1
|
Shah S, Mansour HM, Lucke-Wold B. Advances in Stem Cell Therapy for Huntington's Disease: A Comprehensive Literature Review. Cells 2025; 14:42. [PMID: 39791743 PMCID: PMC11719515 DOI: 10.3390/cells14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.6 per 100,000 people worldwide, and the mean prevalence rate among all published studies, reviews, and genetic HD registries is 5.7 per 100,000. A key feature of HD is the loss of striatal neurons and cortical atrophy. Although there is no cure at present, the discovery of the gene causing HD has brought us into a new DNA era and therapeutic advances for several neurological disorders. PubMed was systematically searched using three search strings: '"Huntington disease" + "stem cell"', '"Huntington disease" + Mesenchymal stromal cell', and '"Huntington disease" + "induced pluripotent stem cell"'. For each string, the search results were categorized based on cell type, and papers that included a clinical analysis were categorized as well. The data were extracted up to 2024. We did not include other databases in our search to have a comparable and systematic review of the literature on the topic. The collected data were analyzed and used for critical interpretation in the present review. Data are presented chronologically as clinical studies were published. Therapeutic strategies based on stem cells have drawn a lot of interest as possible HD therapies. Recent research indicates that NSCs have been the most often utilized stem cell type for treating HD. NSCs have been generated and extracted from a variety of sources, including HD patients' somatic cells and the brain itself. There is strong evidence supporting the transplantation of stem cells or their derivatives in HD animal models, even if stem-cell-based preclinical and clinical trials are still in their early stages. Current treatment only aims at relieving the symptoms rather than treating the pathogenesis of the disease. Although preclinical trials in HD models have shown promise in improving cognitive and motor functions, stem cell therapy still faces many challenges and disadvantages including immunosuppression and immunorejection as well as ethical, technical, and safety concerns. Further research is required for a definitive conclusion.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| | | | | |
Collapse
|
2
|
Tong XY, Norenberg MD, Paidas MJ, Shamaladevi N, Salgueiro L, Jaszberenyi M, John B, Hussain H, El Hiba O, Abdeljalil EG, Bilal EM, Natarajan S, Romaguera R, Papayan S, Carden AK, Ramamoorthy R, Elumalai N, Schally AV, Nithura J, Patrizio R, Jayakumar AR. Mechanism of Alzheimer type II astrocyte development in hepatic encephalopathy. Neurochem Int 2024; 180:105866. [PMID: 39369794 DOI: 10.1016/j.neuint.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Type C hepatic encephalopathy (Type C HE) is a major and complex neurological condition that occurs following chronic liver failure. The molecular basis of Type C HE remains elusive. Type C HE is characterized by mental confusion, cognitive and motor disturbances. The presence of Alzheimer type II astrocytes (AT2A) is the key histopathological finding observed in Type C HE. However, nothing is currently known regarding AT2A development and its involvement in cognitive, and motor deficits in Type C HE. We, therefore, examined in rats the mechanisms by which liver failure contributes to the progression of AT2A, and its role in the development of cognitive and motor deficits in thioacetamide (TAA) model of Type C HE. We and others earlier reported increased oxidative/nitrosative stress (ONS), JNK1/2, and cMyc activation in ammonia-treated astrocyte cultures, as well as in brains from chronic liver failure. We now found increased levels of astrocytic glia maturation factor (GMF, a factor strongly implicated in neuroinflammation), as well as various inflammatory factors (IL-1β, TNF-α, IL-6, MMP-3, COX2, CXCL1, and PGE2), and reduced levels of GFAP and increased levels of aggregated nuclear protein Lamin A/C in rat brain cortex post-chronic liver failure. We also found increased levels of GMF and inflammatory factors (MMP-3, COX2, CXCL1, and PGE2) in astrocytes post-ammonia treatment in vitro. Additionally, pharmacological inhibition of upstream signaling of GMF (ONS, JNK1/2, and cMyc) or GMF inhibitors W-7 and trifluoperazine significantly reduced the levels of inflammatory factors, the number of AT2A cells, as well as the cognitive and motor deficits in TAA-treated rats. Increased levels of GMF were also identified in human post-mortem brain sections. These findings strongly suggest that increased levels of astrocytic GMF due to elevated levels of ONS, JNK1/2, and cMyc and the subsequent inflammation contribute to the development of AT2A and the consequent cognitive, and motor deficits in chronic liver failure.
Collapse
Affiliation(s)
- Xiao Y Tong
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
| | | | - Luis Salgueiro
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Miklos Jaszberenyi
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Binu John
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Hussain Hussain
- Larkin Community Hospital, Department of Internal Medicine and Infectious Disease, Miami, FL, USA
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El Got Abdeljalil
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El-Mansoury Bilal
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - Sampath Natarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Rita Romaguera
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Stanislav Papayan
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Arianna K Carden
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Department of Veterans Affairs, Miami, FL, 33125, USA
| | | | - Rebecca Patrizio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Neuropathology Section, Veterans Affairs Medical Center, Miami, FL, USA; R&D Services and South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
3
|
Zakaria S, Ibrahim N, Abdo W, E El-Sisi A. JNK inhibitor and ferroptosis modulator as possible therapeutic modalities in Alzheimer disease (AD). Sci Rep 2024; 14:23293. [PMID: 39375359 PMCID: PMC11458622 DOI: 10.1038/s41598-024-73596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Alzheimer disease (AD) is among the most prevalent neurodegenerative diseases globally, marked by cognitive and behavioral disruptions. Ferroptosis is a form of controlled cell death characterized by intracellular iron accumulation associated with lipid peroxide formation, which subsequently promotes AD initiation and progression. We hypothesized that targeting the ferroptosis pathway may help in AD management. Therefore, our study aimed to evaluate the potential neuroprotective effect of the antifungal Ciclopirox olamine (CPX-O) that acts through iron chelation. We employed CPX-O separately or in combination with the JNK inhibitor (SP600125) in a mice model of AlCl3-induced AD. Animals underwent examination for behavioral, biochemical, histological, and immunohistochemical findings. Our results revealed that AlCl3 was associated with disruptions in learning and memory parameters, neuronal degeneration in the hippocampus, increased immunoreactivity of amyloid-β and tau proteins, a significant rise in iron, nitric oxide (NO), malondialdehyde (MDA), JNK, and P53 levels, along with the significant decrease in glutathione peroxidase activity. Interestingly, the administration of CPX-O alone or in combination with SP600125 in the AlCl3-induced AD model caused an improvement in the previously described examination findings. Therefore, CPX-O may be a promising candidate for AD treatment, and future clinical trials will be required to confirm these preclinical findings.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nashwa Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alaa E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31512, Egypt
| |
Collapse
|
4
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
5
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Zhang M, Wang W, Ye Q, Fu Y, Li X, Yang K, Gao F, Zhou A, Wei Y, Tian S, Li S, Wei F, Shi W, Li WD. Histone deacetylase inhibitors VPA and WT161 ameliorate the pathological features and cognitive impairments of the APP/PS1 Alzheimer's disease mouse model by regulating the expression of APP secretases. Alzheimers Res Ther 2024; 16:15. [PMID: 38245771 PMCID: PMC10799458 DOI: 10.1186/s13195-024-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative neurological disorder. Recent studies have indicated that histone deacetylases (HDACs) are among the most prominent epigenetic therapy targets and that HDAC inhibitors have therapeutic effects on AD. Here, we identified sodium valproate (VPA), a pan-HDAC inhibitor, and WT161, a novel HDAC6 selective inhibitor, as potential therapeutic agents for AD. Underlying molecular mechanisms were investigated. METHODS A cellular model, N2a-APPswe, was established via lentiviral infection, and the APPswe/PSEN1dE9 transgenic mouse model was employed in the study. LC-MS/MS was applied to quantify the concentration of WT161 in the mouse brain. Western blotting, immunohistochemical staining, thioflavin-S staining and ELISA were applied to detect protein expression in cells, tissues, or serum. RNA interference was utilized to knockdown the expression of specific genes in cells. The cognitive function of mice was assessed via the nest-building test, novel object recognition test and Morris water maze test. RESULTS Previous studies have focused mainly on the impact of HDAC inhibitors on histone deacetylase activity. Our study discovered that VPA and WT161 can downregulate the expression of multiple HDACs, such as HDAC1 and HDAC6, in both AD cell and mouse models. Moreover, they also affect the expression of APP and APP secretases (BACE1, PSEN1, ADAM10). RNA interference and subsequent vitamin C induction further confirmed that the expression of APP and APP secretases is indeed regulated by HDAC1 and HDAC6, with the JNK pathway being the intermediate link in this regulatory process. Through the above pathways, VPA and WT161 effectively reduced Aβ deposition in both AD cell and mouse models and significantly improved cognitive function in AD mice. CONCLUSIONS In general, we have discovered that the HDAC6-JNK-APP secretases cascade is an important pathway for VPA and WT161 to exert their therapeutic effects on AD. Investigations into the safety and efficacy of VPA and WT161 were also conducted, providing essential preclinical evidence for assessing these two epigenetic drugs for the treatment of AD.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Prenatal Diagnostic Center, Yiwu Maternity and Children Hospital, Yiwu, 322000, China
| | - Wanyao Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qun Ye
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xuemin Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fan Gao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - An Zhou
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yonghui Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Tian
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Fengjiang Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wentao Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei-Dong Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Lu Z, Fu J, Wu G, Yang Z, Wu X, Wang D, You Z, Nie Z, Sheng Q. Neuroprotection and Mechanism of Gas-miR36-5p from Gastrodia elata in an Alzheimer's Disease Model by Regulating Glycogen Synthase Kinase-3β. Int J Mol Sci 2023; 24:17295. [PMID: 38139125 PMCID: PMC10744203 DOI: 10.3390/ijms242417295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3β. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3β. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Chen KS, Noureldein MH, Rigan DM, Hayes JM, Savelieff MG, Feldman EL. Regional interneuron transcriptional changes reveal pathologic markers of disease progression in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565165. [PMID: 37961679 PMCID: PMC10635060 DOI: 10.1101/2023.11.01.565165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-β and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-β pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.
Collapse
|
9
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Jun J, Yang S, Lee J, Moon H, Kim J, Jung H, Im D, Oh Y, Jang M, Cho H, Baek J, Kim H, Kang D, Bae H, Tak C, Hwang K, Kwon H, Kim H, Hah JM. Discovery of novel imidazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2023; 245:114894. [DOI: 10.1016/j.ejmech.2022.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
11
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
12
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
13
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
14
|
Perioperative Suppression of Schwann Cell Dedifferentiation Reduces the Risk of Adenomyosis Resulting from Endometrial–Myometrial Interface Disruption in Mice. Biomedicines 2022; 10:biomedicines10061218. [PMID: 35740240 PMCID: PMC9219744 DOI: 10.3390/biomedicines10061218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
We have recently demonstrated that endometrial–myometrial interface (EMI) disruption (EMID) can cause adenomyosis in mice, providing experimental evidence for the well-documented epidemiological finding that iatrogenic uterine procedures increase the risk of adenomyosis. To further elucidate its underlying mechanisms, we designed this study to test the hypothesis that Schwann cells (SCs) dedifferentiating after EMID facilitate the genesis of adenomyosis, but the suppression of SC dedifferentiation perioperatively reduces the risk. We treated mice perioperatively with either mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated protein kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors or a vehicle 4 h before and 24 h, 48 h and 72 h after the EMID procedure. We found that EMID resulted in progressive SCs dedifferentiation, concomitant with an increased abundance of epithelial cells in the myometrium and a subsequent epithelial–mesenchymal transition (EMT). This EMID-induced change was abrogated significantly with perioperative administration of JNK or MEK/ERK inhibitors. Consistently, perioperative administration of a JNK or a MEK/ERK inhibitor reduced the incidence by nearly 33.5% and 14.3%, respectively, in conjunction with reduced myometrial infiltration of adenomyosis and alleviation of adenomyosis-associated hyperalgesia. Both treatments significantly decelerated the establishment of adenomyosis and progression of EMT, fibroblast-to-myofibroblast trans-differentiation and fibrogenesis in adenomyotic lesions. Thus, we provide the first piece of evidence strongly implicating the involvement of SCs in the pathogenesis of adenomyosis induced by EMID.
Collapse
|
15
|
Zhang Z, Xu J, Ma S, Lin N, Hou M, Wei M, Li T, Shi J. Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease. Comb Chem High Throughput Screen 2022; 25:1785-1804. [PMID: 35616676 DOI: 10.2174/1386207325666220523151119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND So far, only a few researchers have systematically analyzed the constituents of the traditional Chinese medicine prescription Xixin Decoction (XXD) and its potential mechanism of action in treating Alzheimer's disease (AD). This study aimed to explore the potential mechanism of XXD in the treatment of AD using network pharmacology and molecular docking. METHODS The compounds of XXD were searched within the Traditional Chinese Medicine System Pharmacology Database (TCMSP) and the Traditional Chinese Medicine Integrated Database (TCMID) databases. Overlapping AD-related targets obtained from the two databases and the predicted targets of XXD obtained from SwissTargetPrediction platform were imported into the STRING database to build PPI networks including hub targets; Cytoscape software was used to construct the herb-compound-target network while its plug-in CytoNCA was used to screen the main active compounds of XXD. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses explored the core biological mechanism and pathways via the Metascape platform. In addition, we used AutoDock Vina and PyMOL software to investigate the molecular docking of main compounds to hub targets. RESULTS We determined 114 active compounds, 973 drug targets, and 973 disease targets. However, intersection analysis screened out 208 shared targets.Protein-protein interaction (PPI) network identified 9 hub targets. The hub targets were found to be majorly enriched in several biological processes (positive regulation of kinase activity, positive regulation of cell death, regulation of MAPK cascade, trans-synaptic signaling, synaptic signaling, etc.) and the relevant pathways of Alzheimer's disease, including neuroactive ligand-receptor interaction, dopaminergic synapse, serotonergic synapse, and the MAPK signaling pathway, etc. The pathway-target-compound network of XXD for treating AD was then constructed. 8 hub targets exhibited good binding activity with 9 main active compounds of XXD in molecular docking. CONCLUSION In this study, we found multi-compound-multi-target-multi-pathway regulation to reveal the mechanism of XXD for treating AD based on network pharmacology and molecular docking. XXD may play a therapeutic role through regulating the Alzheimer's disease pathway, its downstream PI3K/Akt signaling pathway or the MAPK signaling pathway, thereby treating AD. This provides new insights for further experiments on the pharmacological effects of XXD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Jianglin Xu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, Dongcheng District 100700, P.R. China
| | - Suya Ma
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, Xicheng District 100053, P.R. China
| | - Nan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Minzhe Hou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| |
Collapse
|
16
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
17
|
Blocking GSDME-mediated pyroptosis in renal tubular epithelial cells alleviates disease activity in lupus mice. Cell Death Dis 2022; 8:113. [PMID: 35279675 PMCID: PMC8918340 DOI: 10.1038/s41420-022-00848-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
An increase in apoptosis and/or defects in the clearance of apoptotic cells resulting in massive secondary necrosis have been recognized as the main causes of systemic lupus erythematosus (SLE). Recent findings have revealed that gasdermin E (GSDME)-mediated pyroptosis is a mechanism associated with secondary necrosis. We aimed to investigate the effects of GSDME-mediated pyroptosis on disease activity in lupus mice. In vivo, high levels of GSDME expression were observed in the renal tubules of pristane-induced lupus (PIL) mice and SLE patients. In lupus mice, GSDME knockout or SP600125 administration effectively ameliorated lupus-like features by inhibiting GSDME-mediated renal tubular epithelial cell pyroptosis. In vitro, treatment with tumour necrosis factor-α (TNF-α) plus cycloheximide (CHX) or SLE sera induced HK2 cells to undergo pyroptosis in a caspase-3- and GSDME-dependent manner. Likewise, SP600125 significantly reduced GSDME expression and decreased pyroptosis in HK2 cells. GSDME-mediated pyroptosis may be associated with SLE pathogenesis, and targeting GSDME may be a potential strategy for treating SLE.
Collapse
|
18
|
Gomez-Murcia V, Carvalho K, Thiroux B, Caillierez R, Besegher M, Sergeant N, Buée L, Faivre E, Blum D. Impact of chronic doxycycline treatment in the APP/PS1 mouse model of Alzheimer's disease. Neuropharmacology 2022; 209:108999. [PMID: 35181375 DOI: 10.1016/j.neuropharm.2022.108999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
Due to the pathophysiological complexity of Alzheimer's disease, multitarget approaches able to mitigate several pathogenic mechanisms are of interest. Previous studies have pointed to the neuroprotective potential of Doxycycline (Dox), a safe and inexpensive second-generation tetracycline. Dox has been particularly reported to slow down aggregation of misfolded proteins but also to mitigate neuroinflammatory processes. Here, we have evaluated the pre-clinical potential of Dox in the APP/PS1 mouse model of amyloidogenesis. Dox was provided to APP/PS1 mice from the age of 8 months, when animals already exhibit amyloid pathology and memory deficits. Spatial memory was then evaluated from 9 to 10 months of age. Our data demonstrated that Dox moderately improved the spatial memory of APP/PS1 mice without exerting major effect on amyloid lesions. While Dox did not alleviate overall glial reactivity, we could evidence that it rather enhanced the amyloid-dependent upregulation of several neuroinflammatory markers such as CCL3 and CCL4. Finally, Dox exerted differentially regulated the levels of synaptic proteins in the hippocampus and the cortex of APP/PS1 mice. Overall, these observations support that chronic Dox delivery does not provide major pathophysiological improvements in the APP/PS1 mouse model.
Collapse
Affiliation(s)
- Victoria Gomez-Murcia
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Kevin Carvalho
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Bryan Thiroux
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Melanie Besegher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Animal Facility, F-59000, Lille, France
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - Emile Faivre
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer &Tauopathies, LabEx DISTALZ, France.
| |
Collapse
|
19
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
20
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
21
|
Discovery of a Potent and Selective JNK3 Inhibitor with Neuroprotective Effect Against Amyloid β-Induced Neurotoxicity in Primary Rat Neurons. Int J Mol Sci 2021; 22:ijms222011084. [PMID: 34681742 PMCID: PMC8539420 DOI: 10.3390/ijms222011084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
As members of the MAPK family, c-Jun-N-terminal kinases (JNKs) regulate the biological processes of apoptosis. In particular, the isoform JNK3 is expressed explicitly in the brain at high levels and is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, we prepared a series of five 6-dihydroxy-1H-benzo[d]imidazoles as JNK3 inhibitors and found them have potential as neuroprotective agents. Following a previous lead scaffold, benzimidazole moiety was modified with various aryl groups and hydroxylation, and the resulting compounds exhibited JNK3 inhibitory activity with improved potency and selectivity. Out of 37 analogues synthesized, (S)-cyclopropyl(3-((4-(2-(2,3-dihydrobenzo[b][1,4]dioxin -6-yl)-5,6-dihydroxy-1H-benzo[d]imidazol-1-yl)pyrimidin-2-yl)amino) piperidin-1-yl)methanone (35b) demonstrated the highest JNK3 inhibition (IC50 = 9.7 nM), as well as neuroprotective effects against Aβ-induced neuronal cell death. As a protein kinase inhibitor, it also showed excellent selectivity over other protein kinases including isoforms JNK1 (>1000 fold) and JNK2 (−10 fold).
Collapse
|
22
|
Ikram M, Jo MH, Choe K, Khan A, Ahmad S, Saeed K, Kim MW, Kim MO. Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions. Cells 2021; 10:2719. [PMID: 34685699 PMCID: PMC8534642 DOI: 10.3390/cells10102719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Here, we have unveiled the effects of cycloastragenol against Aβ (Amyloid-beta)-induced oxidative stress, neurogenic dysfunction, activated mitogen-activated protein (MAP) kinases, and mitochondrial apoptosis in an Aβ-induced mouse model of Alzheimer's disease (AD). The Aβ-induced mouse model was developed by the stereotaxic injection of amyloid-beta (5 μg/mouse/intracerebroventricular), and cycloastragenol was given at a dose of 20 mg/kg/day/p.o for 6 weeks daily. For the biochemical analysis, we used immunofluorescence and Western blotting. Our findings showed that the injection of Aβ elevated oxidative stress and reduced the expression of neurogenic markers, as shown by the reduced expression of brain-derived neurotrophic factor (BDNF) and the phosphorylation of its specific receptor tropomyosin receptor kinase B (p-TrKB). In addition, there was a marked reduction in the expression of NeuN (neuronal nuclear protein) in the Aβ-injected mice brains (cortex and hippocampus). Interestingly, the expression of Nrf2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), p-TrKB, BDNF, and NeuN was markedly enhanced in the Aβ + Cycloastragenol co-treated mice brains. We have also evaluated the expressions of MAP kinases such as phospho c-Jun-N-terminal kinase (p-JNK), p-38, and phospho-extracellular signal-related kinase (ERK1/2) in the experimental groups, which suggested that the expression of p-JNK, p-P-38, and p-Erk were significantly upregulated in the Aβ-injected mice brains; interestingly, these markers were downregulated in the Aβ + Cycloastragenol co-treated mice brains. We also checked the expression of activated microglia and inflammatory cytokines, which showed that cycloastragenol reduced the activated microglia and inflammatory cytokines. Moreover, we evaluated the effects of cycloastragenol against mitochondrial apoptosis and memory dysfunctions in the experimental groups. The findings showed significant regulatory effects against apoptosis and memory dysfunction as revealed by the Morris water maze (MWM) test. Collectively, the findings suggested that cycloastragenol regulates oxidative stress, neurotrophic processes, neuroinflammation, apoptotic cell death, and memory impairment in the mouse model of AD.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6211 LK Maastricht, The Netherlands;
| | - Amjad Khan
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Sareer Ahmad
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Kamran Saeed
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
| |
Collapse
|
23
|
Cho H, Hah JM. A Perspective on the Development of c-Jun N-terminal Kinase Inhibitors as Therapeutics for Alzheimer's Disease: Investigating Structure through Docking Studies. Biomedicines 2021; 9:biomedicines9101431. [PMID: 34680547 PMCID: PMC8533360 DOI: 10.3390/biomedicines9101431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) plays an important role in cell death caused by various stimuli. Because the isoform JNK3 is mainly expressed in the brain, it is believed to play a pivotal role in various neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), which still lack plausible therapeutics. To develop a novel and selective JNK3 inhibitor, we conducted a decadal review (2011 to 2021) of published articles on JNK inhibitors, particularly those focusing on a structural perspective and docking insights. We observed the structures of three isoforms of JNK, namely holo-proteins and co-crystal structures, with JNK3 inhibitors and summarized the significant structural aspects of selective JNK3 inhibitors as AD therapeutics.
Collapse
Affiliation(s)
- Hyunwook Cho
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Korea;
- Center for Proteinopathy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea
| | - Jung-Mi Hah
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Korea;
- Center for Proteinopathy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea
- Correspondence: ; Tel.: +82-31-400-5803
| |
Collapse
|
24
|
Ren D, Fu Y, Wang L, Liu J, Zhong X, Yuan J, Jiang C, Wang H, Li Z. Tetrandrine ameliorated Alzheimer's disease through suppressing microglial inflammatory activation and neurotoxicity in the 5XFAD mouse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153627. [PMID: 34247115 DOI: 10.1016/j.phymed.2021.153627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder prevalent in the aged population. Tetrandrine is a natural metabolite isolated from herbal medicine Stephania tetrandra with various activities. PURPOSE In this study, we investigated the therapeutic role of tetrandrine in 5XFAD mouse, a transgenic model of AD. METHODS 5XFAD mice were intraperitoneally injected with saline or different doses of tetrandrine (10, 20, and 40 mg/kg per 2 days) from the age of 5 months to 7 months followed by the determination of cognitive ability, amyloid plaque load, cell apoptosis, and inflammation in the brain. In vitro, the protective roles of tetrandrine against inflammatory activation of microglia and the resulting neurotoxicity were studied in BV2 cells and differentiated PC12 cells, respectively. RESULTS Morris water maze test showed that two months of tetrandrine treatment dose-dependently improved the cognitive ability of 5XFAD mice. Immunostaining against Aβ 1-42 demonstrated reduced amyloid plaque deposition in the brain of tetrandrine-treated 5XFAD mice. TUNEL assay revealed decreased cell apoptosis in the hippocampus after tetrandrine treatment. Further, RT-PCR showed that the ectopic transcription of inflammation-associated genes including TNFα, IL-1β, IL-6, COX-2, iNOS, and p65 was reversed in 5XFAD mice treated with tetrandrine. In vitro, Aβ 1-42 stimulated the secretion of inflammatory cytokines TNFα and IL-1β in microglial BV2 cells as determined by ELISA, which was suppressed by tetrandrine pre-treatment. Tetrandrine pre-treatment also inhibited the expression of TLR4, p65, iNOS, and COX-2 in BV2 cells induced by Aβ 1-42. Most importantly, treatment of PC12-derived neuron-like cells with conditional medium from Aβ 1-42-stimulated BV2 cells remarkably impaired cell viability and promoted cell apoptosis, which was attenuated by the conditional medium from BV2 cells with tetrandrine pre-treatment. CONCLUSION Collectively, findings in this study demonstrated that tetrandrine ameliorates AD by suppressing microglia-mediated inflammation and neurotoxicity.
Collapse
Affiliation(s)
- Defang Ren
- Department of Good Clinical Practice, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Fu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wang
- Research Center of Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianqin Liu
- Research Center of Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Zhong
- Research Center of Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiyuan Yuan
- Department of Good Clinical Practice, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chaoli Jiang
- Department of Spleen & Stomach, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Honglian Wang
- Research Center of Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- Department of Spleen & Stomach, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
25
|
Liu C, Cheng ZY, Xia QP, Hu YH, Wang C, He L. GPR40 receptor agonist TAK-875 improves cognitive deficits and reduces β-amyloid production in APPswe/PS1dE9 mice. Psychopharmacology (Berl) 2021; 238:2133-2146. [PMID: 34173034 DOI: 10.1007/s00213-021-05837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. G protein-coupled receptor 40 (GPR40) is expressed in brain in addition to periphery and is associated with cognitive function such as space orientation, memory, and learning. However, the effects and mechanisms of GPR40 agonist in improving the AD progression remain largely unknown. OBJECTIVES The present study aimed to investigate the therapeutic effects and mechanisms of a potent and selective GPR40 agonist TAK-875 on the APPswe/PS1dE9 mice. RESULTS The results showed that intracerebroventricular administration of TAK-875 significantly rescued cognitive deficits in APPswe/PS1dE9 mice, and these effects may be mediated by the regulation of phospholipase C/protein kinase C signaling pathway, which enhanced α-secretase ADAM10 activity, promoted amyloid precursor protein non-amyloidogenic processing pathway, and reduced β-amyloid production. CONCLUSIONS These results suggest that GPR40 may be a potential therapeutic target for AD, and GPR40 agonists may become promising AD drugs in the future.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Yu-Hui Hu
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Chen Wang
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China.
| |
Collapse
|
26
|
He J, Liu T, Li Y, Mi X, Han D, Yang N, Chen L, Li Y, Hong J, Kuang C, Yuan Y, Cao Y, Han Y, Shi C, Li Z, Guo X. JNK inhibition alleviates delayed neurocognitive recovery after surgery by limiting microglia pyroptosis. Int Immunopharmacol 2021; 99:107962. [PMID: 34298396 DOI: 10.1016/j.intimp.2021.107962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/24/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Delayed neurocognitive recovery (dNCR) is a prevalent complication after surgery in older adults. Neuroinflammation plays a pivotal role in the pathogenesis of dNCR. Recently,compelling evidence suggests that theinvolvement of microglia pyroptosis in the regulation of neuroinflammation in neurologicaldiseases. Nevertheless, the exact role of microglia pyroptosis in dNCR remains elusive. In the study, in vitro and in vivo models of dNCR were used to examine the potential effects of the mitogen‑activated protein kinase signaling pathway on Nod-like receptor protein 3 (NLRP3) inflammasome-mediated microglia pyroptosis and cognitive deficits following surgery. In vivo, we observed surgery-induced upregulation of phosphorylated (p)-c-Jun N-terminal kinases (JNK) in microglia and subsequently NLRP3 inflammasome activation, pyroptosis, and inflammatory cytokines release in mice hippocampus. Interestingly, JNK inhibitor SP600125 significantly attenuated surgery-induced cognitive impairments through inhibiting pyroptosis, inflammatory responses, and reducing immunoreactivity of NLRP3 and gasdermin D N terminus (GSDMD-N) in hippocampal microglia. In vitro, NLRP3 inflammasome- and pyroptosis-associated proteins and immunoreactivity of NLRP3, GSDMD-N, and interleukin-1β were activated in BV2 microglial cells following lipopolysaccharide (LPS) stimulation. These effects were significantly suppressed in BV2 cells by SP600125 treatment. Furthermore, treatment with NLRP3 specific inhibitor, MCC950, attenuated microglia pyroptosis induced by LPS, but did not rescue LPS-induced increased expression of p-JNK. These results indicate that the JNK pathway is largely upstream of the NLRP3 inflammasome, which exerts a crucial regulatory impact on microglia pyroptosis and inflammatory responses, thus providing a promising avenue to prevent dNCR.
Collapse
Affiliation(s)
- Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chongshen Kuang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200233, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
27
|
Zhang H, Zhang L, Zhou D, Li H, Xu Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer's disease. J Comp Neurol 2021; 529:3497-3512. [PMID: 34212389 DOI: 10.1002/cne.25207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Accumulation of amyloid β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). We previously showed that ErbB4 in parvalbumin (PV)-positive interneurons was associated with Aβ-induced cognitive deficits; however, the underlying mechanism remains undetermined. Here we found that specific deletion of ErbB4 in PV neurons significantly attenuated oligomeric Aβ-induced neuronal toxicity and inhibited Aβ-induced decreases of PSD95 and synaptophysin. Moreover, specific ablation of ErbB4 in PV neurons altered activity-related protein c-Fos and decreased hippocampal PV neurons, especially in the dentate gyrus (DG) of hAPP-J20 mice. Furthermore, c-Jun N-terminal kinase (JNK), a protein downstream of ErbB4, was activated by Aβ but not ErbB4's ligand neuregulin 1 (NRG1) β1, suggesting different downstream pathways for Aβ and NRG1β1. JNK phosphorylation was inhibited by the ErbB4 inhibitor AG1478 and by pretreatment with NRG1β1. More importantly, siRNA knockdown of ErbB4 decreased JNK phosphorylation and expression, tau phosphorylation at Ser396 and Thr 205, and Bax expression. Therefore, ErbB4 might mediate Aβ-induced neuropathology through the JNK/tau pathway and represent a potential therapeutic target in patients with AD.
Collapse
Affiliation(s)
- Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfei Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yang Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
28
|
Ali T, Khan A, Alam SI, Ahmad S, Ikram M, Park JS, Lee HJ, Kim MO. Cadmium, an Environmental Contaminant, Exacerbates Alzheimer's Pathology in the Aged Mice's Brain. Front Aging Neurosci 2021; 13:650930. [PMID: 34248598 PMCID: PMC8263901 DOI: 10.3389/fnagi.2021.650930] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Cadmium (Cd) is an environmental contaminant, which is a potential risk factor in the progression of aging-associated neurodegenerative diseases. Herein, we have assessed the effects of chronic administration of Cd on cellular oxidative stress and its associated Alzheimer's disease (AD) pathologies in animal models. Two groups of mice were used, one group administered with saline and the other with Cd (1 mg/kg/day; intraperitoneally) for 3 months. After behavioral studies, molecular/biochemical (Immunoblotting, ELISAs, ROS, LPO, and GSH assays) and morphological analyses were performed. We observed an exacerbation of memory and synaptic deficits in chronic Cd-injected mice. Subacute and chronic Cd escalated reactive oxygen species (ROS), suppressed the master antioxidant enzymes, e.g., nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1, and evoked the stress kinase phospho-c-Jun N-terminal kinase 1 signaling pathways, which may escalate AD pathologies possibly associated with amyloidogenic processes. These findings suggest the regulation of oxidative stress/ROS and its associated amyloid beta pathologies for targeting the Cd-exacerbated AD pathogenesis. In addition, these preclinical animal studies represent a paradigm for epidemiological studies of the human population exposed to chronic and subacute administration of Cd, suggesting avoiding environmental contaminants.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Sayed Ibrar Alam
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Sareer Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Jun Sung Park
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Hyeon Jin Lee
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
29
|
Rehman IU, Ahmad R, Khan I, Lee HJ, Park J, Ullah R, Choi MJ, Kang HY, Kim MO. Nicotinamide Ameliorates Amyloid Beta-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in Adult Mouse Brain. Biomedicines 2021; 9:biomedicines9040408. [PMID: 33920212 PMCID: PMC8070416 DOI: 10.3390/biomedicines9040408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ1–42 and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ1–42 leads to neuronal inflammation and apoptosis. Since vitamins are basic dietary nutrients that organisms need for their growth, survival, and other metabolic functions, in this study, the underlying neuroprotective mechanism of nicotinamide (NAM) Vitamin B3 against Aβ1–42 -induced neurotoxicity was investigated in mouse brains. Intracerebroventricular (i.c.v.) Aβ1–42 injection elicited neuronal dysfunctions that led to memory impairment and neurodegeneration in mouse brains. After 24 h after Aβ1–42 injection, the mice were treated with NAM (250 mg/kg intraperitoneally) for 1 week. For biochemical and Western blot studies, the mice were directly sacrificed, while for confocal and “immunohistochemical staining”, mice were perfused transcardially with 4% paraformaldehyde. Our biochemical, immunofluorescence, and immunohistochemical results showed that NAM can ameliorate neuronal inflammation and apoptosis by reducing oxidative stress through lowering malondialdehyde and 2,7-dichlorofluorescein levels in an Aβ1–42-injected mouse brains, where the regulation of p-JNK further regulated inflammatory marker proteins (TNF-α, IL-1β, transcription factor NF-kB) and apoptotic marker proteins (Bax, caspase 3, PARP1). Furthermore, NAM + Aβ treatment for 1 week increased the amount of survival neurons and reduced neuronal cell death in Nissl staining. We also analyzed memory dysfunction via behavioral studies and the analysis showed that NAM could prevent Aβ1–42 -induced memory deficits. Collectively, the results of this study suggest that NAM may be a potential preventive and therapeutic candidate for Aβ1–42 -induced reactive oxygen species (ROS)-mediated neuroinflammation, neurodegeneration, and neurotoxicity in an adult mouse model.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Jungsung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Myeong Jun Choi
- Research and Development Center, Axceso Bio-pharma co, Anyang 14056, Korea;
| | - Hee Young Kang
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
30
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
31
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
32
|
Wang B, Lin X, Zhou J, Xie C, Li C, Dong R, Zhang G, Sun X, Wang M, Bi Y. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats. Exp Ther Med 2021; 21:215. [PMID: 33574912 PMCID: PMC7818527 DOI: 10.3892/etm.2021.9647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/29/2020] [Indexed: 11/15/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a serious complication following anesthesia and operations in aged patients undergoing surgical intervention. It is characterized by temporary or permanent cognitive decline, memory impairment and deterioration in language comprehension and social adaption ability. Therefore, the development of POCD prevention and treatment tools has become an area of interest. The current study assessed the therapeutic effects of insulin-like growth factor-1 (IGF-1) on POCD in aged rats and explored the underlying mechanisms. Model rats underwent splenectomy under 1.5-2% isoflurane and mechanical ventilation. IGF-1 (50 µg/kg) was diluted in normal saline and administered by abdominal hypodermic injection daily from the operation to day 7 post-operation. Following splenectomy, the animals showed marked cognitive impairment as determined by the Morris water maze test. Hippocampal protein levels of amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 (BACE-1), amyloid-β (Aβ), capase3, Bax and Bcl-2 were assessed by immunoblotting. Neuronal apoptosis in the hippocampus was analyzed using a TUNEL assay. The results demonstrated that the levels of APP, BACE-1, Aβ, caspase3 and Bax were increased following splenectomy, while the levels of Bcl2 were reduced at days 1, 3 and 7 post-operation in aged rats. However, IGF-1 downregulated APP, BACE-1, Aβ, capase3 and Bax, and upregulated Bcl2 at these time points following splenectomy. TUNEL staining revealed that administration of IGF-1 significantly reduced neuronal apoptosis in the hippocampal CA1 region following splenectomy. These results indicated that IGF-1 decreased Aβ-protein production and inhibited neuronal apoptosis in the hippocampus following splenectomy, subsequently alleviating POCD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jiahui Zhou
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Chunhui Xie
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Chuan Li
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaopeng Sun
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
33
|
The Tetramethylpyrazine Analogue T-006 Alleviates Cognitive Deficits by Inhibition of Tau Expression and Phosphorylation in Transgenic Mice Modeling Alzheimer's Disease. J Mol Neurosci 2021; 71:1456-1466. [PMID: 33403592 DOI: 10.1007/s12031-020-01762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.
Collapse
|
34
|
Shen Q, Liu L, Gu X, Xing D. Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer's disease. Aging Cell 2021; 20:e13289. [PMID: 33336891 PMCID: PMC7811840 DOI: 10.1111/acel.13289] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD), a severe age‐related neurodegenerative disorder, lacks effective therapeutic methods at present. Physical approaches such as gamma frequency light flicker that can effectively reduce amyloid load have been reported recently. Our previous research showed that a physical method named photobiomodulation (PBM) therapy rescues Aβ‐induced dendritic atrophy in vitro. However, it remains to be further investigated the mechanism by which PBM affects AD‐related multiple pathological features to improve learning and memory deficits. Here, we found that PBM attenuated Aβ‐induced synaptic dysfunction and neuronal death through MKP7‐dependent suppression of JNK3, a brain‐specific JNK isoform related to neurodegeneration. The results showed PBM‐attenuated amyloid load, AMPA receptor endocytosis, dendrite injury, and inflammatory responses, thereby rescuing memory deficits in APP/PS1 mice. We noted JNK3 phosphorylation was dramatically decreased after PBM treatment in vivo and in vitro. Mechanistically, PBM activated ERK, which subsequently phosphorylated and stabilized MKP7, resulting in JNK3 inactivation. Furthermore, activation of ERK/MKP7 signaling by PBM increased the level of AMPA receptor subunit GluR 1 phosphorylation and attenuated AMPA receptor endocytosis in an AD pathological model. Collectively, these data demonstrated that PBM has potential therapeutic value in reducing multiple pathological features associated with AD, which is achieved by regulating JNK3, thus providing a noninvasive, and drug‐free therapeutic strategy to impede AD progression.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Lei Liu
- College of Biophotonics South China Normal University Guangzhou China
| | - Xiaotong Gu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| |
Collapse
|
35
|
Ramachandran AK, Das S, Joseph A, Gurupur Gautham S, Alex AT, Mudgal J. Neurodegenerative Pathways in Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:679-692. [PMID: 32851951 PMCID: PMC8573750 DOI: 10.2174/1570159x18666200807130637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that leads to insidious deterioration of brain functions and is considered the sixth leading cause of death in the world. Alzheimer's patients suffer from memory loss, cognitive deficit and behavioral changes; thus, they eventually follow a low-quality life. AD is considered as a multifactorial disorder involving different neuropathological mechanisms. Recent research has identified more than 20 pathological factors that are promoting disease progression. Three significant hypotheses are said to be the root cause of disease pathology, which include acetylcholine deficit, the formation of amyloid-beta senile plaques and tau protein hyperphosphorylation. Apart from these crucial factors, pathological factors such as apolipoprotein E (APOE), glycogen synthase kinase 3β, notch signaling pathway, Wnt signaling pathway, etc., are considered to play a role in the advancement of AD and therefore could be used as targets for drug discovery and development. As of today, there is no complete cure or effective disease altering therapies for AD. The current therapy is assuring only symptomatic relief from the disease, and progressive loss of efficacy for these symptomatic treatments warrants the discovery of newer drugs by exploring these novel drug targets. A comprehensive understanding of these therapeutic targets and their neuropathological role in AD is necessary to identify novel molecules for the treatment of AD rationally.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Shenoy, Gurupur Gautham
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
36
|
Ullah R, Ikram M, Park TJ, Ahmad R, Saeed K, Alam SI, Rehman IU, Khan A, Khan I, Jo MG, Kim MO. Vanillic Acid, a Bioactive Phenolic Compound, Counteracts LPS-Induced Neurotoxicity by Regulating c-Jun N-Terminal Kinase in Mouse Brain. Int J Mol Sci 2020; 22:ijms22010361. [PMID: 33396372 PMCID: PMC7795830 DOI: 10.3390/ijms22010361] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a pattern recognition receptor signaling event, has been associated with several human illnesses, including neurodegenerative diseases, particularly in Alzheimer’s disease (AD). Vanillic acid (V.A), a flavoring agent, is a benzoic acid derivative having a broad range of biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. However, the underlying molecular mechanisms of V.A in exerting neuroprotection are not well investigated. The present study aims to explore the neuroprotective effects of V.A against lipopolysaccharides (LPS)-induced neuroinflammation, amyloidogenesis, synaptic/memory dysfunction, and neurodegeneration in mice brain. Behavioral tests and biochemical and immunofluorescence assays were applied. Our results indicated increased expression of RAGE and its downstream phospho-c-Jun n-terminal kinase (p-JNK) in the LPS-alone treated group, which was significantly reduced in the V.A + LPS co-treated group. We also found that systemic administration of LPS-injection induced glial cells (microglia and astrocytes) activation and significantly increased expression level of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB) and secretion of proinflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). However, V.A + LPS co-treatment significantly inhibited the LPS-induced activation of glial cells and neuroinflammatory mediators. Moreover, we also noted that V.A treatment significantly attenuated LPS-induced increases in the expression of AD markers, such as β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) and amyloid-β (Aβ). Furthermore, V.A treatment significantly reversed LPS-induced synaptic loss via enhancing the expression level of pre- and post-synaptic markers (PSD-95 and SYP), and improved memory performance in LPS-alone treated group. Taken together; we suggest that neuroprotective effects of V.A against LPS-induced neurotoxicity might be via inhibition of LPS/RAGE mediated JNK signaling pathway; and encourage future studies that V.A would be a potential neuroprotective and neurotherapeutic candidate in various neurological disorders.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Muhammad Ikram
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow G12OZD, UK;
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Kamran Saeed
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Amjad Khan
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Min Gi Jo
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (R.U.); (M.I.); (R.A.); (K.S.); (S.I.A.); (I.U.R.); (A.K.); (I.K.); (M.G.J.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
37
|
Dai Y, Han G, Xu S, Yuan Y, Zhao C, Ma T. Echinacoside Suppresses Amyloidogenesis and Modulates F-actin Remodeling by Targeting the ER Stress Sensor PERK in a Mouse Model of Alzheimer's Disease. Front Cell Dev Biol 2020; 8:593659. [PMID: 33330477 PMCID: PMC7717986 DOI: 10.3389/fcell.2020.593659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) plays a vital and pathogenic role in the onset and progression of Alzheimer’s disease (AD). Phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) induced by ERS depresses the interaction between actin-binding protein filamin-A (FLNA) and PERK, which promotes F-actin accumulation and reduces ER-plasma membrane (PM) communication. Echinacoside (ECH), a pharmacologically active component purified from Cistanche tubulosa, exhibits multiple neuroprotective activities, but the effects of ECH on ERS and F-actin remodeling remain elusive. Here, we found ECH could inhibit the phosphorylation of PERK. Firstly ECH can promote PERK-FLNA combination and modulate F-actin remodeling. Secondly, ECH dramatically decreased cerebral Aβ production and accumulation by inhibiting the translation of BACE1, and significantly ameliorated memory impairment in 2 × Tg-AD mice. Furthermore, ECH exhibited high affinity to either mouse PERK or human PERK. These findings provide novel insights into the neuroprotective actions of ECH against AD, indicating that ECH is a potential therapeutic agent for halting and preventing the progression of AD.
Collapse
Affiliation(s)
- Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghui Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongna Yuan
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
39
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
40
|
Ullah R, Jo MH, Riaz M, Alam SI, Saeed K, Ali W, Rehman IU, Ikram M, Kim MO. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. J Neuroinflammation 2020; 17:303. [PMID: 33059700 PMCID: PMC7566050 DOI: 10.1186/s12974-020-01989-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Glycine is the smallest nonessential amino acid and has previously unrecognized neurotherapeutic effects. In this study, we examined the mechanism underlying the neuroprotective effect of glycine (Gly) against neuroapoptosis, neuroinflammation, synaptic dysfunction, and memory impairment resulting from d-galactose-induced elevation of reactive oxygen species (ROS) during the onset of neurodegeneration in the brains of C57BL/6N mice. Methods After in vivo administration of d-galactose (d-gal; 100 mg/kg/day; intraperitoneally (i/p); for 60 days) alone or in combination with glycine (1 g/kg/day in saline solution; subcutaneously; for 60 days), all of the mice were sacrificed for further biochemical (ROS/lipid peroxidation (LPO) assay, Western blotting, and immunohistochemistry) after behavioral analyses. An in vitro study, in which mouse hippocampal neuronal HT22 cells were treated with or without a JNK-specific inhibitor (SP600125), and molecular docking analysis were used to confirm the underlying molecular mechanism and explore the related signaling pathway prior to molecular and histological analyses. Results Our findings indicated that glycine (an amino acid) inhibited d-gal-induced oxidative stress and significantly upregulated the expression and immunoreactivity of antioxidant proteins (Nrf2 and HO-1) that had been suppressed in the mouse brain. Both the in vitro and in vivo results indicated that d-gal induced oxidative stress-mediated neurodegeneration primarily by upregulating phospho-c-Jun N-terminal kinase (p-JNK) levels. However, d-gal + Gly cotreatment reversed the neurotoxic effects of d-gal by downregulating p-JNK levels, which had been elevated by d-gal. We also found that Gly reversed d-gal-induced neuroapoptosis by significantly reducing the protein expression levels of proapoptotic markers (Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1) and increasing the protein expression level of the antiapoptotic protein Bcl-2. Both the molecular docking approach and the in vitro study (in which the neuronal HT22 cells were treated with or without a p-JNK-specific inhibitor (SP600125)) further verified our in vivo findings that Gly bound to the p-JNK protein and inhibited its function and the JNK-mediated apoptotic pathway in the mouse brain and HT22 cells. Moreover, the addition of Gly alleviated d-gal-mediated neuroinflammation by inhibiting gliosis via attenuation of astrocytosis (GFAP) and microgliosis (Iba-1) in addition to reducing the protein expression levels of various inflammatory cytokines (IL-1βeta and TNFα). Finally, the addition of Gly reversed d-gal-induced synaptic dysfunction by upregulating the expression of memory-related presynaptic protein markers (synaptophysin (SYP), syntaxin (Syn), and a postsynaptic density protein (PSD95)) and markedly improved behavioral measures of cognitive deficits in d-gal-treated mice. Conclusion Our findings demonstrate that Gly-mediated deactivation of the JNK signaling pathway underlies the neuroprotective effect of Gly, which reverses d-gal-induced oxidative stress, apoptotic neurodegeneration, neuroinflammation, synaptic dysfunction, and memory impairment. Therefore, we suggest that Gly (an amino acid) is a safe and promising neurotherapeutic candidate that might be used for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeung Hoon Jo
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Muhammad Riaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kamran Saeed
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Waqar Ali
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Muhammad Ikram
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
41
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
42
|
Tanaka KI, Shimoda M, Kasai M, Ikeda M, Ishima Y, Kawahara M. Involvement of SAPK/JNK Signaling Pathway in Copper Enhanced Zinc-Induced Neuronal Cell Death. Toxicol Sci 2020; 169:293-302. [PMID: 30768131 DOI: 10.1093/toxsci/kfz043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn) plays an important role in many organisms in various physiological functions such as cell division, immune mechanisms and protein synthesis. However, excessive Zn release is induced in pathological situations and causes neuronal cell death. Previously, we reported that Cu ions (Cu2+) markedly exacerbates Zn2+-induced neuronal cell death by potentiating oxidative stress and the endoplasmic reticulum stress response. In contrast, the stress-activated protein kinase/c-Jun amino-terminal kinase (SAPK/JNK) signaling pathway is important in neuronal cell death. Thus, in this study, we focused on the SAPK/JNK signaling pathway and examined its involvement in Cu2+/Zn2+-induced neurotoxicity. Initially, we examined expression of factors involved in the SAPK/JNK signaling pathway. Accordingly, we found that phosphorylated (ie, active) forms of SAPK/JNK (p46 and p54) are increased by CuCl2 and ZnCl2 co-treatment in hypothalamic neuronal mouse cells (GT1-7 cells). Downstream factors of SAPK/JNK, phospho-c-Jun, and phospho-activating transcription factor 2 are also induced by CuCl2 and ZnCl2 co-treatment. Moreover, an inhibitor of the SAPK/JNK signaling pathway, SP600125, significantly suppressed neuronal cell death and activation of the SAPK/JNK signaling pathway induced by CuCl2 and ZnCl2 cotreatment. Finally, we examined involvement of oxidative stress in activation of the SAPK/JNK signaling pathway, and found that human serum albumin-thioredoxin fusion protein, an antioxidative protein, suppresses activation of the SAPK/JNK signaling pathway. On the basis of these results, our findings suggest that activation of ZnCl2-dependent SAPK/JNK signaling pathway is important in neuronal cell death, and CuCl2-induced oxidative stress triggers the activation of this pathway.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Misato Kasai
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
43
|
Gupta SP, Patil VM. Recent Studies on Design and Development of Drugs Against Alzheimer's Disease (AD) Based on Inhibition of BACE-1 and Other AD-causative Agents. Curr Top Med Chem 2020; 20:1195-1213. [PMID: 32297584 DOI: 10.2174/1568026620666200416091623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the neurodegenerative diseases and has been hypothesized to be a protein misfolding disease. In the generation of AD, β-secretase, γ-secretase, and tau protein play an important role. A literature search reflects ever increasing interest in the design and development of anti-AD drugs targeting β-secretase, γ-secretase, and tau protein. OBJECTIVE The objective is to explore the structural aspects and role of β-secretase, γ-secretase, and tau protein in AD and the efforts made to exploit them for the design of effective anti-AD drugs. METHODS The manuscript covers the recent studies on design and development of anti-AD drugs exploiting amyloid and cholinergic hypotheses. RESULTS Based on amyloid and cholinergic hypotheses, effective anti-AD drugs have been searched out in which non-peptidic BACE1 inhibitors have been most prominent. CONCLUSION Further exploitation of the structural aspects and the inhibition mechanism for β-secretase, γ-secretase, and tau protein and the use of cholinergic hypothesis may lead still more potent anti-AD drugs.
Collapse
Affiliation(s)
- Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India
| | - Vaishali M Patil
- Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad-201206, Uttar Pradesh, India
| |
Collapse
|
44
|
Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2020; 12:23. [PMID: 32116652 PMCID: PMC7016202 DOI: 10.3389/fnagi.2020.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Electroacupuncture (EA) has become popular for its adjustable strength and frequency and easy quantification in the clinic and has demonstrated therapeutic potential for Alzheimer’s disease (AD). However, the mechanism remains unknown. Abnormally activated c-Jun N-terminal kinase (JNK) has been closely related to the pathological process of AD. The aim of this study was to investigate the effect of EA on cognitive impairment and the role of the JNK signaling pathway in AD model amyloid precursor protein (APP)/presenilin 1 (PS1) mice. The memory and learning ability of each group was assessed using the Morris Water Maze (MWM). Immunofluorescence, immunohistochemistry and Western blot were performed to measure the expression of APP, JNK, phosphorylated (P-)JNK, mitogen-activated protein kinase 4 (MKK4), MKK7, c-Jun and caspase-3 in hippocampal tissue samples in APP/PS1 mice after EA intervention. Obvious cognitive deficits were observed in the AD model APP/PS1 mice in the MWM test and were associated with JNK signaling pathway activation and APP upregulation. Four weeks of EA significantly ameliorated the cognitive impairments and inhibited JNK signaling pathway activation and APP upregulation. Taken together, the findings demonstrated that EA can reverse cognitive deficits and substantially lower the burden of APP in AD model APP/PS1 mice, at least partially through inhibiting the JNK signaling pathway and regulating apoptosis signals. Therefore, EA may offer an effective alternative therapeutic approach for AD.
Collapse
Affiliation(s)
- Yinshan Tang
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anping Xu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shujun Shao
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - You Zhou
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Parikh AN, Concepcion FA, Khan MN, Boehm RD, Poolos OC, Dhami A, Poolos NP. Selective hyperactivation of JNK2 in an animal model of temporal lobe epilepsy. IBRO Rep 2020; 8:48-55. [PMID: 32072069 PMCID: PMC7015819 DOI: 10.1016/j.ibror.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are derived from three genes, Jnk1-3. These kinases are involved in cellular responses to homeostatic insults, such as inflammation and apoptosis. Furthermore, increased JNK expression and activation are associated with debilitating neurodegenerative diseases, including Alzheimer’s and Parkinson’s. We previously reported elevated levels of phosphorylated JNK (pJNK), indicative of JNK hyperactivation, in the CA1 hippocampus of chronically epileptic rats. We also showed that pharmacological inhibition of JNK activity reduced seizure frequency in a dose-dependent fashion (Tai TY et al., Neuroscience, 2017). Building on these observations, the objectives of this current study were to investigate the timeline of JNK activation during epileptogenesis, and to identify the JNK isoform(s) that undergo hyperactivation in the chronic epilepsy stage. Western blotting analysis of CA1 hippocampal homogenates showed JNK hyperactivation only during the chronic phase of epilepsy (6–9 weeks post-status epilepticus), and not in earlier stages of epileptogenesis (1 h, 1 day, and 1 week post-status epilepticus). After enrichment for pJNK by immunoprecipitation, we identified JNK2 as the only significantly hyperactivated JNK isoform, with expression of the 54 kDa pJNK2 variant elevated to a greater extent than the 46 kDa pJNK2 variant. Expression of the total amounts of both JNK2 variants (phosphorylated plus non-phosphorylated) was reduced in epilepsy, however, suggesting that activation of upstream phosphorylation pathways was responsible for JNK2 hyperactivation. Since our prior work demonstrated that pharmacological inhibition of JNK activation had an antiepileptic effect, JNK2 hyperactivation is therefore likely a pathological event that promotes seizure occurrences. This investigation provides evidence that JNK2 is selectively hyperactivated in epilepsy and thus may be a novel and selective antiepileptic target.
Collapse
Affiliation(s)
- A N Parikh
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - R D Boehm
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - O C Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - A Dhami
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
46
|
Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in Amyloid-beta Pathology of Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1206-1215. [PMID: 31820699 DOI: 10.2174/1567205016666191210094435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease with irreversible cognitive
impairment. So far, successful treatment and prevention for this disease are deficient in spite of delaying
the progression of cognitive impairment and dementia. Cyclin dependent kinase 5 (Cdk5), a
unique member of the cyclin-dependent kinase family, is involved in AD pathogenesis and may be a
pathophysiological mediator that links the major pathological features of AD. Cdk5 dysregulation interferes
with the proteolytic processing of Amyloid-beta Protein Precursor (APP) and modulates amyloidbeta
(Aβ) by affecting three enzymes called α-, β- and γ-secretase, which are critical for the hydrolysis
of APP. Given that the accumulation and deposition of Aβ derived from APP are a common hinge point
in the numerous pathogenic hypotheses of AD, figuring out that influence of specific mechanisms of
Cdk5 on Aβ pathology will deepen our understanding of AD.
Collapse
Affiliation(s)
- Tao-Tao Lu
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Chengqun Wan
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Wenming Yang
- Departmentof Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031 Anhui Province, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| |
Collapse
|
47
|
Uncovering the Pharmacological Mechanism of Stemazole in the Treatment of Neurodegenerative Diseases Based on a Network Pharmacology Approach. Int J Mol Sci 2020; 21:ijms21020427. [PMID: 31936558 PMCID: PMC7013392 DOI: 10.3390/ijms21020427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022] Open
Abstract
Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer's disease and Parkinson's disease have not been fully elucidated. In this study, a network pharmacology-based strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative diseases and to further explore the involved pharmacological mechanisms. The majority of the predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8), mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole in the treatment of neurodegenerative diseases.
Collapse
|
48
|
Liu Y, Chu JMT, Yan T, Zhang Y, Chen Y, Chang RCC, Wong GTC. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer's disease mice. J Neuroinflammation 2020; 17:4. [PMID: 31900170 PMCID: PMC6942350 DOI: 10.1186/s12974-019-1653-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Both human and animal studies have shown beneficial effects of physical exercise on brain health but most tend to be based on aerobic rather than resistance type regimes. Resistance exercise has the advantage of improving both muscular and cardiovascular function, both of which can benefit the frail and the elderly. However, the neuroprotective effects of resistance training in cognitive impairment are not well characterized. METHODS We evaluated whether short-term resistant training could improve cognitive function and pathological changes in mice with pre-existing cognitive impairment. Nine-month-old 3xTg mouse underwent a resistance training protocol of climbing up a 1-m ladder with a progressively heavier weight loading. RESULTS Compared with sedentary counterparts, resistance training improved cognitive performance and reduced neuropathological and neuroinflammatory changes in the frontal cortex and hippocampus of mice. In line with these results, inhibition of pro-inflammatory intracellular pathways was also demonstrated. CONCLUSIONS Short-term resistance training improved cognitive function in 3xTg mice, and conferred beneficial effects on neuroinflammation, amyloid and tau pathology, as well as synaptic plasticity. Resistance training may represent an alternative exercise strategy for delaying disease progression in Alzheimer's disease.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - John Man Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yan Zhang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Ying Chen
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, L4-49, Laboratory Block, Pokfulam, Hong Kong, SAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
49
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
50
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|