1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Faraco G. Dietary salt, vascular dysfunction, and cognitive impairment. Cardiovasc Res 2025; 120:2349-2359. [PMID: 39429024 PMCID: PMC11976728 DOI: 10.1093/cvr/cvae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Excessive salt consumption is a major health problem worldwide leading to serious cardiovascular events including hypertension, heart disease, and stroke. Additionally, high-salt diet has been increasingly associated with cognitive impairment in animal models and late-life dementia in humans. High-salt consumption is harmful for the cerebral vasculature, disrupts blood supply to the brain, and could contribute to Alzheimer's disease pathology. Although animal models have advanced our understanding of the cellular and molecular mechanisms, additional studies are needed to further elucidate the effects of salt on brain function. Furthermore, the association between excessive salt intake and cognitive impairment will have to be more thoroughly investigated in humans. Since the harmful effects of salt on the brain are independent by its effect on blood pressure, in this review, I will specifically discuss the evidence, available in experimental models and humans, on the effects of salt on vascular and cognitive function in the absence of changes in blood pressure. Given the strong effects of salt on the function of immune cells, I will also discuss the evidence linking salt consumption to gut immunity dysregulation with particular attention to the ability of salt to disrupt T helper 17 (Th17) cell homeostasis. Lastly, I will briefly discuss the data implicating IL-17A, the major cytokine produced by Th17 cells, in vascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
3
|
Qu H, Liu Y, Connolly JJ, Mentch FD, Kao C, Hakonarson H. Risk of Alzheimer's disease in Down syndrome: Insights gained by multi-omics. Alzheimers Dement 2025; 21:e14604. [PMID: 40207399 PMCID: PMC11982707 DOI: 10.1002/alz.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). The integration of genomics, transcriptomics, epigenomics, proteomics, and metabolomics enables unprecedented understanding of DS-AD, offering a detailed picture of this complex issue. The vast -omics data also present challenges that reflect the complexity of genetic information flow. These studies nonetheless reveal critical mechanisms behind AD risk, including unique observations in DS that differ from those seen in the general population and familial dominant AD. In addition, the correlations between the AD polygenic risk score and proteins related to female infertility and autoimmune thyroiditis corroborate clinical observations. Metabolomic data reveal disrupted metabolic networks, offering prospects for a dynamic score to create specialized nutritional interventions. By adopting a multidimensional perspective with integrated reductionism, the evolving landscape presents an opportunity to identify promising directions for developing precision strategies to mitigate the impact of AD in the DS population. HIGHLIGHTS: Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). DS-AD is characterized by its polygenic nature, extending beyond chromosome 21 with significant contributions from various chromosomes. DS-AD also presents unique features that differ from those observed in the general population and familial dominant AD. Our review consolidates key findings from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, providing a comprehensive view of the molecular mechanisms underlying DS-AD. We highlight promising research directions to further elucidate the pathogenesis of DS-AD.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yichuan Liu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - John J. Connolly
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Frank D. Mentch
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charlly Kao
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Pulmonary MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
4
|
Jąkalski M, Bruhn-Olszewska B, Rychlicka-Buniowska E, Davies H, Sarkisyan D, Siedlar M, Baran J, Węglarczyk K, Jaszczynski J, Ryś J, Gedraitis V, Filipowicz N, Klich-Rączka A, Kilander L, Ingelsson M, Dumanski JP. DNA methylation patterns contribute to changes of cellular differentiation pathways in leukocytes with LOY from patients with Alzheimer´s disease. Cell Mol Life Sci 2025; 82:93. [PMID: 39998604 PMCID: PMC11861481 DOI: 10.1007/s00018-025-05618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a common and increasing societal problem due to the extending human lifespan. In males, loss of chromosome Y (LOY) in leukocytes is strongly associated with AD. We studied here DNA methylation and RNA expression in sorted monocytes and granulocytes with and without LOY from male AD patients. Through multi-omic analysis, we identified new candidate genes along with those previously associated with AD. Global analyses of DNA methylation in samples with LOY vs. normal state showed that hypomethylation dominated both in granulocytes and monocytes. Our findings highlight LOY-related differences in DNA methylation that occur in gene regulatory regions. Specifically, we observed alterations in key genes involved in leukocyte differentiation: FLI1, involved in early hematopoiesis; RUNX1, essential for blood cell development; RARA, regulating gene expression in response to retinoic acid; CANX, crucial for protein folding; CEBPB, a transcription factor important for immune responses; and MYADM, implicated in cell adhesion and migration. Moreover, protein-protein interaction analysis in granulocytes identified that products of two of these genes, CANX and CEBPB, are key hub proteins. This research underscores the potential of multi-omic approach in pure hematopoietic cell populations to uncover the molecular underpinnings of AD. Finally, our results link previous analysis showing impact of LOY on leukocyte differentiation, LOY-associated transcriptional dysregulation and GWAS studies of LOY.
Collapse
Affiliation(s)
- Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Janusz Jaszczynski
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Vilmantas Gedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Alicja Klich-Rączka
- Department and Clinic of Internal Medicine and Gerontology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Xu X, Wang J, Chen T, Wang S, Wang F, He J, Meng XY, Shen Y. Deciphering novel mitochondrial signatures: multi-omics analysis uncovers cross-disease markers and oligodendrocyte pathways in Alzheimer's disease and glioblastoma. Front Aging Neurosci 2025; 17:1536142. [PMID: 40018519 PMCID: PMC11865232 DOI: 10.3389/fnagi.2025.1536142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Alzheimer's disease (AD) and glioblastoma (GBM) are severe neurological disorders that pose significant global healthcare challenges. Despite extensive research, the molecular mechanisms, particularly those involving mitochondrial dysfunction, remain poorly understood. A major limitation in current studies is the lack of cell-specific markers that effectively represent mitochondrial dynamics in AD and GBM. Methods In this study, we analyzed single-cell transcriptomic data using 10 machine learning algorithms to identify mitochondria-associated cell-specific markers. We validated these markers through the integration of gene expression and methylation data across diverse cell types. Our dataset comprised single-nucleus RNA sequencing (snRNA-seq) from AD patients, single-cell RNA sequencing (scRNA-seq) from GBM patients, and additional DNA methylation and transcriptomic data from the ROSMAP, ADNI, TCGA, and CGGA cohorts. Results Our analysis identified four significant cross-disease mitochondrial markers: EFHD1, SASH1, FAM110B, and SLC25A18. These markers showed both shared and unique expression profiles in AD and GBM, suggesting a common mitochondrial mechanism contributing to both diseases. Additionally, oligodendrocytes and their interactions with astrocytes were implicated in disease progression, particularly through the APP signaling pathway. Key hub genes, such as HS6ST3 and TUBB2B, were identified across different cellular subpopulations, highlighting a cell-specific co-expression network linked to mitochondrial function.
Collapse
Affiliation(s)
- Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Junwen He
- College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Xiang-Yu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Zhang C, Su Y, Zeng X, Zhu X, Gao R, Liu W, Du R, Chen C, Liu J. Risk Factors and Diagnostic Model Construction of Chronic Pain with Cognitive Impairment. J Pain Res 2024; 17:4331-4342. [PMID: 39712461 PMCID: PMC11662672 DOI: 10.2147/jpr.s485000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
Background Cognitive impairment (CI) is frequently observed in patients with chronic pain (CP). CP progression increases the risk of dementia and accelerates Alzheimer's disease pathogenesis. However, risk diagnostic models and biomarkers for CP-related CI remain insufficient. Previous research has highlighted the relationships between several complete blood count parameters for CP or CI-related diseases, such as Alzheimer's disease, while the specific values of complete blood count parameters in CP-related CI patients remain unclear. This study aimed to explore the correlation between complete blood count parameters and CP-related CI to establish a risk diagnostic model for the early detection of CP-related CI. Methods This cross-sectional study was conducted at West China Hospital, Sichuan University. The Montreal Cognitive Assessment (MoCA) was used to classify patients into either the CP with CI group or the CP without CI group. Univariate analysis and multivariate logistic regression analysis were used to screen the related factors of CP-related CI for constructing a risk diagnostic model, and the model was evaluated using receiver operating characteristic (ROC) curve analysis. Results The study ultimately included 163 eligible patients. Based on analysis, age (OR, 1.037 [95% CI, 1.007-1.070]; P=0.018), duration of pain (OR, 2.546 [95% CI, 1.099-6.129]; P=0.032), VAS score (OR, 1.724 [95% CI, 0.819-3.672]; P=0.153), LMR (OR, 0.091 [95% CI, 0.024-0.275]; P<0.001), absolute neutrophil value (OR, 0.306 [95% CI, 0.115-0.767]; P=0.014), and lymphocyte percentage (OR, 6.551 [95% CI, 2.143-25.039]; P=0.002) were identified as critical factors of CP-related CI. The diagnostic model was evaluated by the ROC curve, demonstrating good diagnostic value with an area under the curve (AUC) of 0.803, a sensitivity of 0.603 and a specificity of 0.871. Conclusion The risk diagnostic model developed in this study for CP-related CI has significant value and enables clinicians to customize interventions based on each patient's needs.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ying Su
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xianzheng Zeng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaoyu Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wangyang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Runzi Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Bratseth V, Watne LO, Neerland BE, Halaas NB, Pollmann CT, Karabeg A, Odegaard OT, Sydnes K, Zetterberg H, Seljeflot I, Helseth R. Increased cell-free DNA in CSF and serum of hip fracture patients with delirium. Brain Commun 2024; 7:fcae452. [PMID: 39737468 PMCID: PMC11683831 DOI: 10.1093/braincomms/fcae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain. Hip fracture patients (n = 491) with a median (25, 75 percentiles) age of 83 (74, 88) years and 69% females were enrolled at Oslo University Hospital, Diakonhjemmet Hospital, Akershus University Hospital and Bærum Hospital. Delirium was assessed daily, pre- and postoperatively. Cognitively healthy adults (n = 32) with a median (25, 75 percentiles) age of 75 (70, 77) years and 53% females were included as controls. Cell-free DNA was measured by using the fluorescent nucleic acid stain Quant-iT PicoGreen® in serum and CSF. Myeloperoxidase-DNA and citrullinated histone H3 were analysed by enzyme-linked immunosorbent assay in serum. Hip fracture patients have significantly higher levels of cell-free DNA and neutrophil extracellular traps in blood than cognitively healthy controls. In hip fracture patients without dementia, cell-free DNA in CSF and serum was significantly higher in patients with (n = 68) versus without (n = 221) delirium after adjusting for age and sex (70 (59, 84) versus 62 (53, 77) ng/ml, P = 0.037) and 601 (504, 684) versus 508 (458, 572) ng/ml, P = 0.007, respectively). In the total hip fracture cohort, CSF levels of cell-free DNA and neurofilament light chain were significantly correlated after adjusting for age and sex (r = 0.441, P < 0.001). The correlation was stronger in those with delirium (r = 0.468, P < 0.001) and strongest in delirious patients without dementia (r = 0.765, P = 0.045). In delirious patients without dementia, significantly higher levels of cell-free DNA in CSF and serum were shown. The association between cell-free DNA and neurofilament light chain suggest simultaneous release of cell-free DNA and neuronal damage during delirium.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog 1478, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| | - Bjørn Erik Neerland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
| | | | - Adi Karabeg
- Department of Orthopedic Surgery, Akershus University Hospital, Kongsvinger 2381, Norway
| | - Olav Tobias Odegaard
- Department of Anesthesiology, Akershus University Hospital, Kongsvinger 2381, Norway
| | - Kristian Sydnes
- Department of Orthopedic Surgery, Diakonhjemmet Hospital, Oslo 0319, Norway
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1H9BT, UK
- UK Dementia Research Institute at UCL, London WC1H9BT, UK
- Hong Center for Neurodegenerative Diseases, Hong Kong HKG, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| | - Ragnhild Helseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| |
Collapse
|
8
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
9
|
Park T, Hwang J, Liu S, Chaudhuri S, Han SW, Yi D, Byun MS, Huang YN, Rosewood T, Jung G, Kim MJ, Ahn H, Lee JY, Kim YK, Cho M, Bice PJ, Craft H, Risacher SL, Gao H, Liu Y, Kim S, Park YH, Lee DY, Saykin AJ, Nho K. Genome-wide transcriptome analysis of Aβ deposition on PET in a Korean cohort. Alzheimers Dement 2024; 20:8787-8801. [PMID: 39513963 DOI: 10.1002/alz.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Despite the recognized importance of including ethnic diversity in Alzheimer's disease (AD) research, substantial knowledge gaps remain, particularly in Asian populations. METHODS RNA sequencing was performed on blood samples from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) to perform differential gene expression (DGE), gene co-expression network, gene-set enrichment, and machine learning analyses for amyloid beta (Aβ) deposition on positron emission tomography. RESULTS DGE analysis identified 265 dysregulated genes associated with Aβ deposition and replicated three AD-associated genes in an independent Korean cohort. Network analysis identified two modules related to pathways including a natural killer (NK) cell-mediated immunity. Machine learning analysis showed the classification of Aβ positivity improved with the inclusion of gene expression data. DISCUSSION Our results in a Korean population suggest Aβ deposition-associated genes are enriched in NK cell-mediated immunity, providing a better understanding of AD molecular mechanisms and yielding potential diagnostic and therapeutic strategies. HIGHLIGHTS Dysregulated genes were associated with amyloid beta (Aβ) deposition on positron emission tomography in a Korean cohort. Dysregulated genes in Alzheimer's disease were replicated in an independent Korean cohort. Gene network modules were associated with Aβ deposition. Natural killer (NK) cell proportion in blood was associated with Aβ deposition. Dysregulated genes were related to a NK cell-mediated immunity.
Collapse
Affiliation(s)
- Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiyun Hwang
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
| | - Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Soumilee Chaudhuri
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sang Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Yen-Ning Huang
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thea Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Min Jeong Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyejin Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Psychiatry, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - MinYoung Cho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hannah Craft
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-si, South Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-si, South Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- School of Informatics and Computing, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
11
|
Yu X, Chen Z, Bao W, Jiang Y, Ruan F, Wu D, Le K. The neutrophil extracellular traps in neurological diseases: an update. Clin Exp Immunol 2024; 218:264-274. [PMID: 38975702 PMCID: PMC11557138 DOI: 10.1093/cei/uxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/08/2024] [Accepted: 07/06/2024] [Indexed: 07/09/2024] Open
Abstract
Neutrophil extracellular traps (NETs) released by neutrophils are web-like DNA structures adhered to granulin proteins with bactericidal activity and can be an important mechanism for preventing pathogen dissemination or eliminating microorganisms. However, they also play important roles in diseases of other systems, such as the central nervous system. We tracked the latest advances and performed a review based on published original and review articles related to NETs and neurological diseases. Generally, neutrophils barely penetrate the blood-brain barrier into the brain parenchyma, but when pathological changes such as infection, trauma, or neurodegeneration occur, neutrophils rapidly infiltrate the central nervous system to exert their defensive effects. However, neutrophils may adversely affect the host when they uncontrollably release NETs upon persistent neuroinflammation. This review focused on recent advances in understanding the mechanisms and effects of NETs release in neurological diseases, and we also discuss the role of molecules that regulate NETs release in anticipation of clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong S.A.R., China
| |
Collapse
|
12
|
Tian Q, Li Z, Yan Z, Jiang S, Zhao X, Wang L, Li M. Inflammatory role of S100A8/A9 in the central nervous system non-neoplastic diseases. Brain Res Bull 2024; 218:111100. [PMID: 39396712 DOI: 10.1016/j.brainresbull.2024.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
S100A8 (MRP8) and S100A9 (MRP14) are critical mediators of the inflammatory response; they are usually present as heterodimers because of the instability of homodimers. Studies have demonstrated that S100A8/A9 expression is significantly upregulated in several central nervous system (CNS) diseases. S100A8/A9 is actively released by neutrophils and monocytes; it plays a key role in regulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion during inflammation. Additionally, S100A8/A9 can be used as a diagnostic biomarker for several CNS diseases and as a predictor of therapeutic response to inflammation-related diseases. In this work, we reviewed our current understanding of S100A8/A9 overexpression in inflammation and its importance in the development and progression of CNS inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, and the functional roles and therapeutic applications of S100A8/A9 in these diseases. Finally, we discussed the current barriers and future research directions of S100A8/A9 in CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xincan Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, China; Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
13
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
14
|
Terrabuio E, Constantin G. APOE4 affects neutrophil-microglia crosstalk in Alzheimer's disease. Trends Immunol 2024; 45:726-728. [PMID: 39322476 DOI: 10.1016/j.it.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Circulating immune cells contribute to the pathogenesis of Alzheimer's disease (AD), but their role is poorly understood. Rosenzweig et al. recently identified a subset of interleukin (IL)-17+ neutrophils that inhibit neuroprotective microglia in female APOE4 carriers. Blockade of IL-17 signaling or APOE4 deletion in neutrophils restored microglial responses and reduced murine amyloid pathology.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, 37134 Verona, Italy.
| |
Collapse
|
15
|
Lucero J, Gurnani A, Weinberg J, Shih LC. Neutrophil-to-lymphocyte ratio and longitudinal cognitive performance in Parkinson's disease. Ann Clin Transl Neurol 2024; 11:2301-2313. [PMID: 39031909 PMCID: PMC11537143 DOI: 10.1002/acn3.52144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Previous studies have suggested a link between peripheral inflammation and cognitive outcomes in the general population and individuals with Parkinson's disease (PD). We sought to test the association between peripheral inflammation, measured by the neutrophil-to-lymphocyte ratio (NLR), cognitive performance, and mild cognitive impairment (MCI) status in individuals with PD. METHODS A retrospective, longitudinal analysis was carried out using data from the Parkinson's Progression Markers Initiative (PPMI), including 422 participants with PD followed over 5 years. Cognitive performance was assessed using a neuropsychological battery including the Montreal Cognitive Assessment (MoCA) and tests of verbal learning, visuospatial function, processing speed, and executive function. Mixed-effect regression models were used to analyze the association between NLR, cognitive performance, and MCI status, controlling for age, sex, education, APOE genotype, and motor severity. RESULTS There was a negative association between NLR and MoCA, even after adjusting for covariates (b = -0.12, p = 0.033). MoCA scores for individuals in the high NLR category exhibited a more rapid decline over time compared to the low NLR group (b = -0.16, p = 0.012). Increased NLR was associated with decreased performance across all cognitive domains. However, NLR was not associated with MCI status over 5 years of follow-up. INTERPRETATION This study demonstrates a link between elevated NLR and cognitive performance in PD, but not with MCI status over 5 years. This suggests that NLR is more strongly associated with day-to-day cognitive performance than with incident MCI, but this requires further study in more heterogeneous cohorts.
Collapse
Affiliation(s)
- Jenniffer Lucero
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
- Department of NeurologyBoston Medical CenterBostonMassachusetts02118USA
| | - Ashita Gurnani
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
| | - Janice Weinberg
- Department of BiostatisticsBoston University School of Public HealthBoston02118MassachusettsUSA
| | - Ludy C Shih
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
- Department of NeurologyBoston Medical CenterBostonMassachusetts02118USA
| |
Collapse
|
16
|
Huang XY, Xue LL, Ma RF, Shi JS, Wang TH, Xiong LL, Yu CY. Inhibition of CXCR4: A perspective on miracle fruit seed for Alzheimer's disease treatment. Exp Neurol 2024; 379:114841. [PMID: 38821198 DOI: 10.1016/j.expneurol.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, and its causes are currently diverse and not fully understood. In a previous study, we discovered that short-term treatment with miracle fruit seed (MFS) had a therapeutic effect on AD model mice, however, the precise mechanism behind the effect remains unclear. In this research, we aimed to establish the efficacy and safety of long-term use of MFS in AD model mice. A variety of cytokines and chemokines have been implicated in the development of AD. Previous studies have validated a correlation between the expression levels of C-X-C chemokine receptor type 4 (CXCR4) and disease severity in AD. In this research, we observed an upregulation of CXCR4 expression in hippocampal tissues in the AD model group, which was then reversed after MFS treatment. Moreover, CXCR4 knockout led to improving cognitive function in AD model mice, and MFS showed the ability to regulate CXCR4 expression. Finally, our findings indicate that CXCR4 knockout and long-term MFS treatment produce comparable effects in treating AD model mice. In conclusion, this research demonstrates that therapeutic efficacy and safety of long-term use of MFS in AD model mice. MFS treatment and the subsequent reduction of CXCR4 expression exhibit a neuroprotective role in the brain, highlighting their potential as therapeutic targets for AD.
Collapse
Affiliation(s)
- Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Rui-Fang Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting-Hua Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
17
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
18
|
Cervellati C, Pedrini D, Pirro P, Guindani P, Renzini C, Brombo G, Zuliani G. Neutrophil-Lymphocytes Ratio as Potential Early Marker for Alzheimer's Disease. Mediators Inflamm 2024; 2024:6640130. [PMID: 38974600 PMCID: PMC11227945 DOI: 10.1155/2024/6640130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Background Neutrophil-lymphocyte ratio (NLR) is a noninvasive, inexpensive, and easily applicable marker of inflammation. Since immune dysregulation leading to inflammation is regarded as a hallmark of dementia, in particular Alzheimer's disease (AD), we decided to investigate the potentials of NLR as a diagnostic and predictive biomarker in this clinical setting. Materials and Methods NLR was measured in the blood of patients with AD (n = 103), amnestic type mild cognitive impairment (aMCI, n = 212), vascular dementia (VAD, n = 34), and cognitively healthy Controls (n = 61). One hundred twelve MCI patients underwent a regular clinical follow-up. Over a 36-months median follow-up, 80 remained stable, while 32 progressed to overt dementia. Results NLR was higher in patients with aMCI or dementia compared to Controls; however, the difference was statistically significant only for aMCI (+13%, p=0.04) and AD (+20%, p=0.03). These results were confirmed by multivariate logistic analysis, which showed that high NLR was associated with an increase in the likelihood of receiving a diagnosis of aMCI (odd ratio (OR): 2.58, 95% confidence interval (CI): 1.36-4.89) or AD (OR: 3.13, 95%CI: 1.47-6.70), but not of VAD. NLR did not differ when comparing stable vs. progressing aMCI. Conclusions This is the first report showing that NLR is significantly increased in MCI and AD but not in VAD. We also found that NLR was unable to predict the conversion from aMCI to AD. Further research on larger cohorts is warranted to definitely ascertain the application of NLR as a possible marker for aMCI and AD.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Dario Pedrini
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Pietro Pirro
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Paola Guindani
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Carlo Renzini
- Associazione Sammarinese di Geriatria e Gerontologia (ASGG), Dogana, San Marino
| | - Gloria Brombo
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for RomagnaUniversity of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
19
|
Mohammadi A, Mohammadi M, Almasi‐Dooghaee M, Mirmosayyeb O. Neutrophil to lymphocyte ratio in Alzheimer's disease: A systematic review and meta-analysis. PLoS One 2024; 19:e0305322. [PMID: 38917167 PMCID: PMC11198755 DOI: 10.1371/journal.pone.0305322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The Neutrophil-to-Lymphocyte Ratio (NLR) is a clinical indicator of peripheral inflammation that is easily accessible. It is worth noting that the formation of amyloid-β (Aβ) plaques and neurofibrillary tangles has been linked to inflammation and immune dysregulation. The main objective of this systematic review and meta-analysis is to comprehensively evaluate the existing body of research concerning the NLR in the context of Alzheimer's disease (AD) and mild cognitive impairment (MCI). METHOD We conducted a comprehensive online search and included studies that evaluated the NLR in 1) patients with AD or MCI and 2) healthy control (HC) participants. We also pooled mean and standard deviation (SD) data for each group. RESULTS Ultimately, 12 studies encompassed 1,309 individuals diagnosed with AD with mean NLR levels of 2.68, 1,929 individuals with MCI with mean NLR levels of 2.42, and 2,064 HC with mean NLR levels of 2.06 were included in this systematic review and meta-analysis. The mean NLR was 0.59 higher in AD patients compared to HC participants (mean difference (MD) = 0.59 [0.38; 0.80]). Similarly, the mean NLR was higher in AD than MCI patients (MD = 0.23 [0.13; 0.33]). Additionally, the mean NLR was higher in individuals with MCI compared to HC participants (MD = 0.37 [0.22; 0.52]). In the subgroup meta-analysis based on the Mini-Mental State Examination (MMSE), AD patients with lower MMSE scores (using a cut-off of 20) exhibited significantly higher mean NLR (3.10 vs. 2.70, with a p-value for subgroup differences < 0.01). CONCLUSION The NLR, which serves as a marker of peripheral inflammation, shows increased levels in individuals with AD and MCI compared to HC participants. Furthermore, our study indicates that NLR levels are significantly higher in AD than MCI. Additionally, our novel finding suggests significantly higher NLR levels among AD patients with more severe cognitive decline compared to AD patients with less severe cognitive decline. So, it can be concluded that the higher cognitive decline in humans is accompanied by higher NLR levels. Further longitudinal researches are needed to explore more details about the relationship between inflammation and dementia.
Collapse
Affiliation(s)
- Aynaz Mohammadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Almasi‐Dooghaee
- Neurology Department, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
21
|
Sarazin M, Lagarde J, El Haddad I, de Souza LC, Bellier B, Potier MC, Bottlaender M, Dorothée G. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer's disease. NATURE AGING 2024; 4:761-770. [PMID: 38839924 DOI: 10.1038/s43587-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
The cautious optimism following recent anti-amyloid therapeutic trials for Alzheimer's disease (AD) provides a glimmer of hope after years of disappointment. Although these encouraging results represent discernible progress, they also highlight the need to enhance further the still modest clinical efficacy of current disease-modifying immunotherapies. Here, we highlight crucial milestones essential for advancing precision medicine in AD. These include reevaluating the choice of therapeutic targets by considering the key role of both central neuroinflammation and peripheral immunity in disease pathogenesis, refining patient stratification by further defining the inflammatory component within the forthcoming ATN(I) (amyloid, tau and neurodegeneration (and inflammation)) classification of AD biomarkers and defining more accurate clinical outcomes and prognostic biomarkers that better reflect disease heterogeneity. Next-generation immunotherapies will need to go beyond the current antibody-only approach by simultaneously targeting pathological proteins together with innate neuroinflammation and/or peripheral-central immune crosstalk. Such innovative immunomodulatory combination therapy approaches should be evaluated in appropriately redesigned clinical therapeutic trials, which must carefully integrate the neuroimmune component.
Collapse
Affiliation(s)
- Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.
- Université Paris-Cité, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris-Cité, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
| | - Inès El Haddad
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Leonardo Cruz de Souza
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, UFMG, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Bertrand Bellier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif-sur-Yvette, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
22
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniweski TM, de Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. Immun Ageing 2024; 21:32. [PMID: 38760856 PMCID: PMC11100119 DOI: 10.1186/s12979-024-00435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ + (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Sean R Jacobson
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeffrey S Berger
- Divisions of Cardiology and Hematology, Department of Medicine, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Alok Vedvyas
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Karyn Marsh
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Tianshe He
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | | | - Nathanael R Fillmore
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Gonzalez
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Luisa Figueredo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Naomi L Gaggi
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Chelsea Reichert Plaska
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Nunzio Pomara
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Esther Blessing
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Rebecca Betensky
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Radiology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Lidia Glodzik
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Wisniweski
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Retired director of Center for Brain Health, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
23
|
Aries M, Cook M, Hensley-McBain T. A Pilot Study to Investigate Peripheral Low-Level Chronic LPS Injection as a Model of Neutrophil Activation in the Periphery and Brain in Mice. Int J Mol Sci 2024; 25:5357. [PMID: 38791393 PMCID: PMC11120811 DOI: 10.3390/ijms25105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the periphery and brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate its impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, was higher in LPS-injected mice compared to saline-injected mice after 4 weeks but not 8 weeks of injections. Neutrophil frequency and activation increased in the periphery 4-12 h and 4-8 h after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 h following the final injection. Neutrophil activation was increased in the brain of LPS-injected mice when compared to saline-injected mice 4-8 h after the final injection. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.
Collapse
Affiliation(s)
- Michelle Aries
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Makayla Cook
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Tiffany Hensley-McBain
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
- Department of Basic Sciences, Touro College of Osteopathic Medicine Montana, Great Falls, MT 59405, USA
| |
Collapse
|
24
|
Zhong H, Zhou X, Uhm H, Jiang Y, Cao H, Chen Y, Mak TTW, Lo RMN, Wong BWY, Cheng EYL, Mok KY, Chan ALT, Kwok TCY, Mok VCT, Ip FCF, Hardy J, Fu AKY, Ip NY. Using blood transcriptome analysis for Alzheimer's disease diagnosis and patient stratification. Alzheimers Dement 2024; 20:2469-2484. [PMID: 38323937 PMCID: PMC11032555 DOI: 10.1002/alz.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Blood protein biomarkers demonstrate potential for Alzheimer's disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood cells. METHODS Bulk RNA-sequencing of blood cells was performed on AD patients of Chinese descent (n = 214 and 26 in the discovery and validation cohorts, respectively) with normal controls (n = 208 and 38 in the discovery and validation cohorts, respectively). Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis identified AD-associated gene modules and blood cell types. Regression and unsupervised clustering analysis identified AD-associated genes, gene modules, cell types, and established AD classification models. RESULTS WGCNA on differentially expressed genes revealed 15 gene modules, with 6 accurately classifying AD (areas under the receiver operating characteristics curve [auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct disease states. Cell-type deconvolution analysis identified specific blood cell types potentially associated with AD pathogenesis. DISCUSSION This study highlights the potential of blood transcriptome for AD diagnosis, patient stratification, and mechanistic studies. HIGHLIGHTS We comprehensively analyze the blood transcriptomes of a well-characterized Alzheimer's disease cohort to identify genes, gene modules, pathways, and specific blood cells associated with the disease. Blood transcriptome analysis accurately classifies and stratifies patients with Alzheimer's disease, with some gene modules achieving classification accuracy comparable to that of the plasma ATN biomarkers. Immune-associated pathways and immune cells, such as neutrophils, have potential roles in the pathogenesis and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Huan Zhong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Hyebin Uhm
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Yuanbing Jiang
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Han Cao
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Yu Chen
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- The Brain Cognition and Brain Disease InstituteShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Tiffany T. W. Mak
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Ronnie Ming Nok Lo
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Bonnie Wing Yan Wong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Elaine Yee Ling Cheng
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Kin Y. Mok
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Timothy C. Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of DementiaDivision of GeriatricsDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHKSARChina
| | - Vincent C. T. Mok
- Lau Tat‐chuen Research Centre of Brain Degenerative Diseases in ChineseTherese Pei Fong Chow Research Centre for Prevention of DementiaGerald Choa Neuroscience InstituteLi Ka Shing Institute of Health SciencesDivision of NeurologyDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHKSARChina
| | - Fanny C. F. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHKSARChina
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| |
Collapse
|
25
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Bubu OM, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniewski TM, Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. RESEARCH SQUARE 2024:rs.3.rs-4076789. [PMID: 38559231 PMCID: PMC10980096 DOI: 10.21203/rs.3.rs-4076789/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ+ (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- New York University (NYU) Grossman School of Medicine
| | | | - Juan Fortea
- Hospital de la Santa Creu y Sant Pau, Universitat Autònoma de Barcelona
| | | | - Alok Vedvyas
- New York University (NYU) Grossman School of Medicine
| | - Karyn Marsh
- New York University (NYU) Grossman School of Medicine
| | - Tianshe He
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | | | - Naomi L Gaggi
- New York University (NYU) Grossman School of Medicine
| | | | - Nunzio Pomara
- New York University (NYU) Grossman School of Medicine
| | | | | | - Henry Rusinek
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | - Mony J Leon
- New York University (NYU) Grossman School of Medicine
| | | | | |
Collapse
|
26
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
27
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
28
|
Xia H, Luan X, Bao Z, Zhu Q, Wen C, Wang M, Song W. A multi-cohort study of the hippocampal radiomics model and its associated biological changes in Alzheimer's Disease. Transl Psychiatry 2024; 14:111. [PMID: 38395947 PMCID: PMC10891125 DOI: 10.1038/s41398-024-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
There have been no previous reports of hippocampal radiomics features associated with biological functions in Alzheimer's Disease (AD). This study aims to develop and validate a hippocampal radiomics model from structural magnetic resonance imaging (MRI) data for identifying patients with AD, and to explore the mechanism underlying the developed radiomics model using peripheral blood gene expression. In this retrospective multi-study, a radiomics model was developed based on the radiomics discovery group (n = 420) and validated in other cohorts. The biological functions underlying the model were identified in the radiogenomic analysis group using paired MRI and peripheral blood transcriptome analyses (n = 266). Mediation analysis and external validation were applied to further validate the key module and hub genes. A 12 radiomics features-based prediction model was constructed and this model showed highly robust predictive power for identifying AD patients in the validation and other three cohorts. Using radiogenomics mapping, myeloid leukocyte and neutrophil activation were enriched, and six hub genes were identified from the key module, which showed the highest correlation with the radiomics model. The correlation between hub genes and cognitive ability was confirmed using the external validation set of the AddneuroMed dataset. Mediation analysis revealed that the hippocampal radiomics model mediated the association between blood gene expression and cognitive ability. The hippocampal radiomics model can accurately identify patients with AD, while the predictive radiomics model may be driven by neutrophil-related biological pathways.
Collapse
Affiliation(s)
- Huwei Xia
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Xiaoqian Luan
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qinxin Zhu
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihong Song
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
29
|
Ye S, Roccati E, Wang W, Zhu Z, Kiburg K, Huang Y, Zhang X, Zhang X, Liu J, Tang S, Hu Y, Ge Z, Yu H, He M, Shang X. Leading determinants of incident dementia among individuals with and without the apolipoprotein E ε4 genotype: a retrospective cohort study. BMC Neurol 2024; 24:71. [PMID: 38378514 PMCID: PMC10877929 DOI: 10.1186/s12883-024-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Little is known regarding the leading risk factors for dementia/Alzheimer's disease (AD) in individuals with and without APOE4. The identification of key risk factors for dementia/Alzheimer's disease (AD) in individuals with and without the APOE4 gene is of significant importance in global health. METHODS Our analysis included 110,354 APOE4 carriers and 220,708 age- and sex-matched controls aged 40-73 years at baseline (between 2006-2010) from UK Biobank. Incident dementia was ascertained using hospital inpatient, or death records until January 2021. Individuals of non-European ancestry were excluded. Furthermore, individuals without medical record linkage were excluded from the analysis. Moderation analysis was tested for 134 individual factors. RESULTS During a median follow-up of 11.9 years, 4,764 cases of incident all-cause dementia and 2065 incident AD cases were documented. Hazard ratios (95% CIs) for all-cause dementia and AD associated with APOE4 were 2.70(2.55-2.85) and 3.72(3.40-4.07), respectively. In APOE4 carriers, the leading risk factors for all-cause dementia included low self-rated overall health, low household income, high multimorbidity risk score, long-term illness, high neutrophil percentage, and high nitrogen dioxide air pollution. In non-APOE4 carriers, the leading risk factors included high multimorbidity risk score, low overall self-rated health, low household income, long-term illness, high microalbumin in urine, high neutrophil count, and low greenspace percentage. Population attributable risk for these individual risk factors combined was 65.1%, and 85.8% in APOE4 and non-APOE4 carriers, respectively. For 20 risk factors including multimorbidity risk score, unhealthy lifestyle habits, and particulate matter air pollutants, their associations with incident dementia were stronger in non-APOE4 carriers. For only 2 risk factors (mother's history of dementia, low C-reactive protein), their associations with incident all-cause dementia were stronger in APOE4 carriers. CONCLUSIONS Our findings provide evidence for personalized preventative approaches to dementia/AD in APOE4 and non-APOE4 carriers. A mother's history of dementia and low levels of C-reactive protein were more important risk factors of dementia in APOE4 carriers whereas leading risk factors including unhealthy lifestyle habits, multimorbidity risk score, inflammation and immune-related markers were more predictive of dementia in non-APOE4 carriers.
Collapse
Affiliation(s)
- Siting Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Katerina Kiburg
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiahao Liu
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Shulin Tang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC, 3800, Australia
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, 3050, Australia.
| |
Collapse
|
30
|
Winchester LM, Newby D, Ghose U, Hu P, Green H, Chien S, Ranson J, Faul J, Llewellyn D, Lee J, Bauermeister S, Nevado-Holgado A. Anemia, hemoglobin concentration and cognitive function in the Longitudinal Ageing Study in India-Harmonized Diagnostic Assessment of Dementia (LASI-DAD) and the Health and Retirement Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.22.24301583. [PMID: 38343823 PMCID: PMC10854337 DOI: 10.1101/2024.01.22.24301583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background In India, anemia is widely researched in children and women of reproductive age, however, studies in older populations are lacking. Given the adverse effect of anemia on cognitive function and dementia this older population group warrants further study. The Longitudinal Ageing Study in India - Harmonized Diagnostic Assessment of Dementia (LASI-DAD) dataset contains detailed measures to allow a better understanding of anaemia as a potential risk factor for dementia. Method 2,758 respondents from the LASI-DAD cohort, aged 60 or older, had a complete blood count measured from venous blood as well as cognitive function tests including episodic memory, executive function and verbal fluency. Linear regression was used to test the associations between blood measures (including anemia and hemoglobin concentration (g/dL)) with 11 cognitive domains. All models were adjusted for age and gender with the full model containing adjustments for rural location, years of education, smoking, region, BMI and population weights.Results from LASI-DAD were validated using the USA-based Health and Retirement Study (HRS) cohort (n=5720) to replicate associations between blood cell measures and global cognition. Results In LASI-DAD, we showed an association between anemia and poor memory (p=0.0054). We found a positive association between hemoglobin concentration and ten cognitive domains tested (β=0.041-0.071, p<0.05). The strongest association with hemoglobin was identified for memory-based tests (immediate episodic, delayed episodic and broad domain memory, β=0.061-0.071, p<0.005). Positive associations were also shown between the general cognitive score and the other red blood count tests including mean corpuscular hemoglobin concentration (MCHC, β=0.06, p=0.0001) and red cell distribution width (RDW, β =-0.11, p<0.0001). In the HRS cohort, positive associations were replicated between general cognitive score and other blood count tests (Red Blood Cell, MCHC and RDW, p<0.05). Conclusion We have established in a large South Asian population that low hemoglobin and anaemia are associated with low cognitive function, therefore indicating that anaemia could be an important modifiable risk factor. We have validated this result in an external cohort demonstrating both the variability of this risk factor cross-nationally and its generalizable association with cognitive outcomes.
Collapse
Affiliation(s)
| | - Danielle Newby
- Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | | | - Peifeng Hu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Hunter Green
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA 90089
| | - Sandy Chien
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA 90089
| | - Janice Ranson
- College of Medicine and Health, University of Exeter, UK
| | - Jessica Faul
- Survey Research Center, Institute for Social Research, University of Michigan
| | | | - Jinkook Lee
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA 90089
- Department of Economics, University of Southern California, Los Angeles, CA, USA 90089
| | | | | |
Collapse
|
31
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
32
|
Fisher DW, Dunn JT, Dong H. Distinguishing features of depression in dementia from primary psychiatric disease. DISCOVER MENTAL HEALTH 2024; 4:3. [PMID: 38175420 PMCID: PMC10767128 DOI: 10.1007/s44192-023-00057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Depression is a common and devastating neuropsychiatric symptom in the elderly and in patients with dementia. In particular, nearly 80% of patients with Alzheimer's Disease dementia experience depression during disease development and progression. However, it is unknown whether the depression in patients with dementia shares the same molecular mechanisms as depression presenting as primary psychiatric disease or occurs and persists through alternative mechanisms. In this review, we discuss how the clinical presentation and treatment differ between depression in dementia and as a primary psychiatric disease, with a focus on major depressive disorder. Then, we hypothesize several molecular mechanisms that may be unique to depression in dementia such as neuropathological changes, inflammation, and vascular events. Finally, we discuss existing issues and future directions for investigation and treatment of depression in dementia.
Collapse
Affiliation(s)
- Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356560, Seattle, WA, 98195, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
33
|
Shi M, Chu F, Zhu F, Zhu J. Peripheral blood amyloid-β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. J Neuroinflammation 2024; 21:5. [PMID: 38178136 PMCID: PMC10765910 DOI: 10.1186/s12974-023-03003-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
A key pathological factor of Alzheimer's disease (AD), the most prevalent form of age-related dementia in the world, is excessive β-amyloid protein (Aβ) in extracellular aggregation in the brain. And in the peripheral blood, a large amount of Aβ is derived from platelets. So far, the causality between the levels of peripheral blood Aβ and its aggregation in the brain, particularly the role of the peripheral blood Aβ in the pathology of AD, is still unclear. And the relation between the peripheral blood Aβ and tau tangles of brain, another crucial pathologic factor contributing to the pathogenesis of AD, is also ambiguous. More recently, the anti-Aβ monoclonal antibodies are approved for treatment of AD patients through declining the peripheral blood Aβ mechanism of action to enhance plasma and central nervous system (CNS) Aβ clearance, leading to a decrease Aβ burden in brain and improving cognitive function, which clearly indicates that the levels of the peripheral blood Aβ impacted on the Aβ burden in brain and involved in the pathogenesis of AD. In addition, the role of peripheral innate immune cells in AD remains mostly unknown and the results obtained were controversial. In the present review, we summarize recent studies on the roles of peripheral blood Aβ and the peripheral innate immune cells in the pathogenesis of AD. Finally, based on the published data and our own work, we believe that peripheral blood Aβ plays an important role in the development and progression of AD by impacting on the peripheral innate immune cells.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
34
|
Wu B, Chen M, Meng L, Tian Q, Dong Z. Osteoclasts Link Dysregulated Peripheral Degradation Processes and Accelerated Progression in Alzheimer's Disease. J Alzheimers Dis 2024; 99:773-785. [PMID: 38701149 DOI: 10.3233/jad-240096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background The amyloid-β (Aβ) enhances the number and activity of blood monocyte-derived osteoclasts (OCs). Individuals with osteoporosis (OP) face an increased risk of developing dementia or Alzheimer's disease (AD). Despite this association, the contribution of bone-resorbing OCs to the progression of AD pathology remains unclear. Objective Our objective was to investigate the potential impacts of OCs on the development of AD pathology. Methods We conducted targeted analysis of publicly available whole blood transcriptomes from patients with AD to characterize the blood molecular signatures and pathways associated with hyperactive OCs. In addition, we used APP23 transgenic (APP23 TG) AD mouse model to assess the effects of OCs pharmacological blockade on AD pathology and behavior. Results Patients with AD exhibited increased osteoclastogenesis signature in their blood cells, which appears to be positively correlated with dysfunction of peripheral clearance of Aβ mediated by immune cells. Long-term anti-resorptive intervention with Alendronate inhibited OC activity in APP23 mice, leading to improvements in peripheral monocyte Aβ-degrading enzyme expression, Aβ-deposition, and memory decline. Conclusions Our findings suggest that OCs have a disease-promoting role in the development and progression of AD, possibly linked to their modulation of peripheral immunity. These findings guide future research to further elucidate the connection between OP and AD pathogenesis, highlighting the potential benefits of preventing OP in alleviating cognitive burden.
Collapse
Affiliation(s)
- Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Xu F, Li Y, Wang X, Sun R, Zheng Z, Zhang Q, Gao M, Tao W, Zhao J, Wang Q. Effect of pre-infusion of hypertonic saline on postoperative delirium in geriatric patients undergoing shoulder arthroscopy: a randomized controlled trial. BMC Anesthesiol 2023; 23:405. [PMID: 38082215 PMCID: PMC10712129 DOI: 10.1186/s12871-023-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Neuroinflammation may be a potential mechanism of postoperative delirium (POD) in geriatric patients, and hypertonic saline (HS) has immunomodulatory properties. The purpose of this study was to investigate whether HS could reduce the incidence of POD in elderly patients and its effect on neutrophil activation and inflammatory cytokine expression. METHODS We studied the effect of pre-infusion of 4 mL/kg 3% hypertonic saline vs. 4 mL/kg 0.9% normal saline on POD in patients undergoing shoulder arthroscopy in a prospective, randomized, double-blind, controlled trial. Neutrophil surface molecules (CD11b, CD66b and CD64) were analyzed by flow cytometry. Circulating concentrations of inflammatory factors IL-1β, IL-6, TNF-α and neurological damage factor S100β were assessed by enzyme immunoassay. The Confusion Assessment Method-Chinese Revision (CAM-CR) was applied for the assessment of POD 1-3 days after surgery. RESULTS The incidence of POD in group H was significantly lower than that in group N (7.14% vs 26.83%, P = 0.036). The expression levels of inflammatory cytokines ( IL-6 and TNF-α) and neutrophil surface markers (CD11b and CD66b) were significantly lower in group H than in group N at 24 h after surgery (P = 0.018, P < 0.001, P < 0.001, P = 0.024). There were no significant differences in postoperative pain, nausea and vomiting, infection, phlebitis, and patients satisfaction between the two groups. CONCLUSION Pre-infusion of HS can reduce the incidence of POD and the immune-inflammatory response. TRIAL REGISTRATION Chinese Clinical Trial Registry (14/4/2022, registration number: ChiCTR2200058681.
Collapse
Affiliation(s)
- Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanan Li
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ran Sun
- Department of Joint Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zilei Zheng
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Anesthesiology, Zhangjiakou Fourth Hospital, Zhangjiakou, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Mingyang Gao
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Tao
- Department of Breast Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Juan Zhao
- Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
36
|
Sutin AR, Stephan Y, Luchetti M, Terracciano A. Purpose in life and markers of immunity and inflammation: Testing pathways of episodic memory. J Psychosom Res 2023; 174:111487. [PMID: 37696089 PMCID: PMC10591954 DOI: 10.1016/j.jpsychores.2023.111487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This prospective cohort study examines whether purpose in life is associated with markers of immunity and inflammation and tests these markers as mediators between purpose and episodic memory. METHODS Participants from the Venous Blood Study of the Health and Retirement Study reported on their purpose in life, had their blood assayed for markers of immunity and inflammation, and were administered an episodic memory task (N = 8999). Regression analyses tested the association between purpose and each marker. Prospective mediation analyses (N = 6092) tested whether these markers measured in 2016 were mediators between purpose measured in 2012/2014 and episodic memory measured in 2018. RESULTS Higher purpose in life was associated with lower neutrophil counts (β = -0.08, p < .001), lower ratio of neutrophils/lymphocytes (β = -0.05, p < .001), and lower systemic immune inflammation index (β = -0.04, p < .001); purpose was unrelated to monocyte, platelet, and lymphocyte counts or the ratio of platelets/lymphocytes (all ns). Purpose was associated negatively with c-reactive protein (β = -0.07, p < .001), Interleukin-6 (β = -0.08, p < .001), Interleukin-10 (β = -0.07, p < .001), Interleukin-1ra (β = -0.08, p < .001), and soluble Tumor Necrosis Factor Receptor 1 (sTNFR1; β = -0.10, p < .001); purpose was unrelated to Transforming Growth Factor beta 1. These associations were largely not moderated by age, sex, race, ethnicity, and education. Lower neutrophils, Interleukin-6, and sTNFR1 were associated prospectively with better episodic memory and mediated the association between purpose and episodic memory. CONCLUSION Purpose in life is associated with markers of immunity and inflammation, some of which are one mechanism in the pathway between purpose and healthier episodic memory.
Collapse
|
37
|
Salken I, Provencio JJ, Coulibaly AP. A potential therapeutic target: The role of neutrophils in the central nervous system. Brain Behav Immun Health 2023; 33:100688. [PMID: 37767236 PMCID: PMC10520304 DOI: 10.1016/j.bbih.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophils play a critical role in immune defense as the first recruited and most abundant leukocytes in the innate immune system. As such, regulation of neutrophil effector functions have strong implications on immunity. These cells display a wide heterogeneity of function, including both inflammatory and immunomodulatory roles. Neutrophils commonly infiltrate the central nervous system (CNS) in response to varied pathological conditions. There is still little understanding of the role these cells play in the CNS in such conditions. In the present review, we will summarize what is known of neutrophil's role in cancer and Alzheimer's disease (AD), with a focus on highlighting the gaps in our understanding.
Collapse
Affiliation(s)
- Isabel Salken
- College of Arts and Science, University of Virginia, USA
| | | | | |
Collapse
|
38
|
Qi F, Zuo Z, Hu K, Wang R, Wu T, Liu H, Tang J, Wang Q, Xie Y, Tan L, Yang Y, Zhang X, Zheng J, Xu J, Yao Z, Wang S, Wu LJ, Guo K. VEGF-A in serum protects against memory impairment in APP/PS1 transgenic mice by blocking neutrophil infiltration. Mol Psychiatry 2023; 28:4374-4389. [PMID: 37280283 PMCID: PMC10827659 DOI: 10.1038/s41380-023-02097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid β (Aβ)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zejie Zuo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong Wu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaoling Tang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingbo Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Xie
- Five-year Programs of Clinical Medicine in the 2017 grade, School of Medicine, Sun Yat-sen University, Shenzhen, 528406, China
| | - Liren Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunjie Yang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Xu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Kaihua Guo
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Cho K. Neutrophil-Mediated Progression of Mild Cognitive Impairment to Dementia. Int J Mol Sci 2023; 24:14795. [PMID: 37834242 PMCID: PMC10572848 DOI: 10.3390/ijms241914795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive impairment is a serious condition that begins with amnesia and progresses to cognitive decline, behavioral dysfunction, and neuropsychiatric impairment. In the final stage, dysphagia and incontinence occur. There are numerous studies and developed drugs for cognitive dysfunction in neurodegenerative diseases, such as Alzheimer's disease (AD); however, their clinical effectiveness remains equivocal. To date, attempts have been made to overcome cognitive dysfunction and understand and delay the aging processes that lead to degenerative and chronic diseases. Cognitive dysfunction is involved in aging and the disruption of inflammation and innate immunity. Recent reports have indicated that the innate immune system is prevalent in patients with AD, and that peripheral neutrophil markers can predict a decline in executive function in patients with mild cognitive impairment (MCI). Furthermore, altered levels of pro-inflammatory interleukins have been reported in MCI, which have been suggested to play a role in the peripheral immune system during the process from early MCI to dementia. Neutrophils are the first responders of the innate immune system. Neutrophils eliminate harmful cellular debris via phagocytosis, secrete inflammatory factors to activate host defense systems, stimulate cytokine production, kill pathogens, and regulate extracellular proteases and inhibitors. This review investigated and summarized the regulation of neutrophil function during cognitive impairment caused by various degenerative diseases. In addition, this work elucidates the cellular mechanism of neutrophils in cognitive impairment and what is currently known about the effects of activated neutrophils on cognitive decline.
Collapse
Affiliation(s)
- KyoungJoo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
40
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
41
|
Zhang Y, Miao Y, Tan J, Chen F, Lei P, Zhang Q. Identification of mitochondrial related signature associated with immune microenvironment in Alzheimer's disease. J Transl Med 2023; 21:458. [PMID: 37434203 DOI: 10.1186/s12967-023-04254-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Mitochondrial dysfunction and immune responses are important factors in the pathogenesis of AD, but their crosstalk in AD has not been studied. In this study, the independent role and interaction of mitochondria-related genes and immune cell infiltration in AD were investigated using bioinformatics methods. METHODS The datasets of AD were obtained from NCBI Gene Expression Omnibus (GEO), and the data of mitochondrial genes was from MitoCarta3.0 database. Subsequently, differential expression genes (DEGs) screening and GSEA functional enrichment analysis were performed. The intersection of DEGs and mitochondrial related genes was used to obtain MitoDEGs. The MitoDEGs most relevant to AD were determined by Least absolute shrinkage and selection operator and multiple support vector machine recursive feature elimination, as well as protein-protein interactions (PPI) network and random forest. The infiltration of 28 kinds of immune cells in AD was analyzed by ssGSEA, and the relationship between hub MitoDEGs and the proportion of immune infiltration was studied. The expression levels of hub MitoDEGs were verified in cell models and AD mice, and the role of OPA1 in mitochondrial damage and neuronal apoptosis was investigated. RESULTS The functions and pathways of DEGs were significantly enriched in AD, including immune response activation, IL1R pathway, mitochondrial metabolism, oxidative damage response and electron transport chain-oxphos system in mitochondria. Hub MitoDEGs closely related to AD were obtained based on PPI network, random forest and two machine learning algorithms. Five hub MitoDEGs associated with neurological disorders were identified by biological function examination. The hub MitoDEGs were found to be correlated with memory B cell, effector memory CD8 T cell, activated dendritic cell, natural killer T cell, type 17 T helper cell, Neutrophil, MDSC, plasmacytoid dendritic cell. These genes can also be used to predict the risk of AD and have good diagnostic efficacy. In addition, the mRNA expression levels of BDH1, TRAP1, OPA1, DLD in cell models and AD mice were consistent with the results of bioinformatics analysis, and expression levels of SPG7 showed a downward trend. Meanwhile, OPA1 overexpression alleviated mitochondrial damage and neuronal apoptosis induced by Aβ1-42. CONCLUSIONS Five potential hub MitoDEGs most associated with AD were identified. Their interaction with immune microenvironment may play a crucial role in the occurrence and prognosis of AD, which provides a new insight for studying the potential pathogenesis of AD and exploring new targets.
Collapse
Affiliation(s)
- Yaodan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Anshan Road No. 154, Tianjin, 300052, China.
| |
Collapse
|
42
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
43
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 PMCID: PMC10249313 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
44
|
Sun L, Zhang J, Li W, Sheng J, Xiao S. Neutrophil activation may trigger tau burden contributing to cognitive progression of chronic sleep disturbance in elderly individuals not living with dementia. BMC Med 2023; 21:205. [PMID: 37280592 PMCID: PMC10243051 DOI: 10.1186/s12916-023-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND To investigate the complex connection between chronic sleep disturbance (CSD) and cognitive progression. METHODS The Alzheimer's Disease Neuroimaging Initiative (ADNI) database was used to assign 784 non-dementia elderly into two groups: a normal sleep group (528 participants) and a CSD group (256 participants) via the Neuropsychiatric Inventory (NPI)-sleep subitem. Blood transcriptomics, blood neutrophil, cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD), and neutrophil-related inflammatory factors were measured. We also investigated gene set enrichment analysis (GSEA), Cox proportional hazards model for risk factors, and mediation and interaction effects between indicators. Cognitive progression is defined as the progression from cognitively normal to mild cognitive impairment (MCI)/dementia or from MCI to dementia. RESULTS CSD could significantly affect cognitive function. The activated neutrophil pathways for cognitive progression in CSD were identified by transcriptomics GSEA, which was reflected by increased blood neutrophil level and its correlation with cognitive progression in CSD. High tau burden mediated the influence of neutrophils on cognitive function and exacerbated the CSD-related risk of left hippocampal atrophy. Elevated neutrophil-related inflammatory factors were observed in the cognitive progression of CSD and were associated with brain tau burden. CONCLUSIONS Activated neutrophil pathway triggering tau pathology may underline the mechanism of cognitive progression in CSD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China
| | - Jianhua Sheng
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| | - Shifu Xiao
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| |
Collapse
|
45
|
Chou OHI, Zhou J, Li L, Chan JSK, Satti DI, Chou VHC, Wong WT, Lee S, Cheung BMY, Tse G, Chang C, Liu T. The Association Between Neutrophil-Lymphocyte Ratio and Variability with New-Onset Dementia: A Population-Based Cohort Study. J Alzheimers Dis 2023:JAD220111. [PMID: 37302029 DOI: 10.3233/jad-220111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous studies identified that neutrophil-to-lymphocyte ratio (NLR) may be a predictor of dementia. However, the associations between NLR and dementia at the population level were less explored. OBJECTIVE This retrospective population-based cohort study was designed to identify the associations between NLR and dementia among patients visiting for family medicine consultation in Hong Kong. METHODS The patients were recruited from January 1, 2000, to December 31, 2003, and followed up until December 31, 2019. The demographics, prior comorbidities, medications, and laboratory results were collected. The primary outcomes were Alzheimer's disease and related dementia and non-Alzheimer's dementia. Cox regression and restricted cubic spline were applied to identify associations between NLR and dementia. RESULTS A cohort of 9,760 patients (male: 41.08% ; baseline age median: 70.2; median follow-up duration: 4756.5 days) with complete NLR were included. Multivariable Cox regression identified that patients with NLR >5.44 had higher risks of developing Alzheimer's disease and related dementia (hazard ratio [HR]: 1.50, 95% Confidence interval [CI]: 1.17-1.93) but not non-Alzheimer's dementia (HR: 1.33; 95% CI: 0.60-2.95). The restricted cubic splines demonstrated that higher NLR was associated with Alzheimer's disease and related dementia. The relationship between the NLR variability and dementia was also explored; of all the NLR variability measures, only the coefficient of variation was predictive of non-Alzheimer's dementia (HR: 4.93; 95% CI: 1.03-23.61). CONCLUSION In this population-based cohort, the baseline NLR predicts the risks of developing dementia. Utilizing the baseline NLR during family medicine consultation may help predict the risks of dementia.
Collapse
Affiliation(s)
- Oscar Hou In Chou
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | - Jiandong Zhou
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lifang Li
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jeffrey Shi Kai Chan
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
| | - Danish Iltaf Satti
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
| | - Vanessa Hou Cheng Chou
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Sharen Lee
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
| | | | - Gary Tse
- Family Medicine Research Unit, Cardiovascular Analytics Group, Hong Kong, China-UK Collaboration
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, Kent, UK
| | - Carlin Chang
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Gullotta GS, De Feo D, Friebel E, Semerano A, Scotti GM, Bergamaschi A, Butti E, Brambilla E, Genchi A, Capotondo A, Gallizioli M, Coviello S, Piccoli M, Vigo T, Della Valle P, Ronchi P, Comi G, D'Angelo A, Maugeri N, Roveri L, Uccelli A, Becher B, Martino G, Bacigaluppi M. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24:925-940. [PMID: 37188941 DOI: 10.1038/s41590-023-01505-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aurora Semerano
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Erica Butti
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Brambilla
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Genchi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessia Capotondo
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Gallizioli
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS, Policlinico San Donato, Milan, Italy
| | - Tiziana Vigo
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Ronchi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Luisa Roveri
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Antonio Uccelli
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
47
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
48
|
Mehta NH, Zhou L, Li Y, McIntire LB, Nordvig A, Butler T, de Leon M, Chiang GC. Peripheral immune cell imbalance is associated with cortical beta-amyloid deposition and longitudinal cognitive decline. Sci Rep 2023; 13:8847. [PMID: 37258519 PMCID: PMC10232445 DOI: 10.1038/s41598-023-34012-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroinflammation is believed to be a key process in Alzheimer's disease (AD) pathogenesis. Recently, the neutrophil-to-lymphocyte (NLR) and lymphocyte-to-monocyte ratios (LMR) have been proposed to be useful peripheral markers of inflammation. However, it is unclear how these inflammatory ratios relate to AD pathology, such as β-amyloid (Aβ) plaques and tau tangles. Using 18F-florbetapir and 18F-flortaucipir positron emission tomography (PET), we sought to determine how the NLR and LMR are associated with AD pathology both cross-sectionally and longitudinally. We further evaluated associations between the NLR and LMR and longitudinal cognitive decline. Using data from the Alzheimer's Disease Neuroimaging Initiative, we analyzed blood, PET, and cognitive data from 1544 subjects-405 cognitively normal, 838 with mild cognitive impairment (MCI), and 301 with AD. Associations between the NLR and LMR and Aβ and tau on PET were assessed using ordinary least-squares and mixed-effects regression models, while adjusting for age, sex, years of education, and apolipoprotein E ε2 or ε4 carrier status. Associations between the NLR and LMR and cognitive function, as measured by the AD Assessment Scale-Cognitive Subscale, 13-item version, were also assessed. MCI and AD subjects had higher NLR (p = 0.017, p < 0.001, respectively) and lower LMR (p = 0.013, p = 0.023). The NLR, but not the LMR, was significantly associated with Aβ (p = 0.028), suggesting that higher NLR was associated with greater Aβ deposition in the brain. Neither the NLR nor the LMR was associated with tau deposition (p > 0.05). A higher NLR was associated with greater longitudinal cognitive decline (p < 0.001). A higher ratio of peripheral neutrophils to lymphocytes, possibly reflecting an imbalance in innate versus adaptive immunity, is related to greater Aβ deposition and longitudinal cognitive decline. As the field moves toward blood-based biomarkers of AD, the altered balance of innate versus adaptive immunity could be a useful biomarker of underlying pathology and may also serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Liangdong Zhou
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Yi Li
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10065, USA
| | - Anna Nordvig
- Department of Neurology, Alzheimer's Disease and Memory Disorders Program, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 428 East 72nd Street Suite 500, New York, NY, 10021, USA
| | - Tracy Butler
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Mony de Leon
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Gloria C Chiang
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA.
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY, 10065, USA.
| |
Collapse
|
49
|
Yu ZW, Wang Y, Li X, Tong XW, Zhang YT, Gao XY. Association between the neutrophil to lymphocyte ratio and mild cognitive impairment in patients with type 2 diabetes. Aging Clin Exp Res 2023; 35:1339-1345. [PMID: 37129710 DOI: 10.1007/s40520-023-02420-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
AIM Evidence indicates that type 2 diabetes (T2D) is associated with mild cognitive impairment (MCI). Inflammation is a recognized sign of many neurodegenerative diseases. The neutrophil-to-lymphocyte ratio (NLR) is a novel and inexpensive marker of inflammation. The purpose of this study was to investigate the relationship between the NLR and MCI in patients with T2D. METHODS The sample for this study comprised 787 patients with T2D, including 411 patients with normal cognitive function and 376 patients with MCI. Blood biochemical parameters and routine blood indicators were determined by an automatic analyzer. The NLR was calculated as the neutrophil count divided by the lymphocyte count. RESULTS Compared with the control group, the MCI group was older and had a higher NLR but a lower education level and Montreal Cognitive Assessment (MoCA) score (p < 0.05). Spearman correlation and multiple linear regression analyses confirmed that the MoCA score was negatively associated with the NLR (p < 0.001). Multivariate logistic regression analysis demonstrated that the NLR was an independent risk factor for MCI in patients with T2D (p < 0.001). After adjusting for confounding factors, the risk of MCI for those in the third tertile of the NLR was 2.907 times higher than that of those in the first tertile of the NLR (OR = 2.907, 95%CI = 1.978-4.272, p < 0.001). CONCLUSION An elevated NLR is associated with MCI in patients with T2D.
Collapse
Affiliation(s)
- Zi-Wei Yu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xue-Wei Tong
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yi-Tong Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
50
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|