1
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Chauhan P, Begum MY, Narapureddy BR, Gupta S, Wadhwa K, Singh G, Kumawat R, Sharma N, Ballal S, Jha SK, Abomughaid MM, B D, Ojha S, Jha NK. Unveiling the Involvement of Herpes Simplex Virus-1 in Alzheimer's Disease: Possible Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:5850-5874. [PMID: 39648189 DOI: 10.1007/s12035-024-04535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Viruses pose a significant challenge and threat to human health, as demonstrated by the current COVID-19 pandemic. Neurodegeneration, particularly in the case of Alzheimer's disease (AD), is significantly influenced by viral infections. AD is a neurodegenerative disease that affects people of all ages and poses a significant threat to millions of individuals worldwide. The precise mechanism behind its development is not yet fully understood; however, the emergence and advancement of AD can be hastened by various environmental factors, such as bacterial and viral infections. There has been a longstanding suspicion that the herpes simplex virus-1 (HSV-1) may have a role to play in the development or advancement of AD. Reactivation of HSV-1 could potentially lead to damage to neurons, either by direct means or indirectly by triggering inflammation. This article provides an overview of the connection between HSV-1 infections and immune cells (astrocytes, microglia, and oligodendrocytes) in the progression of AD. It summarizes recent scientific research on how HSV-1 affects neurons, which could potentially shed light on the clinical features and treatment options for AD. In addition, the paper has explored the impact of HSV-1 on neurons and its role in various aspects of AD, such as Aβ secretion, tau hyperphosphorylation, metabolic dysregulation, oxidative damage, apoptosis, and autophagy. It is believed that the immune response triggered by HSV-1 reactivation plays a role in the development of neurodegeneration in AD. Despite the lack of a cure for AD, researchers have made significant efforts to study the clinical and pathological aspects of the disease, identify biomarkers, and gain insight into its underlying causes. The goal is to achieve early diagnosis and develop treatments that can modify the progression of the disease. The current article discusses the most promising therapy for combating the viral impacts, which provides additional evidence for the frequent reactivations of latent HSV-1 in the AD brain. However, further research is still required to establish the molecular and cellular mechanisms underlying the development of AD through the reactivation of HSV-1. This could potentially lead to new insights in drug development aimed at preventing HSV-1 reactivation and the subsequent development and progression of AD.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajsthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Suhas Ballal
- Departmant of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Dheepak B
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
3
|
Campetella L, Smolik K, Farina A, Joubert B, Muñiz-Castrillo S, Desestret V, Honnorat J. Neurodegeneration and the immune system: lessons from autoimmune encephalitis. J Neurol 2025; 272:359. [PMID: 40274643 DOI: 10.1007/s00415-025-13094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
The spectrum of autoimmune encephalitis (AE) is expanding to atypical clinical presentations that can mimic neurodegenerative disorders. Among the autoantibodies most frequently associated with manifestations mimicking neurodegenerative disorders-such as dementia, parkinsonism, ataxia and motor neuron disease-IgLON5-, LGI1- and CASPR2-antibodies, predominantly of the IgG4 subclass and associated with specific HLA haplotypes, are the most common. Since these forms of autoimmune encephalitis often lack inflammatory findings in cerebrospinal fluid or magnetic resonance imaging, recognizing clinical 'red flags' suggestive of an autoimmune etiology is crucial for accurate diagnosis and timely initiation of immunotherapy. Interestingly, in these forms of autoimmune encephalitis, both inflammatory and neurodegenerative disease mechanisms may be involved. The neurodegenerative component may result directly from antibody effects (e.g., tau deposition in IgLON5-antibody disease) or arise through other mechanisms (e.g., seizures or exacerbation of pre-existing pathology). Moreover, neuroinflammation has recently emerged as a key contributor to primary neurodegenerative disorders. For instance, microglial activation promotes tau pathology propagation, as observed in Alzheimer's disease and other primary neurodegenerative disorders. While the precise mechanisms linking inflammation and neurodegeneration remain to be fully understood, further research into the interplay between autoimmunity and neurodegeneration may enhance our understanding of disease mechanisms and expand therapeutic opportunities in both autoimmune and neurodegenerative neurological disorders.
Collapse
Affiliation(s)
- Lucia Campetella
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Krzysztof Smolik
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Farina
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Bastien Joubert
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
- Neurology Department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69495, Oullins-Pierre-Bénite, France
| | - Sergio Muñiz-Castrillo
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
- Neurology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Virginie Desestret
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
- Neurocognition and Neuro-Ophthalmology Department, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, 69677, Lyon, France.
- MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Hong AT, Luu IYK, Lin F, Vij AP, Lewis KA, Wilson ML, Klausner JD. Association between herpes simplex virus 1 and dementia: a systematic review protocol. BMJ Open 2025; 15:e088632. [PMID: 40254300 PMCID: PMC12010296 DOI: 10.1136/bmjopen-2024-088632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
INTRODUCTION Herpes simplex virus 1 (HSV-1) infects approximately two-thirds of the global population under the age of 50 years. Although widely prevalent, the possible implications of HSV-1 in neurodegenerative diseases, especially dementia and Alzheimer's disease, remain poorly understood. This review seeks to elucidate this association and explore the potential benefits of preventing or treating herpesvirus infections on dementia risk. The goal is to enhance our understanding of HSV-1's potential role in dementia, which could inform the development of future therapeutic interventions for these conditions. METHODS AND ANALYSIS PubMed, Embase (Elsevier/Ovid), Web of Science, Scopus, Global Health, PsycInfo, Cochrane Library and Clinicaltrials.gov will be searched from the inception of each respective database. Studies that have HSV-1 as an exposure and dementia, or its subtypes, as a primary outcome will be included. Two researchers will independently screen titles, abstracts and full texts, with discrepancies resolved by a third researcher. Systematic data extraction from eligible studies will be performed using a standardised template. Risk of bias of individual studies will be assessed with the Cochrane Collaboration approach. We will assess the overall quality of cumulative evidence using the Grading of Recommendations, Assessment, Development and Evaluations criteria. Statistical analysis will employ a random effects model, and heterogeneity will be determined with Cochrane's Q test and assessed using I2. Studies will be grouped by population subgroups and dementia subtypes when possible to explore nuances in results. We will consider performing meta-regression if heterogeneity remains after subgroup analyses. All statistical analyses will be conducted using Stata V.18 software (College Station, Texas, USA). ETHICS AND DISSEMINATION No ethical approval is required since data will be collected from existing studies. The review will be disseminated through peer-reviewed publication and at national and international conferences. PROSPERO REGISTRATION NUMBER CRD42024516789.
Collapse
Affiliation(s)
- Alexander T Hong
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Ivan Yun-Kuen Luu
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Forest Lin
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Arjun P Vij
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Katherine A Lewis
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Melissa L Wilson
- Department of Medicine, Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Department of Medicine, Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
5
|
Yan X, Wang E, Zhao M, Ma G, Xu XX, Zhao JB, Li X, Zeng J, Ma X. Microbial infection instigates tau-related pathology in Alzheimer's disease via activating neuroimmune cGAS-STING pathway. Neuroscience 2025; 572:122-133. [PMID: 40064364 DOI: 10.1016/j.neuroscience.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Microbial infection, the strong trigger to directly induce inflammation in brain, is long considered a risk factor of Alzheimer's disease (AD), but how these infections contribute to neurodegeneration remains underexplored. To examine the effect of herpes simplex virus type 1 (HSV-1) infection on tauopathy in local hippocampus of P301S mice, we utilized a modified HSV-1 strain (mHSV-1) potentially relevant to AD, we found that its infection promotes tau-related pathology in part via activating neuroimmune cGAS-STING pathway in the tau mouse model. Specifically, Sting ablation causes the detectable improvement of neuronal dysfunction and loss in P301S mice, which is causally linked to lowered proinflammatory status in the brain. Administration of STING inhibitor H-151 alleviates neuroinflammation and tau-related pathology in P301S mice. These results jointly suggest that herpesviral infection, as the vital environmental risk factor, could induce tau-related pathology in AD pathogenesis partially via neuroinflammatory cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxu Yan
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Erlin Wang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Meng Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guanqin Ma
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiang-Xiong Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jie-Bin Zhao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiaohong Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianxiong Zeng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan 650201, China.
| | - Xueling Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
6
|
Zhan H, Cammann D, Cummings JL, Dong X, Chen J. Biomarker identification for Alzheimer's disease through integration of comprehensive Mendelian randomization and proteomics data. J Transl Med 2025; 23:278. [PMID: 40050982 PMCID: PMC11884171 DOI: 10.1186/s12967-025-06317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the main cause of dementia with few effective therapies. We aimed to identify potential plasma biomarkers or drug targets for AD by investigating the causal association between plasma proteins and AD by integrating comprehensive Mendelian randomization (MR) and multi-omics data. METHODS Using two-sample MR, cis protein quantitative trait loci (cis-pQTLs) for 1,916 plasma proteins were used as an exposure to infer their causal effect on AD liability in individuals of European ancestry, with two large-scale AD genome-wide association study (GWAS) datasets as the outcome for discovery and replication. Significant causal relationships were validated by sensitivity analyses, reverse MR analysis, and Bayesian colocalization analysis. Additionally, we investigated the causal associations at the transcriptional level with cis gene expression quantitative trait loci (cis-eQTLs) data across brain tissues and blood in European ancestry populations, as well as causal plasma proteins in African ancestry populations. RESULTS In those of European ancestry, the genetically predicted levels of five plasma proteins (BLNK, CD2AP, GRN, PILRA, and PILRB) were causally associated with AD. Among these five proteins, GRN was protective against AD, while the rest were risk factors. Consistent causal effects were found in the brain for cis-eQTLs of GRN, BLNK, and CD2AP, while the same was true for PILRA in the blood. None of the plasma proteins were significantly associated with AD in persons of African ancestry. CONCLUSIONS Comprehensive MR analyses with multi-omics data identified five plasma proteins that had causal effects on AD, highlighting potential biomarkers or drug targets for better diagnosis and treatment for AD.
Collapse
Affiliation(s)
- Hui Zhan
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
- School of Life Science, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Xianjun Dong
- Stephen and Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurology and Section of Biomedical Informatics and Data Science (BIDS), Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jingchun Chen
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
- School of Life Science, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
| |
Collapse
|
7
|
D'Aiuto L, Caldwell JK, Edwards TG, Zhou C, McDonald ML, Di Maio R, Joel WA, Hyde VR, Wallace CT, Watkins SC, Wesesky MA, Shemesh OA, Nimgaonkar VL, Bloom DC. Phosphorylated-tau associates with HSV-1 chromatin and correlates with nuclear speckles decondensation in low-density host chromatin regions. Neurobiol Dis 2025; 206:106804. [PMID: 39818277 PMCID: PMC12001802 DOI: 10.1016/j.nbd.2025.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases. Research indicates that viruses may function as risk factors driving neurodegenerative disease rather than playing a causative role. Investigating HSV-1 in abnormal tau phosphorylation is important for understanding the role of infectious agents in neurodegeneration. We generated cellular models of HSV-1 acute, latent infection, and viral reactivation from latency in cortical brain organoids and investigated the interplay between tau phosphorylation and HSV-1 infection by employing human induced pluripotent stem cell (iPSC)-derived monolayer neuronal cultures and brain organoids. Acute infection with HSV-1 strains 17syn+ and KOS caused nuclear accumulation of phosphorylated tau (p-tau) in neurons and neural precursor cells. Antivirals prevented nuclear accumulation of p-tau. Viral reactivation was accompanied by the nuclear translocation of p-tau. Chromatin immunoprecipitation analysis indicated an interaction of p-tau with the viral chromatin. A reduction in abundance of component of nuclear speckles and their loss of organized morphology in low-denisty host chromatin regions was observed, with strain-specific differences. HSV-1 infection was followed by an increase in the abundance of BRSKs and TAOKs, kinases known to phosphorylate tau. These findings show interaction between p-tau and HSV-1 chromatin and demonstrate the ability of HSV-1 to activate mechanisms that are observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America.
| | - Jill K Caldwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Matthew L McDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Biological Science Tower 3, Pittsburgh, PA 15260, United States of America
| | - Wood A Joel
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Callen T Wallace
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Maribeth A Wesesky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Or A Shemesh
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| |
Collapse
|
8
|
Grandke F, Fehlmann T, Kern F, Gate DM, Wolff TW, Leventhal O, Channappa D, Hirsch P, Wilson EN, Meese E, Liu C, Shi Q, Flotho M, Li Y, Chen C, Yu Y, Xu J, Junkin M, Wang Z, Wu T, Liu L, Hou Y, Andreasson KI, Gansen JS, Mass E, Poston K, Wyss-Coray T, Keller A. A single-cell atlas to map sex-specific gene-expression changes in blood upon neurodegeneration. Nat Commun 2025; 16:1965. [PMID: 40000636 PMCID: PMC11862118 DOI: 10.1038/s41467-025-56833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical course and treatment of neurodegenerative disease are complicated by immune-system interference and chronic inflammatory processes, which remain incompletely understood. Mapping immune signatures in larger human cohorts through single-cell gene expression profiling supports our understanding of observed peripheral changes in neurodegeneration. Here, we employ single-cell gene expression profiling of over 909k peripheral blood mononuclear cells (PBMCs) from 121 healthy individuals, 48 patients with mild cognitive impairment (MCI), 46 with Parkinson's disease (PD), 27 with Alzheimer's disease (AD), and 15 with both PD and MCI. The dataset is interactively accessible through a freely available website ( https://www.ccb.uni-saarland.de/adrcsc ). In this work, we identify disease-associated changes in blood cell type composition and the gene expression in a sex-specific manner, offering insights into peripheral and solid tissue signatures in AD and PD.
Collapse
Affiliation(s)
- Friederike Grandke
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany
| | - David M Gate
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | | | - Olivia Leventhal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | | | | | - Matthias Flotho
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Yongping Li
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- MGI Group, San Jose, CA, USA
| | | | - Yeya Yu
- MGI Group, San Jose, CA, USA
| | | | | | | | - Tao Wu
- MGI Group, San Jose, CA, USA
| | | | | | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Jenny S Gansen
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Kathleen Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- PharmaScienceHub, Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
9
|
Elyaman W, Stern LJ, Jiang N, Dressman D, Bradley P, Klatzmann D, Bradshaw EM, Farber DL, Kent SC, Chizari S, Funk K, Devanand D, Thakur KT, Raj T, Dalahmah OA, Sarkis RA, Weiner HL, Shneider NA, Przedborski S. Exploring the role of T cells in Alzheimer's and other neurodegenerative diseases: Emerging therapeutic insights from the T Cells in the Brain symposium. Alzheimers Dement 2025; 21:e14548. [PMID: 39868844 PMCID: PMC11851166 DOI: 10.1002/alz.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau. The symposium also examined immunotherapies for AD, including the Valacyclovir Treatment of Alzheimer's Disease (VALAD) trial, and two clinical trials leveraging regulatory T cell approaches for multiple sclerosis and amyotrophic lateral sclerosis therapy. Additionally, single-cell RNA/TCR sequencing of T cells and other immune cells provided insights into immune dynamics in neurodegenerative diseases. This article highlights key findings from the symposium and outlines future research directions to further understand the role of T cells in neurodegeneration, offering innovative therapeutic approaches for AD and other neurodegenerative diseases. HIGHLIGHTS: Researchers gathered to discuss approaches to study T cells in brain disorders. New technologies allow high-throughput screening of antigen-specific T cells. Microbial infections can precede several serious and chronic neurological diseases. Central and peripheral T cell responses shape neurological disease pathology. Immunotherapy can induce regulatory T cell responses in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wassim Elyaman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Lawrence J. Stern
- Department of Pathology, and Immunology and Microbiology ProgramUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Ning Jiang
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dallin Dressman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Philip Bradley
- Computational Biology ProgramPublic Health Sciences DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - David Klatzmann
- INSERM UMRS 959Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéParisFrance
| | - Elizabeth M. Bradshaw
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Carol and Gene Ludwig Center for Research on NeurodegenerationDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and Immunology, and Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sally C. Kent
- Diabetes Center of ExcellenceDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Shahab Chizari
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristen Funk
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Davangere Devanand
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Kiran T. Thakur
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Osama Al Dalahmah
- Department of Pathology and Cell BiologyVagelos College of Physicians and SurgeonsColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Rani A. Sarkis
- Epilepsy DivisionDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Neil A. Shneider
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Eleanor and Lou Gehrig ALS CenterColumbia UniversityNew YorkNew YorkUSA
| | - Serge Przedborski
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
10
|
Shaik KM, Kumar D, Srikanth P, Nandi S. SARS-CoV-2: A synergy to the Alzheimer's disease. J Neurovirol 2025; 31:16-23. [PMID: 39998800 DOI: 10.1007/s13365-025-01247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
COVID-19 was a nightmare in humankind's history that challenged our advanced medical technology. All credit goes to the researchers who played a crucial role in curbing COVID-19 and proved our medical technology supremacy. However, COVID-19 has left some mysterious scars on human well-being. It is believed that COVID-19 has a significant negative impact on various cardiovascular (CVS) and central nervous system (CNS) diseases, especially in the case of CNS diseases like Alzheimer's. Surprisingly, COVID-19 affects the respiratory system, whereas Alzheimer's disease (AD) alters brain function. To explain this phenomenon, several hypotheses were proposed, but the mechanism needs to be clearly understood. Another critical thing to be concerned about is that COVID-19 will worsen pre-existing conditions and lead to the onset of AD. In the race to curb COVID-19, the invention of vaccines was speeded up, and it is necessary to fight against COVID-19. However, postvaccination follow-up is mandatory when an individual is a victim of AD. In this review article, we compiled the various dreadful effects of the COVID-19 virus on AD, the Post effects of the virus on AD, and the effect of the COVID-19 vaccination on AD. This article provides a new direction for research concerning COVID-19 and AD.
Collapse
Affiliation(s)
- Khaja Moinuddin Shaik
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Deepak Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Pirangi Srikanth
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Sukhendu Nandi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
11
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Linard M, Garrigue I, Vellas B, Coley N, Zetterberg H, Blennow K, Ashton NJ, Payoux P, Salabert AS, Dartigues JF, Mazere J, Andrieu S, Helmer C. Association between herpes simplex virus infection and Alzheimer's disease biomarkers: analysis within the MAPT trial. Sci Rep 2025; 15:2362. [PMID: 39825066 PMCID: PMC11748617 DOI: 10.1038/s41598-024-84583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan. Plasma Aβ42/40 ratio, neurofilament light chain and p-tau181 were also available for a sub-sample of participants. Multivariate linear regressions were performed and stratified by APOE4 genotype. The median age was 74.0 years, 85.2% were infected with HSV-1. Infected participants tended to have a lower cortical amyloid load than uninfected participants (β = -0.08, p = 0.06), especially those suspected of reactivating HSV-1 most frequently (i.e. with a high anti-HSV-1 IgG level; n = 58, β = -0.09 p = 0.04). After stratification, the association was only significant in APOE4 carriers (n = 43, β = -0.21 p = 0.01). No association was found with the plasma biomarkers. The trend toward lower cortical amyloid load in HSV-1-infected participants was unexpected given the pre-existing literature and may be explained either by a modified immune response in HSV-1 infected subjects which could favour the clearance of amyloid deposits or by a selection bias.
Collapse
Affiliation(s)
- Morgane Linard
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux Cedex, France.
| | - Isabelle Garrigue
- CNRS, MFP, UMR 5234, University of Bordeaux, Bordeaux, France
- Virology Department, University Hospital of Bordeaux, Bordeaux, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, University Hospital of Toulouse, Toulouse, France
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
| | - Nicola Coley
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
- Department of Clinical Epidemiology and Public Health, University Hospital of Toulouse, Toulouse, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, Neurodegenerative Disorder Research Center, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Pierre Payoux
- Nuclear Medicine Department, University Hospital of Toulouse, Toulouse, France
- INSERM ToNIC, U1214, University of Toulouse, Toulouse, France
| | - Anne-Sophie Salabert
- INSERM ToNIC, U1214, University of Toulouse, Toulouse, France
- Radiopharmacy Department, University Hospital of Toulouse, Toulouse, France
| | - Jean-François Dartigues
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux Cedex, France
- Memory Consultation, CMRR, University Hospital of Bordeaux, Bordeaux, France
| | - Joachim Mazere
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Sandrine Andrieu
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
- Department of Clinical Epidemiology and Public Health, University Hospital of Toulouse, Toulouse, France
| | - Catherine Helmer
- INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Niemeyer CS, Merle L, Bubak AN, Baxter BD, Gentile Polese A, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and trigeminal routes of HSV-1 CNS infection with regional microglial heterogeneity. J Virol 2024; 98:e0096824. [PMID: 39475273 PMCID: PMC11575344 DOI: 10.1128/jvi.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal ganglion (TG) and other peripheral ganglia. HSV-1 can also infect and become latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem and other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases.IMPORTANCEThis study shows how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveal the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigens. Previous reports have identified specific brain regions found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the brain regions consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B Dnate' Baxter
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katherine Colon-Reyes
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sandy Vang
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E Hassell
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D Bruce
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
16
|
Niemeyer CS, Merle L, Bubak AN, Dnate' Baxter B, Polese AG, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and Trigeminal Routes of HSV-1 CNS Infection with Regional Microglial Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614340. [PMID: 39386674 PMCID: PMC11463476 DOI: 10.1101/2024.09.22.614340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal and other peripheral ganglia (TG). HSV-1 can also infect and go latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE Infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem, as well as other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus, while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases. Importance This study sheds light on how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveals the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigen. Previous reports have identified specific regions of the brain found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the regions of the brain consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
|
17
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
18
|
Serrero MC, Paludan SR. Restriction factors regulating human herpesvirus infections. Trends Immunol 2024; 45:662-677. [PMID: 39198098 DOI: 10.1016/j.it.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.
Collapse
Affiliation(s)
- Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark.
| |
Collapse
|
19
|
Yeh TS, Curhan GC, Yawn BP, Willett WC, Curhan SG. Herpes zoster and long-term risk of subjective cognitive decline. Alzheimers Res Ther 2024; 16:180. [PMID: 39138535 PMCID: PMC11323373 DOI: 10.1186/s13195-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/20/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Herpes zoster (HZ), commonly known as "shingles," may contribute to cognitive decline through mechanisms such as neuroinflammation or direct neuronal injury. However, evidence on the longitudinal association between HZ and cognitive decline is conflicting and whether the risk differs by APOE ε4-carrier status has not been studied; prospective cohort studies on the association between HZ vaccination and cognitive decline are also lacking. METHODS We included 149,327 participants from three large cohorts-the Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (HPFS)-to prospectively examine the association between HZ and subsequent subjective cognitive decline (SCD). Poisson regression was used to estimate the multivariable-adjusted relative risk (MVRR) of a 3-unit increment in SCD score according to years since HZ compared with participants with no history of HZ. RESULTS Compared with individuals with no history of HZ, the MVRR (95% CI) of a 3-unit increment in SCD score was significantly and independently higher among individuals with a history of HZ, but the duration of time since HZ when the elevated risk of SCD was statistically significant differed among the cohorts. In NHS, HZ was associated with higher long-term risk of SCD; compared with individuals with no history of HZ, the MVRR (95% CI) of a 3-unit increment in SCD score was 1.14 (1.01, 1.32) for ≥ 13 years since HZ. In NHS II, HZ was associated with higher risk of SCD in both the short-term [MVRR 1.34 (1.18, 1.53) for 1-4 years] and long-term [MVRR 1.20 (1.08, 1.34) for ≥ 13 years since HZ]. In HPFS, an elevated risk of SCD was suggested across all time points. Among the subset of participants with information on APOE ε4, there was a suggestion that the association differed by APOE ε4 carrier status, but the results were not consistent between women and men. Among the subset of women with information on HZ vaccination, there was a suggestion that the long-term risk of SCD may be greater among women who were not vaccinated against HZ. CONCLUSIONS Data from three large independent cohorts of women and men showed that HZ was associated with higher long-term risk of SCD, and the risk may differ by APOE ε4-carrier status.
Collapse
Affiliation(s)
- Tian-Shin Yeh
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St, Taipei, 11031, Taiwan.
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Epidemiology and Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Barbara P Yawn
- Department of Family and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Walter C Willett
- Department of Epidemiology and Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sharon G Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
21
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
22
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
23
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Salgado B, Izquierdo B, Zapata A, Sastre I, Kristen H, Terreros J, Mejías V, Bullido MJ, Aldudo J. Cholesterol Modulation Attenuates the AD-like Phenotype Induced by Herpes Simplex Virus Type 1 Infection. Biomolecules 2024; 14:603. [PMID: 38786010 PMCID: PMC11117519 DOI: 10.3390/biom14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MβCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MβCD treatment. Moreover, MβCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MβCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aβ) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Blanca Salgado
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Izquierdo
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Hospital Clinico San Carlos, 28040 Madrid, Spain
| | - Alba Zapata
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Isabel Sastre
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Henrike Kristen
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Julia Terreros
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Víctor Mejías
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Institute for Bioengineering of Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - María J Bullido
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
| | - Jesús Aldudo
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
25
|
Zhao M, Ma G, Yan X, Li X, Wang E, Xu XX, Zhao JB, Ma X, Zeng J. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer's disease via modulating γ-secretase. Mol Psychiatry 2024; 29:1491-1500. [PMID: 38273109 DOI: 10.1038/s41380-024-02428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Microbial infection as a type of environmental risk factors is considered to be associated with long-term increased risk of dementia, including Alzheimer's disease (AD). AD is characterized by two neuropathologically molecular hallmarks of hyperphosphorylated tau and amyloid-β (Aβ), the latter generated by several biochemically reactive enzymes, including γ-secretase. However, how infectious risk factors contribute to pathological development of the AD core molecules remains to be addressed. In this work, we utilized a modified herpes simplex virus type 1 (mHSV-1) and found that its hippocampal infection locally promotes Aβ pathology in 5 × FAD mice, the commonly used amyloid model. Mechanistically, we identified HSV-1 membrane glycoprotein US7 (Envelope gI) that interacts with and modulates γ-secretase and consequently facilitates Aβ production. Furthermore, we presented evidence that adenovirus-associated virus-mediated locally hippocampal overexpression of the US7 aggravates Aβ pathology in 5 × FAD mice. Collectively, these findings identify a herpesviral factor regulating γ-secretase in the development and progression of AD and represent a causal molecular link between infectious pathogens and neurodegeneration.
Collapse
Affiliation(s)
- Meng Zhao
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guanqin Ma
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiaoxu Yan
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaohong Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Erlin Wang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiang-Xiong Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Jie-Bin Zhao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xueling Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Jianxiong Zeng
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, 650201, Yunnan, China.
| |
Collapse
|
26
|
Cantero JL, Atienza M, Sastre I, Bullido MJ. Human in vivo evidence of associations between herpes simplex virus and cerebral amyloid-beta load in normal aging. Alzheimers Res Ther 2024; 16:68. [PMID: 38570885 PMCID: PMC10988886 DOI: 10.1186/s13195-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of AD, possibly instigating amyloid-beta (Aβ) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging, which may contribute to the elucidation of the role of HSV-1 infection as a potential AD risk factor. METHODS To shed light into this question, serum anti-HSV IgG levels were correlated with 18F-Florbetaben-PET binding to Aβ deposits and blood markers of neurodegeneration (pTau181 and neurofilament light chain) in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers. RESULTS We showed that increased anti-HSV IgG levels are associated with higher Aβ load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aβ load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration. CONCLUSIONS All together, these results suggest that HSV infection is selectively related to cortical Aβ deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.
Collapse
Affiliation(s)
- Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, Seville, 41013, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, Seville, 41013, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Sastre
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jesús Bullido
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
28
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
29
|
Green RE, Sudre CH, Warren‐Gash C, Butt J, Waterboer T, Hughes AD, Schott JM, Richards M, Chaturvedi N, Williams DM. Common infections and neuroimaging markers of dementia in three UK cohort studies. Alzheimers Dement 2024; 20:2128-2142. [PMID: 38248636 PMCID: PMC10984486 DOI: 10.1002/alz.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION We aimed to investigate associations between common infections and neuroimaging markers of dementia risk (brain volume, hippocampal volume, white matter lesions) across three population-based studies. METHODS We tested associations between serology measures (pathogen serostatus, cumulative burden, continuous antibody responses) and outcomes using linear regression, including adjustments for total intracranial volume and scanner/clinic information (basic model), age, sex, ethnicity, education, socioeconomic position, alcohol, body mass index, and smoking (fully adjusted model). Interactions between serology measures and apolipoprotein E (APOE) genotype were tested. Findings were meta-analyzed across cohorts (Nmain = 2632; NAPOE-interaction = 1810). RESULTS Seropositivity to John Cunningham virus associated with smaller brain volumes in basic models (β = -3.89 mL [-5.81, -1.97], Padjusted < 0.05); these were largely attenuated in fully adjusted models (β = -1.59 mL [-3.55, 0.36], P = 0.11). No other relationships were robust to multiple testing corrections and sensitivity analyses, but several suggestive associations were observed. DISCUSSION We did not find clear evidence for relationships between common infections and markers of dementia risk. Some suggestive findings warrant testing for replication.
Collapse
Affiliation(s)
- Rebecca E. Green
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Carole H. Sudre
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringCentre for Medical Image Computing (CMIC)University College London (UCL)LondonUK
| | - Charlotte Warren‐Gash
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Julia Butt
- Division of Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tim Waterboer
- Division of Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Alun D. Hughes
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | | | - Marcus Richards
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Dylan M. Williams
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| |
Collapse
|
30
|
Vestin E, Boström G, Olsson J, Elgh F, Lind L, Kilander L, Lövheim H, Weidung B. Herpes Simplex Viral Infection Doubles the Risk of Dementia in a Contemporary Cohort of Older Adults: A Prospective Study. J Alzheimers Dis 2024; 97:1841-1850. [PMID: 38306033 PMCID: PMC10894565 DOI: 10.3233/jad-230718] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Background Evidence indicates that herpes simplex virus (HSV) participates in the pathogenesis of Alzheimer's disease (AD). Objective We investigated AD and dementia risks according to the presence of herpesvirus antibodies in relation to anti-herpesvirus treatment and potential APOE ɛ4 carriership interaction. Methods This study was conducted with 1002 dementia-free 70-year-olds living in Sweden in 2001-2005 who were followed for 15 years. Serum samples were analyzed to detect anti-HSV and anti-HSV-1 immunoglobulin (Ig) G, anti-cytomegalovirus (CMV) IgG, anti-HSV IgM, and anti-HSV and anti-CMV IgG levels. Diagnoses and drug prescriptions were collected from medical records. Cox proportional-hazards regression models were applied. Results Cumulative AD and all-cause dementia incidences were 4% and 7%, respectively. Eighty-two percent of participants were anti-HSV IgG carriers, of whom 6% received anti-herpesvirus treatment. Anti-HSV IgG was associated with a more than doubled dementia risk (fully adjusted hazard ratio = 2.26, p = 0.031). No significant association was found with AD, but the hazard ratio was of the same magnitude as for dementia. Anti-HSV IgM and anti-CMV IgG prevalence, anti-herpesvirus treatment, and anti-HSV and -CMV IgG levels were not associated with AD or dementia, nor were interactions between anti-HSV IgG and APOE ɛ4 or anti-CMV IgG. Similar results were obtained for HSV-1. Conclusions HSV (but not CMV) infection may be indicative of doubled dementia risk. The low AD incidence in this cohort may have impaired the statistical power to detect associations with AD.
Collapse
Affiliation(s)
- Erika Vestin
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Gustaf Boström
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Västmanland and County Hospital, Uppsala University, Västerås, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Lars Lind
- Department of Medical Sciences, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Bodil Weidung
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Wennberg AM, Maher BS, Rabinowitz JA, Holingue C, Felder WR, Wells JL, Munro CA, Lyketsos CG, Eaton WW, Walker KA, Weng NP, Ferrucci L, Yolken R, Spira AP. Association of common infections with cognitive performance in the Baltimore Epidemiologic Catchment Area study follow-up. Alzheimers Dement 2023; 19:4841-4851. [PMID: 37027458 PMCID: PMC10558626 DOI: 10.1002/alz.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Growing evidence suggests that some common infections are causally associated with cognitive impairment; however, less is known about the burden of multiple infections. METHODS We investigated the cross-sectional association of positive antibody tests for herpes simplex virus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV), and Toxoplasma gondii (TOX) with Mini-Mental State Examination (MMSE) and delayed verbal recall performance in 575 adults aged 41-97 from the Baltimore Epidemiologic Catchment Area Study. RESULTS In multivariable-adjusted zero-inflated Poisson (ZIP) regression models, positive antibody tests for CMV (p = .011) and herpes simplex virus (p = .018) were individually associated with poorer MMSE performance (p = .011). A greater number of positive antibody tests among the five tested was associated with worse MMSE performance (p = .001). DISCUSSION CMV, herpes simplex virus, and the global burden of multiple common infections were independently associated with poorer cognitive performance. Additional research that investigates whether the global burden of infection predicts cognitive decline and Alzheimer's disease biomarker changes is needed to confirm these findings.
Collapse
Affiliation(s)
- Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jill A Rabinowitz
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Johns Hopkins Children's Center, Baltimore, Maryland, USA
| | - W Ross Felder
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan L Wells
- Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia A Munro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Constantine G Lyketsos
- Johns Hopkins Bayview Department of Psychiatry and Behavioral Science, Baltimore, Maryland, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, Maryland, USA
- Johns Hopkins Alzheimer's Disease Research Center, Baltimore, Maryland, USA
- Johns Hopkins University, Baltimore, Maryland, USA
| | - William W Eaton
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Adam P Spira
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Center on Aging and Health, Johns Hopkins Schools of Medicine and Public Health, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Tiwari D, Srivastava G, Indari O, Tripathi V, Siddiqi MI, Jha HC. An in-silico insight into the predictive interaction of Apolipoprotein-E with Epstein-Barr virus proteins and their probable role in mediating Alzheimer's disease. J Biomol Struct Dyn 2023; 41:8918-8926. [PMID: 36307908 DOI: 10.1080/07391102.2022.2138978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Recent reports suggest that persistent Epstein-Barr virus (EBV) infection and its recurrent reactivation could instigate the formation of proteinaceous plaques in the brain: a hallmark of Alzheimer's disease (AD). Interestingly, a major genetic risk factor of AD, the apolipoprotein E (ApoE), could also influence the outcome of EBV infection in an individual. The ApoE is believed to influence the proteinaceous plaque clearance from the brain, and its defective functioning could result in the aggregate deposition. The persistent presence of EBV infection in a genetically predisposed individual could create a perfect recipe for severe neurodegenerative consequences. Therefore, in the present study, we investigated the possible interactions between ApoE and various EBV proteins using computational tools. Our results showed possibly stable de-novo interactions between the C-terminal domain of ApoE3 and EBV proteins: EBV nuclear antigen-1 (EBNA1) and BamHI Z fragment leftward open reading frame-1 (BZLF1). The EBNA1 protein of EBV plays a crucial role in establishing latency and replication of the virus. Whereas BZLF1 is involved in the lytic replication cycle. The proposed interaction of EBV proteins at the ligand-binding site of ApoE3 on CTD could interfere with- its capability to sequester amyloid fragments and, hence their clearance from the brain giving rise to AD pathology. This study provides a new outlook on EBV's underexplored role in AD development and paves the way for novel avenues of investigation which could further our understanding of AD pathogenesis.Communicated by Ramaswamy H. Sarma[Figure: see text].
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Gaurava Srivastava
- Division of Biochemistry and Structural Biology, CSIR-CDRI, Lucknow, India
| | - Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
33
|
Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and Mechanisms. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:529-542. [PMID: 37588688 PMCID: PMC10425688 DOI: 10.1016/j.omtn.2023.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein critical for lipid metabolism and cholesterol homeostasis. In addition to being a well known genetic determinant of both neurodegenerative and cardiovascular diseases, ApoE is frequently involved in various viral infection-related diseases. Human ApoE protein is functionally polymorphic with three isoforms, namely, ApoE2, ApoE3, and ApoE4, with markedly altered protein structures and functions. ApoE4 is associated with increased susceptibility to infection with herpes simplex virus type-1 and HIV. Conversely, ApoE4 protects against hepatitis C virus and hepatitis B virus infection. With the outbreak of coronavirus disease 2019, ApoE4 has been shown to determine the incidence and progression of severe acute respiratory syndrome coronavirus 2 infection. These findings clearly indicate the critical role of ApoE in viral infection. Furthermore, ApoE polymorphism has various or even opposite effects in these infection processes, which are partly related to the structural features that distinguish the different ApoE statuses. In the current review, we summarize the emerging relationship between ApoE and viral infection, discuss the potential mechanisms, and identify future directions that may help to advance our understanding of the link between ApoE and viral infection.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
34
|
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer's disease. Front Aging Neurosci 2023; 15:1245904. [PMID: 37744399 PMCID: PMC10512732 DOI: 10.3389/fnagi.2023.1245904] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.
Collapse
Affiliation(s)
- Shu Feng
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhenfeng Shu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhuxi Cheng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- International Department, Beijing Bayi School, Beijing, China
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
35
|
Piotrowski SL, Tucker A, Jacobson S. The elusive role of herpesviruses in Alzheimer's disease: current evidence and future directions. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:253-266. [PMID: 38013835 PMCID: PMC10474380 DOI: 10.1515/nipt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.
Collapse
Affiliation(s)
- Stacey L. Piotrowski
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Allison Tucker
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
37
|
Olivera E, Sáez A, Carniglia L, Caruso C, Lasaga M, Durand D. Alzheimer's disease risk after COVID-19: a view from the perspective of the infectious hypothesis of neurodegeneration. Neural Regen Res 2023; 18:1404-1410. [PMID: 36571334 PMCID: PMC10075115 DOI: 10.4103/1673-5374.360273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In light of the rising evidence of the association between viral and bacterial infections and neurodegeneration, we aimed at revisiting the infectious hypothesis of Alzheimer's disease and analyzing the possible implications of COVID-19 neurological sequelae in long-term neurodegeneration. We wondered how SARS-CoV-2 could be related to the amyloid-β cascade and how it could lead to the pathological hallmarks of the disease. We also predict a paradigm change in clinical medicine, which now has a great opportunity to conduct prospective surveillance of cognitive sequelae and progression to dementia in people who suffered severe infections together with other risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Eugenia Olivera
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Albany Sáez
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
38
|
Smullen M, Olson MN, Murray LF, Suresh M, Yan G, Dawes P, Barton NJ, Mason JN, Zhang Y, Fernandez-Fontaine AA, Church GM, Mastroeni D, Wang Q, Lim ET, Chan Y, Readhead B. Modeling of mitochondrial genetic polymorphisms reveals induction of heteroplasmy by pleiotropic disease locus 10398A>G. Sci Rep 2023; 13:10405. [PMID: 37369829 DOI: 10.1038/s41598-023-37541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial (MT) dysfunction has been associated with several neurodegenerative diseases including Alzheimer's disease (AD). While MT-copy number differences have been implicated in AD, the effect of MT heteroplasmy on AD has not been well characterized. Here, we analyzed over 1800 whole genome sequencing data from four AD cohorts in seven different tissue types to determine the extent of MT heteroplasmy present. While MT heteroplasmy was present throughout the entire MT genome for blood samples, we detected MT heteroplasmy only within the MT control region for brain samples. We observed that an MT variant 10398A>G (rs2853826) was significantly associated with overall MT heteroplasmy in brain tissue while also being linked with the largest number of distinct disease phenotypes of all annotated MT variants in MitoMap. Using gene-expression data from our brain samples, our modeling discovered several gene networks involved in mitochondrial respiratory chain and Complex I function associated with 10398A>G. The variant was also found to be an expression quantitative trait loci (eQTL) for the gene MT-ND3. We further characterized the effect of 10398A>G by phenotyping a population of lymphoblastoid cell-lines (LCLs) with and without the variant allele. Examination of RNA sequence data from these LCLs reveal that 10398A>G was an eQTL for MT-ND4. We also observed in LCLs that 10398A>G was significantly associated with overall MT heteroplasmy within the MT control region, confirming the initial findings observed in post-mortem brain tissue. These results provide novel evidence linking MT SNPs with MT heteroplasmy and open novel avenues for the investigation of pathomechanisms that are driven by this pleiotropic disease associated loci.
Collapse
Affiliation(s)
- Molly Smullen
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meagan N Olson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Liam F Murray
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Madhusoodhanan Suresh
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guang Yan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nathaniel J Barton
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jivanna N Mason
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yucheng Zhang
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Aria A Fernandez-Fontaine
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Elaine T Lim
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
39
|
Weidung B, Josefsson M, Lyttkens P, Olsson J, Elgh F, Lind L, Kilander L, Lövheim H. Longitudinal Effects of Herpesviruses on Multiple Cognitive Outcomes in Healthy Elderly Adults. J Alzheimers Dis 2023:JAD221116. [PMID: 37334589 PMCID: PMC10357165 DOI: 10.3233/jad-221116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Herpesviruses have been proposed to be involved in Alzheimer's disease development as potentially modifiable pathology triggers. OBJECTIVE To investigate associations of serum antibodies for herpes simplex virus (HSV)-1 and cytomegalovirus (CMV) and anti-herpesvirus treatment with cognitive outcomes in relation to interactions with APOE ɛ4. METHODS The study included 849 participants in the population-based Prospective Investigation of the Vasculature in Uppsala Seniors study. Cognitive performance at the ages of 75 and 80 years was assessed using the Mini-Mental State Examination (MMSE), trail-making test (TMT) A and B, and 7-minute screening test (7MS). RESULTS Anti- HSV-1 IgG positivity was associated cross-sectionally with worse performance on the MMSE, TMT-A, TMT-B, 7MS, enhanced free recall, and verbal fluency tests (p = 0.016, p = 0.016, p < 0.001, p = 0.001, p = 0.033, and p < 0.001, respectively), but not orientation or clock drawing. Cognitive scores did not decline over time and longitudinal changes did not differ according to HSV-1 positivity. Anti- CMV IgG positivity was not associated cross-sectionally with cognition, but TMT-B scores declined more in anti- CMV IgG carriers. Anti- HSV-1 IgG interacted with APOE ɛ4 in association with worse TMT-A and better enhanced cued recall. Anti- HSV IgM interacted with APOE ɛ4 and anti-herpesvirus treatment in association with worse TMT-A and clock drawing, respectively. CONCLUSION These findings indicate that HSV-1 is linked to poorer cognition in cognitively healthy elderly adults, including impairments in executive function, memory, and expressive language. Cognitive performance did not decline over time, nor was longitudinal decline associated with HSV-1.
Collapse
Affiliation(s)
- Bodil Weidung
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Maria Josefsson
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Peter Lyttkens
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Lars Lind
- Department of Medical Sciences, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Division of Geriatic Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå university, Umeå, Sweden
| |
Collapse
|
40
|
Swingler M, Donadoni M, Bellizzi A, Cakir S, Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol 2023; 29:121-134. [PMID: 37097597 PMCID: PMC10127962 DOI: 10.1007/s13365-023-01133-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.
Collapse
Affiliation(s)
- Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
41
|
Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer's disease: SARS-CoV-2 on the cusp. Front Aging Neurosci 2023; 15:1129640. [PMID: 37009449 PMCID: PMC10050697 DOI: 10.3389/fnagi.2023.1129640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Increasing evidence highlights that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has long-term effects on cognitive function, which may cause neurodegenerative diseases like Alzheimer's disease (AD) in the future. We performed an analysis of a possible link between SARS-CoV-2 infection and AD risk and proposed several hypotheses for its possible mechanism, including systemic inflammation, neuroinflammation, vascular endothelial injury, direct viral infection, and abnormal amyloid precursor protein metabolism. The purpose of this review is to highlight the impact of infection with SASR-CoV-2 on the future risk of AD, to provide recommendations on medical strategies during the pandemic, and to propose strategies to address the risk of AD induced by SASR-CoV-2. We call for the establishment of a follow-up system for survivors to help researchers better understand the occurrence, natural history, and optimal management of SARS-CoV-2-related AD and prepare for the future.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
HSV-1 cellular model reveals links between aggresome formation and early step of Alzheimer's disease. Transl Psychiatry 2023; 13:86. [PMID: 36898995 PMCID: PMC10006237 DOI: 10.1038/s41398-023-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Many studies highlight the potential link between the chronic degenerative Alzheimer's disease and the infection by the herpes simplex virus type-1 (HSV-1). However, the molecular mechanisms making possible this HSV-1-dependent process remain to be understood. Using neuronal cells expressing the wild type form of amyloid precursor protein (APP) infected by HSV-1, we characterized a representative cellular model of the early stage of the sporadic form of the disease and unraveled a molecular mechanism sustaining this HSV-1- Alzheimer's disease interplay. Here, we show that HSV-1 induces caspase-dependent production of the 42 amino-acid long amyloid peptide (Aβ42) oligomers followed by their accumulation in neuronal cells. Aβ42 oligomers and activated caspase 3 (casp3A) concentrate into intracytoplasmic structures observed in Alzheimer's disease neuronal cells called aggresomes. This casp3A accumulation in aggresomes during HSV-1 infection limits the execution of apoptosis until its term, similarly to an abortosis-like event occurring in Alzheimer's disease neuronal cells patients. Indeed, this particular HSV-1 driven cellular context, representative of early stages of the disease, sustains a failed apoptosis mechanism that could explain the chronic amplification of Aβ42 production characteristic of Alzheimer's disease patients. Finally, we show that combination of flurbiprofen, a non-steroidal anti-inflammatory drug (NSAID), with caspase inhibitor reduced drastically HSV-1-induced Aβ42 oligomers production. This provided mechanistic insights supporting the conclusion of clinical trials showing that NSAIDs reduced Alzheimer's disease incidence in early stage of the disease. Therefore, from our study we propose that caspase-dependent production of Aβ42 oligomers together with the abortosis-like event represents a vicious circle in early Alzheimer's disease stages leading to a chronic amplification of Aβ42 oligomers that contributes to the establishment of degenerative disorder like Alzheimer's disease in patients infected by HSV-1. Interestingly this process could be targeted by an association of NSAID with caspase inhibitors.
Collapse
|
43
|
Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, Pozo-Molina G, Méndez-Catalá CF, Cardenas-Aguayo MDC, Diaz-Cintra S, Pacheco-Herrero M, Luna-Muñoz J, Soto-Rojas LO. Alzheimer's Disease: An Updated Overview of Its Genetics. Int J Mol Sci 2023; 24:ijms24043754. [PMID: 36835161 PMCID: PMC9966419 DOI: 10.3390/ijms24043754] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aβ) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Paola Jeronimo-Aguilar
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Ana Ruth Cadena-Suárez
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Edomex, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
- National Brain Bank-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 1423, Dominican Republic
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| |
Collapse
|
44
|
Raber J, Rhea EM, Banks WA. The Effects of Viruses on Insulin Sensitivity and Blood-Brain Barrier Function. Int J Mol Sci 2023; 24:2377. [PMID: 36768699 PMCID: PMC9917142 DOI: 10.3390/ijms24032377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In this review manuscript, we discuss the effects of select common viruses on insulin sensitivity and blood-brain barrier (BBB) function and the potential overlapping and distinct mechanisms involved in these effects. More specifically, we discuss the effects of human immunodeficiency virus (HIV), herpes, hepatitis, influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 viruses on insulin sensitivity and BBB function and the proposed underlying mechanisms. These viruses differ in their ability to be transported across the BBB, disrupt the BBB, and/or alter the function of the BBB. For RSV and SARS-CoV-2, diabetes increases the risk of infection with the virus, in addition to viral infection increasing the risk for development of diabetes. For HIV and hepatitis C and E, enhanced TNF-a levels play a role in the detrimental effects. The winter of 2022-2023 has been labeled as a tridemic as influenza, RSV, and COVID-19 are all of concern during this flu season. There is an ongoing discussion about whether combined viral exposures of influenza, RSV, and COVID-19 have additive, synergistic, or interference effects. Therefore, increased efforts are warranted to determine how combined viral exposures affect insulin sensitivity and BBB function.
Collapse
Affiliation(s)
- Jacob Raber
- Departments of Behavioral Neuroscience, Neurology and Radiation Medicine; Affiliate Scientist, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
45
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
46
|
Bathini P, Dupanloup I, Zenaro E, Terrabuio E, Fischer A, Ballabani E, Doucey MA, Alberi L. Systemic Inflammation Causes Microglial Dysfunction With a Vascular AD phenotype. Brain Behav Immun Health 2022; 28:100568. [PMID: 36704658 PMCID: PMC9871075 DOI: 10.1016/j.bbih.2022.100568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Studies in rodents and humans have indicated that inflammation outside CNS (systemic inflammation) affects brain homeostasis contributing to neurodevelopmental disorders. Itis becoming increasingly evident that such early insults may also belinked to neurodegenerative diseases like late-onset Alzheimer's disease (AD). Importantly, lifestyle and stress, such as viral or bacterial infection causing chronic inflammation, may contribute to neurodegenerative dementia. Systemic inflammatory response triggers a cascade of neuroinflammatory responses, altering brain transcriptome, cell death characteristic of AD, and vascular dementia. Our study aimed to assess the temporal evolution of the pathological impact of systemic inflammation evoked by prenatal and early postnatal peripheral exposure of viral mimetic Polyinosinic:polycytidylic acid (PolyI:C) and compare the hippocampal transcriptomic changes with the profiles of human post-mortem AD and vascular dementia brain specimens. Methods We have engineered the PolyI:C sterile infection model in wildtype C57BL6 mice to achieve chronic low-grade systemic inflammation. We have conducted a cross-sectional analysis of aging PolyI:C and Saline control mice (3 months, 6 months, 9 months, and 16 months), taking the hippocampus as a reference brain region, and compared the brain aging phenotype to AD progression in humans with mild AD, severe AD, and Controls (CTL), in parallel to Vascular dementia (VaD) patients' specimens. Results We found that PolyI:C mice display both peripheral and central inflammation with a peak at 6 months, associated with memory deficits. The hippocampus is characterized by a pronounced and progressive tauopathy. In PolyI:C brains, microglia undergo aging-dependent morphological shifts progressively adopting a phagocytic phenotype. Transcriptomic analysis reveals a profound change in gene expression throughout aging, with a peak in differential expression at 9 months. We show that the proinflammatory marker Lcn2 is one of the genes with the strongest upregulation in PolyI:C mice upon aging. Validation in brains from patients with increasing severity of AD and VaD shows the reproducibility of some gene targets in vascular dementia specimens as compared to AD ones. Conclusions The PolyI:C model of sterile infection demonstrates that peripheral chronic inflammation causes progressive tau hyperphosphorylation, changes in microglia morphology, astrogliosis and gene reprogramming reflecting increased neuroinflammation, vascular remodeling, and the loss of neuronal functionality seen to some extent in human AD and Vascular dementia suggesting early immune insults could be crucial in neurodegenerative diseases.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Corresponding author.
| | | | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Amrei Fischer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Edona Ballabani
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Lavinia Alberi
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Swiss Integrative Center for Human Health, Fribourg, Switzerland,Corresponding author. Swiss Integrative Centre of Human Health, Passage du Cardinal 13B, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
47
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
48
|
Goldhardt O, Freiberger R, Dreyer T, Wilner L, Yakushev I, Ortner M, Förstl H, Diehl‐Schmid J, Milz E, Priller J, Ramirez A, Magdolen V, Thaler M, Grimmer T. Herpes simplex virus alters Alzheimer's disease biomarkers ‐ A hypothesis paper. Alzheimers Dement 2022; 19:2117-2134. [PMID: 36396609 DOI: 10.1002/alz.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Human herpes simplex virus 1 (HSV1) is discussed to induce amyloid-β (Aβ) accumulation and neurofibrillary tangles of hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) in cell culture and animal models. Aβ appears to be virostatic. We investigated the association between intrathecal antibodies against HSV or cytomegalovirus (CMV) and cerebrospinal fluid (CSF) AD biomarkers. METHODS Aβ42 /Aβ40 ratio, pTau, and tTau were measured in CSF of 117 patients with early AD positive for amyloid pathology (A+) and 30 healthy controls (A-). CSF-to-serum anti-HSV1/2-IgG antibody indices (AI-IgGHSV1/2 ) and CMV (AI-IgGCMV ) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Exclusively in HSV1-seropositive AD, pTau was positively and significantly predicted by AI-IgGHSV1/2 and negatively by the Aβ42 /Aβ40 ratio in both univariate and multivariate regression analyses. Furthermore, a significant and negative interaction between the AI-IgGHSV1/2 and Aβ42 /Aβ40 ratio on pTau was found. DISCUSSION The results support the hypothesis that HSV infection contributes to AD. HIGHLIGHTS HSV antibody index is positively associated with tau pathology in patients with AD. HSV antibody index is negatively associated with cerebral FDG metabolism. Amyloid modulates the association of HSV antibody index with CSF-pTau. HSV in AD offers a pathophysiological model connecting tau and amyloid.
Collapse
Affiliation(s)
- Oliver Goldhardt
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Robert Freiberger
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Tobias Dreyer
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Luisa Wilner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Janine Diehl‐Schmid
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Esther Milz
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry Medical Faculty University Hospital Bonn Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases San Antonio Texas USA
- Cluster of Excellence Cellular Stress Responses in Aging‐associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Markus Thaler
- Institute for Clinical Chemistry and Pathobiochemistry School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| |
Collapse
|
49
|
Warren‐Gash C, Cadogan SL, Nicholas JM, Breuer JM, Shah D, Pearce N, Shiekh S, Smeeth L, Farlow MR, Mori H, Gordon BA, Nuebling G, McDade E, Bateman RJ, Schofield PR, Lee J, Morris JC, Cash DM, Fox NC, Ridha BH, Rossor MN. Herpes simplex virus and rates of cognitive decline or whole brain atrophy in the Dominantly Inherited Alzheimer Network. Ann Clin Transl Neurol 2022; 9:1727-1738. [PMID: 36189728 PMCID: PMC9639627 DOI: 10.1002/acn3.51669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate whether herpes simplex virus type 1 (HSV-1) infection was associated with rates of cognitive decline or whole brain atrophy among individuals from the Dominantly Inherited Alzheimer Network (DIAN). METHODS Among two subsets of the DIAN cohort (age range 19.6-66.6 years; median follow-up 3.0 years) we examined (i) rate of cognitive decline (N = 164) using change in mini-mental state examination (MMSE) score, (ii) rate of whole brain atrophy (N = 149), derived from serial MR imaging, calculated using the boundary shift integral (BSI) method. HSV-1 antibodies were assayed in baseline sera collected from 2009-2015. Linear mixed-effects models were used to compare outcomes by HSV-1 seropositivity and high HSV-1 IgG titres/IgM status. RESULTS There was no association between baseline HSV-1 seropositivity and rates of cognitive decline or whole brain atrophy. Having high HSV-1 IgG titres/IgM was associated with a slightly greater decline in MMSE points per year (difference in slope - 0.365, 95% CI: -0.958 to -0.072), but not with rate of whole brain atrophy. Symptomatic mutation carriers declined fastest on both MMSE and BSI measures, however, this was not influenced by HSV-1. Among asymptomatic mutation carriers, rates of decline on MMSE and BSI were slightly greater among those who were HSV-1 seronegative. Among mutation-negative individuals, no differences were seen by HSV-1. Stratifying by APOE4 status yielded inconsistent results. INTERPRETATION We found no evidence for a major role of HSV-1, measured by serum antibodies, in cognitive decline or whole brain atrophy among individuals at high risk of early-onset AD.
Collapse
Affiliation(s)
- Charlotte Warren‐Gash
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Sharon L. Cadogan
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Jennifer M. Nicholas
- Department of Medical StatisticsLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Judith M. Breuer
- Institute of Child HealthUniversity College LondonGower StreetLondonWC1E 6BTUnited Kingdom
- Virology DepartmentGreat Ormond Street HospitalLondonUnited Kingdom
| | - Divya Shah
- Virology DepartmentGreat Ormond Street HospitalLondonUnited Kingdom
| | - Neil Pearce
- Department of Medical StatisticsLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Suhail Shiekh
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Liam Smeeth
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Hiroshi Mori
- Department of Clinical NeuroscienceOsaka Metropolitan University Medical School, Sutoku UniversityOsakaJapan
| | - Brian A. Gordon
- Department of RadiologyWashington University School of Medicine in St LouisMissouriUSA
| | - Georg Nuebling
- German Center for Neurodegenerative DiseasesSite MunichGermany
- Department of NeurologyLudwig‐Maximilians UniversityMunichGermany
| | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jae‐Hong Lee
- Department of NeurologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulSouth Korea
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt. LouisUSA
| | - David M. Cash
- UK Dementia Research InstituteUniversity College LondonLondonUnited Kingdom
- Dementia Research Centre, Institute of NeurologyUniversity College LondonQueen SquareLondonUnited Kingdom
| | - Nick C. Fox
- Dementia Research Centre, Institute of NeurologyUniversity College LondonQueen SquareLondonUnited Kingdom
- NIHR University College London Hospitals Biomedical Research CentreLondonUnited Kingdom
| | - Basil H. Ridha
- Dementia Research Centre, Institute of NeurologyUniversity College LondonQueen SquareLondonUnited Kingdom
- NIHR University College London Hospitals Biomedical Research CentreLondonUnited Kingdom
| | - Martin N. Rossor
- Dementia Research Centre, Institute of NeurologyUniversity College LondonQueen SquareLondonUnited Kingdom
- NIHR University College London Hospitals Biomedical Research CentreLondonUnited Kingdom
| | | |
Collapse
|
50
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|