1
|
Riederer P, Strobel S, Nagatsu T, Watanabe H, Chen X, Löschmann PA, Sian-Hulsmann J, Jost WH, Müller T, Dijkstra JM, Monoranu CM. Levodopa treatment: impacts and mechanisms throughout Parkinson's disease progression. J Neural Transm (Vienna) 2025; 132:743-779. [PMID: 40214767 DOI: 10.1007/s00702-025-02893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/04/2025] [Indexed: 05/28/2025]
Abstract
Treatment with levodopa, a precursor of dopamine (DA), to compensate for the loss of endogenous DA in Parkinson's disease (PD), has been a success story for over 50 years. However, in late stages of PD, the progressive degeneration of dopaminergic neurons and the ongoing reduction in endogenous DA concentrations make it increasingly difficult to maintain normal-like DA function. Typically, in late PD, higher doses of levodopa are required, and the fluctuations in striatal DA concentrations-reflecting the timing pattern of levodopa administrations-become more pronounced. These DA fluctuations can include highs that induce involuntary movements (levodopa-induced dyskinesia, LID) or lows that result in insufficient suppression of PD symptoms ("OFF" phases). The enhanced fluctuations primarily arise from the loss of DA buffering capacity, resulting from the degeneration of DA neurons, and an increased reliance on levodopa-derived DA release as a "false neurotransmitter" by serotonergic neurons. In many patients, the LID and OFF-phases can be alleviated by modifying the levodopa therapy to provide a more continuous delivery or by using additional medications, such as monoamine oxidase-B (MAO-B) inhibitors, amantadine, or dopaminergic receptor agonists. Understanding the challenges faced by levodopa therapy also requires considering that the PD striatum is characterized not only by the loss of DA neurons but also by neuroplastic adaptations and PD-induced degenerations of other neural populations. This review provides a broad overview on the use of levodopa in treating PD, with a focus on the underlying science of the challenges encountered in late stages of the disease.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Würzburg, Germany
- Department of Psychiatry, University of South Denmark, Odense, Denmark
| | - Sabrina Strobel
- Institute of Pathology, Julius-Maximilian-University of Wuerzburg, Würzburg, Germany
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Xiqun Chen
- Mass. General Institute for Neurodegenerative Disease. Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | | | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstrasse 1, 13088, Berlin, Germany
| | | | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, Julius-Maximilian-University Ofwuerzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Ghosh C, Westcott R, Skvasik D, Khurana I, Khoury J, Blumcke I, El-Osta A, Najm IM. GLUT1 and Cerebral Glucose Hypometabolism in Human Focal Cortical Dysplasia Is Associated with Hypermethylation of Key Glucose Regulatory Genes. Mol Neurobiol 2025:10.1007/s12035-025-04871-z. [PMID: 40195216 DOI: 10.1007/s12035-025-04871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Focal cortical dysplasia (FCD) is a significant etiological factor in drug-resistant epilepsy, linked with disturbances in neurovascular metabolism. Our study investigated regulation of glucose-transporter1 (GLUT1) and cerebral hypometabolism within FCD subtypes. Surgically excised human brain specimens underwent histopathological categorization. A subset of samples was assessed for DNA methylation changes of glucose metabolism-related genes. We evaluated GLUT1, vascular endothelial growth factor alpha (VEGFα), monocarboxylate-transporter (MCT2), and mammalian target of rapamycin (mTOR) expression, measured glucose-lactate concentrations, and established correlations with patients' demographic and clinical profiles. Furthermore, we investigated the impact of DNA methylation inhibitor decitabine and hypometabolic condition on the uptake of [3H]-2-deoxyglucose and ATPase in epileptic-brain endothelial cells (EPI-EC). We observed hypermethylation of GLUT1 and glucose metabolic genes in FCD brain/blood samples and could distinguish FCDIIa/b from mild malformations of cortical development (mMCD), with oligodendroglial hyperplasia (MOGHE) and non-lesional brains. Low GLUT1 and glucose-lactate ratios corresponded to elevated VEGFα and MCT2 in FCDIIa/b vs. non-lesional tissues, independent of age, gender, seizure-onset, or duration of epilepsy. Increased mTOR-signaling in FCDIIa/b tissues was evident. Decitabine stimulation increased GLUT1, decreased VEGFα expression, restored glucose uptake and ATPase activity in EPI-ECs, and reduced mTOR and MCT2 levels in human embryonic-kidney cells. We demonstrated: hypermethylation of glucose regulatory genes distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types, glucose uptake reduction is due to GLUT1 suppression mediated possibly by a GLUT1-mTOR mechanism; and DNA methylation regulates cellular glucose uptake and metabolism. Together, these studies may lead to GLUT1-mediated biomarkers and identify early intervention strategies in FCD.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Rosemary Westcott
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - David Skvasik
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jean Khoury
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ingmar Blumcke
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Qiao J, Tang C, Xie M, Gong M, Fu C, Cheng Z, Chen Z, Mei A, Bo Y, Zhao M, Li T, Ji T, Wang R, Deng J, Luan G. Aberrant activation of the mTOR signaling pathway in Rasmussen encephalitis. Sci Rep 2025; 15:6347. [PMID: 39984577 PMCID: PMC11845500 DOI: 10.1038/s41598-025-89426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
This study aimed to delineate the mechanistic target of the rapamycin (mTOR) pathway in the brain tissue of patients with Rasmussen encephalitis (RE) compared to individuals without epilepsy and those with focal cortical dysplasia (FCD) to identify unique pathogenic mechanisms and potential therapeutic targets. Experimental analysis was conducted using RE, control and FCD tissue samples obtained through surgical resection. Western blotting was performed to quantify the expression of established markers of mTOR upstream or downstream signaling. Moreover, immunohistochemistry (IHC) and immunofluorescence (IF) were used to assess cortical and white matter abnormalities and the cell-specific expression of distinct biomarkers. Samples from patients with FCD were utilized as positive controls. We found significantly increased levels of phospho-S6 (Ser240/244), phospho-AKT (Ser473), phospho-p44/42 MAPK (ERK1/2) and phospho-Stat3 (Tyr705) in RE samples compared to those in controls, consistent with the activation of both mTOR complex 1 (mTORC1) and mTORC2. Based on the results of the IHC and IF analyses, we observed strong expression of p-S6 and p-AKT in ectopic neurons and giant neurons. Additionally, we noted expression in perivascular microglia, astrocytes, and microglial nodules. p-MAPK was primarily expressed in astrocytes and blood vessels but was occasionally expressed in neurons; p-MAPK was not coexpressed in microglia. Phospho-ULK1 (Ser757) was expressed in apoptotic neurons, while beclin-1 was predominantly present in microglial nodules and atypical neurons, with no expression in astrocytes. P-Stat3 exhibited positive nuclear expression, while cytoplasmic positivity was observed in cortical cells with a morphology resembling that of astrocytes. The expression level of p-MAPK was significantly correlated with the progression of RE. Our experimental results demonstrate aberrant activation of mTORC1 and mTORC2 in RE patients. These findings offer novel insights into the pathogenic mechanisms of RE and might reveal new therapeutic targets for drug intervention in the treatment of RE.
Collapse
Affiliation(s)
- Jiao Qiao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Mingguo Xie
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
| | - Mingkun Gong
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Cong Fu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zizhang Cheng
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
| | - Zheng Chen
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Aoxue Mei
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yujie Bo
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Meng Zhao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, 100093, China
| | - Renxi Wang
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China.
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Cases‐Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024; 65:3457-3468. [PMID: 39401070 PMCID: PMC11647439 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and GliomaParisFrance
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of BonnBonnGermany
| | - Laura Rossini
- Epilepsy UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Gabriele Ruffolo
- Department of Physiology and PharmacologyIstituto Pasteur–Fondazione Cenci Bolognetti, University of Rome SapienzaRomeItaly
- IRCCS San Raffaele RomaRomeItaly
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical CenterŌmuraJapan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, AP‐HP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Stéphane Auvin
- Pediatric Neurology Department, AP‐HP, Robert Debré University HospitalCRMR épilepsies Rares, EpiCARE memberParisFrance
- Université Paris Cité, INSERM NeuroDiderotParisFrance
- Institut Universitaire de FranceParisFrance
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine (Royal Melbourne Hospital)University of MelbourneMelbourneVictoriaAustralia
| | - David C. Henshall
- Department of Physiology and Medical Physics, RCSIUniversity of Medicine and Health SciencesDublinIreland
| | - Özlem Akman
- Department of PhysiologyFaculty of Medicine, Demiroglu Bilim UniversityIstanbulTurkey
| | - Raman Sankar
- Department of Pediatrics and NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
6
|
Ghosh C, Westcott R, Skvasik D, Khurana I, Khoury J, Blumcke I, El-Osta A, Najm IM. GLUT1 and cerebral glucose hypometabolism in human focal cortical dysplasia is associated with hypermethylation of key glucose regulatory genes. RESEARCH SQUARE 2024:rs.3.rs-4946501. [PMID: 39483922 PMCID: PMC11527251 DOI: 10.21203/rs.3.rs-4946501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal cortical dysplasia (FCD) is recognized as a significant etiological factor in pharmacoresistant intractable epilepsy, linked with disturbances in neurovascular metabolism. Our study investigated regulation of glucose-transporter1 (GLUT1) and cerebral hypometabolism within FCD subtypes. Surgically excised human brain specimens underwent histopathological categorization. A subset of samples (paired with matching blood) was assessed for DNA methylation changes of glucose metabolism-related genes. We evaluated GLUT1, VEGFα, MCT2, and mTOR expression by western blot analysis, measured glucose-lactate concentrations, and established correlations with patients' demographic and clinical profiles. Furthermore, we investigated the impact of DNA methylation inhibitor decitabine and hypometabolic condition on the uptake of [3H]-2-deoxyglucose and ATPase in epileptic brain endothelial cells (EPI-EC). We observed hypermethylation of GLUT1 and glucose metabolic genes in FCD brain/blood samples and could distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types in brain. Low GLUT1 and glucose-lactate ratios corresponded to elevated VEGFα and MCT2 in FCDIIa/b vs non-lesional tissues, independent of age, gender, seizure-onset, or duration of epilepsy. Increased mTOR signaling in FCDIIa/b tissues was evident. Decitabine stimulation increased GLUT1, decreased VEGFα expression, restored glucose uptake and ATPase activity in EPI-ECs and reduced mTOR and MCT2 levels in HEK cells. We demonstrated: 1) hypermethylation of glucose regulatory genes distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types, 2) glucose uptake reduction is due to GLUT1 suppression mediated possibly by a GLUT1-mTOR mechanism; and 3) DNA methylation regulates cellular glucose update and metabolism. Together, these studies may lead to GLUT1-mediated biomarkers, glucose metabolism and identify early intervention strategies in FCD.
Collapse
|
7
|
Liu Z, Shen X, Lin K, Wang F, Gao J, Yao Y, Sun J. Balloon cells in malformations of cortical development: friends or foes? ACTA EPILEPTOLOGICA 2024; 6:20. [PMID: 40217486 PMCID: PMC11960319 DOI: 10.1186/s42494-024-00164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2025] Open
Abstract
Balloon cells (BCs) are specific pathological marker of cortical malformations during brain development, often associated with epilepsy and development delay. Although a large number of studies have investigated the role of BCs in these diseases, the specific function of BCs as either epileptogenic or antiepileptic remains controversial. Therefore, we reviewed literatures on BCs, delved into the molecular mechanisms and signaling pathways, and updated their profile in several aspects. Firstly, BCs are heterogeneous and some of them show progenitor/stem cell characteristics. Secondly, BCs are relatively silent in electrophysiology but not completely isolated from their surroundings. Notably, abnormal mTOR signaling and aberrant immunogenic process have been observed within BCs-containing malformations of cortical development (MCDs). The question whether BCs function as the evildoer or the defender in BCs-containing MCDs is further discussed. Importantly, this review provides perspectives on future investigations of the potential role of BCs in epilepsy.
Collapse
Affiliation(s)
- Zili Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Xuefeng Shen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Kaomin Lin
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Fengpeng Wang
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Jin Gao
- Department of Pathology, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Yi Yao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| | - Jianyuan Sun
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| |
Collapse
|
8
|
Aquiles A, Fiordelisio T, Luna-Munguia H, Concha L. Altered functional connectivity and network excitability in a model of cortical dysplasia. Sci Rep 2023; 13:12335. [PMID: 37518675 PMCID: PMC10387479 DOI: 10.1038/s41598-023-38717-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development that often result in medically refractory epilepsy, with a greater incidence in the pediatric population. The relationship between the disturbed cortical morphology and epileptogenic activity of FCDs remains unclear. We used the BCNU (carmustine 1-3-bis-chloroethyl-nitrosourea) animal model of cortical dysplasia to evaluate neuronal and laminar alterations and how these result in altered activity of intracortical networks in early life. We corroborated the previously reported morphological anomalies characteristic of the BCNU model, comprising slightly larger and rounder neurons and abnormal cortical lamination. Next, the neuronal activity of live cortical slices was evaluated through large field-of-view calcium imaging as well as the neuronal response to a stimulus that leads to cortical hyperexcitability (pilocarpine). Examination of the joint activity of neuronal calcium time series allowed us to identify intracortical communication patterns and their response to pilocarpine. The baseline power density distribution of neurons in the cortex of BCNU-treated animals was different from that of control animals, with the former showing no modulation after stimulus. Moreover, the intracortical communication pattern differed between the two groups, with cortexes from BCNU-treated animals displaying decreased inter-layer connectivity as compared to control animals. Our results indicate that the altered anatomical organization of the cortex of BCNU-treated rats translates into altered functional networks that respond abnormally to a hyperexcitable stimulus and highlight the role of network dysfunction in the pathophysiology of cortical dysplasia.
Collapse
Affiliation(s)
- A Aquiles
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - T Fiordelisio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - H Luna-Munguia
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - L Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico.
| |
Collapse
|
9
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
10
|
Kapar O, Gurkan ZM, Dolgun M, Sencer A, Gürses C, Bilgic B. Focal cortical dysplasia pathology: diagnostic difficulty, classification, and utility for pathogenesis. Neurosurg Focus 2022; 53:E6. [DOI: 10.3171/2022.7.focus21731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/21/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE
In the histopathological examination of treatment-resistant epilepsy, focal cortical dysplasia (FCD) is the most common diagnosis in the pediatric group. FCD is classified histopathologically according to the International League Against Epilepsy (ILAE) classification. In the last decade since the ILAE classification has been released, molecular genetic studies have revealed mTOR pathway–related mutations as a major etiology. The objective of this study was to determine the incidence of FCD in treatment-resistant epilepsy patients, explore histomorphological and immunohistochemical features, examine clinicopathological correlation, demonstrate mTOR pathway activation using a pS6 antibody immunohistochemically, and try to introduce a candidate for possible targeted therapies.
METHODS
Paraffin blocks and slides of tissue from patients with treatment-resistant epilepsy were reexamined retrospectively. Histopathological subtypes of FCD were determined according to the ILAE classification. NeuN and neurofilament H (NF-H) staining were performed, and additionally a pS6 antibody was used to demonstrate mTOR pathway activation.
RESULTS
In 32 cases diagnosed with FCD, or 17.5% of 183 surgical epilepsy materials, there were no significant differences in the statistical analysis of clinical variables between the ILAE FCD subtypes. Recommended antibody NeuN revealed microcolumnar alignment in the FCD type Ia and IIIa groups and the loss of lamination in the type Ib group. Another recommended antibody, NF-H, was not found to be useful in discriminating between normal and dysmorphic neurons. pS6 expression, showing mTOR pathway activation, was observed in dysmorphic neurons and balloon cells in all FCD type II cases.
CONCLUSIONS
Significant pS6 expression in FCD type II represents the genomic nature of the disease noted in the literature. Nevertheless, the known MTOR gene and mTOR pathway–related mutations remain behind proportionally to explain the mTOR pathway activation in all FCD type II cases. Clinicopathologically and genetically integrated classification and usage of mTOR pathway inhibitors in treatment are expected as a recent evolution.
Collapse
Affiliation(s)
- Ozge Kapar
- Department of Pathology, Istanbul University
| | - Zahide Mail Gurkan
- Department of Neurology and Clinical Neurophysiology, Istanbul University
| | - Muge Dolgun
- Department of Neurosurgery, Sultangazi Haseki Training and Research Hospital
| | - Altay Sencer
- Department of Neurosurgery, Istanbul Faculty of Medicine, Istanbul University; and
| | - Candan Gürses
- Department of Neurology, Koc University, Istanbul, Turkey
| | | |
Collapse
|
11
|
Lee WS, Baldassari S, Stephenson SEM, Lockhart PJ, Baulac S, Leventer RJ. Cortical Dysplasia and the mTOR Pathway: How the Study of Human Brain Tissue Has Led to Insights into Epileptogenesis. Int J Mol Sci 2022; 23:1344. [PMID: 35163267 PMCID: PMC8835853 DOI: 10.3390/ijms23031344] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Type II focal cortical dysplasia (FCD) is a neuropathological entity characterised by cortical dyslamination with the presence of dysmorphic neurons only (FCDIIA) or the presence of both dysmorphic neurons and balloon cells (FCDIIB). The year 2021 marks the 50th anniversary of the recognition of FCD as a cause of drug resistant epilepsy, and it is now the most common reason for epilepsy surgery. The causes of FCD remained unknown until relatively recently. The study of resected human FCD tissue using novel genomic technologies has led to remarkable advances in understanding the genetic basis of FCD. Mechanistic parallels have emerged between these non-neoplastic lesions and neoplastic disorders of cell growth and differentiation, especially through perturbations of the mammalian target of rapamycin (mTOR) signalling pathway. This narrative review presents the advances through which the aetiology of FCDII has been elucidated in chronological order, from recognition of an association between FCD and the mTOR pathway to the identification of somatic mosaicism within FCD tissue. We discuss the role of a two-hit mechanism, highlight current challenges and future directions in detecting somatic mosaicism in brain and discuss how knowledge of FCD may inform novel precision treatments of these focal epileptogenic malformations of human cortical development.
Collapse
Affiliation(s)
- Wei Shern Lee
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Richard J. Leventer
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville 3052, Australia
| |
Collapse
|
12
|
D'Gama AM, Poduri A. Precision Therapy for Epilepsy Related to Brain Malformations. Neurotherapeutics 2021; 18:1548-1563. [PMID: 34608615 PMCID: PMC8608994 DOI: 10.1007/s13311-021-01122-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 02/04/2023] Open
Abstract
Malformations of cortical development (MCDs) represent a range of neurodevelopmental disorders that are collectively common causes of developmental delay and epilepsy, especially refractory childhood epilepsy. Initial treatment with antiseizure medications is empiric, and consideration of surgery is the standard of care for eligible patients with medically refractory epilepsy. In the past decade, advances in next generation sequencing technologies have accelerated progress in understanding the genetic etiologies of MCDs, and precision therapies for focal MCDs are emerging. Notably, mutations that lead to abnormal activation of the mammalian target of rapamycin (mTOR) pathway, which provides critical control of cell growth and proliferation, have emerged as a common cause of malformations. These include tuberous sclerosis complex (TSC), hemimegalencephaly (HME), and some types of focal cortical dysplasia (FCD). TSC currently represents the best example for the pathway from gene discovery to relatively safe and efficacious targeted therapy for epilepsy related to MCDs. Based on extensive pre-clinical and clinical data, the mTOR inhibitor everolimus is currently approved for the treatment of focal refractory seizures in patients with TSC. Although clinical studies are just emerging for FCD and HME, we believe the next decade will bring significant advancements in precision therapies for epilepsy related to these and other MCDs.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
13
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
14
|
Nguyen LH, Bordey A. Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Front Neuroanat 2021; 15:664695. [PMID: 33897381 PMCID: PMC8064518 DOI: 10.3389/fnana.2021.664695] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) due to mutations in genes along the PI3K-mTOR pathway and the GATOR1 complex causes a spectrum of neurodevelopmental disorders (termed mTORopathies) associated with malformation of cortical development and intractable epilepsy. Despite these gene variants’ converging impact on mTORC1 activity, emerging findings suggest that these variants contribute to epilepsy through both mTORC1-dependent and -independent mechanisms. Here, we review the literature on in utero electroporation-based animal models of mTORopathies, which recapitulate the brain mosaic pattern of mTORC1 hyperactivity, and compare the effects of distinct PI3K-mTOR pathway and GATOR1 complex gene variants on cortical development and epilepsy. We report the outcomes on cortical pyramidal neuronal placement, morphology, and electrophysiological phenotypes, and discuss some of the converging and diverging mechanisms responsible for these alterations and their contribution to epileptogenesis. We also discuss potential therapeutic strategies for epilepsy, beyond mTORC1 inhibition with rapamycin or everolimus, that could offer personalized medicine based on the gene variant.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Angélique Bordey
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
16
|
Miyata H, Fushimi S, Ota Y, Vinters HV, Adachi K, Nanba E, Akiyama T. Isolated cortical tuber in an infant with genetically confirmed tuberous sclerosis complex 1 presenting with symptomatic West syndrome. Neuropathology 2020; 41:58-64. [PMID: 33181865 DOI: 10.1111/neup.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant hereditary disorder caused by mutations in either TSC1 on chromosome 16 or TSC2 on chromosome 9, clinically characterized mainly by facial angiofibroma, epilepsy, and intellectual disability. Cortical dysplasias, subependymal nodules, and subependymal giant cell astrocytoma are characteristic central nervous system lesions among 11 major features in the current clinical diagnostic criteria for TSC. We encountered an unusual case of genetically confirmed TSC1 presenting with symptomatic West syndrome due to an isolated cortical dysplasia in the left occipital lobe of a six-month-old male infant who did not meet the clinical diagnostic criteria for TSC. The patient underwent left occipital lesionectomy at age 11 months and has been seizure-free for nearly six years since then. Histological examination of the resection specimen revealed cortical neuronal dyslamination with abundant dysmorphic neurons and ballooned cells, consistent with focal cortical dysplasia (FCD) type IIb. However, the lesion was also accompanied by unusual features, including marked calcifications, dense fibrillary gliosis containing abundant Rosenthal fibers, CD34-positive glial cells with abundant long processes confined to the dysplastic cortex, and multiple nodular lesions occupying the underlying white matter, consisting exclusively of ballooned cell and/or balloon-like astrocytes with focal calcifications. Genetic testing for TSC1 and TSC2 using the patient's peripheral blood revealed a germline heterozygous mutation in exon 7 (NM_000368.5: c.526dupT, p.Tyr176fs) in TSC1. Isolated FCD with unusual features such as calcification, dense fibrillary gliosis, Rosenthal fibers and/or subependymal nodule-like lesions in the white matter may indicate the possibility of a cortical tuber even without a clinical diagnosis of TSC. Identification of such histopathological findings has significant implications for early and accurate diagnosis and treatment of TSC, and is likely to serve as an important supplementary feature for the current clinical diagnostic criteria for TSC.
Collapse
Affiliation(s)
- Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Soichiro Fushimi
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Pathology, Himeji Red Cross Hospital, Himeji, Japan
| | - Yoko Ota
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine (Neuropathology) and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Eiji Nanba
- Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan.,Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Affiliation(s)
- Peter B Crino
- Department of Neurology 12264University of Maryland School of Medicine
| |
Collapse
|
18
|
Han P, Welsh CT, Smith MT, Schmidt RE, Carroll SL. Complex Patterns of GABAergic Neuronal Deficiency and Type 2 Potassium-Chloride Cotransporter Immaturity in Human Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2020; 78:365-372. [PMID: 30856249 DOI: 10.1093/jnen/nlz009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a "broad pattern." In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this "restricted pattern." The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) "broad" GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.
Collapse
Affiliation(s)
- Pengcheng Han
- Department of Pathology and Laboratory Medicine.,Department of Pathology and Laboratory Medicine Residency Program, Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
19
|
Kumari K, Sharma MC, Kakkar A, Malgulwar PB, Pathak P, Suri V, Sarkar C, Chandra SP, Faruq M. mTOR pathway activation in focal cortical dysplasia. Ann Diagn Pathol 2020; 46:151523. [PMID: 32325422 DOI: 10.1016/j.anndiagpath.2020.151523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is a localized cortical malformation and considerable morphological overlap exists between FCD IIB and neurological lesions associated with Tuberous sclerosis complex (TSC). Abnormal mTOR pathway secondary to somatic mTOR mutation and TSC gene mutation linked to PI3K/AKT/mTOR pathway have supported the hypothesis of common pathogenesis involved. Role of converging pathway, viz. Wnt/β-Catenin and mTOR is unknown in FCD. We aimed to analyse FCD IIB for TSC1/TSC2 mutations, immunoreactivity of hamartin, tuberin, mTOR and Wnt signalling cascades, and stem cell markers. MATERIALS AND METHODS Sixteen FCD IIB cases were retrieved along with 16 FCD IIA cases for comparison. Immunohistochemistry was performed for tuberin, hamartin, mTOR pathway markers, markers of stem cell phenotype, and Wnt pathway markers. Mutation analysis for TSC1 and TSC2 was performed by sequencing in 9 FCD cases. RESULTS All FCD cases showed preserved hamartin and tuberin immunoreactivity. Aberrant immunoreactivity of phospho-P70S6 kinase, S6 ribosomal, phospho-S6 ribosomal and Stat3 was noted in FCD IIB, with variable phospho-4E-BP1 (45%) and absent phospho-Stat3 expression. Immunoreactivity for phospho-P70S6 kinase (100%), S6 ribosomal protein (100%) and Stat3 (100%) was noted in FCD IIA, but not for phospho-S6 ribosomal, phospho-4E-BP1 and phospho-Stat3. c-Myc immunoreactivity was noted in all FCD cases. Nestin (81%) and Sox 2 (88%) stained balloon cells in FCD IIB (44%), while in FCD IIA cases were negative. All FCD cases were immunopositive for Wnt, but were negative for β-Catenin and cyclin-D1. TSC mutations were detected in two cases of FCD IIB. CONCLUSION Abnormal mTOR pathway activation exists in FCD IIB and IIA, however, shows differential immunoreactivity profile, indicating varying degrees of dysregulation. Labelling of neuronal stem cell markers in balloon cells suggests they are phenotypically immature. TSC1/2 mutation play role in the pathogenesis of FCD. Deep targeted sequencing is preferred diagnostic technique since conventional sanger sequencing often fails to detect low-allele frequency variants involved in mTOR/TSC pathway genes, commonly found in FCD.
Collapse
Affiliation(s)
- Kalpana Kumari
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prit B Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sarat P Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed Faruq
- Institute of Genomics and Integrative Biology - Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW There has been rapid progress in defining novel causative gene variants responsible for a large spectrum of human epilepsy syndromes and subtypes. Of particular interest is the discovery that somatic mutations, for example, noninherited mutations occurring in neuroglial progenitor cells during embryonic brain development, are highly linked to malformations of cortical development (MCD) such as focal cortical dysplasia (FCD) type II and hemimegalencephaly. RECENT FINDINGS Somatic gene variants have been identified in genes encoding regulatory proteins within the mechanistic target of rapamycin (mTOR) signaling cascade and have thus comprised the group classified as mTORopathies. FCD II and hemimegalencephaly often result from mutations in identical genes suggesting that these are spectrum disorders. An exciting recent development has been the identification of somatic mutations causing both FCD Ia and nonlesional neocortical epilepsy. SUMMARY Defining somatic gene mutations in brain tissue specimens has shed new light on how MCD form and the mechanisms of epileptogenesis associated with MCD. Trials of mTOR inhibitors in tuberous sclerosis complex have demonstrated that inhibition of mTOR activation in mTORopathies can reduce seizure frequency. New somatic mutations found for a variety of epilepsy syndromes may provide new targets for clinical therapeutics.
Collapse
|
21
|
Sapir T, Barakat TS, Paredes MF, Lerman-Sagie T, Aronica E, Klonowski W, Nguyen L, Ben Zeev B, Bahi-Buisson N, Leventer R, Rachmian N, Reiner O. Building Bridges Between the Clinic and the Laboratory: A Meeting Review - Brain Malformations: A Roadmap for Future Research. Front Cell Neurosci 2019; 13:434. [PMID: 31611776 PMCID: PMC6776596 DOI: 10.3389/fncel.2019.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
In the middle of March 2019, a group of scientists and clinicians (as well as those who wear both hats) gathered in the green campus of the Weizmann Institute of Science to share recent scientific findings, to establish collaborations, and to discuss future directions for better diagnosis, etiology modeling and treatment of brain malformations. One hundred fifty scientists from twenty-two countries took part in this meeting. Thirty-eight talks were presented and as many as twenty-five posters were displayed. This review is aimed at presenting some of the highlights that the audience was exposed to during the three-day meeting.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mercedes F. Paredes
- Department of Neurology and Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonora Aronica
- Department of (Neuro-)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, Netherlands
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Laurent Nguyen
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Bruria Ben Zeev
- Sackler School of Medicine and Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Tel Aviv University, Tel Aviv, Israel
| | - Nadia Bahi-Buisson
- INSERM UMR 1163, Imagine Institute, Paris Descartes University, Paris, France
- Necker Enfants Malades Hospital, Pediatrric Neurology APHP, Paris, France
| | - Richard Leventer
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Noa Rachmian
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
23
|
Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol 2019; 44:6-17. [PMID: 29359340 DOI: 10.1111/nan.12463] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Over the last decade, there has been increasing evidence that hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is a hallmark of malformations of cortical development such as focal cortical dysplasia (FCD) or hemimegalencephaly. The mTOR pathway governs protein and lipid synthesis, cell growth and proliferation as well as metabolism and autophagy. The molecular genetic aetiology of mTOR hyperactivation has only been recently clarified. This article will review the current and still evolving genetic advances in the elucidation of the molecular basis of FCD. Activating somatic mutations in the MTOR gene are to date the most frequent mutations found in FCD brain specimens.
Collapse
Affiliation(s)
- E Marsan
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Baulac
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
24
|
Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, Cataltepe D, Turner D, Han MJ, Woolf CJ, Hatten ME, Sahin M. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 2018; 23:2167-2183. [PMID: 29449635 PMCID: PMC6093816 DOI: 10.1038/s41380-018-0018-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.
Collapse
Affiliation(s)
- Maria Sundberg
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ivan Tochitsky
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Buchholz
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kellen Winden
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ville Kujala
- Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, USA
| | - Kush Kapur
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Cataltepe
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daria Turner
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min-Joon Han
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
MTOR pathway in focal cortical dysplasia type 2: What do we know? Epilepsy Behav 2018; 85:157-163. [PMID: 29945038 DOI: 10.1016/j.yebeh.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/15/2023]
Abstract
Focal cortical dysplasia (FCD) is the most commonly encountered developmental malformation that causes refractory epilepsy. Focal cortical dysplasia type 2 is one of the most usual neuropathological findings in tissues resected therapeutically from patients with drug-resistant epilepsy. Unlike other types of FCD, it is characterized by laminar disorganization and dysplastic neurons, which compromise the organization of the six histologically known layers in the cortex; the morphology and/or cell location can also be altered. A comprehensive review about the pathogenesis of this disease is important because of the necessity to update the results reported over the past years. Here, we present an updated review through Pubmed about the mammalian target of rapamycin (MTOR) pathway in FCD type 2. A wide variety of aspects was covered in 44 articles related to molecular and cellular biology, including experiments in animal and human models. The first publications appeared in 2004, but there is still a lack of studies specifically for one type of FCD. With the advancement of techniques and greater access to molecular and cellular experiments, such as induced pluripotent stem cells (iPSCs) and organoids, it is believed that the trend is increasing the number of publications contributing to the achievement of new discoveries.
Collapse
|
26
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
27
|
Talos DM, Jacobs LM, Gourmaud S, Coto CA, Sun H, Lim KC, Lucas TH, Davis KA, Martinez-Lage M, Jensen FE. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann Neurol 2018; 83:311-327. [PMID: 29331082 DOI: 10.1002/ana.25149] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a chronic epilepsy syndrome defined by seizures and progressive neurological disabilities, including cognitive impairments, anxiety, and depression. Here, human TLE specimens were investigated focusing on the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and complex 2 (mTORC2) activities in the brain, given that both pathways may represent unique targets for treatment. METHODS Surgically resected hippocampal and temporal lobe samples from therapy-resistant TLE patients were analyzed by western blotting to quantify the expression of established mTORC1 and mTORC2 activity markers and upstream or downstream signaling pathways involving the two complexes. Histological and immunohistochemical techniques were used to assess hippocampal and neocortical structural abnormalities and cell-specific expression of individual biomarkers. Samples from patients with focal cortical dysplasia (FCD) type II served as positive controls. RESULTS We found significantly increased expression of phospho-mTOR (Ser2448), phospho-S6 (Ser235/236), phospho-S6 (Ser240/244), and phospho-Akt (Ser473) in TLE samples compared to controls, consistent with activation of both mTORC1 and mTORC2. Our work identified the phosphoinositide 3-kinase and Ras/extracellular signal-regulated kinase signaling pathways as potential mTORC1 and mTORC2 upstream activators. In addition, we found that overactive mTORC2 signaling was accompanied by induction of two protein kinase B-dependent prosurvival pathways, as evidenced by increased inhibitory phosphorylation of forkhead box class O3a (Ser253) and glycogen synthase kinase 3 beta (Ser9). INTERPRETATION Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
Collapse
Affiliation(s)
- Delia M Talos
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Leah M Jacobs
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Sarah Gourmaud
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Carlos A Coto
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Hongyu Sun
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kuei-Cheng Lim
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Timothy H Lucas
- Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Maria Martinez-Lage
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
28
|
Iffland PH, Crino PB. Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:547-571. [PMID: 28135561 DOI: 10.1146/annurev-pathol-052016-100138] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway-a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.
Collapse
Affiliation(s)
- Philip H Iffland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
29
|
Sarnat HB, Scantlebury MH. Novel Inflammatory Neuropathology in Immature Brain: (1) Fetal Tuberous Sclerosis, (2) Febrile Seizures, (3) α-B-crystallin, and (4) Role of Astrocytes. Semin Pediatr Neurol 2017; 24:152-160. [PMID: 29103422 DOI: 10.1016/j.spen.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Though the term "inflammation" is traditionally defined as proliferation or infiltration of lymphatic cells of the lymphatic immune system and macrophages or as immunoreactive proteins including cytokines, interleukins and major histocompatibility complexes, recently recognized reactions to tissue injury also are inflammation, often occurring in the central nervous system in conditions where they previously were not anticipated and where they may play a role in both pathogenesis and repair. We highlight 4 such novel inflammatory conditions revealed by neuropathologic studies: (1) inflammatory markers and cells in the brain of human fetuses with tuberous sclerosis complex and perhaps other disorders of the mechanistic target of rapamycin genetic or metabolic pathway, (2) inflammatory markers in the brain related to febrile seizures of infancy and early childhood, (3) heat-shock protein upregulation in glial cells and neurons at sites of chronic epileptic foci, and (4) the emerging role of astrocytes in the presence of and participation in inflammation. Novel evidence shows that cerebral inflammation plays a role in some genetic diseases as early as midgestation and thus is not always acquired postnatally or in adult life.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Morris H Scantlebury
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Abstract
INTRODUCTION Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.
Collapse
Affiliation(s)
- Kenneth A Myers
- a Epilepsy Research Centre, Department of Medicine , The University of Melbourne, Austin Health , Heidelberg , Victoria , Australia.,b Department of Paediatrics , Royal Children's Hospital, The University of Melbourne , Flemington , Victoria , Australia
| | - Ingrid E Scheffer
- a Epilepsy Research Centre, Department of Medicine , The University of Melbourne, Austin Health , Heidelberg , Victoria , Australia.,b Department of Paediatrics , Royal Children's Hospital, The University of Melbourne , Flemington , Victoria , Australia.,c The Florey Institute of Neuroscience and Mental Health , Heidelberg , Victoria , Australia
| |
Collapse
|
31
|
Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am J Hum Genet 2017; 100:454-472. [PMID: 28215400 DOI: 10.1016/j.ajhg.2017.01.030] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a major cause of the sporadic form of intractable focal epilepsies that require surgical treatment. It has recently been reported that brain somatic mutations in MTOR account for 15%-25% of FCD type II (FCDII), characterized by cortical dyslamination and dysmorphic neurons. However, the genetic etiologies of FCDII-affected individuals who lack the MTOR mutation remain unclear. Here, we performed deep hybrid capture and amplicon sequencing (read depth of 100×-20,012×) of five important mTOR pathway genes-PIK3CA, PIK3R2, AKT3, TSC1, and TSC2-by using paired brain and saliva samples from 40 FCDII individuals negative for MTOR mutations. We found that 5 of 40 individuals (12.5%) had brain somatic mutations in TSC1 (c.64C>T [p.Arg22Trp] and c.610C>T [p.Arg204Cys]) and TSC2 (c.4639G>A [p.Val1547Ile]), and these results were reproducible on two different sequencing platforms. All identified mutations induced hyperactivation of the mTOR pathway by disrupting the formation or function of the TSC1-TSC2 complex. Furthermore, in utero CRISPR-Cas9-mediated genome editing of Tsc1 or Tsc2 induced the development of spontaneous behavioral seizures, as well as cytomegalic neurons and cortical dyslamination. These results show that brain somatic mutations in TSC1 and TSC2 cause FCD and that in utero application of the CRISPR-Cas9 system is useful for generating neurodevelopmental disease models of somatic mutations in the brain.
Collapse
|
32
|
Abstract
Epilepsy is one of the most common neurologic disorders, affecting about 50 million people worldwide. The disease is characterized by recurrent seizures, which are due to aberrant neuronal networks resulting in synchronous discharges. The term epilepsy encompasses a large spectrum of syndromes and diseases with different etiopathogenesis. The recent development of imaging and epilepsy surgery techniques is now enabling the identification of structural abnormalities that are part of the epileptic network, and the removal of these lesions may result in control of seizures. Access of this clinically well-characterized neurosurgical material has provided neuropathologists with the opportunity to study a variety of structural brain abnormalities associated with epilepsy, by combining traditional routine histopathologic methods with molecular genetics and functional analysis of the resected tissue. This approach has contributed greatly to a better diagnosis and classification of these structural lesions, and has provided important new insights into their pathogenesis and epileptogenesis. The present chapter provides a detailed description of the large spectrum of histopathologic findings encountered in epilepsy surgery patients, addressing in particular the nonneoplastic pathologies, including hippocampal sclerosis, malformations of cortical development, Sturge-Weber syndrome, and Rasmussen encephalitis, and reviews current knowledge regarding the underlying molecular pathomechanisms and cellular mechanisms mediating hyperexcitability.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, the Netherlands.
| | - Angelika Mühlebner
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Rossini L, Villani F, Granata T, Tassi L, Tringali G, Cardinale F, Aronica E, Spreafico R, Garbelli R. FCD Type II and mTOR pathway: Evidence for different mechanisms involved in the pathogenesis of dysmorphic neurons. Epilepsy Res 2016; 129:146-156. [PMID: 28056425 DOI: 10.1016/j.eplepsyres.2016.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
Type II focal cortical dysplasia (FCD II) is a malformation of cortical development, frequently associated with intractable epilepsy, characterised by cortical dyslamination, dysmorphic neurons (DNs) and balloon cells (BCs). We investigated the expression of pS6 (downstream target) and pPDK1-pAkt (upstream targets) as evidence for mTOR pathway activation and their co-expression with Interleukin-1β in FCD II surgical specimens and compared the findings with control non-epileptic tissue, non-malformed epileptic tissue or acquired epilepsy-Rasmussen's Encephalitis (RE) occasionally presenting pS6 and Interleukin-1β positive abnormal neurons. Downstream mTOR activation was demonstrated in almost all abnormal cells in both FCD II and RE. Conversely, upstream activation in FCD II was observed in the majority of BCs, in a proportion of DNs, not presenting Interleukin-1β expression, but not at all in RE scattered abnormal neurons. Based on these findings we suggest that the presence of BCs and DNs in FCD II could be due to a first upstream mTOR pathway PI3K-Akt-mediate event occurring very early during cortical development in the large proportion of abnormal cells; followed by the appearance of additional pS6 positive DNs promoted by the presence of a later inflammatory processes.
Collapse
Affiliation(s)
- Laura Rossini
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy.
| | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Laura Tassi
- Epilepsy Surgery Centre "C. Munari", Ospedale Niguarda, Milan, Italy
| | - Giovanni Tringali
- Neurosurgery Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience University of Amsterdam; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| |
Collapse
|
34
|
Yao K, Duan Z, Zhou J, Li L, Zhai F, Dong Y, Wang X, Ma Z, Bian Y, Qi X, Li L. Clinical and immunohistochemical characteristics of type II and type I focal cortical dysplasia. Oncotarget 2016; 7:76415-76422. [PMID: 27811355 PMCID: PMC5363519 DOI: 10.18632/oncotarget.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/24/2016] [Indexed: 12/05/2022] Open
Abstract
Focal cortical dysplasia (FCD) II and I are major causes for drug-resistant epilepsy. In order to gain insight into the possible correlations between FCD II and FCD I, different clinical characteristics and immunohistochemical expression characteristics in FCD I and II were analyzed. The median age of onset and duration of epilepsy in FCD I and FCD II patients were 2.1 years and 5.3 years vs 2.4 years and 4.5 years. Therefore, the median age of onset and duration of epilepsy were similar in the two groups. Pathological lesions were predominantly located in frontal lobe in FCD II and temporal in FCD I. Significantly more signal abnormalities in FLAIR and T2 images were demonstrated in FCD II than FCD I. The rate of satisfied seizure outcome was relative higher in FCDII patients (95.12%) than that in FCDI group (84.6%). Furthermore, we detected expressions of progenitor cell proteins and the mammalian target of rapamycin (mTOR) cascade activation protein in FCDs. Results showed that sex-determiningregion Y-box 2(SOX2), Kruppel-likefactor 4 (KLF4) and phospho-S6 ribosomal proteins (ser240/244 or ser235/236) were expressed in FCDII group but not in FCD I. Overall, this study unveils FCD I and II exhibit distinct clinical and immunohistochemical expression characteristics, revealing different pathogenic mechanisms.
Collapse
Affiliation(s)
- Kun Yao
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Jian Zhou
- Department of Neurosurgery, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Lin Li
- Department of Neurosurgery, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Feng Zhai
- Department of Neurosurgery, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Yanting Dong
- The Second Hospital of Shanxi Medical University, Taiyuan, P. R. China
| | - Xiaoyan Wang
- Beijing Health Vocational College, Xicheng, Beijing, P. R. China
| | - Zhong Ma
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Yu Bian
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Haidian, Beijng, P. R. China
| | - Liang Li
- Department of Pathology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
35
|
Siedlecka M, Grajkowska W, Galus R, Dembowska-Bagińska B, Jóźwiak J. Focal cortical dysplasia: Molecular disturbances and clinicopathological classification (Review). Int J Mol Med 2016; 38:1327-1337. [DOI: 10.3892/ijmm.2016.2760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/23/2016] [Indexed: 11/05/2022] Open
|
36
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
37
|
Baulac S. mTOR signaling pathway genes in focal epilepsies. PROGRESS IN BRAIN RESEARCH 2016; 226:61-79. [DOI: 10.1016/bs.pbr.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Affiliation(s)
- Peter B Crino
- Shriners Hospitals Paediatric Research Centre, Department of Neurology, Temple University School of Medicine, Philadelphia, USA
| |
Collapse
|
39
|
Abstract
Focal cortical dysplasias are common malformations of cerebral cortical development and are highly associated with medically intractable epilepsy. They have been classified into neuropathological subtypes (type Ia, Ib, IIa, IIb, and III) based on the severity of cytoarchitectural disruption--tangential or radial dispersion, or loss of laminar structure--and the presence of unique cells types such as cytomegalic neurons or balloon cells. Most focal cortical dysplasias can be identified on neuroimaging and many require resective epilepsy surgery to cure refractory seizures. The pathogenesis of focal cortical dysplasias remains to be defined, although there is recent evidence to suggest that focal cortical dysplasias arise from de novo somatic mutations occurring during brain development. Some focal cortical dysplasia subtypes show a link to the mammalian target of rapamycin signaling cascade; this has now extended to other cortical malformations, including hemimegalencephaly.
Collapse
Affiliation(s)
- Peter B Crino
- Department of Neurology, Shriners Hospital Pediatric Research Center and Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Lin YX, Lin K, Kang DZ, Liu XX, Wang XF, Zheng SF, Yu LH, Lin ZY. Similar PDK1–AKT–mTOR pathway activation in balloon cells and dysmorphic neurons of type II focal cortical dysplasia with refractory epilepsy. Epilepsy Res 2015; 112:137-49. [DOI: 10.1016/j.eplepsyres.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 11/30/2022]
|
41
|
Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med 2015; 5:5/4/a022442. [PMID: 25833943 DOI: 10.1101/cshperspect.a022442] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade enhanced activation of the mammalian target of rapamycin (mTOR)-signaling cascade has been identified in focal malformations of cortical development (MCD) subtypes, which have been collectively referred to as "mTORopathies." Mutations in mTOR regulatory genes (e.g., TSC1, TSC2, AKT3, DEPDC5) have been associated with several focal MCD highly associated with epilepsy such as tuberous sclerosis complex (TSC), hemimegalencephaly (HME; brain malformation associated with dramatic enlargement of one brain hemisphere), and cortical dysplasia. mTOR plays important roles in the regulation of cell division, growth, and survival, and, thus, aberrant activation of the cascade during cortical development can cause dramatic alterations in cell size, cortical lamination, and axon and dendrite outgrowth often observed in focal MCD. Although it is widely believed that structural alterations induced by hyperactivated mTOR signaling are critical for epileptogenesis, newer evidence suggests that mTOR activation on its own may enhance neuronal excitability. Clinical trials with mTOR inhibitors have shown efficacy in the treatment of seizures associated with focal MCD.
Collapse
Affiliation(s)
- Peter B Crino
- Shriners Hospital Pediatric Research Center and Department of Neurology, Temple University, Philadelphia, Pennsylvania 19140
| |
Collapse
|
42
|
Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK, Cho YW, Kim S, Kim HM, Kim JA, Kim J, Rhee H, Kang SG, Kim HD, Kim D, Kim DS, Lee JH. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 2015; 21:395-400. [PMID: 25799227 DOI: 10.1038/nm.3824] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Focal cortical dysplasia type II (FCDII) is a sporadic developmental malformation of the cerebral cortex characterized by dysmorphic neurons, dyslamination and medically refractory epilepsy. It has been hypothesized that FCD is caused by somatic mutations in affected regions. Here, we used deep whole-exome sequencing (read depth, 412-668×) validated by site-specific amplicon sequencing (100-347,499×) in paired brain-blood DNA from four subjects with FCDII and uncovered a de novo brain somatic mutation, mechanistic target of rapamycin (MTOR) c.7280T>C (p.Leu2427Pro) in two subjects. Deep sequencing of the MTOR gene in an additional 73 subjects with FCDII using hybrid capture and PCR amplicon sequencing identified eight different somatic missense mutations found in multiple brain tissue samples of ten subjects. The identified mutations accounted for 15.6% of all subjects with FCDII studied (12 of 77). The identified mutations induced the hyperactivation of mTOR kinase. Focal cortical expression of mutant MTOR by in utero electroporation in mice was sufficient to disrupt neuronal migration and cause spontaneous seizures and cytomegalic neurons. Inhibition of mTOR with rapamycin suppressed cytomegalic neurons and epileptic seizures. This study provides, to our knowledge, the first evidence that brain somatic activating mutations in MTOR cause FCD and identifies mTOR as a treatment target for intractable epilepsy in FCD.
Collapse
Affiliation(s)
- Jae Seok Lim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Woo-il Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Hoon-Chul Kang
- 1] Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Seoul, Korea. [2] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Brain Korea 21 project for medical science, Yonsei University College of Medicine, Seoul, Korea
| | - Ah Hyung Park
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Eun Kyung Park
- 1] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea. [2] Department of Neurosurgery, Pediatric Epilepsy Clinics, Brain Korea 21 project for medical science, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Wook Cho
- Korea Basic Science Institute, Chuncheon Center, Chuncheon-si, Gangwon-do, Korea
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Jeong A Kim
- 1] Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Seoul, Korea. [2] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Junho Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hwanseok Rhee
- Macrogen Bioinformatics Center, Macrogen, Gasan-dong, Geumcheon-gu, Seoul, Korea
| | - Seok-Gu Kang
- 1] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea. [2] Department of Neurosurgery, Pediatric Epilepsy Clinics, Brain Korea 21 project for medical science, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- 1] Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Seoul, Korea. [2] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Daesoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Dong-Seok Kim
- 1] Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea. [2] Department of Neurosurgery, Pediatric Epilepsy Clinics, Brain Korea 21 project for medical science, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
43
|
Nguyen LH, Brewster AL, Clark ME, Regnier-Golanov A, Sunnen CN, Patil VV, D'Arcangelo G, Anderson AE. mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia 2015; 56:636-46. [PMID: 25752454 DOI: 10.1111/epi.12946] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperactivation of the mechanistic target of rapamycin (mTOR; also known as mammalian target of rapamycin) pathway has been demonstrated in human cortical dysplasia (CD) as well as in animal models of epilepsy. Although inhibition of mTOR signaling early in epileptogenesis suppressed epileptiform activity in the neuron subset-specific Pten knockout (NS-Pten KO) mouse model of CD, the effects of mTOR inhibition after epilepsy is fully established were not previously examined in this model. Here, we investigated whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS-Pten KO mice with severe and well-established epilepsy. METHODS The progression of epileptiform activity, mTOR pathway dysregulation, and associated neuropathology with age in NS-Pten KO mice were evaluated using video-electroencephalography (EEG) recordings, Western blotting, and immunohistochemistry. A cohort of NS-Pten KO mice was treated with the mTOR inhibitor rapamycin (10 mg/kg i.p., 5 days/week) starting at postnatal week 9 and video-EEG monitored for epileptiform activity. Western blotting and immunohistochemistry were performed to evaluate the effects of rapamycin on the associated pathology. RESULTS Epileptiform activity worsened with age in NS-Pten KO mice, with parallel increases in the extent of hippocampal mTOR complex 1 and 2 (mTORC1 and mTORC2, respectively) dysregulation and progressive astrogliosis and microgliosis. Rapamycin treatment suppressed epileptiform activity, improved baseline EEG activity, and increased survival in severely epileptic NS-Pten KO mice. At the molecular level, rapamycin treatment was associated with a reduction in both mTORC1 and mTORC2 signaling and decreased astrogliosis and microgliosis. SIGNIFICANCE These findings reveal a wide temporal window for successful therapeutic intervention with rapamycin in the NS-Pten KO mouse model, and they support mTOR inhibition as a candidate therapy for established, late-stage epilepsy associated with CD and genetic dysregulation of the mTOR pathway.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, U.S.A; The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, U.S.A; The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, Texas, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Collapse
|
46
|
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 2014; 5:4563. [PMID: 25081057 PMCID: PMC4143949 DOI: 10.1038/ncomms5563] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either
TSC1 or
TSC2 tumour
suppressor genes is characterized by the presence of brain malformations, the
cortical tubers that are thought to contribute to the generation of
pharmacoresistant epilepsy. Here we report that tuberless heterozygote
Tsc1+/− mice show
functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an
mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early
postnatal life (<P19). Seizures are generated intracortically in the granular
layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes
excessive temporal integration of persistent NMDAR-mediated recurrent excitation and
seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1+/− mice in vivo
and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical
resections, and a GluN2C/D
antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising
molecular target to treat epilepsy in TSC patients. Tuberous sclerosis complex (TSC) is a rare genetic condition
characterized by epileptic seizures that start in infancy. Here, the authors show that
these seizures are modulated by GluN2C-containing NMDA receptors in the cortex of a
mouse model of TSC, and that suppressing their activity attenuates seizures.
Collapse
Affiliation(s)
- N Lozovaya
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - S Gataullina
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - T Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3]
| | - V Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Pallesi-Pocachard
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - M Minlebaev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya street 18, 420000 Kazan, Russia
| | - N A Goriounova
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Buhler
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - F Watrin
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - S Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, 97080 Würzburg, Germany
| | - A J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund Freud Street 25, D-53105 Bonn, Germany
| | - A Bordey
- Neurosurgery, and Cellular and Molecular Physiology Departments, Yale University School of Medicine, PO Box 208082, New Haven, Connecticut 06520-8082, USA
| | - M Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - D Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - C Bulteau
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - G Dorfmuller
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - O Delalande
- Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - A Represa
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - C Cardoso
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - O Dulac
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France [3] APHP, Necker Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Y Ben-Ari
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - N Burnashev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| |
Collapse
|
47
|
Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2014; 2:71. [PMID: 25005575 PMCID: PMC4230418 DOI: 10.1186/2051-5960-2-71] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Activation of the mTOR pathway has been linked to the cytopathology and epileptogenicity of malformations, specifically Focal Cortical Dysplasia (FCD) and Tuberous Sclerosis (TSC). Experimental and clinical trials have shown than mTOR inhibitors have anti-epileptogenic effects in TS. Dysmorphic neurones and balloon cells are hallmarks of FCDIIb and TSC, but similar cells are also occasionally observed in other acquired epileptogenic pathologies, including hippocampal sclerosis (HS) and Rasmussen's encephalitis (RE). Our aim was to explore mTOR pathway activation in a range of epilepsy-associated pathologies and in lesion-negative cases. RESULTS 50 epilepsy surgical pathologies were selected including HS ILAE type 1 with (5) and without dysmorphic neurones (4), FCDIIa (1), FCDIIb (5), FCDIIIa (5), FCDIIIb (3), FCDIIId (3), RE (5) and cortex adjacent to cavernoma (1). We also included pathology-negative epilepsy cases; temporal cortex (7), frontal cortex (2), paired frontal cortical samples with different ictal activity according to intracranial EEG recordings (4), cortex with acute injuries from electrode tracks (5) and additionally non-epilepsy surgical controls (3). Immunohistochemistry for phospho-S6 (pS6) ser240/244 and ser235/236 and double-labelling for Iba1, neurofilament, GFAP, GFAPdelta, doublecortin, and nestin were performed. Predominant neuronal labelling was observed with pS6 ser240/244 and glial labelling with pS6 ser235/236 in all pathology types but with evidence for co-expression in a proportion of cells in all pathologies. Intense labelling of dysmorphic neurones and balloon cells was observed in FCDIIb, but dysmorphic neurones were also labelled in RE and HS. There was no difference in pS6 labelling in paired samples according to ictal activity. Double-labelling immunofluorescent studies further demonstrated the co-localisation of pS6 with nestin, doublecortin, GFAPdelta in populations of small, immature neuroglial cells in a range of epilepsy pathologies. CONCLUSIONS Although mTOR activation has been more studied in the FCDIIb and TSC, our observations suggest this pathway is activated in a variety of epilepsy-associated pathologies, and in varied cell types including dysmorphic neurones, microglia and immature cell types. There was no definite evidence from our studies to suggest that pS6 expression is directly related to disease activity.
Collapse
|
48
|
Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 2014; 7:28. [PMID: 24795562 PMCID: PMC4005960 DOI: 10.3389/fnmol.2014.00028] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022] Open
Abstract
Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development.
Collapse
Affiliation(s)
- Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|
49
|
Rossini L, Medici V, Tassi L, Cardinale F, Tringali G, Bramerio M, Villani F, Spreafico R, Garbelli R. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization. Acta Neuropathol Commun 2014; 2:45. [PMID: 24735483 PMCID: PMC4023625 DOI: 10.1186/2051-5960-2-45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes.In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. RESULTS LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. CONCLUSION These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern.Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development.
Collapse
Affiliation(s)
- Laura Rossini
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Valentina Medici
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Laura Tassi
- C. Munari Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | | | - Giovanni Tringali
- Department of Neurosurgery, Fondazione IRCCS, Istituto Neurologico “C. Besta”, Milan, Italy
| | | | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| |
Collapse
|
50
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|