1
|
Zhou H, Fu F, Huang R, Yu Q, Yan S, Lu J, Guo F, Ma C, Chen H, Liu L, Zhang Y, Jing X, Li F, Chen G, Li L, Lei T, Deng Q, Mei S, Chen C, Han J, Li R, Liao C. Prenatal Exome Sequencing for Fetal Macrocephaly: A Large Prospective Observational Cohort Study. Prenat Diagn 2025. [PMID: 40404351 DOI: 10.1002/pd.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVE To assess the diagnostic utility of exome sequencing (ES) in macrocephalic fetuses. METHODS Fetuses with macrocephaly (head circumference (HC) ≥ +2 SD) and negative chromosomal microarray results were included, who had available trio-ES data. Molecular diagnoses were systematically analyzed. Subgroup analyses were performed on the ES diagnostic yield based on gestational age, HC Z-scores, associated anomalies, and growth parameters. RESULTS Molecular diagnoses were established in 34 out of 87 macrocephalic fetuses (39.1%) through trio-ES. These diagnoses revealed that the variants predominantly affect key signaling pathways, including mTOR, RASopathies and Sotos syndrome. The detection rate was significantly higher in non-isolated compared to isolated macrocephaly cases (65.0%, 26/40 vs. 17.0%, 8/47; p < 0.001). The most frequent anomalies associated with genetic diagnoses included micromelia (100.0%, 14/14), megalencephaly (100.0%, 2/2), and ventriculomegaly (60.0%, 6/10). Subgroup analysis identified higher diagnostic yields in fetuses diagnosed before 32 gestational weeks, with HC Z-scores ≥ +3 SD, micromelia, and absence of large-for-gestational-age (LGA). CONCLUSIONS Exome sequencing significantly enhances the detection of monogenic disorders in macrocephalic fetuses compared with CMA, irrespective of isolated or non-isolated cases. These clinical features and phenotypes are essential for assessing monogenic disorders and for prenatal counseling and evaluations of macrocephalic fetuses.
Collapse
Affiliation(s)
- Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianqin Lu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Huanyi Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liyuan Liu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yongling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guilan Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Mei
- Obstetrical Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chen Chen
- Respiratory Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Boff MO, Xavier FAC, Diz FM, Gonçalves JB, Ferreira LM, Zambeli J, Pazzin DB, Previato TTR, Erwig HS, Gonçalves JIB, Bruzzo FTK, Marinowic D, da Costa JC, Zanirati G. mTORopathies in Epilepsy and Neurodevelopmental Disorders: The Future of Therapeutics and the Role of Gene Editing. Cells 2025; 14:662. [PMID: 40358185 PMCID: PMC12071303 DOI: 10.3390/cells14090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 05/15/2025] Open
Abstract
mTORopathies represent a group of neurodevelopmental disorders linked to dysregulated mTOR signaling, resulting in conditions such as tuberous sclerosis complex, focal cortical dysplasia, hemimegalencephaly, and Smith-Kingsmore Syndrome. These disorders often manifest with epilepsy, cognitive impairments, and, in some cases, structural brain anomalies. The mTOR pathway, a central regulator of cell growth and metabolism, plays a crucial role in brain development, where its hyperactivation leads to abnormal neuroplasticity, tumor formation, and heightened neuronal excitability. Current treatments primarily rely on mTOR inhibitors, such as rapamycin, which reduce seizure frequency and tumor size but fail to address underlying genetic causes. Advances in gene editing, particularly via CRISPR/Cas9, offer promising avenues for precision therapies targeting the genetic mutations driving mTORopathies. New delivery systems, including viral and non-viral vectors, aim to enhance the specificity and efficacy of these therapies, potentially transforming the management of these disorders. While gene editing holds curative potential, challenges remain concerning delivery, long-term safety, and ethical considerations. Continued research into mTOR mechanisms and innovative gene therapies may pave the way for transformative, personalized treatments for patients affected by these complex neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marina Ottmann Boff
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Mendonça Diz
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Laura Meireles Ferreira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jean Zambeli
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, University of the Valley of the Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Fernanda Thays Konat Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| |
Collapse
|
3
|
Pogledic I, Mankad K, Severino M, Lerman-Sagie T, Jakab A, Hadi E, Jansen AC, Bahi-Buisson N, Di Donato N, Oegema R, Mitter C, Capo I, Whitehead MT, Haldipur P, Mancini G, Huisman TAGM, Righini A, Dobyns B, Barkovich JA, Milosevic NJ, Kasprian G, Lequin M. Prenatal assessment of brain malformations on neuroimaging: an expert panel review. Brain 2024; 147:3982-4002. [PMID: 39054600 PMCID: PMC11730443 DOI: 10.1093/brain/awae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Brain malformations represent a heterogeneous group of abnormalities of neural morphogenesis, often associated with aberrations of neuronal connectivity and brain volume. Prenatal detection of brain malformations requires a clear understanding of embryology and developmental morphology through the various stages of gestation. This expert panel review is written with the central aim of providing an easy-to-understand road map to improve prenatal detection and characterization of structural malformations based on the current understanding of normal and aberrant brain development. For every developmental stage, the utility of each available neuroimaging modality, including prenatal multiplanar neuro sonography, anatomical MRI and advanced MRI techniques, as well as further insights from post-mortem imaging, has been highlighted.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N3JH, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | | - Tally Lerman-Sagie
- Multidisciplinary foetal Neurology Center, Obstetrics & Gynecology Ultrasound Unit, Obstetrics and Gynecology Department, Wolfson Medical Center, Holon 5822012, Israel
- Faculty of Medicine, Tel Aviv University, 5822012 Tel Aviv, Israel
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Efrat Hadi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, 6436624 Tel Aviv, Israel
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Antwerpen, 2650 EdegemAntwerp, Belgium
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades, University Hospital Imagine Institute, 75015 Paris, France
| | - Natalya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ivan Capo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Matthew T Whitehead
- Division of Neuroradiology, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine of Philadelphia, Philadelphia, PA 19105, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Righini
- Pediatric Radiology and Neuroradiology Department, Children’s Hospital V. Buzzi, 20154 Milan, Italy
| | - Bill Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Natasa Jovanov Milosevic
- Croatian Institute for Brain Research and Department of Biology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maarten Lequin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Austin, TX 78717USA
| |
Collapse
|
4
|
Reshadmanesh A, Dehdahsi S, Ahangari F, Kahrizi K, Kariminejad A, Mahdavi SS, Talebi S, Najmabadi H. First Case of Macrocephaly, Dysmorphic Facies, and Psychomotor Retardation Harboring Co-inherited Variants in HERC1 and PMP22 Genes from Iran: Two Novel Variants. ARCHIVES OF IRANIAN MEDICINE 2024; 27:700-706. [PMID: 39891458 PMCID: PMC11786211 DOI: 10.34172/aim.31593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 02/03/2025]
Abstract
Here, we report a case with concomitant variants: a novel homozygous HERC1 gene variant and a novel heterozygous PMP22 duplication. The 2-year-old male presented with seizures, developmental delay, macrocephaly, hypotonia, unilateral hypertrophy, thoracic scoliosis, normal brain MRI, and elevated homocysteine level which normalized after treatment. Whole exome sequencing (WES) revealed a co-occurrence of a homozygous novel likely pathogenic variant in the HERC1 gene (NM_003922.3:c.1280dup (p.ILe469Aspfs*33) and a novel heterozygous large duplication of exon 1-5 in the PMP22 gene, which has not been reported previously. The case underscores the challenges in understanding genotype-phenotype correlations and suggests a potential interplay between these genetic variants in shaping the current and future clinical phenotype of the patient. In the case of genetic diseases, this event may have important implications on family members' counseling, and concomitant variants in Charcot-Marie-Tooth (CMT) families should be considered when significant intra-familial clinical heterogeneity is observed.
Collapse
Affiliation(s)
- Azadeh Reshadmanesh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
5
|
Brunelli JM, Lopes TJP, Alves IS, Delgado DS, Lee HW, Martin MGM, Docema MFL, Alves SS, Pinho PC, Gonçalves VT, Oliveira LRLB, Takahashi JT, Maralani PJ, Amancio CT, Leite CC. Malformations of Cortical Development: Updated Imaging Review. Radiographics 2024; 44:e230239. [PMID: 39446612 DOI: 10.1148/rg.230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malformations of cortical development (MCD) are structural anomalies that disrupt the normal process of cortical development. Patients with these anomalies frequently present with seizures, developmental delay, neurologic deficits, and cognitive impairment, resulting in a wide spectrum of neurologic outcomes. The severity and type of malformation, in addition to the genetic pathways of brain development involved, contribute to the observed variability. While neuroimaging plays a central role in identifying congenital anomalies in vivo, the precise definition and classification of cortical developmental defects have undergone significant transformations in recent years due to advances in molecular and genetic knowledge. The authors provide a concise overview of embryologic brain development, recently standardized nomenclature, and the categorization system for abnormalities in cortical development, offering valuable insights into the interpretation of their neuroradiologic patterns. ©RSNA, 2024 Supplemental material is available for this article. The slide presentation from the RSNA Annual Meeting is available for this article.
Collapse
Affiliation(s)
- Julia M Brunelli
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Thiago J P Lopes
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Isabela S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Daniel S Delgado
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Hae W Lee
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Maria G M Martin
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Marcos F L Docema
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Samya S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Paula C Pinho
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Vinicius T Gonçalves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Lucas R L B Oliveira
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Jorge T Takahashi
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Pejman J Maralani
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Camila T Amancio
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Claudia C Leite
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| |
Collapse
|
6
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Pîrlog LM, Pătrășcanu AA, Militaru MS, Cătană A. Insights into Clinical Disorders in Cowden Syndrome: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:767. [PMID: 38792950 PMCID: PMC11123368 DOI: 10.3390/medicina60050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
PTEN Hamartoma Tumour Syndrome (PHTS) encompasses diverse clinical phenotypes, including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), and Proteus-like syndrome. This autosomal dominant genetic predisposition with high penetrance arises from heterozygous germline variants in the PTEN tumour suppressor gene, leading to dysregulation of the PI3K/AKT/mTOR signalling pathway, which promotes the overgrowth of multiple and heterogenous tissue types. Clinical presentations of CS range from benign and malignant disorders, affecting nearly every system within the human body. CS is the most diagnosed syndrome among the PHTS group, notwithstanding its weak incidence (1:200,000), for which it is considered rare, and its precise incidence remains unknown among other important factors. The literature is notably inconsistent in reporting the frequencies and occurrences of these disorders, adding an element of bias and uncertainty when looking back at the available research. In this review, we aimed to highlight the significant disparities found in various studies concerning CS and to review the clinical manifestations encountered in CS patients. Furthermore, we intended to emphasize the great significance of early diagnosis as patients will benefit from a longer lifespan while being unceasingly advised and supported by a multidisciplinary team.
Collapse
Affiliation(s)
- Lorin-Manuel Pîrlog
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
| | - Andrada-Adelaida Pătrășcanu
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
- Regional Laboratory Cluj-Napoca, Department of Medical Genetics, Regina Maria Health Network, 400363 Cluj-Napoca, Romania
| | - Andreea Cătană
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
- Regional Laboratory Cluj-Napoca, Department of Medical Genetics, Regina Maria Health Network, 400363 Cluj-Napoca, Romania
- Department of Oncogenetics, “Prof. Dr. I. Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Leonardi R, Licciardello L, Zanghì A, La Cognata D, Maniaci A, Vecchio M, Polizzi A, Falsaperla R, Praticò AD. Megalencephaly: Classification, Genetic Causes, and Related Syndromes. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:149-157. [DOI: 10.1055/s-0044-1786787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMegalencephaly is a developmental disorder due to an abnormal neuronal proliferation and migration during intrauterine or postnatal brain development that leads to cerebral overgrowth and neurological dysfunction. This cerebral overgrowth may affect the whole encephalon or only a region; when it involves one hemisphere it is referred to as hemimegalencephaly. Megalencephaly presents with a head circumference measurement of 2 standard deviations above the average measure for age. This group of disorders is clinically characterized by early onset and refractory to therapy epilepsy, neurodevelopmental disorders, behavioral problems, and autism spectrum disorder. Syndromic forms of megalencephaly should be considered when associated with other congenital abnormalities. Megalencephaly in fact could be associated with segmental overgrowth and cutaneous/vascular abnormalities (i.e., Proteus syndrome, CLOVES [congenital lipomatous overgrowth, vascular malformations, epidermal naevi, scoliosis, and/ or skeletal abnormalities] syndrome, Klippel-Trenaunay syndrome, megalencephaly-capillary malformation-polymicrogyria syndrome , megalencephaly-postaxial polydactyly-polymicrogyria-hydrocephalus syndrome, etc.) or generalized overgrowth (i.e., Weaver or Beckwith-Wiedemann syndrome) as well as with nanism in achondroplasia where megalencephaly is associated with disproportionate short stature, primary skeletal dysplasia, characteristic facies (prominent forehead, flat nasal bridge), narrow chest, and normal intelligence. It is possible to identify three main groups of disorders associated with megalencephaly: idiopathic or benign, metabolic, and anatomic. The idiopathic (benign) form indicates an abnormal increased head circumference in absence of neurological impairment, such as in benign familial megalencephaly. In metabolic megalencephaly (such as in organic acid disorders, metabolic leukoencephalopathies, or lysosomal diseases) there is an increase of different constituents that increase the size of the brain, whereas in the anatomical form there are underlying genetic causes. Neuroimaging is crucial for diagnosis, as it can reveal a generalized brain growth or a segmental one and possible specific frameworks associated. In all these conditions it is necessary to identify possible microdeletion-microduplication by chromosomal arrays.
Collapse
Affiliation(s)
- Roberta Leonardi
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Laura Licciardello
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Daria La Cognata
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonino Maniaci
- Chair of Otorhinolaryngology, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
9
|
Goel K, Ghadiyaram A, Krishnakumar A, Morden FTC, Higashihara TJ, Harris WB, Shlobin NA, Wang A, Karunungan K, Dubey A, Phillips HW, Weil AG, Fallah A. Hemimegalencephaly: A Systematic Comparison of Functional and Anatomic Hemispherectomy for Drug-Resistant Epilepsy. Neurosurgery 2024; 94:666-678. [PMID: 37975663 DOI: 10.1227/neu.0000000000002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Hemimegalencephaly (HME) is a rare diffuse malformation of cortical development characterized by unihemispheric hypertrophy, drug-resistant epilepsy (DRE), hemiparesis, and developmental delay. Definitive treatment for HME-related DRE is hemispheric surgery through either anatomic (AH) or functional hemispherectomy (FH). This individual patient data meta-analysis assessed seizure outcomes of AH and FH for HME with pharmacoresistant epilepsy, predictors of Engel I, and efficacy of different FH approaches. METHODS PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature were searched from inception to Jan 13th, 2023, for primary literature reporting seizure outcomes in >3 patients with HME receiving AH or FH. Demographics, neurophysiology findings, and Engel outcome at the last follow-up were extracted. Postsurgical seizure outcomes were compared through 2-tailed t -test and Fisher exact test. Univariate and multivariate Cox regression analyses were performed to identify independent predictors of Engel I outcome. RESULTS Data from 145 patients were extracted from 26 studies, of which 89 underwent FH (22 vertical, 33 lateral), 47 underwent AH, and 9 received an unspecified hemispherectomy with a median last follow-up of 44.0 months (FH cohort) and 45.0 months (AH cohort). Cohorts were similar in preoperative characteristics and at the last follow-up; 77% (n = 66) of the FH cohort and 81% (n = 38) and of the AH cohort were Engel I. On multivariate analysis, only the presence of bilateral ictal electroencephalography abnormalities (hazard ratio = 11.5; P = .002) was significantly associated with faster time-to-seizure recurrence. A number-needed-to-treat analysis to prevent 1 additional case of posthemispherectomy hydrocephalus reveals that FH, compared with AH, was 3. There was no statistical significance for any differences in time-to-seizure recurrence between lateral and vertical FH approaches (hazard ratio = 2.59; P = .101). CONCLUSION We show that hemispheric surgery is a highly effective treatment for HME-related DRE. Unilateral ictal electroencephalography changes and using the FH approach as initial surgical management may result in better outcomes due to significantly lower posthemispherectomy hydrocephalus probability. However, larger HME registries are needed to further delineate the predictors of seizure outcomes.
Collapse
Affiliation(s)
- Keshav Goel
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
| | - Ashwin Ghadiyaram
- Virginia Commonwealth University School of Medicine, Richmond , Virginia , USA
| | - Asha Krishnakumar
- Virginia Commonwealth University School of Medicine, Richmond , Virginia , USA
| | - Frances T C Morden
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu , Hawaii , USA
| | - Tate J Higashihara
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu , Hawaii , USA
| | - William B Harris
- Department of Neurosurgery, University of Colorado, Boulder , Colorado , USA
| | - Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago , Illinois , USA
| | - Andrew Wang
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
| | - Krystal Karunungan
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
| | - Anwesha Dubey
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
| | - H Westley Phillips
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Alexander G Weil
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montréal , Québec , Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Centre (CHUM), Montréal , Québec , Canada
- Brain and Development Research Axis, Sainte-Justine Research Center, Montréal , Québec , Canada
- Department of Neuroscience, University of Montreal, Montréal , Québec , Canada
| | - Aria Fallah
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles , California , USA
| |
Collapse
|
10
|
Luca M, Piglionica M, Bagnulo R, Cardaropoli S, Carli D, Turchiano A, Coppo P, Pantaleo A, Iacoviello M, Ferrero GB, Mussa A, Resta N. The somatic p.T81dup variant in AKT3 gene underlies a mild cerebral phenotype and expands the spectrum including capillary malformation and lateralized overgrowth. Genes Chromosomes Cancer 2023; 62:703-709. [PMID: 37395289 DOI: 10.1002/gcc.23188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marilidia Piglionica
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Rosanna Bagnulo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonella Turchiano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Coppo
- Pediatric Dermatology Unit, Regina Margherita Children's Hospital, Torino, Italy
| | - Antonino Pantaleo
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", Bari, Italy
| | - Matteo Iacoviello
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
- Pediatric Clinical Genetics, Regina Margherita Children Hospital, Torino, Italy
| | - Nicoletta Resta
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
11
|
Shelkowitz E, Stence NV, Neuberger I, Park KL, Saenz MS, Pao E, Oyama N, Friedman SD, Shaw DWW, Mirzaa GM. Variants in PTEN Are Associated With a Diverse Spectrum of Cortical Dysplasia. Pediatr Neurol 2023; 147:154-162. [PMID: 37619436 DOI: 10.1016/j.pediatrneurol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Inactivating mutations in PTEN are among the most common causes of megalencephaly. Activating mutations in other nodes of the PI3K/AKT/MTOR signaling pathway are recognized as a frequent cause of cortical brain malformations. Only recently has PTEN been associated with cortical malformations, and analyses of their prognostic significance have been limited. METHODS Retrospective neuroimaging analysis and detailed chart review were conducted on 20 participants identified with pathogenic or likely pathogenic mutations in PTEN and a cortical brain malformation present on brain magnetic resonance imaging. RESULTS Neuroimaging analysis revealed four main cerebral phenotypes-hemimegalencephaly, focal cortical dysplasia, polymicrogyria (PMG), and a less severe category, termed "macrocephaly with complicated gyral pattern" (MCG). Although a high proportion of participants (90%) had neurodevelopmental findings on presentation, outcomes varied and were favorable in over half of participants. Consistent with prior work, 39% of participants had autism spectrum disorder and 19% of participants with either pure-PMG or pure-MCG phenotypes had epilepsy. Megalencephaly and systemic overgrowth were common, but other systemic features of PTEN-hamartoma tumor syndrome were absent in over one-third of participants. CONCLUSIONS A spectrum of cortical dysplasias is present in individuals with inactivating mutations in PTEN. Future studies are needed to clarify the prognostic significance of each cerebral phenotype, but overall, we conclude that despite a high burden of neurodevelopmental disease, long-term outcomes may be favorable. Germline testing for PTEN mutations should be considered in cases of megalencephaly and cortical brain malformations even in the absence of other findings, including cognitive impairment.
Collapse
Affiliation(s)
- Emily Shelkowitz
- Department of Pediatrics, University of Washington, Seattle, Washington.
| | | | - Ilana Neuberger
- Department of Radiology, University of Colorado, Aurora, Colorado
| | - Kristen L Park
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | | | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Dennis W W Shaw
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, Seattle, Washington.
| |
Collapse
|
12
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
13
|
Porwal M, Anderson D, Razzak AN, Fitzgerald G. Prenatal diagnosis and delivery of megalencephaly-capillary malformation syndrome. BMJ Case Rep 2022; 15:e249587. [PMID: 36572450 PMCID: PMC9806087 DOI: 10.1136/bcr-2022-249587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 12/27/2022] Open
Abstract
Hemimegalencephaly (HME) is a rare neurological diagnosis defined as hamartomatous overgrowth of one cerebral hemisphere. The hypothesised pathogenesis is due to an increased number or size of neural cells; however, the exact mechanism can vary widely, depending on the underlying aetiology. We report a case outlining the prenatal diagnostic process and obstetric considerations for delivering an infant with HME secondary to megalencephaly-capillary malformation syndrome. After diagnosis, our patient was induced and delivered at 37 weeks of gestation via operative vaginal delivery. To our knowledge, this is the first report describing the course from prenatal diagnosis through delivery of a fetus with HME.
Collapse
Affiliation(s)
- Mokshal Porwal
- School of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Danyon Anderson
- School of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | | | - Garrett Fitzgerald
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| |
Collapse
|
14
|
Zhang K, Kang L, Zhang H, Bai L, Pang H, Liu Q, Zhang X, Chen D, Yu H, Lv Y, Gao M, Liu Y, Gai Z, Wang D, Li X. A synonymous mutation in PI4KA impacts the transcription and translation process of gene expression. Front Immunol 2022; 13:987666. [DOI: 10.3389/fimmu.2022.987666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol-4-kinase alpha (PI4KIIIα), encoded by the PI4KA gene, can synthesize phosphatidylinositol-4-phosphate (PI-4-P), which serves as a specific membrane marker and is instrumental in signal transduction. PI4KA mutations can cause autosomal recessive diseases involving neurological, intestinal, and immunological conditions (OMIM:619621, 616531, 619708). We detected sepsis, severe diarrhea, and decreased immunoglobulin levels in one neonate. Two novel compound heterozygous mutations, c.5846T>C (p.Leu1949Pro) and c.3453C>T (p.Gly1151=), were identified in the neonate from the father and the mother, respectively. Sanger sequencing and reverse transcription polymerase chain reaction (RT-PCR) for peripheral blood and minigene splicing assays showed a deletion of five bases (GTGAG) with the c.3453C>T variant at the mRNA level, which could result in a truncated protein (p.Gly1151GlyfsTer17). The missense mutation c.5846T>C (p.Leu1949Pro) kinase activity was measured, and little or no catalytic activity was detected. According to the clinical characteristics and gene mutations with functional verification, our pediatricians diagnosed the child with a combined immunodeficiency and intestinal disorder close to gastrointestinal defects and immunodeficiency syndrome 2 (GIDID2; OMIM: 619708). Medicines such as immunomodulators are prescribed to balance immune dysregulation. This study is the first report of a synonymous mutation in the PI4KA gene that influences alternative splicing. Our findings expand the mutation spectrum leading to PI4KIIIa deficiency-related diseases and provide exact information for genetic counseling.
Collapse
|
15
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
16
|
DeCasien AR, Trujillo AE, Janiak MC, Harshaw EP, Caes ZN, Galindo GA, Petersen RM, Higham JP. Equivocal evidence for a link between megalencephaly-related genes and primate brain size evolution. Sci Rep 2022; 12:10902. [PMID: 35764790 PMCID: PMC9239989 DOI: 10.1038/s41598-022-12953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
A large brain is a defining feature of modern humans, and much work has been dedicated to exploring the molecular underpinnings of this trait. Although numerous studies have focused on genes associated with human microcephaly, no studies have explicitly focused on genes associated with megalencephaly. Here, we investigate 16 candidate genes that have been linked to megalencephaly to determine if: (1) megalencephaly-associated genes evolved under positive selection across primates; and (2) selection pressure on megalencephaly-associated genes is linked to primate brain size. We found evidence for positive selection for only one gene, OFD1, with 1.8% of the sites estimated to have dN/dS values greater than 1; however, we did not detect a relationship between selection pressure on this gene and brain size across species, suggesting that selection for changes to non-brain size traits drove evolutionary changes to this gene. In fact, our primary analyses did not identify significant associations between selection pressure and brain size for any candidate genes. While we did detect positive associations for two genes (GPC3 and TBC1D7) when two phyletic dwarfs (i.e., species that underwent recent evolutionary decreases in brain size) were excluded, these associations did not withstand FDR correction. Overall, these results suggest that sequence alterations to megalencephaly-associated genes may have played little to no role in primate brain size evolution, possibly due to the highly pleiotropic effects of these genes. Future comparative studies of gene expression levels may provide further insights. This study enhances our understanding of the genetic underpinnings of brain size evolution in primates and identifies candidate genes that merit further exploration.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, USA.
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
- Section on Developmental Neurogenomics, National Institute of Mental Health (NIMH), Bethesda, USA.
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| | - Mareike C Janiak
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Department of Anthropology, Rutgers University, New Brunswick, USA
| | - Etta P Harshaw
- Department of Art History, University of Southern California, Los Angeles, USA
- Eleanor Roosevelt High School, New York, USA
| | - Zosia N Caes
- Department of Chemistry, Yale University, New Haven, USA
- Columbia Secondary School for Math, Science, and Engineering, New York, USA
| | | | - Rachel M Petersen
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| |
Collapse
|
17
|
Saida K, Chong PF, Yamaguchi A, Saito N, Ikehara H, Koshimizu E, Miyata R, Ishiko A, Nakamura K, Ohnishi H, Fujioka K, Sakakibara T, Asada H, Ogawa K, Kudo K, Ohashi E, Kawai M, Abe Y, Tsuchida N, Uchiyama Y, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Miyake N, Kato M, Kira R, Matsumoto N. Monogenic causes of pigmentary mosaicism. Hum Genet 2022; 141:1771-1784. [PMID: 35503477 DOI: 10.1007/s00439-022-02437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Asuka Yamaguchi
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Naka Saito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata, Japan
| | - Hajime Ikehara
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kei Fujioka
- Center of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Takafumi Sakakibara
- Department of Pediatrics, Nara Medical University School of Medicine, Nara, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kohei Ogawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kyoko Kudo
- Department of Dermatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Kawai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
18
|
Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, Sulc J, Pao E, Oyama N, Forzano F, Conti V, Guerrini R, Doherty ES, Saitta SC, Lockwood CM, Pritchard CC, Dobyns WB, Novotny E, Wright JNN, Saneto RP, Friedman S, Hauptman J, Ojemann J, Kapur RP, Mirzaa GM. Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain 2022; 145:925-938. [PMID: 35355055 PMCID: PMC9630661 DOI: 10.1093/brain/awab376] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew Berkseth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rylee Shear
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Andrew E Timms
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Francesca Forzano
- Department of Clinical Genetics, Guy's and St Thomas NHS Foundation Trust and King's College London, London, UK
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Emily S Doherty
- Section of Clinical Genetics, Carilion Clinic Children's Hospital, Roanoke, VA, USA
| | - Sulagna C Saitta
- Division of Medical Genetics, Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Edward Novotny
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Jason N N Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Russell P Saneto
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA
| | - Seth Friedman
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jeffrey Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Raj P Kapur
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Bourgon N, Carmignac V, Sorlin A, Duffourd Y, Philippe C, Thauvin-Robinet C, Guibaud L, Faivre L, Vabres P, Kuentz P. Clinical and molecular data in cases of prenatal localized overgrowth disorder: major implication of genetic variants in PI3K-AKT-mTOR signaling pathway. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:532-542. [PMID: 34170046 DOI: 10.1002/uog.23715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To describe clinical and molecular findings in a French multicenter cohort of fetuses with prenatal diagnosis of congenital abnormality and suspicion of a localized overgrowth disorder (LOD) suggestive of genetic variants in the PI3K-AKT-mTOR signaling pathway. METHODS We analyzed retrospectively data obtained between 1 January 2013 and 1 May 2020 from fetuses with brain and/or limb overgrowth referred for molecular diagnosis of PI3K-AKT-mTOR pathway genes by next-generation sequencing (NGS) using pathological tissue obtained by fetal autopsy. We also assessed the diagnostic yield of amniotic fluid. RESULTS During the study period, 21 subjects with LOD suspected of being secondary to a genetic variant of the PI3K-AKT-mTOR pathway were referred for analysis. Of these, 17 fetuses had brain overgrowth, including six with isolated megalencephaly (MEG) and 11 with hemimegalencephaly (HMEG). Of the six with MEG, germline variants were identified in four cases, in either PIK3R2, AKT3 or MTOR, and a postzygotic PIK3R2 variant was found in the other two cases. Of the 11 with HMEG, a postzygotic PIK3CA variant was found in three fetuses with extracerebral features of PIK3CA-related overgrowth spectrum, and in seven fetuses with isolated HMEG. No pathogenic variant was identified in the 11th case with HMEG. Four fetuses with limb overgrowth also had one or more lymphatic malformations (LM) and harbored a postzygotic PIK3CA variant. NGS on cultured amniocytes performed in 10 cases, of which nine had been found positive on analysis of pathological fetal tissue, showed variants in four, in either PIK3CA, PIK3R2 or AKT3. CONCLUSIONS Isolated MEG or HMEG may lead to identification of genetic variants in the PI3K-AKT-mTOR signaling pathway. Cases of limb overgrowth and LM or isolated HMEG are likely associated with PIK3CA variants. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Bourgon
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service d'Obstétrique-Maternité, Chirurgie Médecine et Imagerie Fœtale, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - V Carmignac
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - A Sorlin
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - Y Duffourd
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Philippe
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Thauvin-Robinet
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - L Guibaud
- Service d'Imagerie Médicale, Hôpital Femme-Mère-Enfants, Hospices Civils de Lyon, Bron, France
| | - L Faivre
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Vabres
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service de Dermatologie, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Kuentz
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
20
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
21
|
Endosomal trafficking defects alter neural progenitor proliferation and cause microcephaly. Nat Commun 2022; 13:16. [PMID: 35013230 PMCID: PMC8748540 DOI: 10.1038/s41467-021-27705-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors. Mutations in the human WDR81 gene result in severe microcephaly. Carpentieri et al. show that mutation of WDR81, a gene coding for an endosomal regulator, alters intracellular processing of the EGF receptor, leading to reduced proliferation rates of neuronal progenitors and to microcephaly.
Collapse
|
22
|
Campion TJ, Sheikh IS, Smit RD, Iffland PH, Chen J, Junker IP, Krynska B, Crino PB, Smith GM. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp Neurol 2021; 349:113961. [PMID: 34953897 DOI: 10.1016/j.expneurol.2021.113961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Increasing the intrinsic growth potential of neurons after injury has repeatedly been shown to promote some level of axonal regeneration in rodent models. One of the most studied pathways involves the activation of the PI3K/AKT/mTOR pathways, primarily by reducing the levels of PTEN, a negative regulator of PI3K. Likewise, activation of signal transducer and activator of transcription 3 (STAT3) has previously been shown to boost axonal regeneration and sprouting within the injured nervous system. Here, we examined the regeneration of the corticospinal tract (CST) after cortical expression of constitutively active (ca) Akt3 and STAT3, both separately and in combination. Overexpression of caAkt3 induced regeneration of CST axons past the injury site independent of caSTAT3 overexpression. STAT3 demonstrated improved axon sprouting compared to controls and contributed to a synergistic improvement in effects when combined with Akt3 but failed to promote axonal regeneration as an individual therapy. Despite showing impressive axonal regeneration, animals expressing Akt3 failed to show any functional improvement and deteriorated with time. During this period, we observed progressive Akt3 dose-dependent increase in behavioral seizures. Histology revealed increased phosphorylation of ribosomal S6 protein within the unilateral cortex, increased neuronal size, microglia activation and hemispheric enlargement (hemimegalencephaly).
Collapse
Affiliation(s)
- Thomas J Campion
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Imran S Sheikh
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Rupert D Smit
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jie Chen
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Ian P Junker
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Barbara Krynska
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George M Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
23
|
Synaptic Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221810058. [PMID: 34576223 PMCID: PMC8466868 DOI: 10.3390/ijms221810058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.
Collapse
|
24
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
25
|
Calandrelli R, Pilato F, Battaglia D, Panfili M, Quinci V, Colosimo C. Epileptic children with hemispheres' asymmetry. Quantitative brain magnetic resonance-based analysis of apparently unaffected hemisphere. Case-control study. Epilepsy Res 2021; 174:106642. [PMID: 33892221 DOI: 10.1016/j.eplepsyres.2021.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We performed a quantitative hemispheres analysis in epileptic children with hemispheres' asymmetry -due to unilateral dysplastic malformation- in order to recognize subtle volumetric changes of the contralateral and apparently unaffected hemisphere. METHODS 13 children with Hemimegalencephaly (HME) and 20 with Hemimicrencephaly (Hme) were clustered in subgroups according to underlying hemispheric cortical dysplastic malformation and epilepsy pattern. 3D FSPGR T1weighted images were used to assess white and grey matter volumes for both hemispheres. Each volumetric parameter was compared with the average of an age-matched healthy control group. RESULTS HME subgroups: HME with pachygyria and focal (HME-PG-F; n 6) or multifocal epilepsy (HME-PG-MF; n.7). In both subgroups affected hemisphere (AH) volume was increased and contralateral hemisphere (CH) showed white matter volume reduction; in HME-PG-MF grey matter volume of CH was more reduced than HME-PG-F. Hme subgroups: Hme with polimicrogyria and focal epilepsy (Hme-PMG-F; n.8), Hme with giant subcortical nodular heterotopia and focal (Hme-SCH-F; n.6) or multifocal epilepsy (Hme-SCH-MF; n.6). In all subgroups AH volume was reduced; the volume of CH was significantly increased in Hme-PMG-F and Hme-SCH-MF while it was not significantly increased in Hme-SCH-F compared to affected hemisphere. CONCLUSIONS In patients with hemispheres' asymmetry, quantitative high-resolution MRI offers a more objective assessment of brain structures volume. The type of hemispheric dysplastic malformation together with the age of epilepsy onset and epileptic pattern may contribute to changes in contralateral and apparently unaffected hemisphere. Future studies are warranted to evaluate whether the early identification of these changes might help in planning future antiepileptic treatments.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Fabio Pilato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - Domenica Battaglia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma -UOC Neurologia - Polo Scienze dell'Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Dipartimento di Neuropsichiatria Infantile, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| | - Marco Panfili
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Vincenzo Quinci
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Cesare Colosimo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| |
Collapse
|
26
|
Diverse genetic causes of polymicrogyria with epilepsy. Epilepsia 2021; 62:973-983. [PMID: 33818783 PMCID: PMC10838185 DOI: 10.1111/epi.16854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE We sought to identify novel genes and to establish the contribution of known genes in a large cohort of patients with nonsyndromic sporadic polymicrogyria and epilepsy. METHODS We enrolled participants with polymicrogyria and their parents through the Epilepsy Phenome/Genome Project. We performed phenotyping and whole exome sequencing (WES), trio analysis, and gene-level collapsing analysis to identify de novo or inherited variants, including germline or mosaic (postzygotic) single nucleotide variants, small insertion-deletion (indel) variants, and copy number variants present in leukocyte-derived DNA. RESULTS Across the cohort of 86 individuals with polymicrogyria and epilepsy, we identified seven with pathogenic or likely pathogenic variants in PIK3R2, including four germline and three mosaic variants. PIK3R2 was the only gene harboring more than expected de novo variants across the entire cohort, and likewise the only gene that passed the genome-wide threshold of significance in the gene-level rare variant collapsing analysis. Consistent with previous reports, the PIK3R2 phenotype consisted of bilateral polymicrogyria concentrated in the perisylvian region with macrocephaly. Beyond PIK3R2, we also identified one case each with likely causal de novo variants in CCND2 and DYNC1H1 and biallelic variants in WDR62, all genes previously associated with polymicrogyria. Candidate genetic explanations in this cohort included single nucleotide de novo variants in other epilepsy-associated and neurodevelopmental disease-associated genes (SCN2A in two individuals, GRIA3, CACNA1C) and a 597-kb deletion at 15q25, a neurodevelopmental disease susceptibility locus. SIGNIFICANCE This study confirms germline and postzygotically acquired de novo variants in PIK3R2 as an important cause of bilateral perisylvian polymicrogyria, notably with macrocephaly. In total, trio-based WES identified a genetic diagnosis in 12% and a candidate diagnosis in 6% of our polymicrogyria cohort. Our results suggest possible roles for SCN2A, GRIA3, CACNA1C, and 15q25 deletion in polymicrogyria, each already associated with epilepsy or other neurodevelopmental conditions without brain malformations. The role of these genes in polymicrogyria will be further understood as more patients with polymicrogyria undergo genetic evaluation.
Collapse
|
27
|
Accogli A, Geraldo AF, Piccolo G, Riva A, Scala M, Balagura G, Salpietro V, Madia F, Maghnie M, Zara F, Striano P, Tortora D, Severino M, Capra V. Diagnostic Approach to Macrocephaly in Children. Front Pediatr 2021; 9:794069. [PMID: 35096710 PMCID: PMC8795981 DOI: 10.3389/fped.2021.794069] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2023] Open
Abstract
Macrocephaly affects up to 5% of the pediatric population and is defined as an abnormally large head with an occipitofrontal circumference (OFC) >2 standard deviations (SD) above the mean for a given age and sex. Taking into account that about 2-3% of the healthy population has an OFC between 2 and 3 SD, macrocephaly is considered as "clinically relevant" when OFC is above 3 SD. This implies the urgent need for a diagnostic workflow to use in the clinical setting to dissect the several causes of increased OFC, from the benign form of familial macrocephaly and the Benign enlargement of subarachnoid spaces (BESS) to many pathological conditions, including genetic disorders. Moreover, macrocephaly should be differentiated by megalencephaly (MEG), which refers exclusively to brain overgrowth, exceeding twice the SD (3SD-"clinically relevant" megalencephaly). While macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, megalencephaly is most likely due to a genetic cause. Apart from the head size evaluation, a detailed family and personal history, neuroimaging, and a careful clinical evaluation are crucial to reach the correct diagnosis. In this review, we seek to underline the clinical aspects of macrocephaly and megalencephaly, emphasizing the main differential diagnosis with a major focus on common genetic disorders. We thus provide a clinico-radiological algorithm to guide pediatricians in the assessment of children with macrocephaly.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Madia
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
28
|
Shi X, Lim Y, Myers AK, Stallings BL, Mccoy A, Zeiger J, Scheck J, Cho G, Marsh ED, Mirzaa GM, Tao T, Golden JA. PIK3R2/Pik3r2 Activating Mutations Result in Brain Overgrowth and EEG Changes. Ann Neurol 2020; 88:1077-1094. [PMID: 32856318 PMCID: PMC8176885 DOI: 10.1002/ana.25890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in human patients with megalencephaly polymicrogyria polydactyly hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis of PIK3R2-related mutations, we have developed and characterized a murine model. METHODS We generated a knock-in mouse model for the most common human PIK3R2 mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation, were analyzed using standard methodologies. For human patients with PIK3R2 mutations, clinical data (occipitofrontal circumference [OFC] and epilepsy) were retrospectively obtained from our clinical records (published / unpublished). RESULTS The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to human patients with PIK3R2 mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, electroencephalogram (EEG) recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in human patients. INTERPRETATION We have generated a PIK3R2 mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for human patients with MPPH. ANN NEUROL 2020;88:1077-1094.
Collapse
Affiliation(s)
- Xiuyu Shi
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail K. Myers
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brenna L. Stallings
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Almedia Mccoy
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jordan Zeiger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Joshua Scheck
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric D. Marsh
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143:2874-2894. [PMID: 32779696 PMCID: PMC7586092 DOI: 10.1093/brain/awaa174] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
Collapse
Affiliation(s)
| | - Ana Filipa Geraldo
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| | - Norbert Utz
- Department of Pediatric Radiology, HELIOS Klinikum Krefeld, Germany
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi Milano, Italy
| | - Filippo Arrigoni
- Department of Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Richard J Leventer
- Department of Neurology Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
30
|
Cerebral MRI and Clinical Findings in Children with PTEN Hamartoma Tumor Syndrome: Can Cerebral MRI Scan Help to Establish an Earlier Diagnosis of PHTS in Children? Cells 2020; 9:cells9071668. [PMID: 32664367 PMCID: PMC7407561 DOI: 10.3390/cells9071668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background: PTEN Hamartoma Tumor Syndrome (PHTS) is caused by germline autosomal-dominant mutations of the tumor suppressor gene PTEN. Subjects harbour an increased risk for tumor development, with thyroid carcinoma occurring in young children. Establishing a diagnosis is challenging, since not all children fulfill diagnostic criteria established for adults. Macrocephaly is a common feature in childhood, with cerebral MRI being part of its diagnostic workup. We asked whether distinct cMRI features might facilitate an earlier diagnosis. Methods: We retrospectively studied radiological and clinical data of pediatric patients who were presented in our hospital between 2013 and 2019 in whom PTEN gene mutations were identified. Results: We included 27 pediatric patients (18 male) in the analysis. All patients were macrocephalic. Of these, 19 patients had received at least one cMRI scan. In 18 subjects variations were detected: enlarged perivascular spaces (EPVS; in 18), white matter abnormalities (in seven) and less frequently additional pathologies. Intellectual ability was variable. Most patients exhibited developmental delay in motor skills, but normal intelligence. Conclusion: cMRI elucidates EPVS and white matter abnormalities in a high prevalence in children with PHTS and might therefore aid as a diagnostic feature to establish an earlier diagnosis of PHTS in childhood.
Collapse
|
31
|
Lehalle D, Vabres P, Sorlin A, Bierhals T, Avila M, Carmignac V, Chevarin M, Torti E, Abe Y, Bartolomaeus T, Clayton-Smith J, Cogné B, Cusco I, Duplomb L, De Bont E, Duffourd Y, Duijkers F, Elpeleg O, Fattal A, Geneviève D, Guillen Sacoto MJ, Guimier A, Harris DJ, Hempel M, Isidor B, Jouan T, Kuentz P, Koshimizu E, Lichtenbelt K, Loik Ramey V, Maik M, Miyakate S, Murakami Y, Pasquier L, Pedro H, Simone L, Sondergaard-Schatz K, St-Onge J, Thevenon J, Valenzuela I, Abou Jamra R, van Gassen K, van Haelst MM, van Koningsbruggen S, Verdura E, Whelan Habela C, Zacher P, Rivière JB, Thauvin-Robinet C, Betschinger J, Faivre L. De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features. J Med Genet 2020; 57:808-819. [PMID: 32409512 DOI: 10.1136/jmedgenet-2019-106508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.
Collapse
Affiliation(s)
- Daphné Lehalle
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France .,UF de Génétique Médicale, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Vabres
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, Bourgogne, France
| | - Arthur Sorlin
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Magali Avila
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Virginie Carmignac
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Martin Chevarin
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jill Clayton-Smith
- Genomic Medicine, Manchester Centre for Genomic Medicine, Manchester, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, Greater Manchester, UK
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Ivon Cusco
- Department of Clinical and Molecular Genetics and Rare Disease Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Laurence Duplomb
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Eveline De Bont
- Department of Pediatric Oncology, Ommelander Hospital Groningen, Scheemda, Groningen, The Netherlands
| | - Yannis Duffourd
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Floor Duijkers
- Department of Genetics, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, The Netherlands
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviva Fattal
- Pediatric Neurology Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - David Geneviève
- Departement de Génétique Medicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | | | - Anne Guimier
- Department of Genetics, Necker-Enfants Malades Hospitals, Paris, Île-de-France, France
| | - David J Harris
- Division of Genomics and Genetics, Boston Children s Hospital, Boston, Massachusetts, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Thibaud Jouan
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Paul Kuentz
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Génétique Biologique Histologie, PCBio, Centre Hospitalier Universitaire de Besancon, Besancon, France
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Klaske Lichtenbelt
- Department of Genetics, University Medical Centre Utrecht Brain Centre, Utrecht, Utrecht, The Netherlands
| | - Valerie Loik Ramey
- Division of Genomics and Genetics, Boston Children s Hospital, Boston, Massachusetts, USA
| | - Miriam Maik
- Hackensack Meridian Health Inc, Edison, New Jersey, USA
| | - Sakoto Miyakate
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Laurent Pasquier
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Rennes, France
| | - Helio Pedro
- Hackensack Meridian Health Inc, Edison, New Jersey, USA
| | - Laurie Simone
- Hackensack Meridian Health Inc, Edison, New Jersey, USA
| | - Krista Sondergaard-Schatz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Judith St-Onge
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien Thevenon
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Département de Génétique et Procréation, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Koen van Gassen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieke M van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Silvana van Koningsbruggen
- Department of Clinical Genetics, University of Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Christa Whelan Habela
- Department of Neurology, John M. Freeman Pediatric Epilepsy Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Pia Zacher
- The Saxon Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Jean-Baptiste Rivière
- INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Christel Thauvin-Robinet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Basel, Basel-Stadt, Switzerland
| | - Laurence Faivre
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
32
|
Dhamija R, Hoxworth JM. Imaging of PTEN-related abnormalities in the central nervous system. Clin Imaging 2019; 60:180-185. [PMID: 31927175 DOI: 10.1016/j.clinimag.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
The phosphatase and tensin homolog (PTEN) located at 10q23.31 is a tumor suppressor gene expressed ubiquitously, and loss of function mutations lead to aberrant growth, angiogenesis, and an increased risk for a variety of tumors. PTEN mutations have been associated with multiple abnormalities in the central nervous system, and a number of clinical phenotypes are now attributed to germline PTEN mutations, collectively referred to as PTEN hamartoma tumor syndrome (PHTS). Most notably, these include Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), and autism spectrum disorders with macrocephaly. It is important to recognize the neuroimaging features associated with PTEN mutations to not only avoid misdiagnosis in cases of known PHTS but also to guide genetic testing in patients who do not yet have an established diagnosis. In this review, the central nervous system imaging features of PTEN-related disorders are discussed.
Collapse
Affiliation(s)
- Radhika Dhamija
- Departments of Clinical Genomics and Neurology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Joseph M Hoxworth
- Divison of Neuroradiology, Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
33
|
Abstract
Neuroimaging enables the evaluation of many aspects of brain maturation, and detection of abnormalities such as malformation and injury. MRI is integral to the diagnostic work-up of congenital and acquired disorders of the central nervous system in newborns, and imaging findings are central to prognostication. This paper reviews techniques to optimize assessment of maturity of the neonatal brain, as well as abnormalities and injuries of the newborn brain that are associated with abnormal neurocognitive development.
Collapse
|
34
|
Salinas V, Vega P, Piccirilli MV, Chicco C, Ciraolo C, Christiansen S, Consalvo D, Perez-Maturo J, Medina N, González-Morón D, Novaro V, Perrone C, García MDC, Agosta G, Silva W, Kauffman M. Identification of a somatic mutation in the RHEB gene through high depth and ultra-high depth next generation sequencing in a patient with Hemimegalencephaly and drug resistant Epilepsy. Eur J Med Genet 2019; 62:103571. [DOI: 10.1016/j.ejmg.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
|
35
|
Chen CJ, Sgritta M, Mays J, Zhou H, Lucero R, Park J, Wang IC, Park JH, Kaipparettu BA, Stoica L, Jafar-Nejad P, Rigo F, Chin J, Noebels JL, Costa-Mattioli M. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat Med 2019; 25:1684-1690. [PMID: 31636454 PMCID: PMC7082835 DOI: 10.1038/s41591-019-0608-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Dysregulation of the mammalian target of rapamycin (mTOR) signaling, which is mediated by two structurally and functionally distinct complexes, mTORC1 and mTORC2, has been implicated in several neurological disorders1-3. Individuals carrying loss-of-function mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of mTOR signaling, are prone to developing macrocephaly, autism spectrum disorder (ASD), seizures and intellectual disability2,4,5. It is generally believed that the neurological symptoms associated with loss of PTEN and other mTORopathies (for example, mutations in the tuberous sclerosis genes TSC1 or TSC2) are due to hyperactivation of mTORC1-mediated protein synthesis1,2,4,6,7. Using molecular genetics, we unexpectedly found that genetic deletion of mTORC2 (but not mTORC1) activity prolonged lifespan, suppressed seizures, rescued ASD-like behaviors and long-term memory, and normalized metabolic changes in the brain of mice lacking Pten. In a more therapeutically oriented approach, we found that administration of an antisense oligonucleotide (ASO) targeting mTORC2's defining component Rictor specifically inhibits mTORC2 activity and reverses the behavioral and neurophysiological abnormalities in adolescent Pten-deficient mice. Collectively, our findings indicate that mTORC2 is the major driver underlying the neuropathophysiology associated with Pten-deficiency, and its therapeutic reduction could represent a promising and broadly effective translational therapy for neurological disorders where mTOR signaling is dysregulated.
Collapse
Affiliation(s)
- Chien-Ju Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jacqunae Mays
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongyi Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Rocco Lucero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Loredana Stoica
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Van den Veyver IB. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: A practical review. Prenat Diagn 2019; 39:666-678. [PMID: 31353536 DOI: 10.1002/pd.5520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Developmental brain abnormalities are complex and can be difficult to diagnose by prenatal imaging because of the ongoing growth and development of the brain throughout pregnancy and the limitations of ultrasound, often requiring fetal magnetic resonance imaging as an additional tool. As for all major structural congenital anomalies, amniocentesis with chromosomal microarray and a karyotype is the first-line recommended test for the genetic work-up of prenatally diagnosed central nervous system (CNS) abnormalities. Many CNS defects, especially neuronal migration defects affecting the cerebral and cerebellar cortex, are caused by single-gene mutations in a large number of different genes. Early data suggest that prenatal diagnostic exome sequencing for fetal CNS defects will have a high diagnostic yield, but interpretation of sequencing results can be complex. Yet a genetic diagnosis is important for prognosis prediction and recurrence risk counseling. The evaluation and management of such patients is best done in a multidisciplinary team approach. Here, we review general principles of the genetic work-up for fetuses with CNS defects and review categories of genetic causes of prenatally diagnosed CNS phenotypes.
Collapse
|
37
|
ALG13 Deficiency Associated with Increased Seizure Susceptibility and Severity. Neuroscience 2019; 409:204-221. [DOI: 10.1016/j.neuroscience.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/31/2023]
|
38
|
Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936767 PMCID: PMC6436952 DOI: 10.31887/dcns.2018.20.4/gmirzaa] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Expansion of the human brain, and specifically the neocortex, is among the most remarkable evolutionary processes that correlates with cognitive, emotional, and social abilities. Cortical expansion is determined through a tightly orchestrated process of neural stem cell proliferation, migration, and ongoing organization, synaptogenesis, and apoptosis. Perturbations of each of these intricate steps can lead to abnormalities of brain size in humans, whether small (microcephaly) or large (megalencephaly). Abnormalities of brain growth can be clinically isolated or occur as part of complex syndromes associated with other neurodevelopmental problems (eg, epilepsy, autism, intellectual disability), brain malformations, and body growth abnormalities. Thorough review of the genetic literature reveals that human microcephaly and megalencephaly are caused by mutations of a rapidly growing number of genes linked within critical cellular pathways that impact early brain development, with important pathomechanistic links to cancer, body growth, and epilepsy. Given the rapid rate of causal gene identification for microcephaly and megalencephaly understanding the roles and interplay of these important signaling pathways is crucial to further unravel the mechanisms underlying brain growth disorders and, more fundamentally, normal brain growth and development in humans. In this review, we will (a) overview the definitions of microcephaly and megalencephaly, highlighting their classifications in clinical practice; (b) overview the most common genes and pathways underlying microcephaly and megalencephaly based on the fundamental cellular processes that are perturbed during cortical development; and (c) outline general clinical molecular diagnostic workflows for children and adults presenting with microcephaly and megalencephaly.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Branden Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
40
|
Handoko M, Emrick LT, Rosenfeld JA, Wang X, Tran AA, Turner A, Belmont JW, Lee BH, Bacino CA, Chao HT. Recurrent mosaic MTOR c.5930C > T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: Case report and review of the literature. Am J Med Genet A 2019; 179:475-479. [PMID: 30569621 DOI: 10.1002/ajmg.a.61007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Genetic alterations leading to overactivation of mammalian target of rapamycin (mTOR) signaling result in brain overgrowth syndromes such as focal cortical dysplasia (FCD) and megalencephaly. Megalencephaly with cutis tri-color of the Blaschko-linear type pigmentary mosaicism and intellectual disability is a rare neurodevelopmental disorder attributed to the recurrent mosaic c.5930C > T (p.Thr1977Ile) MTOR variant. This variant was previously reported at low to intermediate levels of mosaicism in the peripheral blood of three unrelated individuals with consistent clinical findings. We report a fourth case of a 3-year-old female presenting with megalencephaly, obstructive hydrocephalus due to cerebral aqueductal stenosis, asymmetric polymicrogyria, dysgenesis of the corpus callosum, hypotonia, developmental delay, and cutaneous pigmentary mosaicism. Oligonucleotide and SNP chromosomal microarray (CMA), karyotype, and trio whole exome sequencing (WES) in the peripheral blood, as well as a targeted gene variant panel from fibroblasts derived from hyperpigmented and non-hyperpigmented skin did not detect any abnormalities in MTOR or other genes associated with brain overgrowth syndromes. Unlike the previously reported cases, the de novo c.5930C > T (p.Thr1977Ile) MTOR variant was detected at 32% mosaicism in our patient only after WES was performed on fibroblast-derived DNA from the hyperpigmented skin. This case demonstrates the tissue variability in mosaic expression of the recurrent p.Thr1977Ile MTOR variant, emphasizes the need for skin biopsies in the genetic evaluation of patients with skin pigmentary mosaicism, and expands the clinical phenotype associated with this pathogenic MTOR variant.
Collapse
Affiliation(s)
- Maureen Handoko
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Section of Child Neurology, Texas Children's Hospital, Houston, Texas
| | - Lisa T Emrick
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Section of Child Neurology, Texas Children's Hospital, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alicia Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hsiao-Tuan Chao
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Section of Child Neurology, Texas Children's Hospital, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| |
Collapse
|
41
|
Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol 2019; 44:6-17. [PMID: 29359340 DOI: 10.1111/nan.12463] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Over the last decade, there has been increasing evidence that hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is a hallmark of malformations of cortical development such as focal cortical dysplasia (FCD) or hemimegalencephaly. The mTOR pathway governs protein and lipid synthesis, cell growth and proliferation as well as metabolism and autophagy. The molecular genetic aetiology of mTOR hyperactivation has only been recently clarified. This article will review the current and still evolving genetic advances in the elucidation of the molecular basis of FCD. Activating somatic mutations in the MTOR gene are to date the most frequent mutations found in FCD brain specimens.
Collapse
Affiliation(s)
- E Marsan
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Baulac
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
42
|
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci 2018; 19:ijms19123725. [PMID: 30477115 PMCID: PMC6321294 DOI: 10.3390/ijms19123725] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Nelly Rodríguez-Corona
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| |
Collapse
|
43
|
Zombor M, Kalmár T, Maróti Z, Zimmermann A, Máté A, Bereczki C, Sztriha L. Co-occurrence of mutations in FOXP1 and PTCH1 in a girl with extreme megalencephaly, callosal dysgenesis and profound intellectual disability. J Hum Genet 2018; 63:1189-1193. [PMID: 30181650 DOI: 10.1038/s10038-018-0508-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Heterozygous disruptions in FOXP1 are responsible for developmental delay, intellectual disability and speech deficit. Heterozygous germline PTCH1 disease-causing variants cause Gorlin syndrome. We describe a girl with extreme megalencephaly, developmental delay and severe intellectual disability. Dysmorphic features included prominent forehead, frontal hair upsweep, flat, wide nasal bridge, low-set, abnormally modelled ears and post-axial cutaneous appendages on the hands. Brain MRI showed partial agenesis of the corpus callosum and widely separated leaves of the septum pellucidum. Exome sequencing of a gene set representing a total of 4813 genes with known relationships to human diseases revealed an already known heterozygous de novo nonsense disease-causing variant in FOXP1 (c.1573C>T, p.Arg525Ter) and a heterozygous novel de novo frameshift nonsense variant in PTCH1 (c.2834delGinsAGATGTTGTGGACCC, p.Arg945GlnfsTer22). The composite phenotype of the patient seems to be the result of two monogenic diseases, although more severe than described in conditions due to disease-causing variants in either gene.
Collapse
Affiliation(s)
- Melinda Zombor
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Paediatrics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
44
|
Tan AP, Mankad K, Gonçalves FG, Talenti G, Alexia E. Macrocephaly: Solving the Diagnostic Dilemma. Top Magn Reson Imaging 2018; 27:197-217. [PMID: 30086108 DOI: 10.1097/rmr.0000000000000170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Macrocephaly is a relatively common clinical condition affecting up to 5% of the pediatric population. It is defined as an abnormally large head with an occipitofrontal circumference greater than 2 standard deviations above the mean for a given age and sex. Megalencephaly refers exclusively to brain overgrowth exceeding twice the standard deviation. Macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, whereas megalencephaly is more often syndromic. Megalencephaly can be divided into 2 subtypes: metabolic and developmental, caused by genetic defects in cellular metabolism and alterations in signaling pathways, respectively. Neuroimaging plays an important role in the evaluation of macrocephaly, especially in the metabolic subtype which may not be overtly apparent clinically. This article outlines the diverse etiologies of macrocephaly, delineates their clinical and radiographic features, and suggests a clinicoradiological algorithm for evaluation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Radiology, National University Health System, Singapore, Singapore
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | | | - Giacomo Talenti
- Neuroradiology Unit, Padua University Hospital, Padua, Italy
| | - Egloff Alexia
- Perinatal Imaging and Health Department, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
45
|
Dysplastic megalencephaly phenotype presenting with prenatal high-output cardiac failure. Pediatr Radiol 2018; 48:1172-1177. [PMID: 29594439 DOI: 10.1007/s00247-018-4121-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Dysplastic megalencephaly, also known as bilateral hemimegalencephaly, is a rare cerebral malformation characterized by bilateral cerebral hemisphere overgrowth and extensive malformation of cortical development. Affected patients present clinically with intractable seizures, severe neurological impairment and global developmental delay. There is a small body of literature reporting megalencephaly's association with neonatal high-output cardiac failure and a lack of literature describing prenatal findings. We report a case of dysplastic megalencephaly presenting with progressive high-output cardiac failure during fetal life. Prenatal and postnatal imaging findings as well as neonatal course are described. A companion case with similar imaging findings will help illustrate the prenatal imaging characteristics of this association. Knowledge of this potential complication related to dysplastic megalencephaly may help guide parental counseling and obstetric management.
Collapse
|
46
|
The Child With Macrocephaly: Differential Diagnosis and Neuroimaging Findings. AJR Am J Roentgenol 2018; 210:848-859. [DOI: 10.2214/ajr.17.18693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
48
|
Shrot S, Hwang M, Stafstrom CE, Huisman TAGM, Soares BP. Dysplasia and overgrowth: magnetic resonance imaging of pediatric brain abnormalities secondary to alterations in the mechanistic target of rapamycin pathway. Neuroradiology 2017; 60:137-150. [PMID: 29279945 DOI: 10.1007/s00234-017-1961-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
The current classification of malformations of cortical development is based on the type of disrupted embryological process (cell proliferation, migration, or cortical organization/post-migrational development) and the resulting morphological anomalous pattern of findings. An ideal classification would include knowledge of biological pathways. It has recently been demonstrated that alterations affecting the mechanistic target of rapamycin (mTOR) signaling pathway result in diverse abnormalities such as dysplastic megalencephaly, hemimegalencephaly, ganglioglioma, dysplastic cerebellar gangliocytoma, focal cortical dysplasia type IIb, and brain lesions associated with tuberous sclerosis. We review the neuroimaging findings in brain abnormalities related to alterations in the mTOR pathway, following the emerging trend from morphology towards genetics in the classification of malformations of cortical development. This approach improves the understanding of anomalous brain development and allows precise diagnosis and potentially targeted therapies that may regulate mTOR pathway function.
Collapse
Affiliation(s)
- Shai Shrot
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zayed 4174, Baltimore, MD, 21287, USA
- Department of Diagnostic Imaging, Sheba Medical Center, 52621, Ramat-Gan, Israel
| | - Misun Hwang
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zayed 4174, Baltimore, MD, 21287, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zayed 4174, Baltimore, MD, 21287, USA
| | - Bruno P Soares
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zayed 4174, Baltimore, MD, 21287, USA.
| |
Collapse
|
49
|
You Have Brains in Your Head, You Have Organoids in Your Dish, You Can Steer Yourself in any Direction You Wish. Epilepsy Curr 2017; 17:311-313. [PMID: 29225549 DOI: 10.5698/1535-7597.17.5.311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Zega K, Jovanovic VM, Vitic Z, Niedzielska M, Knaapi L, Jukic MM, Partanen J, Friedel RH, Lang R, Brodski C. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool. Front Mol Neurosci 2017; 10:372. [PMID: 29170629 PMCID: PMC5684737 DOI: 10.3389/fnmol.2017.00372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/−) developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF) outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.
Collapse
Affiliation(s)
- Ksenija Zega
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Vukasin M Jovanovic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zagorka Vitic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Magdalena Niedzielska
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Knaapi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Marin M Jukic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Roland H Friedel
- Departments of Neuroscience and Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|