1
|
Sun J, Wang P, Yi Z, Wu Y, Wei Y, Fang H, Song D, Chen Y, Du H, Huang J, Li Q, Yang D, Ren G, Li H. Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy. Cancer Immunol Res 2025; 13:400-416. [PMID: 39602462 PMCID: PMC11876963 DOI: 10.1158/2326-6066.cir-24-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
The limited infiltration of CD8+ T cells in tumors hampers the effectiveness of T cell-based immunotherapy, yet the mechanisms that limit tumor infiltration by CD8+ T cells remain unclear. Through bulk RNA sequencing of human tumors, we identified a strong correlation between WNT7A expression and reduced CD8+ T-cell infiltration. Further investigation demonstrated that inhibiting WNT7A substantially enhanced MHC-I expression on tumor cells. Mechanistically, WNT7A inhibition inactivated the Wnt/β-catenin signaling pathway and thus resulted in reduced physical interaction between β-catenin and p65 in the cytoplasm, which increased the nuclear translocation of p65 and activated the NF-κB pathway, ultimately promoting the transcription of genes encoding MHC-I molecules. We found that our lead compound, 1365-0109, disrupted the protein-protein interaction between WNT7A and its receptor FZD5, resulting in the upregulation of MHC-I expression. In murine tumor models, both genetic and pharmaceutical suppression of WNT7A led to increased MHC-I levels on tumor cells, and consequently enhanced the infiltration and functionality of CD8+ T cells, which bolstered antitumor immunity and improved the effectiveness of immune checkpoint blockade therapy. These findings have elucidated the intrinsic mechanisms of WNT7A-induced immune suppression, suggesting that therapeutic interventions targeting WNT7A hold promise for enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pin Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of General Surgery, The Third People’s Hospital of Chengdu, Chengdu, China
- Center of Breast and Thyroid Surgery, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dejuan Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Gu M, Yu W, Stefanello ST, Wang J, Zhang X, Zhang Y, Zhang W, Guan Y, Shahin V, Qian Y, Yuan WE. Synergistic in vivo anticancer effects of 1,7-heptanediol and doxorubicin co-loadedliposomes in highly aggressive breast cancer. J Control Release 2025; 377:174-185. [PMID: 39532206 DOI: 10.1016/j.jconrel.2024.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer holds the highest incidence rate among women. Doxorubicin (DOX) is a potent frontline drug for the treatment of breast cancer. The anticancer mechanisms of DOX include inducing immunogenic cell death in tumor cells, causing damage to tumor DNA, and generating free radicals. However, its pharmacological efficacy and wide use are restricted by its substantial dose-dependent side effects. We have recently revealed that 1,7-Heptanediol (1,7-Hept) severely impairs the bioenergetics and metabolism of aggressive human cancer cells. In the present work, we prepared liposomes co-loaded with DOX and 1,7-Hept (DOX/1,7-Hept-lipo) and assessed their potential synergistic anti-tumor effects. In vitro studies demonstrated that 4T1 cells (the mouse breast cancer cell) exhibited higher sensitivity to 1,7-Hept and DOX/1,7-Hept-lipo could induce ICD of 4T1 cells. Cell viability was markedly reduced when 4T1 cells were treated with a combination of DOX and 1,7-Hept. In a mouse breast cancer model, the DOX/1,7-Hept-lipo exhibited superior anti-tumor efficacy compared to liposomes loaded with individual drugs, resulting in almost total elimination of the tumors at lower doses of DOX with reduced systemic toxicity. Notably, the number of immune cells significantly increased in the tumor microenvironment, and macrophages were more transformed into the anti-tumor M1 phenotype. Our findings suggest strong synergistic anti-tumor effects of DOX and 1,7-Hept, enhancing the efficacy of tumor immunotherapy and mitigating the toxic side effects of DOX.
Collapse
Affiliation(s)
- Muge Gu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27b, 48149 Münster, Germany
| | - Jiayu Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yuanye Guan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27b, 48149 Münster, Germany.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China.
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China; National Key Laboratory of Innovative Immunotherapy, Inner Mongolia Research Institute of Shanghai Jiao Tong University, China.
| |
Collapse
|
3
|
Lu Y, Li Z, Zhu X, Zeng Q, Liu S, Guan W. Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment. Int J Nanomedicine 2025; 20:181-197. [PMID: 39802380 PMCID: PMC11721825 DOI: 10.2147/ijn.s503780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons. Cyclic dinucleotides (CDNs), produced by cGAS sensing cytoplasmic abnormal DNA, are major intermediate activating molecules in the STING pathway. Nowadays, CDNs and their derivatives have widely worked as powerful STING agonists in tumor immunotherapy. However, their clinical translation is hindered by the negative electrical properties, sensitivity to hydrolytic enzymes, and systemic toxicity. Recently, various CDN delivery systems have made significant progress in addressing these issues, either through monotherapy or in combination with other treatment modalities. This review details recent advances in CDNs-based pharmaceutical development or delivery strategies for enriching CDNs at tumor sites and activating the STING pathway.
Collapse
Affiliation(s)
- Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Zhiyan Li
- Division of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qingwei Zeng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Zhang C, Yang Z, Li J, Zhao L. Prognostic Significance of Dynamic Lymphocyte Changes in Esophageal Cancer Patients Receiving Fluorouracil-Cisplatin Combined with Radiotherapy: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2025; 24:15330338251341431. [PMID: 40388934 PMCID: PMC12089708 DOI: 10.1177/15330338251341431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
IntroductionChemoradiotherapy (CRT) is important to the esophageal cancer (EC) management. However, the predictive value of lymphocyte-related parameters, such as lymphocyte count (L), neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR), is not yet fully understood. Moreover, chemotherapy agents like fluorouracil and cisplatin may have an impact on lymphocyte dynamics. This meta-analysis aims to evaluate the prognostic value of these parameters in EC patients undergoing concurrent CRT (eg, radiotherapy combined with fluorouracil and cisplatin), particularly in the context of specific chemotherapy regimens.MethodsElectronic databases were comprehensively searched up to September 2023 for research that assesses the prognostic role of lymphocyte-related indicators in EC patients undergoing CRT. Combined Hazard Ratios (HR) were estimated with a random-effects model, supplemented by meta-regression and subgroup analyses for enhanced insights.ResultsOf the 41 studies selected for qualitative evaluation, 22 were eligible for meta-analysis. These results revealed that increased pre-NLR (HR = 1.87, 95% CI = 1.55-2.26), lower pre-LMR (HR = 1.94, 95% CI = 1.36-2.77), lower dur-L (HR = 1.56, 95% CI = 1.28-1.90), and higher post-NLR (HR = 1.95, 95% CI = 1.08-3.51) predicted poorer overall survival (OS). Lower pre-LMR (HR = 1.73, 95% CI = 1.14-2.65) and lower dur-L (HR = 1.39, 95% CI = 1.14-1.69) were significant predictors of worse progression-free survival (PFS). The predominant chemotherapy regimen analyzed was fluorouracil combined with cisplatin, which significantly influenced lymphocyte counts and ratios during treatment.ConclusionsOur meta-analysis indicates that pre-treatment NLR, pre-treatment LMR, during-treatment L, and post-treatment NLR are valuable prognostic biomarkers for EC undergoing CRT, particularly in those treated with fluorouracil and cisplatin. Further investigations are warranted to explore their prognostic implications and therapeutic potential.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jie Li
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lina Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
7
|
Qin Y, Li Z, Zhang X, Li J, Teng Y, Zhang N, Zhao S, Kong L, Niu W. Pan-cancer exploration of PNO1: A prospective prognostic biomarker with ties to immune infiltration. Heliyon 2024; 10:e36819. [PMID: 39263087 PMCID: PMC11387552 DOI: 10.1016/j.heliyon.2024.e36819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The partner of NOB1 homolog (PNO1) is an RNA-binding protein that participates in ribosome biogenesis and protein modification. The functions of this molecule are largely unknown in cancers, particularly breast cancer. We employed bioinformatics methods to probe the putative oncogenic functions of PNO1 based on expression profiles and clinical data from the cancer genome atlas (TCGA), genotype-tissue expression project (GTEx), human protein atlas (HPA), cancer cell line encyclopedia (CCLE), UALCAN, drug sensitivity in cancer (GDSC) and UCSC XENA databases. Our analyses revealed that PNO1 was overexpressed in 31 malignancies, which excluded kidney chromophobe (KICH) and acute myeloid leukemia (LAML). Prognostic assessments have demonstrated that high PNO1 expression was significantly correlated with poor overall and disease-specific survival in various cancers. The promoter methylation level of PNO1 is significantly decreased in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA) and uterine corpus endometrial carcinoma (UCEC). Furthermore, inhibition of PNO1 decreased the viability, migration and invasion of breast cancer cells, and these results were confirmed by mouse xenograft models of breast cancer. In addition, we discovered that tumor microenvironment (TME), immune infiltration, and chemotherapy sensitivity were influenced by PNO1 expression. Concordantly, our analyses revealed a significant positive correlation between PNO1 and programmed cell death ligand 1 (PD-L1) expression across breast carcinoma samples. In conclusion, these findings indicate that PNO1 could act as a promising prognostic biomarker and adjunct diagnostic indicator, because it affects tumor growth and invasion. Our study offers valuable new perspectives on the oncogenic role of PNO1 in various types of cancers.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhen Li
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xianwei Zhang
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junjun Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Shangcheng Avenue, Hangzhou, 310058, Zhejiang, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, 250102, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingfei Kong
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| |
Collapse
|
8
|
Fan R, Deng A, Lin R, Zhang S, Cheng C, Zhuang J, Hai Y, Zhao M, Yang L, Wei G. A platinum(IV)-artesunate complex triggers ferroptosis by boosting cytoplasmic and mitochondrial lipid peroxidation to enhance tumor immunotherapy. MedComm (Beijing) 2024; 5:e570. [PMID: 38774917 PMCID: PMC11106517 DOI: 10.1002/mco2.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death form that initiates lipid peroxidation (LPO) in tumors. In recent years, there has been growing interest on ferroptosis, but how to propel it forward translational medicine remains in mist. Although experimental ferroptosis inducers such as RSL3 and erastin have demonstrated bioactivity in vitro, the poor antitumor outcome in animal model limits their development. In this study, we reveal a novel ferroptosis inducer, oxaliplatin-artesunate (OART), which exhibits substantial bioactivity in vitro and vivo, and we verify its feasibility in cancer immunotherapy. For mechanism, OART induces cytoplasmic and mitochondrial LPO to promote tumor ferroptosis, via inhibiting glutathione-mediated ferroptosis defense system, enhancing iron-dependent Fenton reaction, and initiating mitochondrial LPO. The destroyed mitochondrial membrane potential, disturbed mitochondrial fusion and fission, as well as downregulation of dihydroorotate dehydrogenase mutually contribute to mitochondrial LPO. Consequently, OART enhances tumor immunogenicity by releasing damage associated molecular patterns and promoting antigen presenting cells maturation, thereby transforming tumor environment from immunosuppressive to immunosensitive. By establishing in vivo model of tumorigenesis and lung metastasis, we verified that OART improves the systematic immune response. In summary, OART has enormous clinical potential for ferroptosis-based cancer therapy in translational medicine.
Collapse
Affiliation(s)
- Renming Fan
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Aohua Deng
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Ruizhuo Lin
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Shuo Zhang
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Caiyan Cheng
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Junyan Zhuang
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Yongrui Hai
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Minggao Zhao
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Le Yang
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Gaofei Wei
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| |
Collapse
|
9
|
Li K, Zhang C, Zhou R, Cheng M, Ling R, Xiong G, Ma J, Zhu Y, Chen S, Chen J, Chen D, Peng L. Single cell analysis unveils B cell-dominated immune subtypes in HNSCC for enhanced prognostic and therapeutic stratification. Int J Oral Sci 2024; 16:29. [PMID: 38622125 PMCID: PMC11018606 DOI: 10.1038/s41368-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caihua Zhang
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Gan Xiong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jieyi Ma
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Zhu
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Demeng Chen
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Wang ZM, Ning ZL, Ma C, Liu TB, Tao B, Guo L. Low expression of lysosome-related genes KCNE1, NPC2, and SFTPD promote cancer cell proliferation and tumor associated M2 macrophage polarization in lung adenocarcinoma. Heliyon 2024; 10:e27575. [PMID: 38509982 PMCID: PMC10950582 DOI: 10.1016/j.heliyon.2024.e27575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Background Recent research has shown that lysosomes play a critical role in the onset and progression of malignancy by regulating tumor cell death through several mechanisms. Nevertheless, the involvement of lysosome-associated genes (LSAGs) in lung adenocarcinoma (LUAD) is still not well understood. Methods LSAGs were identified in malignant lung epithelial cells, as well as biologically and functionally annotated by the comprehensive integration of single-cell and bulk RNA-sequencing data. Prognostic characterization of LSAGs was established, of which the accuracy and reliability were assessed by one-way Cox and LASSO regression. Correlations between LSAG properties and immune cell infiltration, chemotherapy, and immunotherapy were analyzed by integrated omics data. Finally, we characterized the expression of three LSAGs (KCNE1, NPC2, and SFTPD) in malignant lung epithelium and assessed their impact on tumor malignancy related phenotypes. Results We identified 18 LSAGs associated with prognosis, of which 3 LSAGs were used to construct prognostic models. High-risk patients had worse survival and the model predicted it better than other clinical indicators. Based on the functional enrichment analyses, LSAGs were associated with binding and molecular activity functions, inhibition of DNA damage repair and tumor growth, IL7 signaling pathway, and glycolysis. M0 macrophages and M1 macrophages were substantially enriched in high-risk patients. Conversely, there was a considerable enrichment of resting dendritic cells and M2 macrophages in patients at low risk. We also found that risk scores predicted the outcome of immunotherapy. In vitro, we found that KCNE1, NPC2, and SFTPD were lowly expressed in malignant epithelial cells and patients with low expression of KCNE1, NPC2, and SFTPD had a higher percentage of M2 macrophage infiltration. Overexpression of KCNE1, NPC2, and SFTPD suppressed the proliferation and invasion of malignant cells, and M0 macrophages remarkably reduced M2 macrophage polarization and cellular secretion of pro-tumor cytokines. Conclusions We used three LASGs-KCNE1, NPC2, and SFTPD-to develop and validate a predictive signature for LUAD patients. Furthermore, we found that low expression of KCNE1, NPC2, and SFTPD promotes lung cancer cell proliferation and invasion and M2 macrophage polarization. Our study may provide fresh perspectives for customized immunotherapy.
Collapse
Affiliation(s)
- Zi-Ming Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhi-Lin Ning
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tang-Bin Liu
- Department of Thoracic surgery, Anhui Chest Hospital, Hefei 230061, Anhui, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
11
|
Tu X, Chen L, Zheng Y, Mu C, Zhang Z, Wang F, Ren Y, Duan Y, Zhang H, Tong Z, Liu L, Sun X, Zhao P, Wang L, Feng X, Fang W, Liu X. S100A9 +CD14 + monocytes contribute to anti-PD-1 immunotherapy resistance in advanced hepatocellular carcinoma by attenuating T cell-mediated antitumor function. J Exp Clin Cancer Res 2024; 43:72. [PMID: 38454445 PMCID: PMC10921725 DOI: 10.1186/s13046-024-02985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.
Collapse
Affiliation(s)
- Xiaoxuan Tu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Longxian Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Chenglin Mu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Zhiwei Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Feiyu Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yiqing Ren
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yingxin Duan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hangyu Zhang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lulu Liu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xunqi Sun
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lie Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, People's Republic of China
| | - Xinhua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
12
|
Zhang W, Liu J, Ren X, Zhang Z, Zhou M, Li Y, Wang J, Li Q, Zhu Q, Wu G. Identification of the novel markers of PPAR signalling affecting immune microenvironment and immunotherapy response of lung adenocarcinoma patients. J Cell Mol Med 2024; 28:e17877. [PMID: 37556076 PMCID: PMC10902583 DOI: 10.1111/jcmm.17877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are essential for cellular physiological processes. However, there is less research on the PPAR-related genes in lung adenocarcinoma (LUAD). Open-access data were get from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. All the analysis were conducted in the R software based on different R packages. In this study, we gauged the PPAR score employing a set of 72 PPAR-associated genes and probed the biological impact of this score on lung adenocarcinoma (LUAD). Subsequently, we established a unique signature composed of eight PPAR-related genes (ANGPTL4, ACSL3, ADIPOQ, FABP1, SLC27A1, ACOX2, PPARD and OLR1) to forecast the prognosis of LUAD. The signature's effectiveness in predicting survival was validated through the receiver operating characteristic curve in the TCGA-LUAD cohort. As per the pathway enrichment analysis, several crucial oncogenic pathways and metabolic processes were enriched in high-risk individuals. Further, we observed that these high-risk patients exhibited heightened genomic instability. Additionally, compared to the low-risk cohort, high-risk patients demonstrated diminished immune components and function. Intriguingly, high-risk patients exhibited a potential heightened sensitivity to immunotherapy and certain drugs, including Gefitinib, Afatinib, Erlotinib, IAP_5620, Sapitinib, LCL161, Lapatinib and AZD3759. The prognosis model based on eight PPAR-related genes has satisfactory prognosis prediction efficiency. Meanwhile, our results can provide direction for future studies in the relevant aspects.
Collapse
Affiliation(s)
- Wei Zhang
- Tuberculosis ward No1, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control, Affiliated to Janghan UniversityWuhanChina
| | - Junhui Liu
- Tuberculosis ward No1, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control, Affiliated to Janghan UniversityWuhanChina
| | - Xin Ren
- Department of Tuberculosis Control, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control Affiliated to Janghan UniversityWuhanChina
| | - Zhengbin Zhang
- Department of Tuberculosis Control, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control Affiliated to Janghan UniversityWuhanChina
| | - Meilan Zhou
- Department of Tuberculosis Control, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control Affiliated to Janghan UniversityWuhanChina
| | - Yuehua Li
- Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis ControlWuhanChina
| | - Jianjie Wang
- Department of Tuberculosis Control, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control Affiliated to Janghan UniversityWuhanChina
| | - Quan Li
- Medical department, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control, Affiliated to Janghan UniversityWuhanChina
| | - Qi Zhu
- Tuberculosis ward No1, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control, Affiliated to Janghan UniversityWuhanChina
| | - Gang Wu
- Department of Tuberculosis Control, Wuhan Pulmonary HospitalWuhan Institute for Tuberculosis Control Affiliated to Janghan UniversityWuhanChina
| |
Collapse
|
13
|
Sun X, Wu Y, Wang X, Gao X, Zhang S, Sun Z, Liu R, Hu K. Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals. Pharmaceutics 2024; 16:345. [PMID: 38543239 PMCID: PMC10974899 DOI: 10.3390/pharmaceutics16030345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2025] Open
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Yuxuan Wu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Zhicheng Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Ruping Liu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| |
Collapse
|
14
|
Wang H, Zhou Z, Zhang J, Hao T, Wang P, Wu P, Su R, Yang H, Deng G, Chen S, Gu L, He Y, Zeng L, Zhang C, Yin S. Pumilio1 regulates NPM3/NPM1 axis to promote PD-L1-mediated immune escape in gastric cancer. Cancer Lett 2024; 581:216498. [PMID: 38029539 DOI: 10.1016/j.canlet.2023.216498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Han Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junchang Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tengfei Hao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical university, Chongqing, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huan Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guofei Deng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songyao Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Songcheng Yin
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Su W, Che L, Liao W, Huang H. The RNA m 6A writer METTL3 in tumor microenvironment: emerging roles and therapeutic implications. Front Immunol 2024; 15:1335774. [PMID: 38322265 PMCID: PMC10845340 DOI: 10.3389/fimmu.2024.1335774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Weiqi Su
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Liu Y, Lin Y, Liao S, Feng W, Liu J, Luo X, Wei Q, Tang H. Single-cell RNA sequencing reveals the immune microenvironment landscape of osteosarcoma before and after chemotherapy. Heliyon 2024; 10:e23601. [PMID: 38332885 PMCID: PMC10851305 DOI: 10.1016/j.heliyon.2023.e23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024] Open
Abstract
Chemotherapy, a primary treatment for osteosarcoma (OS), has limited knowledge regarding its impact on tumor immune microenvironment (TIME). Here, tissues from 6 chemotherapy-naive OS patients underwent single-cell RNA sequencing (scRNA-seq) and were analyzed alongside public dataset (GSE152048) containing 7 post-chemotherapy OS tissues. CD45+ (PTPRC+) cells were used for cell clustering and annotation. Changes in immune cell composition pre- and post-chemotherapy were characterized. Totally, 28,636 high-quality CD45+ (PTPRC+) cells were extracted. Following chemotherapy, the proportions of regulatory T cells (Tregs) and activated CD8 T cells decreased, while CD8 effector T cells increased. GO analysis indicated that differentially expressed genes (DEGs) in T cells were associated with cell activation, adaptive immune response, and immune response to tumor cells. Furthermore, the proportions of plasma cells increased, while naive B cells decreased. B cell surface receptors expression was upregulated, and GO analysis revealed DEGs of B cells were mainly enriched in B cell-mediated immunity and B cell activation. Moreover, M2 polarization of macrophages was suppressed post-chemotherapy. Overall, this study elucidates chemotherapy remodels the OS TIME landscape, triggering immune heterogeneity and enhancing anti-tumor properties.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yunhua Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Chen R, Chen L, Wang C, Zhu H, Gu L, Li Y, Xiong X, Chen G, Jian Z. CAR-T treatment for cancer: prospects and challenges. Front Oncol 2023; 13:1288383. [PMID: 38115906 PMCID: PMC10728652 DOI: 10.3389/fonc.2023.1288383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy has been widely used in hematological malignancies and has achieved remarkable results, but its long-term efficacy in solid tumors is greatly limited by factors such as the tumor microenvironment (TME). In this paper, we discuss the latest research and future views on CAR-T cell cancer immunotherapy, compare the different characteristics of traditional immunotherapy and CAR-T cell therapy, introduce the latest progress in CAR-T cell immunotherapy, and analyze the obstacles that hinder the efficacy of CAR-T cell therapy, including immunosuppressive factors, metabolic energy deficiency, and physical barriers. We then further discuss the latest therapeutic strategies to overcome these barriers, as well as management decisions regarding the possible safety issues of CAR-T cell therapy, to facilitate solutions to the limited use of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Gu J, Liu X, Ji Z, Shen M, Zhu M, Ren Y, Guo L, Yang K, Liu T, Yi X. Tumor Vascular Destruction and cGAS-STING Activation Induced by Single Drug-Loaded Nano-Micelles for Multiple Synergistic Therapies of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303517. [PMID: 37475514 DOI: 10.1002/smll.202303517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Cancer and its metastasis/recurrence still threaten human health, despite various advanced treatments being employed. It is of great significance to develop simple drug formulations to enhance the efficacy and synergistic integration of various monotherapies. Herein, DMXAA, a vasodestructive agent with cGAS-STING stimulation capacity, is integrated with polyethylene glycol grafted poly (lactic-co-glycolic) acid co-polymer (PLGA-PEG), obtaining PLGA-PEG/DMXAA (PPD) nanoparticles to induce the tumor-specific vascular destruction for multiple synergistic therapies of cancer. PPD could induce the formation of blood clots in the tumor after intravenous injection, which subsequently mediate photothermal therapy and further promote the release of oxygen for enhanced radiotherapy. Meanwhile, the enhanced vascular injury can induce perfect starvation therapy of tumor. More importantly, PPD-mediated therapies could trigger potent systemic anti-tumor immunity via inducing the immunogenic death of tumor cells and activating the cGAS-STING pathway. Together with anti-PD-L1, PPD-mediated therapies could not only remove the primary tumors, but also effectively eliminate the distant tumors, metastasis, and recurrence. Therefore, the modulation of tumor composition induced by a single drug-loaded nano-micelle could be utilized to enhance the therapeutic effect of multiple treatments for synergistic and systemic antitumor response, providing a practical strategy for cancer therapy.
Collapse
Affiliation(s)
- Jingyu Gu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinpei Liu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhongfang Ji
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yuanyuan Ren
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Li Guo
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
19
|
Yang S, Yang X, Li C. Integrated analysis of EREG expression, a gene associated with cervical cancer prognosis. Am J Cancer Res 2023; 13:4644-4660. [PMID: 37970371 PMCID: PMC10636660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 11/17/2023] Open
Abstract
Cervical cancer (CC) is the fourth most gynecological malignancy in the world. The identification of predictive markers can provide a basis for personalized treatment and prognostic evaluation. Our aim was to identify a new predictive marker of epiregulin (EREG) gene and explore its functional characteristics of CC and other cancer types. Differentially highly expressed genes were obtained from Gene Expression Omnibus (GEO) databases. Key genes can be verified by the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) data, and the functions of these genes were investigated through gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Survival analysis were performed to determine the key genes (EREG) related to the prognosis of CC. Then, the expression difference of EREG between tumor and normal tissue was evaluated by real-time polymerase chain reaction (PCR), western blotting, and immunohistochemistry. The relationship between EREG and prognosis of patients, immune microenvironment, immune checkpoint, immune therapy and angiogenesis was discussed in 33 tumor types. Finally, the regulatory mechanism of EREG on human umbilical vein endothelial cells (HUVECs) was also explored. The differential analysis results from multiple databases showed that EREG was significantly highly expressed in CC, which was further verified in Hela and Siha cell lines. Then, Survival analysis revealed that EREG was associated with the prognosis of CC and other tumor types, and high EREG expression was significantly associated with poor prognosis. In addition, in almost all tumor types, the expression of EREG was related to immune cells infiltration, immune checkpoint genes expression and immunotherapy. Further analysis exhibited that high EREG expression can promote the high expression of angiogenesis related genes. The experimental data demonstrated that EREG could promote the proliferative, migration, invasive and tube formation of HUVECs by interacting with receptors, such as epidermal growth factor receptor (EGFR and ERBB4). EREG may be an independent prognostic marker for predicting tumor prognosis and immunotherapy response of various cancers, and may be a potential target of tumor anti-angiogenic therapy in CC.
Collapse
Affiliation(s)
- Shimin Yang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai, China
| | - Xu Yang
- Tongji Hospital of Tongji University School of MedicineShanghai, China
| | - Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai, China
| |
Collapse
|
20
|
Wu X, Zhou Z, Cao Q, Chen Y, Gong J, Zhang Q, Qiang Y, Lu Y, Cao G. Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review. Front Immunol 2023; 14:1268188. [PMID: 37753092 PMCID: PMC10518452 DOI: 10.3389/fimmu.2023.1268188] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive attention in the research of tumor progression. Treg cells have the function of inhibiting the immune effector cells, preventing tissue damage, and suppressing inflammation. Under the stimulation of the tumor inflammatory microenvironment (IM), the reprogramming of Treg cells enhances their suppression of immune responses, ultimately promoting tumor immune escape or tumor progression. Reducing the number of Treg cells in the IM or lowering the activity of Treg cells while preventing their reprogramming, can help promote the body's anti-tumor immune responses. This review introduces a reprogramming mechanism of Treg cells in the IM; and discusses the regulation of Treg cells on tumor progression. The control of Treg cells and the response to Treg inflammatory reprogramming in tumor immunotherapy are analyzed and countermeasures are proposed. This work will provide a foundation for downregulating the immunosuppressive role of Treg in the inflammatory environment in future tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhigang Zhou
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Gong
- School of Public Health, Nanchang University, Qianhu, Nanchang, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Yanfeng Lu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
21
|
Liang Q, Chen J, Hou S, Li D, Zhu Y, Li R, Chen L, Li J, Fu W, Lei S, Zhang B, Zheng X, Zhang T, Duan H, He W, Ren J. Activatable Mn 2+-Armed nanoagonist augments antitumor immunity in colorectal cancer: A NIR-II Photonic neoadjuvant paradigm. Biomaterials 2023; 300:122206. [PMID: 37348325 DOI: 10.1016/j.biomaterials.2023.122206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Postoperative recurrence frequently occurs in patients with colorectal cancer (CRC) due to residual microtumors and host cellular immune dysfunction, leading to major setbacks in clinical outcomes and CRC staging. As an increasingly prevalent therapeutic option for CRC patients, neoadjuvant chemoradiotherapy bears unmet challenges of limited tumor targeting and common side effects of gastrointestinal reaction and radiodermatitis. It is highly desirable to develop neoadjuvant treatment paradigms that impart both tumor-targeting accuracy and protection against recurrence of resectable CRC. Here we report a versatile photo-regulated nanoagonist of plasmonic gold blackbody (AuPB) with a polydopamine (PDA) coating carrying manganese ion (Mn2+) payloads (AuPB@PDA/Mn). When armed with second near-infrared (NIR-II) light, AuPB@PDA/Mn with broad-band localized surface plasmon resonance generates local hyperthermia and discharges Mn2+ ions, which evidently amplify the effects of immunogenic cell death in tumor cells and activate the cyclic GMP-AMP synthase/stimulator of interferon genes pathway in dendritic cells (DCs), hence potentiating the maturation of DC and the secretion of type I interferon in a synergistic way. Matured DCs undertake the task of tumor antigen presentation as the crosstalk to adaptive immunity. As such, the administration of AuPB@PDA/Mn coupled with NIR-II laser irradiation has eminently augmented the infiltration of CD8+ T cells as well as the development of memory CD8+ T cells in colorectal tumor models, substantiating enhanced immunomodulatory efficacy against primary and recurrent CRC. Our strategy highlights the potency of an integrated NIR-II photothermal and immunoregulatory modality by photo-activate delivery of Mn2+ ions, as a neoadjuvant paradigm for presurgical tumor debulking and against postoperative tumor recurrence.
Collapse
Affiliation(s)
- Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Hou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Di Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ying Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Fu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqiong Lei
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Biying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Gu L, Hu G, Hu J, Wen F. Construction and comprehensive analysis of a novel prognostic signature associated with immunogenic cell death molecular subtypes in patients with bladder cancer. Heliyon 2023; 9:e18848. [PMID: 37593621 PMCID: PMC10428052 DOI: 10.1016/j.heliyon.2023.e18848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Background Immunogenic cell death (ICD) triggers adaptive immune responses that aid in anticancer therapy. However, the significance of ICD-associated genes (ICDAGs) in clinical applications and their potential impact on the tumor microenvironment (TME) remains unclear. Methods The TCGA cohort was divided into different ICD clusters using the method of Consensus clustering. We assessed the clinical results and TME features of various ICD clusters. GSVA quantified the activation of hallmark gene sets. To establish an ICD molecular subtypes-related prognostic model (ICDRPM), we performed LASSO Cox regression analysis on the differentially expressed genes (DEGs) among ICD subtypes. We evaluated the assessment of risk groups by analyzing the proportion of immune cells, the TME, differences in genomic mutation, the efficacy of immunotherapy, and drug sensitivity. To enhance the clinical effectiveness of the ICDRPM, a nomograph was developed. Results Two distinct molecular subtypes were identified, and changes in ICDRGs were associated with clinical outcomes and TME characteristics of patients. A total of 1162 differentially expressed genes (DEGs) were obtained from two ICD clusters, and an ICDRPS was then developed to predict overall survival (OS). During both internal and external validation, patients classified as high-risk exhibited significantly poorer overall survival compared to those classified as low-risk. Additionally, the ICDRPS (ICD_score) was identified as an independent prognostic indicator for patients with BC, demonstrating excellent predictive performance. Afterward, we constructed a dependable nomogram to improve the practicality of the ICD_score. Furthermore, low-risk individuals showed stronger immunocyte infiltration, higher immune checkpoint expression, and higher IPS-PD-1 combined IPS-CTLA4 scores, indicating a greater response to immune checkpoint inhibitors (ICIs). Moreover, individuals categorized as having low or high risk exhibited contrasting sensitivity to anticancer medications. Conclusions The model constructed for genes related to ICD provided meaningful clinical implications for immunotherapy, and facilitated individualized treatment for BC patients.
Collapse
Affiliation(s)
- Lei Gu
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| | - Gang Hu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| | - Juan Hu
- Department of Gynecology, Huangshi Traditional Chinese Medicine Hospital, People's Republic of China
| | - Fei Wen
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| |
Collapse
|
23
|
Zhu Q, Liu Z, Cheng X, Liang W, Wang H, Li P, Zhang J, Chen Y, Gao Y, Qian R. ZNF480 influences the prognosis, pathogenesis, and immune microenvironment in patients with lower-grade glioma. Heliyon 2023; 9:e18185. [PMID: 37519705 PMCID: PMC10372659 DOI: 10.1016/j.heliyon.2023.e18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
ZNF480 has not yet attracted attention in the study of malignant tumors. Therefore, this study attempts to explain the significance of ZNF480 in the pathological process of lower-grade gliomas (LGG) based on large-scale samples from public database sources and in vitro experiments. Reverse transcription quantitative real-time polymerase chain reaction and immunohistochemistry confirmed that ZNF480 was highly expressed at both the mRNA and protein levels in LGG. Prognostic correlation analysis confirmed that the high expression of ZNF480, as an independent pathogenic gene, significantly correlates with poor survival in patients. Furthermore, the expression level of ZNF480 was significantly inhibited in SHG-44 cells treated with ademetionine disulfate tosylate. Gene set enrichment analysis showed that ZNF480 exists in multiple tumor-related signaling pathways, including the Notch signaling pathway. Immunological correlation analysis showed that ZNF480 can promote the LGG microenvironment to a high immune state and significantly enhance the infiltration of various immune cells, such as M2 macrophages. Finally, Spearman analysis showed a positive correlation of ZNF480 with many immune checkpoints, such as PD-L1. Overall, this study reveals for the first time the adverse effects of ZNF480 on the prognosis of tumor patients, which expands our understanding of the molecular mechanisms behind the regulation of ZNF480. We believe that the high expression of ZNF480 in LGG may be valuable for molecular targeted therapy or combined immunotherapy.
Collapse
Affiliation(s)
- Qingyun Zhu
- People's Hospital of Henan University, Henan Provincial People's Hospital, Microbiome Laboratory, Zhengzhou 450003, Henan Province, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou 450003, Henan Province, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou 450003, Henan Province, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Microbiome Laboratory, Zhengzhou 450003, Henan Province, China
| | - Hongbo Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou 450003, Henan Province, China
| | - Jiangfen Zhang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou 450003, Henan Province, China
| | - Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou 450003, Henan Province, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
24
|
Chen P, He X, Hu Y, Tian XL, Yu XQ, Zhang J. Spleen-Targeted mRNA Delivery by Amphiphilic Carbon Dots for Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19937-19950. [PMID: 37052212 DOI: 10.1021/acsami.3c00494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, the application of mRNA vaccine-based tumor immunotherapy invigorated anti-tumor therapy. However, the low efficiency of mRNA delivery and the lack of targeting ability in vivo are the major obstacles to achieving highly efficient immunotherapy. In this work, we report a chemical library of amphiphilic carbon dots (ACDs) and the synthesized ACDs were applied to mRNA delivery, bio-imaging, and tumor immunotherapy. The ACDs can smoothly bind with mRNA to form ACDs@mRNA nanocomplexes, and the fluorescent properties of the ACDs afforded the nanoparticles with bio-imaging ability. By screening of the ACDs, O12-Tta-CDs were found to have optimal mRNA transfection efficiency and the ability of spleen-targeted delivery. In addition, O12-Tta-CDs can well transfect the immune cells and promote the maturation and antigen presentation of bone marrow-derived dendritic cells (BMDCs). Furthermore, O12-Tta-CDs@OVA-mRNA was successfully applied to inhibit tumor growth, and more specific T-cell infiltration was observed in spleen and tumors of mice after treatment in the E.G7-OVA tumor model. Besides, O12-Tta-CDs@OVA-mRNA also achieved a good therapeutic effect in tumor recurrence inhibition and tumor prophylactic experiments. This study provided a new direction for the design of mRNA vectors, which is promising in tumor immunotherapy.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xi He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yue Hu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao-Li Tian
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
25
|
Han XY, Li X, Zhao RY, Ma HZ, Yu M, Niu XD, Jin HJ, Wang YF, Liu DM, Cai H. Comprehensive analysis of prognostic value and immunotherapy prospect of brain cytoplasmic RNA1 in hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:644-664. [PMID: 37123057 PMCID: PMC10134208 DOI: 10.4251/wjgo.v15.i4.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The expression of brain cytoplasmic RNA1 (BCYRN1) is linked to the clinicopathology and prognosis of several types of cancers, among which hepatocellular carcinoma (HCC) is one of the most frequent types of cancer worldwide.
AIM To explore the prognostic value and immunotherapeutic potential of BCYRN1 in HCC by bioinformatics and meta-analysis.
METHODS Information was obtained from the Cancer Genome Atlas database. First, the correlation between BCYRN1 expression and prognosis and clinicopathologic characteristics of HCC patients was explored. Univariate and multivariate regression analyses were employed to examine the relationship between BCYRN1 and HCC prognosis. Secondly, potential functions and pathways were explored by means of enrichment analysis of differentially-expressed genes. The relationships between BCYRN1 expression and tumor microenvironment, immune cell infiltration, immune checkpoint, drug sensitivity and immunotherapy effect were also investigated. Finally, three major databases were searched and used to conduct a meta-analysis on the relationship between BCYRN1 expression and patient prognosis.
RESULTS BCYRN1 expression was significantly higher in HCC compared to normal tissues and was linked to a poor prognosis and clinicopathological characteristics. Enrichment analysis showed that BCYRN1 regulates the extracellular matrix and transmission of signaling molecules, participates in the metabolism of nutrients, such as proteins, and participates in tumor-related pathways. BCYRN1 expression was linked to the tumor microenvironment, immune cell infiltration, drug sensitivity and the efficacy of immunotherapy. Furthermore, the meta-analysis in this study showed that BCYRN1 overexpression was related to a worse outcome in HCC patients.
CONCLUSION Overexpression of BCYRN1 relates to poor prognosis and may be a potential prognostic factor and immunotherapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Yong Han
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiong Li
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Rang-Yin Zhao
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hai-Zhong Ma
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Miao Yu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiang-Dong Niu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hao-Jie Jin
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yong-Feng Wang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - De-Ming Liu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
26
|
Huang F, Zhang Q, Xiao J, Zhang X, Han X, Shi X, Hu J, Li L, Qian X. Cancer Cell Membrane-Coated Gambogic Acid Nanoparticles for Effective Anticancer Vaccination by Activating Dendritic Cells. Int J Nanomedicine 2023; 18:2261-2273. [PMID: 37159807 PMCID: PMC10163893 DOI: 10.2147/ijn.s408521] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose Recent studies have shown that traditional Chinese medicine (TCM), such as gambogic acid (GA), is involved in the regulation of tumor immune microenvironment and can be combined with other anti-tumor treatment strategies. Here, we used GA as an adjuvant to construct a nano-vaccine to improve the anti-tumor immune response of colorectal cancer (CRC). Materials and Methods We used a previously reported two-step emulsification method to obtain poly (lactic-co-glycolic acid) /GA nanoparticles (PLGA/GA NPs), and then CT26 colon cancer cell membrane (CCM) was used to obtain CCM-PLGA/GA NPs. This novel nano-vaccine, CCM-PLGA/GA NPs, was co-synthesized with GA as an adjuvant and neoantigen provided by CT26 CCM. We further confirmed the stability, tumor targeting, and cytotoxicity of CCM-PLGA/GA NPs. The regulatory effect on the tumor immune microenvironment, the anti-tumor efficacy, and the combined anti-tumor efficacy with anti-PD-1 monoclonal Antibodies (mAbs) of this novel nano-vaccine was also detected in vivo. Results We successfully constructed the CCM-PLGA/GA NPs. In vitro and in vivo tests showed low biological toxicity, as well as the high tumor-targeting ability of the CCM-PLGA/GA NPs. Besides, we revealed a remarkable effect of CCM-PLGA/GA NPs to activate the maturation of dendritic cells (DCs) and the formation of a positive anti-tumor immune microenvironment. Conclusion This novel nano-vaccine constructed with GA as the adjuvant and CCM providing the tumor antigen can not only directly kill tumors by enhancing the ability of GA to target tumors, but also indirectly kill tumors by regulating tumor immune microenvironment, providing a new strategy for immunotherapy of CRC.
Collapse
Affiliation(s)
- Fengli Huang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qun Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Jie Xiao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Xin Zhang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xingzhi Han
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Xiao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Li Li
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
- Correspondence: Xiaoping Qian, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People’s Republic of China, Tel +86-13951743162, Fax +86-25-68182342, Email
| |
Collapse
|
27
|
Fang Y, Tang W, Zhao D, Zhang X, Li N, Yang Y, Jin L, Li Z, Wei B, Miao Y, Zeng Z, Huang H. Immunological function and prognostic value of lymphoid-specific helicase in liver hepatocellular carcinoma. Cancer Biomark 2023; 38:225-239. [PMID: 37545225 DOI: 10.3233/cbm-230073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Lymphoid-specific helicase (HELLS), a SNF2-like chromatin-remodeling enzyme, plays a key role in tumor progression via its DNA methylation function. However, the effects of HELLS on immune infiltration and prognosis in liver hepatocellular carcinoma (LIHC) remain uncertain. METHODS The Tumor Immune Estimation Resource (TIMER) database was employed to explore the pan-cancer mRNA expression of HELLS and its correlation with immunity. GEPIA2 was used to verify the correlation between HELLS expression and survival. The role of HELLS in cancer was explored via gene set enrichment analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) and the construction of gene-gene and protein-protein interaction networks (PPI). Additionally, correlations between DNA methylation, HELLS expression, and immune-related genes were explored in LIHC. HELLS expression in LIHC clinical samples was determined using qRT-PCR and western blotting. The effects of downregulated HELLS expression in hepatocellular carcinoma cells was explored via transfection experiments in vitro. RESULTS High HELLS mRNA expression was identified in several cancers and was significantly associated with poorer prognosis in LIHC. Furthermore, HELLS expression was positively correlated with tumor-infiltrating lymphocytes and immune checkpoint genes in LIHC. Bioinformatics analysis suggested that DNA methylation of HELLS may be associated with the immune response. Results from the TCGA-LIHC dataset, clinical samples, and functional analysis indicated that HELLS contributed to tumor progression in LIHC. CONCLUSION The study findings demonstrate that HELLS is an important factor in promoting LIHC malignancy and might serve as a potential biomarker for LIHC.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zhao
- Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People's Hospital, Baoshang, Yunnan, China
| | - Li Jin
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhitao Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Benkai Wei
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Yunnan, China
| | - Zhong Zeng
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hanfei Huang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
28
|
Chang K, Xu F, Zhang X, Zeng B, Zhang W, Shi G, Ye D. Construction of an Immune Escape-Related Signature in Clear Cell Renal Cell Carcinoma and Identification of the Relationship between IFNAR1 and Immune Infiltration by Multiple Immunohistochemistry. Cancers (Basel) 2022; 15:169. [PMID: 36612165 PMCID: PMC9818644 DOI: 10.3390/cancers15010169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In the past decade, immunotherapy has been widely used in the treatment of various tumors, such as PD-1/PD-L1 inhibitors. Although clear cell renal cell carcinoma (ccRCC) has been shown to be sensitive to immunotherapy, it is effective only in several cases, which brings great obstacles to anti-tumor therapy for patients. Lawson et al. have successfully identified 182 "core cancer innate immune escape genes" whose deletion makes cancer cells more sensitive or resistant to T-cell attack. METHODS In this research, we sought to explore genes closely associated with ccRCC among the 182 core cancer innate immune escape genes. We used online databases to screen mutated genes in ccRCC, and then used ConsensusClusterPlus to cluster clinical samples to analyze differences in clinical prognosis and immune components between the two subgroups. In addition, the immune escape score was calculated using lasso cox regression, and a stable tumor immune escape-related nomogram was established to predict the overall survival of patients. RESULTS Higher immune escape score was significantly correlated with shorter survival time. Meanwhile, through the validation of the external cohort and the correlation analysis of the immune microenvironment, we proved that IFNAR1 is the key gene regulating immune escape in ccRCC, and we also found that the function of IFNAR1 in promoting immune activation is achieved by facilitating the infiltration of CD4+ T cells and CD8+ T cells. IFNAR1 regulates the malignant behavior of ccRCC by inhibiting the proliferation and migration properties. CONCLUSIONS IFNAR1 may become a key biomarker for evaluating the efficacy of ccRCC immunotherapy and may also be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuanzhi Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bohan Zeng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Analysis of Circulating Immune Subsets in Primary Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14246105. [PMID: 36551592 PMCID: PMC9776578 DOI: 10.3390/cancers14246105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) are known to be affected by the interplay between tumor and immune cells. However, the impact of CRC cells on the systemic immunity has yet to be elucidated. We aimed to comprehensively evaluate the circulating immune subsets and transcriptional profiles of CRC patients. In contrast to healthy controls (HCs), CRC patients had a lower percentage of B and T lymphocytes, T helper (Th) cells, non-classical monocytes, dendritic cells, and a higher proportion of polymorphonuclear myeloid-derived suppressor cells, as well as a reduced expression of CD69 on NK cells. Therefore, CRC patients exhibit a more evident systemic immune suppression than HCs. A diagnostic model integrating seven immune subsets was constructed to distinguish CRC patients from HCs with an AUC of 1.000. Moreover, NR3C2, CAMK4, and TRAT1 were identified as candidate genes regulating the number of Th cells in CRC patients. The altered composition of circulating immune cells in CRC could complement the regional immune status of the tumor microenvironment and contribute to the discovery of immune-related biomarkers for the diagnosis of CRC.
Collapse
|
30
|
Deng J, Xu W, Lei S, Li W, Li Q, Li K, Lyu J, Wang J, Wang Z. Activated Natural Killer Cells-Dependent Dendritic Cells Recruitment and Maturation by Responsive Nanogels for Targeting Pancreatic Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203114. [PMID: 36148846 DOI: 10.1002/smll.202203114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Although enormous success has been obtained for dendritic cells (DCs)-mediated antigen-specific T cells anticancer immunotherapy in the clinic, it still faces major challenging problems: insufficient DCs in tumor tissue and low response rate for tumor cells lacking antigen expression, especially in low immunogenic tumors such as pancreatic cancer. Here, these challenges are tackled through tumor microenvironment responsive nanogels with prominent tumor-targeting capability by Panc02 cell membranes coating and inhibition of tumor-derived prostaglandin E2 (PGE2), aimed at improving natural killer (NK) cells activation and inducing activated NK cells-dependent DCs recruitment. The engineered nanogels can on-demand release acetaminophen to inhibit PGE2 secretion, thus promoting the activity of NK cells for non-antigen-specific tumor elimination. Furthermore, activated NK cells can secrete chemokines as CC motif chemokine ligand 5 and X-C motif chemokine ligand 1 to recruit immature DCs, and then promote DCs maturation and induce antigen-dependent CD8+ T cells proliferation for enhancing antigen-specific immunotherapy. Notably, these responsive nanogels show excellent therapeutic effect on Panc02 pancreatic tumor growth and postsurgical recurrence, especially combination of the programmed cell death-ligand 1 checkpoint-blockade immunotherapy. Therefore, this study provides a simple strategy for enhancing low immunogenic tumors immunotherapy through an antigen-independent way and antigen-dependent way synergetically.
Collapse
Affiliation(s)
- Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Weide Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siyun Lei
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wanyu Li
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qinghua Li
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Kaiqiang Li
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Zhen Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
31
|
Schirrmacher V, van Gool S, Stuecker W. Counteracting Immunosuppression in the Tumor Microenvironment by Oncolytic Newcastle Disease Virus and Cellular Immunotherapy. Int J Mol Sci 2022; 23:13050. [PMID: 36361831 PMCID: PMC9655431 DOI: 10.3390/ijms232113050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 10/24/2023] Open
Abstract
An apparent paradox exists between the evidence for spontaneous systemic T cell- mediated anti-tumor immune responses in cancer patients, observed particularly in their bone marrow, and local tumor growth in the periphery. This phenomenon, known as "concomitant immunity" suggests that the local tumor and its tumor microenvironment (TME) prevent systemic antitumor immunity to become effective. Oncolytic Newcastle disease virus (NDV), an agent with inherent anti-neoplastic and immune stimulatory properties, is capable of breaking therapy resistance and immunosuppression. This review updates latest information about immunosuppression by the TME and discusses mechanisms of how oncolytic viruses, in particular NDV, and cellular immunotherapy can counteract the immunosuppressive effect of the TME. With regard to cellular immunotherapy, the review presents pre-clinical studies of post-operative active-specific immunotherapy and of adoptive T cell-mediated therapy in immunocompetent mice. Memory T cell (MTC) transfer in tumor challenged T cell-deficient nu/nu mice demonstrates longevity and functionality of these cells. Graft-versus-leukemia (GvL) studies in mice demonstrate complete remission of late-stage disease including metastases and cachexia. T cell based immunotherapy studies with human cells in human tumor xenotransplanted NOD/SCID mice demonstrate superiority of bone marrow-derived as compared to blood-derived MTCs. Results from clinical studies presented include vaccination studies using two different types of NDV-modified cancer vaccine and a pilot adoptive T-cell mediated therapy study using re-activated bone marrow-derived cancer-reactive MTCs. As an example for what can be expected from clinical immunotherapy against tumors with an immunosuppressive TME, results from vaccination studies are presented from the aggressive brain tumor glioblastoma multiforme. The last decades of basic research in virology, oncology and immunology can be considered as a success story. Based on discoveries of these research areas, translational research and clinical studies have changed the way of treatment of cancer by introducing and including immunotherapy.
Collapse
|
32
|
Yang J, Ye H, Fan X, Li Y, Wu X, Zhao M, Hu Q, Ye Y, Wu L, Li Z, Zhang X, Liang C, Wang Y, Xu Y, Li Q, Yao S, You D, Zhao K, Liu Z. Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer. J Transl Med 2022; 20:451. [PMID: 36195956 PMCID: PMC9533523 DOI: 10.1186/s12967-022-03666-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We proposed an artificial intelligence-based immune index, Deep-immune score, quantifying the infiltration of immune cells interacting with the tumor stroma in hematoxylin and eosin-stained whole-slide images of colorectal cancer. METHODS A total of 1010 colorectal cancer patients from three centers were enrolled in this retrospective study, divided into a primary (N = 544) and a validation cohort (N = 466). We proposed the Deep-immune score, which reflected both tumor stroma proportion and the infiltration of immune cells in the stroma region. We further analyzed the correlation between the score and CD3+ T cells density in the stroma region using immunohistochemistry-stained whole-slide images. Survival analysis was performed using the Cox proportional hazard model, and the endpoint of the event was the overall survival. RESULT Patients were classified into 4-level score groups (score 1-4). A high Deep-immune score was associated with a high level of CD3+ T cells infiltration in the stroma region. In the primary cohort, survival analysis showed a significant difference in 5-year survival rates between score 4 and score 1 groups: 87.4% vs. 58.2% (Hazard ratio for score 4 vs. score 1 0.27, 95% confidence interval 0.15-0.48, P < 0.001). Similar trends were observed in the validation cohort (89.8% vs. 67.0%; 0.31, 0.15-0.62, < 0.001). Stratified analysis showed that the Deep-immune score could distinguish high-risk and low-risk patients in stage II colorectal cancer (P = 0.018). CONCLUSION The proposed Deep-immune score quantified by artificial intelligence can reflect the immune status of patients with colorectal cancer and is associate with favorable survival. This digital pathology-based finding might advocate change in risk stratification and consequent precision medicine.
Collapse
Affiliation(s)
- Jing Yang
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huifen Ye
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yajun Li
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaomei Wu
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minning Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qingru Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yunrui Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lin Wu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhenhui Li
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changhong Liang
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yingyi Wang
- Department of Radiology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, China
| | - Yao Xu
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Dingyun You
- School of Public Health, Kunming Medical University, 191 West Renmin Road, Kunming, 650500, China.
| | - Ke Zhao
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China.
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zaiyi Liu
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, China.
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Tian R, Sun Y, Han X, Wang J, Gu H, Wang W, Liang L. Identification and validation of prognostic autophagy-related genes associated with immune microenvironment in human gastric cancer. Aging (Albany NY) 2022; 14:7617-7634. [PMID: 36173625 PMCID: PMC9550254 DOI: 10.18632/aging.204313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Autophagy-related genes (ATGs) play critical roles in tumorigenesis and progression in gastric cancer (GC). The present study aimed to identify immune-based prognostic ATGs and verify their functions in tumor immune microenvironment (TIME) in GC. Macrophage infiltration was found to negatively correlate with prognosis in GC patients. After stratifying by infiltration levels of macrophages, we screened The Cancer Genome Atlas and Human Autophagy Database to identify the differentially expressed ATGs (DE-ATGs). Of 1,433 differentially expressed genes between the two groups, seven genes qualified as DE-ATGs. Of these, CXCR4, DLC1, and MAP1LC3C, exhibited strong prognostic prediction ability in Kaplan-Meier survival–log-rank test. High expression of these genes correlated with increased occurrence of advanced grade 3 tumors and poor prognoses. Furthermore, GSEA indicated that they were significantly associated with oncogenic and immune-related pathways. The comprehensive evaluation of TIME via GEPIA, ESTIMATE, CIBERSORT, and TIMER suggested that the three DE-ATGs were closely associated with immune condition, both in terms of immune cells and immune scores. Thus, the outcome of this study may aid in better understanding of the ATGs and their interaction with the immune microenvironment, which would allow the development of novel inhibitors, personalized treatment, and immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ruyue Tian
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Ya Sun
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Xuedi Han
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Jiajun Wang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Hongli Gu
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Wenhai Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Lei Liang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| |
Collapse
|
34
|
Chen X, Chen DR, Liu H, Yang L, Zhang Y, Bu LL, Sun ZJ, Cai L. Local delivery of gambogic acid to improve anti-tumor immunity against oral squamous cell carcinoma. J Control Release 2022; 351:381-393. [PMID: 36096364 DOI: 10.1016/j.jconrel.2022.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for nearly 90% of oral cavity malignancies. However, despite significant advances in the last four decades, little improvement has been achieved in the overall survival rates for OSCC patients. While gambogic acid (GA) is a potential candidate compound for treating a variety of malignancies, its anti-cancer impact on OSCC has not to be completely investigated. The tumor immune microenvironment (TIME) has been proven to play a crucial role in the prognosis of cancer patients. Although there are few reports on the T cell activation effect of GA, the regulation of GA on the TIME of OSCC has barely been studied yet. In this study, GA was applied to treat OSCC-bearing mice through in situ controlled release. First, GA-loaded mPEG2000-PCL micelles (GA-MIC) were prepared by the thin-film hydration method to improve the aqueous dispersibility of GA. Second, poly(D, l-lactide)-poly(ethylene glycol)-poly(D, l-lactide) (PLEL) was synthesized for thermosensitive hydrogel preparation. Third, GA-MIC was mixed with PLEL to form an injectable therapeutic hydrogel (GA-MIC-GEL). The anti-tumor and TIME regulation effects of GA-MIC-GEL on tumor-bearing mice were further examined. The results showed that the thermosensitive GA-MIC-GEL with sensitive sol-gel transition characteristics could form hydrogel at 37 °C within 24 s, facilitating the local delivery and sustained GA release. Biochemical, hematological, and pathological analysis proved that GA-MIC-GEL has good biological safety. Moreover, GA-MIC-GEL promoted an obvious regression of both primary and distant tumors on the OSCC mouse models. Mechanically, GA-MIC-GEL down-regulated the expression of PD-1, increased the frequency of cytotoxic T cells and reduced the immunosuppressive cellular components, which boosted the anti-tumor immunity of OSCC-bearing mice. The constructed thermosensitive hydrogel for local delivery of GA has provided a safe and effective strategy with great potential for OSCC therapy.
Collapse
Affiliation(s)
- Xinmian Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - De-Run Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yutao Zhang
- Department of Pathology, The First People's Hospital of Zigong, Zigong 643000, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
35
|
Hassanian H, Asadzadeh Z, Baghbanzadeh A, Derakhshani A, Dufour A, Rostami Khosroshahi N, Najafi S, Brunetti O, Silvestris N, Baradaran B. The expression pattern of Immune checkpoints after chemo/radiotherapy in the tumor microenvironment. Front Immunol 2022; 13:938063. [PMID: 35967381 PMCID: PMC9367471 DOI: 10.3389/fimmu.2022.938063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
As a disease with the highest disease-associated burden worldwide, cancer has been the main subject of a considerable proportion of medical research in recent years, intending to find more effective therapeutic approaches with fewer side effects. Combining conventional methods with newer biologically based treatments such as immunotherapy can be a promising approach to treating different tumors. The concept of "cancer immunoediting" that occurs in the field of the tumor microenvironment (TME) is the aspect of cancer therapy that has not been at the center of attention. One group of the role players of the so-called immunoediting process are the immune checkpoint molecules that exert either co-stimulatory or co-inhibitory effects in the anti-tumor immunity of the host. It involves alterations in a wide variety of immunologic pathways. Recent studies have proven that conventional cancer therapies, such as chemotherapy, radiotherapy, or a combination of them, i.e., chemoradiotherapy, alter the "immune compartment" of the TME. The mentioned changes encompass a wide range of variations, including the changes in the density and immunologic type of the tumor-infiltrating lymphocytes (TILs) and the alterations in the expression patterns of the different immune checkpoints. These rearrangements can have either anti-tumor immunity empowering or immune attenuating sequels. Thus, recognizing the consequences of various chemo(radio)therapeutic regimens in the TME seems to be of great significance in the evolution of therapeutic approaches. Therefore, the present review intends to summarize how chemo(radio)therapy affects the TME and specifically some of the most important, well-known immune checkpoints' expressions according to the recent studies in this field.
Collapse
Affiliation(s)
- Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi” University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Hu W, Liu D, Li R, Qian H, Qiu W, Ye Q, Kong F. Comprehensive Analysis of TRIM Family Genes in Hepatitis Virus B-Related Hepatoma Carcinoma. Front Genet 2022; 13:913743. [PMID: 35873464 PMCID: PMC9301387 DOI: 10.3389/fgene.2022.913743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background: As significant components of E3 ligases, the tripartite motif (TRIM) proteins participate in various biological processes and facilitate the development of several diseases. Nevertheless, the correlations of TIRMs with hepatitis B virus (HBV)-positive hepatoma carcinoma (HCC) are not well elaborated. Methods: The expression profile of TRIM genes in HBV-associated HCC and related clinical information were extracted from the Cancer Genome Atla (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Dependent on the ConsensusPathDB and STRING databases, the gene ontology, Reactome pathways, and protein-protein interaction were assessed. Relied on TIMER 2.0 database, the relationship of the TRIMs with immune infiltration was investigated. Using multivariate analysis and Kaplan Meier analysis, the association between TRIM genes and the prognostic value was examined. Results: A total of 17 TRIM genes, including TRIM16, TRIM17, and TRIM31 with fold change no less than 1.5, were discovered to upregulate in HBV-associated HCC in both TCGA and ICGC cohorts. Relied on gene enrichment analysis, the identified TRIMs were observed to not only be related to the interferon and cytokine signaling but also linked to the adaptive immune system. Particularly, the co-expression patterns of identified TRIMs with other E3 ligase genes and many innate immune genes that are associated with Toll-like receptor signaling, apoptosis, and SUMOylation. Besides, some of identified TRIM expressions were also linked to the infiltration levels of T cells and B cells. Additionally, several TRIM genes were associated with various clinical factors and relevant to the poor survival of HBV-associated HCC. Conclusion: Our findings could deepen our understanding of TRIMs and their correlations with HBV-associated HCC. Furthermore, some of these TRIMs may be utilized as new prognostic markers of HBV-related HCC prognosis, or act as potential molecular targets for the disease.
Collapse
Affiliation(s)
- Wei Hu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Dongsheng Liu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Renjie Li
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Hong Qian
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei Qiu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qingwang Ye
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Fanyun Kong,
| |
Collapse
|
37
|
Turning a Targeting β-Catenin/Bcl9 Peptide Inhibitor into a GdOF@Au Core/Shell Nanoflower for Enhancing Immune Response to Cancer Therapy in Combination with Immune Checkpoint Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14061306. [PMID: 35745877 PMCID: PMC9228893 DOI: 10.3390/pharmaceutics14061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Combination administration is becoming a popular strategy in current cancer immunotherapy to enhance tumor response to ICIs. Recently, a peptide drug, a protein–protein interaction inhibitor (PPI), that disrupts the β-catenin/Bcl9 interaction in the tumoral Wnt/β-catenin pathway has become a promising candidate drug for immune enhancement and tumor growth inhibition. However, the peptide usually suffers from poor cell membrane permeability and proteolytic degradation, limiting its adequate accumulation in tumors and ultimately leading to side effects. Herein, a gadolinium–gold-based core/shell nanostructure drug delivery system was established, where Bcl9 was incorporated into a gadolinium–gold core–shell nanostructure and formed GdOFBAu via mercaptogenic self-assembly. After construction, GdOFBAu, when combined with anti-PD1 antibodies, could effectively inhibit tumor growth and enhance the response to immune therapy in MC38 tumor-bearing mice; it not only induced the apoptosis of cancer cells, but also promoted the tumor infiltration of Teff cells (CD8+) and decreased Treg cells (CD25+). More importantly, GdOFBAu maintained good biosafety and biocompatibility during treatment. Taken together, this study may offer a promising opportunity for sensitizing cancer immunotherapy via metal–peptide self-assembling nanostructured material with high effectiveness and safety.
Collapse
|
38
|
Wang W, Guo MN, Li N, Pang DQ, Wu JH. Glutamine deprivation impairs function of infiltrating CD8 + T cells in hepatocellular carcinoma by inducing mitochondrial damage and apoptosis. World J Gastrointest Oncol 2022; 14:1124-1140. [PMID: 35949216 PMCID: PMC9244988 DOI: 10.4251/wjgo.v14.i6.1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The functions of infiltrating CD8+ T cells are often impaired due to tumor cells causing nutrient deprivation in the tumor microenvironment. Thus, the mechanisms of CD8+ T cell dysfunction have become a hot research topic, and there is increased interest on how changes in metabolomics correlate with CD8+ T cell dysfunction.
AIM To investigate whether and how glutamine metabolism affects the function of infiltrating CD8+ T cells in hepatocellular carcinoma.
METHODS Immunohistochemical staining and immunofluorescence were performed on surgically resected liver tissues from patients. Differentially expressed genes in infiltrating CD8+ T cells in hepatocellular carcinoma were detected using RNA sequencing. Activated CD8+ T cells were co-cultured with Huh-7 cells for 3 d. The function and mitochondrial status of CD8+ T cells were analyzed by flow cytometry, quantitative real-time polymerase chain reaction, and transmission electron microscopy. Next, CD8+ T cells were treated with the mitochondrial protective and damaging agents. Functional alterations in CD8+ T cells were detected by flow cytometry. Then, complete medium without glutamine was used to culture cells and their functional changes and mitochondrial status were detected.
RESULTS There were a large number of infiltrating PD-1+CD8+ T cells in liver cancer tissues. Next, we co-cultured CD8+ T cells and Huh-7 cells to explore the regulatory effect of hepatoma cells on CD8+ T cells. Flow cytometry results revealed increased PD-1 expression and decreased secretion of perforin (PRF1) and granzyme B (GZMB) by CD8+ T cells in the co-culture group. Meanwhile, JC-1 staining was decreased and the levels of reactive oxygen species and apoptosis were increased in CD8+ T cells of the co-culture group; additionally, the mitochondria of these cells were swollen. When CD8+ T cells were treated with the mitochondrial protective and damaging agents, their function was restored and inhibited, respectively, through the mitochondrial damage and apoptotic pathways. Subsequently, complete medium without glutamine was used to culture cells. As expected, CD8+ T cells showed functional downregulation, mitochondrial damage, and apoptosis.
CONCLUSION Glutamine deprivation impairs the function of infiltrating CD8+ T cells in hepatocellular carcinoma through the mitochondrial damage and apoptotic pathways.
Collapse
Affiliation(s)
- Wei Wang
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Meng-Nan Guo
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Ning Li
- Department of Laboratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - De-Quan Pang
- Department of Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Jing-Hua Wu
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
39
|
Ren F, Zhang Y, Qin Y, Shang J, Wang Y, Wei P, Guo J, Jia H, Zhao T. Taraxasterol prompted the anti-tumor effect in mice burden hepatocellular carcinoma by regulating T lymphocytes. Cell Death Dis 2022; 8:264. [PMID: 35577774 PMCID: PMC9110731 DOI: 10.1038/s41420-022-01059-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive malignant tumor with high morbidity and mortality worldwide, however, the treatment of HCC and prognosis of patients are not optimistic, finding more effective treatments are imperative. Taraxacum officinale (L.) Weber ex F.H.Wigg is a perennial herb of compositae, and our study has demonstrated that Taraxacum officinale polysaccharide has certain anti-tumor effect on HCC cells. Taraxasterol (TS) is a natural product extracted from Taraxacum officinale with strong physiological, pharmacological and biological activities, but the effect of TS on HCC is yet to be determined. Therefore, the aim of this study is to explore the effect of dandelion sterol on HCC in vivo and in vitro. The results showed that TS significantly inhibited the proliferation, induced apoptosis and blocked cell cycle in HCC cell lines HepG2 and Huh7 cells in vitro. TS inhibited the tumor growth of H22 bearing mice and the expression of Ki67 in vivo. More importantly, TS regulated the immunity of H22 bearing mice by elevating the ratio of CD4+ T cells in spleen, and increasing the number of T cell infiltration in tumor tissue. Except immunomodulation, the mechanism of tumor growth inhibition may be related to the regulation of apoptosis related proteins and IL-6/STAT3 pathway. TS significantly inhibited the growth of HCC cells both in vitro and in vivo. The study would provide a theoretical basis for the new application of TS and the adjuvant treatment of malignant tumor with traditional Chinese medicine. ![]()
Collapse
Affiliation(s)
- Feng Ren
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yu Zhang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yuanhua Qin
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Jingli Shang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yanling Wang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Pengkun Wei
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Department of Immunology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Jiaming Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China. .,Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.
| | - Tiesuo Zhao
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China. .,Department of Immunology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.
| |
Collapse
|
40
|
Identification and Validation of a Gene Signature for Lower-Grade Gliomas Based on Pyroptosis-Related Genes to Predict Survival and Response to Immune Checkpoint Inhibitors. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8704127. [PMID: 35535221 PMCID: PMC9078805 DOI: 10.1155/2022/8704127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023]
Abstract
Pyroptosis plays a critical role in the immune response to immune checkpoint inhibitors (ICIs) by mediating the tumor immune microenvironment. However, the impact of pyroptosis-related biomarkers on the prognosis and efficacy of ICIs in patients with lower-grade gliomas (LGGs) is unclear. An unsupervised clustering analysis identified pyroptosis-related subtypes (PRSs) based on the expression profile of 47 pyroptosis-related genes in The Cancer Genome Atlas-LGG cohort. A PRS gene signature was established using univariate Cox regression, random survival forest, least absolute shrinkage and selection operator, and stepwise multivariable Cox regression analyses. The predictive power of this signature was validated in the Chinese Glioma Genome Atlas database. We also investigated the differences between high- and low-risk groups in terms of the tumor immune microenvironment, tumor mutation, and response to target therapy and ICIs. The PRS gene signature comprised eight PRS genes, which independently predicted the prognosis of LGG patients. High-risk patients had a worse overall survival than did the low-risk patients. The high-risk group also displayed a higher proportion of M1 macrophages and CD8+ T cells and higher immune scores, tumor mutational burden, immunophenoscore, IMmuno-PREdictive Score, MHC I association immune score, and T cell-inflamed gene expression profile scores, but lower suppressor cells scores, and were more suitable candidates for ICI treatment. Higher risk scores were more frequent in patients who responded to ICIs using data from the ImmuCellAI website. The presently established PRS gene signature can be validated in melanoma patients treated with real ICI treatment. This signature is valuable in predicting prognosis and ICI treatment of LGG patients, pending further prospective verification.
Collapse
|
41
|
Xing J, Chen M, Han Y. Multiple datasets to explore the tumor microenvironment of cutaneous squamous cell carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5905-5924. [PMID: 35603384 DOI: 10.3934/mbe.2022276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most frequent types of cutaneous cancer. The composition and heterogeneity of the tumor microenvironment significantly impact patient prognosis and the ability to practice precision therapy. However, no research has been conducted to examine the design of the tumor microenvironment and its interactions with cSCC. MATERIAL AND METHODS We retrieved the datasets GSE42677 and GSE45164 from the GEO public database, integrated them, and analyzed them using the SVA method. We then screened the core genes using the WGCNA network and LASSO regression and checked the model's stability using the ROC curve. Finally, we performed enrichment and correlation analyses on the core genes. RESULTS We identified four genes as core cSCC genes: DTYMK, CDCA8, PTTG1 and MAD2L1, and discovered that RORA, RORB and RORC were the primary regulators in the gene set. The GO semantic similarity analysis results indicated that CDCA8 and PTTG1 were the two most essential genes among the four core genes. The results of correlation analysis demonstrated that PTTG1 and HLA-DMA, CDCA8 and HLA-DQB2 were significantly correlated. CONCLUSIONS Examining the expression levels of four primary genes in cSCC aids in our understanding of the disease's pathophysiology. Additionally, the core genes were found to be highly related with immune regulatory genes, suggesting novel avenues for cSCC prevention and treatment.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Muzi Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
42
|
KIF26B in the Prognosis and Immune Biomarking of Various Cancers: A Pan-Cancer Study. JOURNAL OF ONCOLOGY 2022; 2022:4829697. [PMID: 35359341 PMCID: PMC8964195 DOI: 10.1155/2022/4829697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
KIF26B has been identified as an oncogene in several tumors; however, its utility as a prognostic indicator for various cancers has not yet been comprehensively evaluated. Here, we first examined how KIF26B intervenes in thirty-three cancers within the TCGA database, including potential immunological functions, and how it affects the prognosis. Based on the open databases TCGA, TIMER2, GEPIA2, GTEx, CPTAC, and HPA, we found that, when compared with normal tissues, KIF26B is overexpressed in 22 tumor tissues. Following a survival analysis, a relationship between the expression of KIF26B and the prognosis of various cancers was observed. Among the genetic alterations assessed, mutations were the most frequent. On the contrary, high phosphorylation levels of S977 were detected in breast cancer, KIRC, LUAD, and UCEC. We also found positive or negative correlations between KIF26B and the immune infiltration of endothelial cells and cancer-associated fibroblast infiltration. This could imply that patients may benefit from immunotherapy. Finally, KEGG pathways and GO enrichment analyses were implemented to identify the molecular mechanisms of KIF26B. This study illustrates the function of KIF26B from a pan-cancer perspective and offers a new horizon for cancer prognostic and immunotherapeutic investigations.
Collapse
|