 39107307 PMCID: PMC11303387 DOI: 10.1038/s41419-024-06961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Solid tumours often endure nutrient insufficiency during progression. How tumour cells adapt to temporal and spatial nutrient insufficiency remains unclear. We previously identified STC2 as one of the most upregulated genes in cells exposed to nutrient insufficiency by transcriptome screening, indicating the potential of STC2 in cellular adaptation to nutrient insufficiency. However, the molecular mechanisms underlying STC2 induction by nutrient insufficiency and subsequent adaptation remain elusive. Here, we report that STC2 protein is dramatically increased and secreted into the culture media by Gln-/Glc- deprivation. STC2 promoter contains cis-elements that are activated by ATF4 and p65/RelA, two transcription factors activated by a variety of cellular stress. Biologically, STC2 induction and secretion promote cell survival but attenuate cell proliferation during nutrient insufficiency, thus switching the priority of cancer cells from proliferation to survival. Loss of STC2 impairs tumour growth by inducing both apoptosis and necrosis in mouse xenografts. Mechanistically, under nutrient insufficient conditions, cells have increased levels of reactive oxygen species (ROS), and lack of STC2 further elevates ROS levels that lead to increased apoptosis. RNA-Seq analyses reveal STC2 induction suppresses the expression of monoamine oxidase B (MAOB), a mitochondrial membrane enzyme that produces ROS. Moreover, a negative correlation between STC2 and MAOB levels is also identified in human tumour samples. Importantly, the administration of recombinant STC2 to the culture media effectively suppresses MAOB expression as well as apoptosis, suggesting STC2 functions in an autocrine/paracrine manner. Taken together, our findings indicate that nutrient insufficiency induces STC2 expression, which in turn governs the adaptation of cancer cells to nutrient insufficiency through the maintenance of redox homoeostasis, highlighting the potential of STC2 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Haijuan Xiong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yaqi Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenhui Yan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lifeng Tian
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chenguang Wang
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nianli Sang
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Yang C, Dong W, Wang Y, Dong X, Xu X, Yu X, Wang J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthritis Cartilage 2024; 32:921-937. [PMID: 38719085 DOI: 10.1016/j.joca.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
21
|
Netskar H, Pfefferle A, Goodridge JP, Sohlberg E, Dufva O, Teichmann SA, Brownlie D, Michaëlsson J, Marquardt N, Clancy T, Horowitz A, Malmberg KJ. Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping. Nat Immunol 2024; 25:1445-1459. [PMID: 38956379 PMCID: PMC11291284 DOI: 10.1038/s41590-024-01884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The functional diversity of natural killer (NK) cell repertoires stems from differentiation, homeostatic, receptor-ligand interactions and adaptive-like responses to viral infections. In the present study, we generated a single-cell transcriptional reference map of healthy human blood- and tissue-derived NK cells, with temporal resolution and fate-specific expression of gene-regulatory networks defining NK cell differentiation. Transfer learning facilitated incorporation of tumor-infiltrating NK cell transcriptomes (39 datasets, 7 solid tumors, 427 patients) into the reference map to analyze tumor microenvironment (TME)-induced perturbations. Of the six functionally distinct NK cell states identified, a dysfunctional stressed CD56bright state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant effector CD56dim state were commonly enriched across tumor types, the ratio of which was predictive of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design of new NK cell therapies and can be extended through transfer learning to interrogate new datasets from experimental perturbations or disease conditions.
Collapse
Affiliation(s)
- Herman Netskar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olli Dufva
- Wellcome Sanger Institute, Wellcome Genome Clymphoid cells (ILCs)ampus, Hinxton, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Demi Brownlie
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Trevor Clancy
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
- Department of Vaccine Informatics, Institute for Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Amir Horowitz
- Department of Immunology & Immunotherapy, Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Huang Y, Meng F, Zeng T, Thorne RF, He L, Zha Q, Li H, Liu H, Lang C, Xiong W, Pan S, Yin D, Wu M, Sun X, Liu L. IFRD1 promotes tumor cells "low-cost" survival under glutamine starvation via inhibiting histone H1.0 nucleophagy. Cell Discov 2024; 10:57. [PMID: 38802351 PMCID: PMC11130292 DOI: 10.1038/s41421-024-00668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/13/2024] [Indexed: 05/29/2024] Open
Abstract
Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.
Collapse
Affiliation(s)
- Yabin Huang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lifang He
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Hairui Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Hong Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Chuandong Lang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Wanxiang Xiong
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shixiang Pan
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Mian Wu
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Xuedan Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| |
Collapse
|
23
|
Jia M, Dong Z, Dong W, Yang B, He Y, Wang Y, Wang J. DDIT3 deficiency accelerates bone remodeling during bone healing by enhancing osteoblast and osteoclast differentiation through ULK1-mediated autophagy. Bone 2024; 182:117058. [PMID: 38408589 DOI: 10.1016/j.bone.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κβ ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κβ (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.
Collapse
Affiliation(s)
- Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
24
|
Huang H, Wang S, Xia H, Zhao X, Chen K, Jin G, Zhou S, Lu Z, Chen T, Yu H, Zheng X, Huang H, Lan L. Lactate enhances NMNAT1 lactylation to sustain nuclear NAD + salvage pathway and promote survival of pancreatic adenocarcinoma cells under glucose-deprived conditions. Cancer Lett 2024; 588:216806. [PMID: 38467179 DOI: 10.1016/j.canlet.2024.216806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD+ salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD+ salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD+ salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD+ metabolism in the treatment of PAAD.
Collapse
Affiliation(s)
- Huimin Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shitong Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, PR China
| | - Xingling Zhao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Kaiyuan Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guihua Jin
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shipeng Zhou
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Zhaoliang Lu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Tongke Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, PR China
| | - Huajun Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, PR China.
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Linhua Lan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
25
|
Hu R, Shah AM, Han Q, Ma J, Dai P, Meng Y, Peng Q, Jiang Y, Kong X, Wang Z, Zou H. Proteomics Reveals the Obstruction of Cellular ATP Synthesis in the Ruminal Epithelium of Growth-Retarded Yaks. Animals (Basel) 2024; 14:1243. [PMID: 38672391 PMCID: PMC11047487 DOI: 10.3390/ani14081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Growth-retarded yaks are of a high proportion on the Tibetan plateau and reduce the economic income of farmers. Our previous studies discovered a maldevelopment in the ruminal epithelium of growth-retarded yaks, but the molecular mechanisms are still unclear. This study aimed to reveal how the proteomic profile in the ruminal epithelium contributed to the growth retardation of yaks. The proteome of the ruminal epithelium was detected using a high-resolution mass spectrometer. There were 52 proteins significantly differently expressed between the ruminal epithelium of growth-retarded yaks and growth-normal yaks, with 32 downregulated and 20 upregulated in growth-retarded yaks. Functional analysis showed the differently expressed proteins involved in the synthesis and degradation of ketone bodies (p = 0.012), propanoate metabolism (p = 0.018), pyruvate metabolism (p = 0.020), and mineral absorption (p = 0.024). The protein expressions of SLC26A3 and FTH1, enriched in the mineral absorption, were significantly downregulated in growth-retarded yaks. The key enzymes ACAT2 and HMGCS2 enriched in ketone bodies synthesis and key enzyme PCCA enriched in propanoate metabolism had lower protein expressions in the ruminal epithelium of growth-retarded yaks. The ATP concentration and relative mitochondrial DNA copy number in the ruminal epithelium of growth-normal yaks were dramatically higher than those of growth-retarded yaks (p < 0.05). The activities of citrate synthase (CS), the α-ketoglutarate dehydrogenase complex (α-KGDHC), isocitrate dehydrogenase (ICD) in the tricarboxylic acid cycle (TCA), and the mitochondrial respiratory chain complex (MRCC) were significantly decreased in ruminal epithelium of growth-retarded yaks compared to growth-normal yaks (p < 0.05). The mRNA expressions of COQ9, COX4, and LDHA, which are the encoding genes in MRCC I, IV and anaerobic respiration, were also significantly decreased in the ruminal epithelium of growth-retarded yaks (p < 0.05). Correlation analysis revealed that the average daily gain (ADG) was significantly positively correlated to the relative mitochondrial DNA copy number (p < 0.01, r = 0.772) and ATP concentration (p < 0.01, r = 0.728) in the ruminal epithelium, respectively. The ruminal weight was positively correlated to the relative mitochondrial DNA copy number (p < 0.05, r = 0.631) and ATP concentration in ruminal epithelium (p < 0.01, r = 0.957), respectively. The ruminal papillae had a significant positive correlation with ATP concentration in ruminal epithelium (p < 0.01, r = 0.770). These results suggested that growth-retarded yaks had a lower VFA metabolism, ketone bodies synthesis, ion absorption, and ATP synthesis in the ruminal epithelium; it also indicated that the growth retardation of yaks is related to the obstruction of cellular ATP synthesis in rumen epithelial cells.
Collapse
Affiliation(s)
- Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (Y.J.)
| | - Qiang Han
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Peng Dai
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Yukun Meng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (Y.J.)
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Yahui Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (Y.J.)
| | - Xiangying Kong
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei 810299, China;
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.H.); (A.M.S.); (Q.H.); (J.M.); (P.D.); (Q.P.); (Z.W.)
| |
Collapse
|
26
|
Qie S, Xiong H, Liu Y, Yan C, Wang Y, Tian L, Wang C, Sang N. Stanniocalcin 2 governs cancer cell adaptation to nutrient insufficiency through alleviation of oxidative stress. RESEARCH SQUARE 2024:rs.3.rs-3904465. [PMID: 38464261 PMCID: PMC10925426 DOI: 10.21203/rs.3.rs-3904465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Solid tumours often endure nutrient insufficiency during progression. How tumour cells adapt to temporal and spatial nutrient insufficiency remains unclear. We previously identified STC2 as one of the most upregulated genes in cells exposed to nutrient insufficiency by transcriptome screening, indicating the potential of STC2 in cellular adaptation to nutrient insufficiency. However, the molecular mechanisms underlying STC2 induction by nutrient insufficiency and subsequent adaptation remain elusive. Here, we report that STC2 protein is dramatically increased and secreted into the culture media by Gln-/Glc-deprivation. STC2 promoter contains cis-elements that are activated by ATF4 and p65/RelA, two transcription factors activated by a variety of cellular stress. Biologically, STC2 induction and secretion promote cell survival but attenuate cell proliferation during nutrient insufficiency, thus switching the priority of cancer cells from proliferation to survival. Loss of STC2 impairs tumour growth by inducing both apoptosis and necrosis in mouse xenografts. Mechanistically, under nutrient insufficient conditions, cells have increased levels of reactive oxygen species (ROS), and lack of STC2 further elevates ROS levels that lead to increased apoptosis. RNA-Seq analyses reveal STC2 induction suppresses the expression of monoamine oxidase B (MAOB), a mitochondrial membrane enzyme that produces ROS. Moreover, a negative correlation between STC2 and MAOB levels is also identified in human tumour samples. Importantly, the administration of recombinant STC2 to the culture media effectively suppresses MAOB expression as well as apoptosis, suggesting STC2 functions in an autocrine/paracrine manner. Taken together, our findings indicate that nutrient insufficiency induces STC2 expression, which in turn governs the adaptation of cancer cells to nutrient insufficiency through the maintenance of redox homeostasis, highlighting the potential of STC2 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuo Qie
- Tianjin Medical University Cancer Institute and Hospital
| | - Haijuan Xiong
- Tianjin Medical University Cancer Institute and Hospital
| | - Yaqi Liu
- Tianjin Medical University Cancer Institute and Hospital
| | - Chenhui Yan
- Tianjin Medical University Cancer Institute and Hospital
| | | | - Lifeng Tian
- Kimmel Cancer Center, Thomas Jefferson University
| | | | | |
Collapse
|
27
|
Jin XK, Zhang SM, Liang JL, Zhang SK, Qin YT, Huang QX, Liu CJ, Zhang XZ. A PD-L1-targeting Regulator for Metabolic Reprogramming to Enhance Glutamine Inhibition-Mediated Synergistic Antitumor Metabolic and Immune Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309094. [PMID: 38014890 DOI: 10.1002/adma.202309094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation-mediated glycolysis enhancement and PD-L1 upregulation-induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD-L1-targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)-loading zeolitic imidazolate framework (ZIF) with PD-L1-targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD-L1 upregulation on tumor cells causes self-amplifying accumulation of PMIR through PD-L1 targeting, while also blocking PD-L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD-L1-mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments.
Collapse
Affiliation(s)
- Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shun-Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - You-Teng Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
28
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
29
|
Mao M, Yuan Q, Xia X, Cui Y, Chen M, Yang W. Integrative analysis defines DDIT3 amplification as a correlative and essential factor for glioma malignancy. Am J Cancer Res 2023; 13:5418-5430. [PMID: 38058808 PMCID: PMC10695819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioma, particularly glioblastoma multiforme (GBM), is a highly aggressive and lethal primary brain tumor with poor prognosis. Metabolic reprogramming and endoplasmic reticulum (ER) stress are two crucial factors contributing to glioma pathogenesis. However, the intricate coordination between these processes remains incompletely understood. Here, we conducted an integrative analysis to elucidate the nodal role of DNA Damage Inducible Transcript 3 (DDIT3) to couple metabolisms and stress responses in glioma. We demonstrated a positive association between DDIT3 amplification/enhanced expression with glioma malignancy, indicating its potential as a novel biomarker for prognosis and treatment stratification. Genomic and transcriptomic analyses further revealed the involvement of DDIT3 enhancement in glioma progression. Moreover, immune infiltration analysis showed that distinct DDIT3 expression groups had different immune microenvironment. Finally, in vitro validations confirmed the impact of DDIT3 on proliferation and migration of glioma cells. Our findings provide novel insights into the complex interplay between metabolic reprogramming and ER stress, and defines DDIT3 as a promising therapeutic target in glioma.
Collapse
Affiliation(s)
- Mengqian Mao
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Mina Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
30
|
Zhang Y, Zhao T, Hu L, Xue J. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:3055-3070. [PMID: 37171773 DOI: 10.1007/s43032-023-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Lishuang Hu
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Juan Xue
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, Gao E, Ma M, Cheng C, Meng F, Lang C, Li H, Xiong W, Pan S, Ren D, Dang B, Yang Y, Wu M, Liu L. The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab 2023; 35:1563-1579.e8. [PMID: 37543034 DOI: 10.1016/j.cmet.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
In response to adverse environmental conditions, embryonic development may reversibly cease, a process termed diapause. Recent reports connect this phenomenon with the non-genetic responses of tumors to chemotherapy, but the mechanisms involved are poorly understood. Here, we establish a multifarious role for SMC4 in the switching of colorectal cancer cells to a diapause-like state. SMC4 attenuation promotes the expression of three investment phase glycolysis enzymes increasing lactate production while also suppressing PGAM1. Resultant high lactate levels increase ABC transporter expression via histone lactylation, rendering tumor cells insensitive to chemotherapy. SMC4 acts as co-activator of PGAM1 transcription, and the coordinate loss of SMC4 and PGAM1 affects F-actin assembly, inducing cytokinesis failure and polyploidy, thereby inhibiting cell proliferation. These insights into the mechanisms underlying non-genetic chemotherapy resistance may have significant implications for the field, advancing our understanding of aerobic glycolysis functions in tumor and potentially informing future therapeutic strategies.
Collapse
Affiliation(s)
- Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Lifang He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Hong Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Liu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Miao He
- Anhui Huaheng Biotechnology Co., Ltd., Hefei, 230001 Anhui, China
| | - Yabin Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Enyi Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan, China
| | - Mengyao Ma
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Chuandong Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Hairui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Wanxiang Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Shixiang Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Delong Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Bingyi Dang
- Henan Wild Animals Rescue Center, Henan Forestry Administration, Zhengzhou, 450040 Henan, China
| | - Yi Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 Anhui, China.
| |
Collapse
|
32
|
Xiong Z, Li W, Luo X, Lin Y, Huang W, Zhang S. Seven bacterial response-related genes are biomarkers for colon cancer. BMC Bioinformatics 2023; 24:103. [PMID: 36941538 PMCID: PMC10026208 DOI: 10.1186/s12859-023-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a common tumor that causes significant harm to human health. Bacteria play a vital role in cancer biology, particularly the biology of CC. Genes related to bacterial response were seldom used to construct prognosis models. We constructed a bacterial response-related risk model based on three Molecular Signatures Database gene sets to explore new markers for predicting CC prognosis. METHODS The Cancer Genome Atlas (TCGA) colon adenocarcinoma samples were used as the training set, and Gene Expression Omnibus (GEO) databases were used as the test set. Differentially expressed bacterial response-related genes were identified for prognostic gene selection. Univariate Cox regression analysis, least absolute shrinkage and selection operator-penalized Cox regression analysis, and multivariate Cox regression analysis were performed to construct a prognostic risk model. The individual diagnostic effects of genes in the prognostic model were also evaluated. Moreover, differentially expressed long noncoding RNAs (lncRNAs) were identified. Finally, the expression of these genes was validated using quantitative polymerase chain reaction (qPCR) in cell lines and tissues. RESULTS A prognostic signature was constructed based on seven bacterial response genes: LGALS4, RORC, DDIT3, NSUN5, RBCK1, RGL2, and SERPINE1. Patients were assigned a risk score based on the prognostic model, and patients in the TCGA cohort with a high risk score had a poorer prognosis than those with a low risk score; a similar finding was observed in the GEO cohort. These seven prognostic model genes were also independent diagnostic factors. Finally, qPCR validated the differential expression of the seven model genes and two coexpressed lncRNAs (C6orf223 and SLC12A9-AS1) in 27 pairs of CC and normal tissues. Differential expression of LGALS4 and NSUN5 was also verified in cell lines (FHC, COLO320DM, SW480). CONCLUSIONS We created a seven-gene bacterial response-related gene signature that can accurately predict the outcomes of patients with CC. This model can provide valuable insights for personalized treatment.
Collapse
Affiliation(s)
- Zuming Xiong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wenxin Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangrong Luo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yirong Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
33
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Liu Y, Liu K, Thorne RF, Shi R, Zhang Q, Wu M, Liu L. Mitochondrial SENP2 regulates the assembly of SDH complex under metabolic stress. Cell Rep 2023; 42:112041. [PMID: 36708515 DOI: 10.1016/j.celrep.2023.112041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Succinate dehydrogenase (SDH) is a heterotetrameric enzyme complex belonging to the mitochondrial respiratory chain and uniquely links the tricarboxylic acid (TCA) cycle with oxidative phosphorylation. Cancer-related SDH mutations promote succinate accumulation, which is regarded as an oncometabolite. Post-translational modifications of SDH complex components are known to regulate SDH activity, although the contribution of SUMOylation remains unclear. Here, we show that SDHA is SUMOylated by PIAS3 and deSUMOylated by SENP2, events dictating the assembly and activity of the SDH complex. Moreover, CBP acetylation of SENP2 negatively regulates its deSUMOylation activity. Under glutamine deprivation, CBP levels decrease, and the ensuing SENP2 activation and SDHA deSUMOylation serve to concurrently dampen the TCA cycle and electron transport chain (ETC) activity. Along with succinate accumulation, this mechanism avoids excessive reactive oxygen species (ROS) production to promote cancer cell survival. This study elucidates a major function of mitochondrial-localized SENP2 and expands our understanding of the role of SUMOylation in resolving metabolic stress.
Collapse
Affiliation(s)
- Ying Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kejia Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Ronghua Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qingyuan Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Mian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei 230001, China.
| |
Collapse
|
35
|
Wu J, Yang W, Li H. An artificial neural network model based on autophagy-related genes in childhood systemic lupus erythematosus. Hereditas 2022; 159:34. [PMID: 36114579 PMCID: PMC9479435 DOI: 10.1186/s41065-022-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Childhood systemic lupus erythematosus (cSLE) is a multisystemic, life-threatening autoimmune disease. Compared to adults, SLE in childhood is more active, can cause multisystem involvement including renal, neurological and hematological, and can cause cumulative damage across systems more rapidly. Autophagy, one of the core functions of cells, is involved in almost every process of the immune response and has been shown to be associated with many autoimmune diseases, being a key factor in the interplay between innate and adaptive immunity. Autophagy influences the onset, progression and severity of SLE. This paper identifies new biomarkers for the diagnosis and treatment of childhood SLE based on an artificial neural network of autophagy-related genes.
Methods
We downloaded dataset GSE100163 from the Gene Expression Omnibus database and used Protein–protein Interaction Network (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO) to screen the signature genes of autophagy-related genes in cSLE. A new artificial neural network model for cSLE diagnosis was constructed using the signature genes. The predictive efficiency of the model was also validated using the dataset GSE65391. Finally, "CIBERSORT" was used to calculate the infiltration of immune cells in cSLE and to analyze the relationship between the signature genes and the infiltration of immune cells.
Results
We identified 37 autophagy-related genes that differed in cSLE and normal samples, and finally obtained the seven most relevant signature genes for cSLE (DDIT3, GNB2L1, CTSD, HSPA8, ULK1, DNAJB1, CANX) by PPI and LASOO regression screening, and constructed an artificial neural network diagnostic model for cSLE. Using this model, we plotted the ROC curves for the training and validation group diagnoses with the area under the curve of 0.976 and 0.783, respectively. Finally, we performed immunoassays on cSLE samples, and the results showed that Plasma cells, Macrophages M0, Dendritic cells activated and Neutrophils were significantly infiltrated in cSLE.
Conclusion
We constructed an artificial neural network diagnostic model of seven autophagy-related genes that can be used for the diagnosis of cSLE. Meanwhile, the characteristic genes affect the immune infiltration of cSLE, which may provide new perspectives for the exploration of cSLE treatment and related mechanisms.
Collapse
|
36
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 482] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
37
|
Bai Y, Chen D, Cheng C, Li Z, Chi H, Zhang Y, Zhang X, Tang S, Zhao Q, Ang B, Zhang Y. Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:950536. [PMID: 35967424 PMCID: PMC9365996 DOI: 10.3389/fimmu.2022.950536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Background/Aims Hepatocellular carcinoma (HCC), accounting for 75-85% of primary liver cancer cases, is the third leading cause of cancer-related death worldwide. The purpose of this research was to examine the tumor immune microenvironment (TIME) in HCC. Methods We investigated the HCC TIME by integrated analysis of single-cell and bulk-tissue sequencing data to reveal the landscape of major immune cell types. Results Regulatory T(Treg) cells were found to be specifically distributed in the TIME of HCC. Several immune checkpoints, including TNFRSF4, TIGIT and CTLA4, were found to be uniquely overexpressed in Treg cells, and the glycolysis/gluconeogenesis pathway was enriched in Treg cells. We also discovered the presence of two NK-cell subsets with different cytotoxic capacities, one in an activated state with antitumor effects and another with an exhausted status. In addition, memory B cells in HCC were found to exist in a unique state, with high proliferation, low differentiation, and low activity, which was induced by overexpression of PRAP1 and activation of the MIF-CD74 axis. Conclusions We revealed the TIME landscape in HCC, highlighting the heterogeneity of major immune cell types and their potential mechanisms in the formation of an immunosuppressive environment. Hence, blocking the formation of the TIME could be a useful therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Chuanliang Cheng
- Tianjin First Central Hospital Clinic Institute, School of Medicine, Nankai University, Tianjin, China
| | - Zhongmin Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Hao Chi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yuliang Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Shaohai Tang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Ang
- Oncology Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
38
|
Liu WJ, Pan PY, Sun Y, Wang JB, Zhou H, Xie X, Duan ZY, Dong HY, Chen WN, Zhang LD, Wang C. Deferoxamine Counteracts Cisplatin Resistance in A549 Lung Adenocarcinoma Cells by Increasing Vulnerability to Glutamine Deprivation-Induced Cell Death. Front Oncol 2022; 11:794735. [PMID: 35127502 PMCID: PMC8810525 DOI: 10.3389/fonc.2021.794735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glutamine, like glucose, is a major nutrient consumed by cancer cells, yet these cells undergo glutamine starvation in the cores of tumors, forcing them to evolve adaptive metabolic responses. Pharmacologically targeting glutamine metabolism or withdrawal has been exploited for therapeutic purposes, but does not always induce cancer cell death. The mechanism by which cancer cells adapt to resist glutamine starvation in cisplatin-resistant non-small-cell lung cancer (NSCLC) also remains uncertain. Here, we report the potential metabolic vulnerabilities of A549/DDP (drug-resistant human lung adenocarcinoma cell lines) cells, which were more easily killed by the iron chelator deferoxamine (DFO) during glutamine deprivation than their parental cisplatin-sensitive A549 cells. We demonstrate that phenotype resistance to cisplatin is accompanied by adaptive responses during glutamine deprivation partly via higher levels of autophagic activity and apoptosis resistance characteristics. Moreover, this adaptation could be explained by sustained glucose instead of glutamine-dominant complex II-dependent oxidative phosphorylation (OXPHOS). Further investigation revealed that cisplatin-resistant cells sustain OXPHOS partly via iron metabolism reprogramming during glutamine deprivation. This reprogramming might be responsible for mitochondrial iron-sulfur [Fe-S] cluster biogenesis, which has become an “Achilles’ heel,” rendering cancer cells vulnerable to DFO-induced autophagic cell death and apoptosis through c-Jun N-terminal kinase (JNK) signaling. Finally, in vivo studies using xenograft mouse models also confirmed the growth-slowing effect of DFO. In summary, we have elucidated the adaptive responses of cisplatin-resistant NSCLC cells, which balanced stability and plasticity to overcome metabolic reprogramming and permitted them to survive under stress induced by chemotherapy or glutamine starvation. In addition, for the first time, we show that suppressing the growth of cisplatin-resistant NSCLC cells via iron chelator-induced autophagic cell death and apoptosis was possible with DFO treatment. These findings provide a solid basis for targeting mitochondria iron metabolism in cisplatin-resistant NSCLC for therapeutic purposes, and it is plausible to consider that DFO facilitates in the improvement of treatment responses in cisplatin-resistant NSCLC patients.
Collapse
Affiliation(s)
- Wen-Jun Liu
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Peng-Yu Pan
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ye Sun
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Jian-Bo Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huan Zhou
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Xie
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhi-Yuan Duan
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Han-Yu Dong
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Na Chen
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Li-de Zhang
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chun Wang
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|