1
|
Li Y, Bai N, Chang Y, Liu Z, Liu J, Li X, Yang W, Niu H, Wang W, Wang L, Zhu W, Chen D, Pan T, Guo CF, Shen G. Flexible iontronic sensing. Chem Soc Rev 2025. [PMID: 40165624 DOI: 10.1039/d4cs00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human-machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.
Collapse
Affiliation(s)
- Yang Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yu Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jianwen Liu
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Xiaoqin Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Wenhao Yang
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Hongsen Niu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Wenhao Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Di Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Upreti BB, Samui S, Dey RS. Electrochemical energy storage enhanced by intermediate layer stacking of heteroatom-enriched covalent organic polymers in exfoliated graphene. NANOSCALE 2025; 17:7980-7985. [PMID: 40014300 DOI: 10.1039/d5nr00098j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Covalent organic polymers (COPs) have garnered attention as potential materials for various applications, including catalysis, gas storage, and energy production. Owing to their highly conjugated structures, chemical stability, adjustable band gap, and tunable functionality, COPs have emerged as a versatile material. However, their inherent structural rigidity and poor conductivity pose challenges for energy storage applications. To address these limitations, graphene has been incorporated as a conductive filler due to its exceptional conductivity and structural integrity. This study presents an innovative approach utilizing in situ electrophoretic exfoliation of a graphite strip to develop a COP-graphene nanohybrid system (RTh-COP-EGR) that enhances supercapacitor performance. Due to the synergistic effect of heteroatom-enriched RTh-COP and conductive graphene layers, the resulting RTh-COP-EGR nanohybrid exhibits a capacitance of 4.2 mF cm-2 at a current density of 70 μA cm-2, with an energy density of 0.4725 mW h cm-2 and a power density of 314.4 W cm-2 at higher current densities. Furthermore, this nanohybrid exhibits an impressive capacity retention of 82% over 10 000 cycles, showcasing its potential for advanced energy storage applications.
Collapse
Affiliation(s)
- Bharat Bhushan Upreti
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India.
| | - Surajit Samui
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India.
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
3
|
Hou J, Sun W, Yuan Q, Ding L, Wan Y, Xiao Z, Zhu T, Lei X, Lin J, Cheacharoen R, Zhou Y, Wang S, Manshaii F, Xie J, Li W, Zhao J. Multiscale Engineered Bionic Solid-State Electrolytes Breaking the Stiffness-Damping Trade-Off. Angew Chem Int Ed Engl 2025; 64:e202421427. [PMID: 39825672 DOI: 10.1002/anie.202421427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
All-solid-state lithium metal batteries (LMBs) are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of Li dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes. This bionic electrolyte exhibits both high stiffness (Young's modulus=15 GPa, hardness=0.13 GPa) and damping (tanδ=0.08), breaking the trade-off. Thus, this composite electrolyte can not only inhibit Li dendrites growth but also ensure intimate contact with electrodes. Meanwhile, it also exhibits considerable Li+ transference number (0.62) and room temperature ionic conductivity (1.34×10-4 S cm-1), which is attributed to oxygen vacancies of the amorphous ceramic effectively decoupling the Li-TFSI ion pair. Consequently, the assembled Li symmetric battery shows an ultra-stable cycling (>2000 hours at 0.1 mA cm-2 at 60 °C, >500 hours at 0.1 mA cm-2 at 30 °C). Moreover, the LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li all-solid-state full cells both show excellent cycling performance. We demonstrate that this bionic strategy is a promising approach for the development of high-performance solid-state electrolytes.
Collapse
Affiliation(s)
- Junyu Hou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Wu Sun
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Qunyao Yuan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Longjiang Ding
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yanhua Wan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Zuohui Xiao
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Tianke Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Xingyu Lei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Jingsen Lin
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Rongrong Cheacharoen
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, P. R. China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Jin Xie
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
4
|
Qiu H, Pan S, Mutailipu M. Fluorination strategy toward chemical and functional modification. FUNDAMENTAL RESEARCH 2025; 5:640-653. [PMID: 40242533 PMCID: PMC11997599 DOI: 10.1016/j.fmre.2023.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 04/18/2025] Open
Abstract
Fluorination is a powerful strategy for chemical and functional modification of materials because the introduction of fluorine atoms can alter the physical, chemical and electronic properties of a material and thereby result in improved key properties. The fluorination strategy has enabled the modification of material chemistry and properties at the microscale of fluorooxysalts, providing a diversity previously unattainable in oxysalts. Here, we review the recent progress, status, future opportunities, and challenges with concern of the chemical and material aspects for fluorooxysalts that contain fluorine-involved M-F bonds. The entire evolution of fluorooxysalts-from synthesis to structural chemistry and their functionality-is examined from the perspective of the polyanion. This review paper details how qualities of optical crystals, battery materials, and inorganic framework materials can be greatly enhanced by understanding the chemistry of inorganic fluorooxysalts. This review centers on the critical role that fluorine plays in the synthesis, characterization, and physical properties of these materials.
Collapse
Affiliation(s)
- Haotian Qiu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang R, Cheng J, Teng W, Qin J, Xiao P, Wang C, Peng J, Liu H, Wang D. Locking Pd Nanoparticles in N-Doped Carbon Derived from Conjugated Microporous Polymer for Stable Lithium Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10570-10579. [PMID: 39932172 DOI: 10.1021/acsami.4c17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The uncontrollable growth of Li dendrites and large volume change during cycling limit the practical applications of Li metal anodes. Herein, the in situ-formed Pd nanoparticles locked in three-dimensional N-doped microporous carbon (Pd/NMC), which are derived from the catalyst for Buchwald-Hartwig (B-H) coupling polymerization, have been constructed to address these issues. The homogeneously distributed Pd nanoparticles effectively reduce the overpotential of Li nucleation through the reversible Li-Pd alloying reaction and boost Li+ diffusion by reducing the migration barrier. Furthermore, the Pd nanoparticles guide the Li selective nucleation and uniform growth in the 3D N-doped microporous carbon. Meanwhile, the spatial confinement effect alleviates the volume changes. As a result, the stable and reversible Li metal anode exhibits a high Coulombic efficiency of 98.7% over 1000 cycles at 1 mA cm-2. Full cells with LiFePO4 (LFP) as the cathode deliver a long lifespan of 600 cycles with 0.02% capacity decay per cycle at 2 C. This work provides a new polymerization-carbonization strategy to prepare a lithiophilic host for energy-dense Li metal batteries.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jinguo Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Wanming Teng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jinlei Qin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Pei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Che Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Junjun Peng
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
6
|
Cui J, Chen D, Xie M, Zhou Y, Dong S, Wei W. Efficient Preparation of Li 2FeSiO 4/C with High Purity and Excellent Electrochemical Performance in Li-Ion Batteries. Molecules 2025; 30:808. [PMID: 40005120 PMCID: PMC11858047 DOI: 10.3390/molecules30040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
One method to enhance the electrochemical performance of carbon-coated Li2FeSiO4 cathode material in lithium-ion batteries is to produce an ideal Li2FeSiO4 precursor with minimal impurities. A novel precursor for Li2FeSiO4 (Li2O·FeCO3·CH3OSiO2H) was synthesized through a methanol solvothermal reaction under stringent conditions (180 °C and 2.7 MPa), achieving a purity level of 93.2%. During synthesis, the new Li2FeSiO4 precursor exhibits unique self-purification properties and maintains a fine morphology after annealing. The resulting carbon-coated Li2FeSiO4 composites demonstrate a Brunauer-Emmett-Teller specific surface area of 102.4 m2/g and approximately 81% mesoporous volume, with 90% of the pore sizes measuring less than 39 nm. As a cathode material for lithium-ion batteries, this carbon-coated Li2FeSiO4 exhibits initial specific capacities of 172.3 mAh/g (charge) and 159.3 mAh/g (discharge). Remarkably, nearly 50% of the theoretical specific capacity remains after 1300 cycles at a rate of 0.1 C. The excellent electrochemical performance of the carbon-coated Li2FeSiO4 materials is demonstrated by their high lithium-ion diffusivity (DLi+) value of 1.26 × 10-11 cm2/s. Additionally, the enormous capacities-controlled diffusion contribution, which accounts for 70% of the total diffusion at a rate of 1C, is noteworthy. This performance can be attributed to the high purity of the carbon-free Li2FeSiO4 composite, which contains 91% Li2FeSiO4, as well as its favorable morphology.
Collapse
Affiliation(s)
- Jinhai Cui
- Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Dezhi Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengna Xie
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yongheng Zhou
- School of Material and Chemical Engineering, Kaifeng University, Kaifeng 475000, China
| | - Shuai Dong
- Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
7
|
Jiang Y, Chen K, He J, Sun Y, Zhang X, Yang X, Xie H, Liu J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J Colloid Interface Sci 2025; 678:200-209. [PMID: 39293364 DOI: 10.1016/j.jcis.2024.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Composite solid electrolytes (CSEs), which combine the advantages of solid polymer electrolytes and inorganic solid electrolytes, are considered to be promising electrolytes for all-solid-state lithium metal batteries. However, the current CSEs suffer from defects such as poor inorganic/organic interface compatibility, lithium dendrite growth, and easy damage of electrolyte membrane, which hinder the practical application of CSEs. Herein, a CSE (PBHL@LLZTO@DDB) with polyurethane (PBHL) as the polymer matrix and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified by silane coupling agent (DDB) as inorganic fillers (LLZTO@DDB) has been prepared. Disulfide bond exchange reactions between PBHL and LLZTO@DDB enable PBHL@LLZTO@DDB to form a dynamic three-dimensional (3D) inorganic/organic hybrid network, which promotes the uniform dispersion of LLZTO in PBHL@LLZTO@DDB, improves the Li+ conductivity (1.24 ± 0.08 × 10-4 S cm-1 at 30 ℃), and broadens the electrochemical stability window (5.16 V vs. Li+/Li). Moreover, a combination of hydrogen bonds and disulfide bonds endows PBHL@LLZTO@DDB with excellent self-healing properties. As such, both all-solid-state symmetric and full cells exhibit excellent cycle performance at ambient temperature. More importantly, the healed PBHL@LLZTO@DDB can almost completely restore its original electrochemical properties, indicating its application potential in flexible electronic products.
Collapse
Affiliation(s)
- Ying Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinping He
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxing Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
8
|
Han G, Hu Q, Gao K, Wang Y, Yao J. LiFe 0.3Mn 0.7PO 4-on-MXene heterostructures as highly reversible cathode materials for Lithium-ion batteries. J Colloid Interface Sci 2025; 677:513-522. [PMID: 39154444 DOI: 10.1016/j.jcis.2024.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Two-dimensional (2D) heterostructure materials, incorporating the collective strengths and synergetic properties of individual building blocks, have attracted great interest as a novel paradigm in electrode materials science. The family of 2D transition metal carbides and nitrides (e.g., MXenes) has become an appealing platform for fabricating functional materials with strong application performance. Herein, a 2D LiFe0.3Mn0.7PO4 (LFMP)-on-MXene heterostructure composite is prepared through an electrostatic self-assembly procedure. The functional groups on the surface of MXenes possess highly electronegative properties that facilitate the incorporation of LFMPs into MXenes to construct heterostructure composites. The special heterostructure of nanosized-LiFe0.3Mn0.7PO4 and MXene provides rapid Li+ and electron transport in the cathodes. This LiFe0.3Mn0.7PO4-3.0 wt% MXene composite can exhibit an excellent rate capability of 98.3 mAh g-1 at 50C and a very stable cycling performance with a capacity retention of 94.3 % at 5C after 1000 cycles. Furthermore, NaFe0.3Mn0.7PO4-3.0 wt% MXene with stable cyclability can be obtained by an electrochemical conversion method with LiFe0.3Mn0.7PO4-3.0 wt% MXene. Ex-situ XRD suggests that LiFe0.3Mn0.7PO4-on-MXene achieves a highly reversible structural evolution with a solid solution phase transformation (LFMP→LixFe0.3Mn0.7PO4 (LxFMP), LxFMP→LFMP) and a two-phase reaction (LxFMP←→Fe0.3Mn0.7PO4 (FMP)). This work provides a new direction for the use of MXenes to fabricate 2D heterostructures for lithium-ion batteries.
Collapse
Affiliation(s)
- Guangming Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiao Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; FRAPP'S Chemical Industry Co., Ltd., 323316, China.
| | - Kaidi Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Kim S, Park S, Kim M, Cho Y, Kang G, Ko S, Yoon D, Hong S, Choi N. Improving Fast-Charging Performance of Lithium-Ion Batteries through Electrode-Electrolyte Interfacial Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411466. [PMID: 39576041 PMCID: PMC11744671 DOI: 10.1002/advs.202411466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 01/21/2025]
Abstract
The solid-electrolyte interphase (SEI) is a key element in anode-electrolyte interactions and ultimately contributes to improving the lifespan and fast-charging capability of lithium-ion batteries. The conventional additive vinyl carbonate (VC) generates spatially dense and rigid poly VC species that may not ensure fast Li+ transport across the SEI on the anode. Here, a synthetic additive called isosorbide 2,5-dimethanesulfonate (ISDMS) with a polar oxygen-rich motif is reported that can competitively coordinate with Li+ ions and allow the entrance of PF6 - anions into the core solvation structure. The existence of ISDMS and PF6 - in the core solvation structure along with Li+ ions enables the movement of anions toward the anode during the first charge, leading to a significant contribution of ISDMS and LiPF6 to SEI formation. ISDMS leads to the creation of ionically conductive and electrochemically stable SEI that can elevate the fast-charging performance and increase the lifespan of LiNi0.8Co0.1Mn0.1O2 (NCM811)/graphite full cells. Additionally, a sulfur-rich cathode-electrolyte interface with a high stability under elevated-temperature and high-voltage conditions is constructed through the sacrificial oxidation of ISDMS, thus concomitantly improving the stability of the electrolyte and the NCM811 cathode in a full cell with a charge voltage cut-off of 4.4 V.
Collapse
Affiliation(s)
- Seungwon Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sewon Park
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Minjee Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Yoonhan Cho
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Gumin Kang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sunghyun Ko
- Samwha Paint Ind. Co., Ltd178 Byeolmang‐ro, Danwon‐guAnsanGyeonggi‐do15619Republic of Korea
| | - Daebong Yoon
- Samwha Paint Ind. Co., Ltd178 Byeolmang‐ro, Danwon‐guAnsanGyeonggi‐do15619Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Nam‐Soon Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
10
|
Park SM, Salunkhe TT, Yoo JH, Kim IH, Kim IT. Artificial Graphite-Based Silicon Composite Anodes for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1953. [PMID: 39683341 DOI: 10.3390/nano14231953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
To develop an advanced anode for lithium-ion batteries, the electrochemical performance of a novel material comprising a porous artificial carbon (PAC)-Si composite was investigated. To increase the pore size and surface area of the composite, ammonium bicarbonate (ABC) was introduced during high-energy ball-milling, ensuring a uniform distribution of silicon within the PAC matrix. The physical and structural properties of the developed material were evaluated using several advanced techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), and galvanostatic intermittent titration (GITT). Artificial graphite contains several macropores that can accommodate volume hysteresis and provide effective sites for anchoring Si nanoparticles, enabling efficient electrochemical reactions. GITT analysis revealed that the PAC-Si-CB-ABC composite exhibited superior lithium-ion diffusion compared to conventional graphite. The developed PAC(55%)-Si(45%)-CB-ABC electrode with PAA as the binder demonstrated a reversible capacity of 850 mAh g-1 at 100 mA g-1 and a high-rate capability of 600 mAh g-1 at 2000 mA g-1. A full cell employing the NCM622 cathode exhibited reversible cyclability of 128.9 mAh g-1 with a reasonable energy density of 323.3 Wh kg-1. These findings suggest that the developed composite is a useful anode system for advanced lithium-ion batteries.
Collapse
Affiliation(s)
- Sae Min Park
- Department of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Tejaswi Tanaji Salunkhe
- Department of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Ji Hyeon Yoo
- Department of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Il Ho Kim
- R&D Center, Black Materials Co., Ltd., Hwaseong-si 18255, Gyeonggi-do, Republic of Korea
| | - Il Tae Kim
- Department of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Xie L, Liang Y, Wang J, Wu W, Zhang J, Zhang J. Boosting Fast Charging of Lithium-Metal Batteries via Weak Interactions Between Non-Solvating Solvents and Anions in High-Safety Eutectic Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407484. [PMID: 39370764 DOI: 10.1002/smll.202407484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Indexed: 10/08/2024]
Abstract
Proper design of the solvation structure is crucial for the development of lithium metal batteries (LMBs). In this paper, the use of 1,2-Dimethoxyethane (DME) as a non-solvating cosolvent in amide-based eutectic electrolytes is proposed to address challenges related to high viscosity, high polarization, and low conductivity, thus enhancing the compatibility with lithium metal anodes. Through physical characterization combined with simulation calculations the existence of a weak interaction between DME and anions is confirmed, which promotes the dissociation of lithium salts and increases the Li+ transference number and diffusion coefficient, thus improving the fast charging performance of eutectic electrolytes. In addition, stable SEI layer enriched with inorganic components is formed during the cycling process, resulting in uniform and dense lithium deposition. The fast charging performance of the cell can be effectively improved by utilizing the interaction between anions and solvents. The LiFePO4 (LFP)||Li cell has a capacity retention of 97% after 1200 cycles at 5 C and also performs well at high temperature of 50 °C. Overall, the use of a non-solvating cosolvent in eutectic electrolytes presents a promising and innovative approach for enhancing electrolyte performance in LMBs.
Collapse
Affiliation(s)
- Lin Xie
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yihong Liang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jialin Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wanbao Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 21300, China
- Changzhou Qianmu New Energy Co. Ltd., Changzhou, 21300, China
| | - Jichuan Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
12
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
13
|
Quan B, Du L, Zhou Z, Sun X, Travas-Sejdic J, Zhu B. Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors. Gels 2024; 10:688. [PMID: 39590044 PMCID: PMC11594141 DOI: 10.3390/gels10110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
In the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel matrix. The PEDOT-PVA/PEGDA double-network hydrogel shows both excellent mechanical and electrochemical performance, having a strain up to 498%, electrical conductivity as high as 5 S m-1 and specific capacitance of 84.1 ± 3.6 mF cm⁻2. After assembling two PEDOT-PVA/PEGDA double-network hydrogel electrodes with the free-standing boron cross-linked PVA/KCl hydrogel electrolyte, the formed supercapacitor device exhibits a specific capacitance of 54.5 mF cm⁻2 at 10 mV s-1, with an energy density of 4.7 μWh cm-2. The device exhibits excellent electrochemical stability with 97.6% capacitance retention after 3000 charging-discharging cycles. In addition, the hydrogel also exhibits great sensitivity to strains and excellent antifouling properties. It was also found that the abovementioned hydrogel can achieve stable signals under both small and large deformations as a flexible sensor. The flexible and antifouling PEDOT-PVA/PEGDA double-network hydrogel-based supercapacitor is a promising power storage device with potential applications in wearable electronics.
Collapse
Affiliation(s)
- Bu Quan
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (B.Q.); (L.D.); (X.S.); (J.T.-S.)
| | - Linjie Du
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (B.Q.); (L.D.); (X.S.); (J.T.-S.)
| | - Zixuan Zhou
- Key Laboratory of Advanced Civil Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 200070, China;
| | - Xin Sun
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (B.Q.); (L.D.); (X.S.); (J.T.-S.)
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (B.Q.); (L.D.); (X.S.); (J.T.-S.)
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (B.Q.); (L.D.); (X.S.); (J.T.-S.)
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
14
|
Tian Y, Huang B, Song Y, Zhang Y, Guan D, Hong J, Cao D, Wang E, Xu L, Shao-Horn Y, Jiang Y. Effect of ion-specific water structures at metal surfaces on hydrogen production. Nat Commun 2024; 15:7834. [PMID: 39244565 PMCID: PMC11380671 DOI: 10.1038/s41467-024-52131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.
Collapse
Affiliation(s)
- Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
- Department of Physics, Temple University, Philadelphia, Pennsylvania, USA
| | - Yirui Zhang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Duanyun Cao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
| | - Enge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China
- Songshan Lake Materials Lab, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang, P. R. China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China.
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing, P. R. China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, P. R. China.
| |
Collapse
|
15
|
Peng X, Yuan Y, Gu D, Zheng X, Li D, Wu L, Huang G, Wang J, Pan F. Unlocking the Power of Magnesium Batteries: Synergistic Effect of InSb-C Composites to Achieve Superior Electrochemical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400967. [PMID: 38751056 DOI: 10.1002/smll.202400967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Indexed: 10/04/2024]
Abstract
Pure magnesium anode used in rechargeable magnesium batteries (RMB) exhibits high theoretical capacity but has been challenged by the passivation issue with conventional electrolytes. Alloy-type anodes have the potential to surpass this issue and have attracted increasing attention. However, the kinetic performance and stabilities of conventional alloy anodes are still constrained. In this study, the InSb-10%C anode is synthesized by a two-step high-energy ball milling process. The InSb-10%C anode exhibits a remarkably high capacity of up to 448 mA h g-1, significantly improved cycle performance (234 mA h g-1 at 100 cycles) and rate performance (168 mA h g-1 at 500 mA g-1). The above-mentioned superior performance of the InSb-10%C anode for RMBs is attributed to the cellular graphitized amorphous carbon composite structure (CGA) which effectively refines the particle size and restricts the volume expansion. Additionally, the reduced surface electron density of InSb combined with the high conductivity resulting from graphitization enhances the Mg2+ diffusion performance. Notably, the InSb-10%C anode demonstrates good compatibility with conventional halogen-free salt ether-based electrolytes in the full battery configuration.
Collapse
Affiliation(s)
- Xianhao Peng
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Yuan Yuan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Dachong Gu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Xingwang Zheng
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Dajian Li
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Liang Wu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Guangsheng Huang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Jingfeng Wang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Fusheng Pan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| |
Collapse
|
16
|
Zhuang H, Xiao H, Zhang T, Zhang F, Han P, Xu M, Dai W, Jiao J, Jiang L, Gao Q. LiF-Rich Alloy-Doped SEI Enabling Ultra-Stable and High-Rate Li Metal Anode. Angew Chem Int Ed Engl 2024; 63:e202407315. [PMID: 38818545 DOI: 10.1002/anie.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.
Collapse
Affiliation(s)
- Huifeng Zhuang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hong Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tengfei Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Fanchao Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pinyu Han
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengyuan Xu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wenjing Dai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Junrong Jiao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiuming Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
17
|
Wang LX, Sun C, Huang SL, Kang B, Chen HY, Xu JJ. Single-Particle Imaging Reveals the Electrical Double-Layer Modulated Ion Dynamics at Crowded Interface. NANO LETTERS 2024; 24:9743-9749. [PMID: 39072414 DOI: 10.1021/acs.nanolett.4c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The dynamics of ion transport at the interface is the critical factor for determining the performance of an electrochemical energy storage device. While practical applications are realized in concentrated electrolytes and nanopores, there is a limited understanding of their ion dynamic features. Herein, we studied the interfacial ion dynamics in room-temperature ionic liquids by transient single-particle imaging with microsecond-scale resolution. We observed slowed-down dynamics at lower potential while acceleration was observed at higher potential. Combined with simulation, we found that the microstructure evolution of the electric double layer (EDL) results in potential-dependent kinetics. Then, we established a correspondence between the ion dynamics and interfacial ion composition. Besides, the ordered ion orientation within EDL is also an essential factor for accelerating interfacial ion transport. These results inspire us with a new possibility to optimize electrochemical energy storage through the good control of the rational design of the interfacial ion structures.
Collapse
Affiliation(s)
- Lu-Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Lan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Li X, Li K, Yuan M, Zhang J, Liu H, Li A, Chen X, Song H. Graphene-doped silicon-carbon materials with multi-interface structures for lithium-ion battery anodes. J Colloid Interface Sci 2024; 667:470-477. [PMID: 38648703 DOI: 10.1016/j.jcis.2024.04.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The carbon nanomaterials are usually used to improve the electrical conductivity and stability of silicon (Si) anodes for lithium-ion batteries. However, the Si-based composites containing carbon nanomaterials generally show large specific surface area, leading to severe side reactions that generate large amounts of solid electrolyte interphase films. Herein, we embedded graphene oxide (GO) and silicon nanoparticles (Si NPs) uniformly in pitch matrix by solvent dispersion. The internally doped GO reduces the exposed surface and improves the electrical conductivity of the composite. Meanwhile, the multi-interface structures are constructed inside to limit the domains of Si NPs and improve the structural stability of the material. When evaluated as anodes, the Si/graphene/pitch-based carbon composite anode exhibits the outstanding electrochemical properties, delivering a reversible capacity of 820.8 mAh/g at 50 mA g-1, as well as a capacity retention of 93.6 % after 1000 cycles at 2 A/g. In addition, when assembled with the LiFePO4 cathode, the full cell exhibits an impressive capacity retention of 95 % after 100 cycles at 85 mA g-1. This work provides a valuable design concept for the development of Si/carbon anodes.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Kun Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Man Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jiapeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haiyan Liu
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group CO., Ltd, Jinan, PR China
| | - Ang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaohong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huaihe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
19
|
Sood Y, Singh K, Mudila H, Lokhande P, Singh L, Kumar D, Kumar A, Mubarak NM, Dehghani MH. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon 2024; 10:e33643. [PMID: 39027581 PMCID: PMC11255519 DOI: 10.1016/j.heliyon.2024.e33643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in polymer science and engineering underscore the importance of creating sophisticated soft materials characterized by well-defined structures and adaptable properties to meet the demands of emerging applications. The primary objective of polymeric composite technology is to enhance the functional utility of materials for high-end purposes. Both the inherent qualities of the materials and the intricacies of the synthesis process play pivotal roles in advancing their properties and expanding their potential applications. Polypyrrole (PPy)-based composites, owing to their distinctive properties, hold great appeal for a variety of applications. Despite the limitations of PPy in its pure form, these constraints can be effectively overcome through hybridization with other materials. This comprehensive review thoroughly explores the existing literature on PPy and PPy-based composites, providing in-depth insights into their synthesis, properties, and applications. Special attention is given to the advantages of intrinsically conducting polymers (ICPs) and PPy in comparison to other ICPs. The impact of doping anions, additives, and oxidants on the properties of PPy is also thoroughly examined. By delving into these aspects, this overview aims to inspire researchers to delve into the realm of PPy-based composites, encouraging them to explore new avenues for flexible technology applications.
Collapse
Affiliation(s)
- Yuvika Sood
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kartika Singh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Harish Mudila
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - P.E. Lokhande
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, 7810003, Chile
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anil Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Jeon S, Lm S, Kang I, Shin D, Yu SH, Lee M, Hong J. Solution-Based Deep Prelithiation for Lithium-Ion Capacitors with High Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401295. [PMID: 38412421 DOI: 10.1002/smll.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Lithium-ion capacitors (LICs) exhibit superior power density and cyclability compared to lithium-ion batteries. However, the low initial Coulombic efficiency (ICE) of amorphous carbon anodes (e.g., hard carbon (HC) and soft carbon (SC)) limits the energy density of LICs by underutilizing cathode capacity. Here, a solution-based deep prelithiation strategy for carbon anodes is applied using a contact-ion pair dominant solution, offering high energy density based on a systematic electrode balancing based on the cathode capacity increased beyond the original theoretical limit. Increasing the anode ICE to 150% over 100%, the activated carbon (AC) capacity is doubled by activating Li+ cation storage, which unleashes rocking-chair LIC operation alongside the dual-ion-storage mechanism. The increased AC capacity results in an energy density of 106.6 Wh kg-1 AC+SC, equivalent to 281% of that of LICs without prelithiation. Moreover, this process lowers the cathode-anode mass ratio, reducing the cell thickness by 67% without compromising the cell capacity. This solution-based deep chemical prelithiation promises high-energy LICs based on transition metal-free, earth-abundant active materials to meet the practical demands of power-intensive applications.
Collapse
Affiliation(s)
- Seungyun Jeon
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Sehee Lm
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Inyeong Kang
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Dongki Shin
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Minah Lee
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Jihyun Hong
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| |
Collapse
|
21
|
Zhu Q, Fu D, Ji Q, Yang Z. A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion. Molecules 2024; 29:2522. [PMID: 38893398 PMCID: PMC11173979 DOI: 10.3390/molecules29112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Macrocycles composed of diverse aromatic or nonaromatic structures, such as cyclodextrins (CDs), calixarenes (CAs), cucurbiturils (CBs), and pillararenes (PAs), have garnered significant attention due to their inherent advantages of possessing cavity structures, unique functional groups, and facile modification. Due to these distinctive features enabling them to facilitate ion insertion and extraction, form crosslinked porous structures, offer multiple redox-active sites, and engage in host-guest interactions, macrocycles have made huge contributions to electrochemical energy storage and conversion (EES/EEC). Here, we have summarized the recent advancements and challenges in the utilization of CDs, CAs, CBs, and PAs as well as other novel macrocycles applied in EES/EEC devices. The molecular structure, properties, and modification strategies are discussed along with the corresponding energy density, specific capacity, and cycling life properties in detail. Finally, crucial limitations and future research directions pertaining to these macrocycles in electrochemical energy storage and conversion are addressed. It is hoped that this review is able to inspire interest and enthusiasm in researchers to investigate macrocycles and promote their applications in EES/EEC.
Collapse
Affiliation(s)
- Qijian Zhu
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Danfei Fu
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| | - Qing Ji
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
22
|
Shi H, Fu Z, Xu W, Xu N, He X, Li Q, Sun J, Jiang R, Lei Z, Liu ZH. Dual-Modified Electrospun Fiber Membrane as Separator with Excellent Safety Performance and High Operating Temperature for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309896. [PMID: 38126670 DOI: 10.1002/smll.202309896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Polyacrylonitrile/Boric acid/Melamine/the delaminated BN nanosheets electrospun fiber membrane (PB3N1BN) with excellent mechanical property, high thermal stability, superior flame-retardant performance, and good wettability are fabricated by electrospinning PAN/DMF/H3BO3/C3H6N6/ the delaminated BN nanosheets (BNNSs) homogeneous viscous suspension and followed by a heating treatment. BNNSs are obtained by delaminating the bulk h-BN in isopropyl alcohol (IPA) with an assistance of Polyvinylpyrrolidone (PVP). Benefiting from the cross-linked pore structure and high-temperature stability of BNNSs, PB3N1BN electrospun fiber membrane delivers high thermal dimensional stability (almost no size contraction at 200 °C), excellent mechanical property (19.1 MPa), good electrolyte wettability (contact angle about 0°), and excellent flame retardancy (minimum total heat release of 3.2 MJ m-2). Moreover, the assembled LiFePO4/PB3N1BN/Li asymmetrical battery using LiFePO4 as the cathode and Li as the anode has a high capacity (169 mAh g-1 at 0.5 C), exceptional rate capability (129 mAh g-1 at 5 C), the prominent cycling stability without obvious decay after 400 cycles, and a good discharge capacity of 152 mAh g-1 at a high temperature of 80 °C. This work offers a new structural design strategy toward separators with excellent mechanical performance, good wettability, and high thermal stability for lithium-ion batteries.
Collapse
Affiliation(s)
- Huanbao Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zitai Fu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wenpu Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Naicai Xu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, P. R. China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ruibing Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
23
|
Yin A, Chen R, Yin R, Zhou S, Ye Y, Wang Y, Wang P, Qi X, Liu H, Liu J, Yu S, Wei J. An ultra-soft conductive elastomer for multifunctional tactile sensors with high range and sensitivity. MATERIALS HORIZONS 2024; 11:1975-1988. [PMID: 38353589 DOI: 10.1039/d3mh02074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Flexible tactile sensors have become important as essential tools for facilitating human and object interactions. However, the materials utilized for the electrodes of capacitive tactile sensors often cannot simultaneously exhibit high conductivity, low modulus, and strong adhesiveness. This limitation restricts their application on flexible interfaces and results in device failure due to mechanical mismatch. Herein, we report an ultra-low modulus, highly conductive, and adhesive elastomer and utilize it to fabricate a microstructure-coupled multifunctional flexible tactile sensor. We prepare a supramolecular conductive composite film (SCCF) as the electrode of the tactile sensor using a supramolecular deep eutectic solvent, polyvinyl alcohol (PVA) solution, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and MXene suspension. We employ a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) as the dielectric layer to fabricate capacitive sensors with an electrical double layer structure. Furthermore, we enhance the performance of the device by incorporating coupled pyramid and dome microstructures, which endow the sensor with multi-directional force detection. Our SCCF exhibits extremely high conductivity (reaching 710 S cm-1), ultra-low modulus (0.8 MPa), and excellent interface adhesion strength (>120 J m-2). Additionally, due to the outstanding conductivity and unique structure of the SCCF, it possesses remarkable electromagnetic shielding ability (>50 dB). Moreover, our device demonstrates a high sensitivity of up to 1756 kPa-1 and a wide working range reaching 400 kPa, combining these attributes with the requirements of an ultra-soft human-machine interface to ensure optimal contact between the sensor and interface materials. This innovative and flexible tactile sensor holds great promise and potential for addressing various and complex demands of human-machine interaction.
Collapse
Affiliation(s)
- Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ruiguang Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Rui Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Wang L, Zhong Y, Wang H, Malyi OI, Wang F, Zhang Y, Hong G, Tang Y. New Emerging Fast Charging Microscale Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307027. [PMID: 38018336 DOI: 10.1002/smll.202307027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Fast charging lithium (Li)-ion batteries are intensively pursued for next-generation energy storage devices, whose electrochemical performance is largely determined by their constituent electrode materials. While nanosizing of electrode materials enhances high-rate capability in academic research, it presents practical limitations like volumetric packing density and high synthetic cost. As an alternative to nanosizing, microscale electrode materials cannot only effectively overcome the limitations of the nanosizing strategy but also satisfy the requirement of fast-charging batteries. Therefore, this review summarizes the new emerging microscale electrode materials for fast charging from the commercialization perspective. First, the fundamental theory of electronic/ionic motion in both individual active particles and the whole electrode is proposed. Then, based on these theories, the corresponding optimization strategies are summarized toward fast-charging microscale electrode materials. In addition, advanced functional design to tackle the mechanical degradation problems related to next generation high capacity alloy- and conversion-type electrode materials (Li, S, Si et al.) for achieving fast charging and stable cycling batteries. Finally, general conclusions and the future perspective on the potential research directions of microscale electrode materials are proposed. It is anticipated that this review will provide the basic guidelines for both fundamental research and practical applications of fast-charging batteries.
Collapse
Affiliation(s)
- Litong Wang
- School of Science, Qingdao University of Technology, Qingdao, 266520, P. R. China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems & Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Huibo Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Oleksandr I Malyi
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| | - Feng Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuxin Tang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
25
|
Hu X, Wang Y, Qiu Y, Yu X, Shi Q, Liu Y, Feng W, Zhao Y. Non-aqueous Liquid Electrolyte Additives for Sodium-Ion Batteries. Chem Asian J 2024; 19:e202300960. [PMID: 38143238 DOI: 10.1002/asia.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/26/2023]
Abstract
Sodium-ion batteries (SIBs) have been recognized as one of the most promising new energy storage devices for their rich sodium resources, low cost and high safety. The electrolyte, as a bridge connecting the cathode and anode electrodes, plays a vital role in determining the performance of SIBs, such as coulombic efficiency, energy density and cycle life. Therefore, the overall performance of SIBs could be significantly improved by adjusting the electrolyte composition or adding a small number of functional additives. In this review, the fundamentals of SIB electrolytes including electrode-electrolyte interface and solvation structure are introduced. Then, the mechanisms of electrolyte additive action on SIBs are discussed, with a focus on film-forming additives, flame-retardant additives and overcharge protection additives. Finally, the future research of electrolytes is prospected from the perspective of scientific concepts and practical applications.
Collapse
Affiliation(s)
- Xinhong Hu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yirong Wang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yi Qiu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuan Yu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qinhao Shi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yiming Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wuliang Feng
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yufeng Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
26
|
Singh AN, Meena A, Nam KW. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024; 10:122. [PMID: 38391452 PMCID: PMC10888500 DOI: 10.3390/gels10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
27
|
Hu J, Wang W, Zhou B, Sun J, Chin WS, Lu L. Click Chemistry in Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306622. [PMID: 37806765 DOI: 10.1002/smll.202306622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Lithium-metal batteries (LMBs) are considered the "holy grail" of the next-generation energy storage systems, and solid-state electrolytes (SSEs) are a kind of critical component assembled in LMBs. However, as one of the most important branches of SSEs, polymer-based electrolytes (PEs) possess several native drawbacks including insufficient ionic conductivity and so on. Click chemistry is a simple, efficient, regioselective, and stereoselective synthesis method, which can be used not only for preparing PEs with outstanding physical and chemical performances, but also for optimizing the stability of solid electrolyte interphase (SEI) layer and elevate the cycling properties of LMBs effectively. Here it is primarily focused on evaluating the merits of click chemistry, summarizing its existing challenges and outlining its increasing role for the designing and fabrication of advanced PEs. The fundamental requirements for reconstructing artificial SEI layer through click chemistry are also summarized, with the aim to offer a thorough comprehension and provide a strategic guidance for exploring the potentials of click chemistry in the field of LMBs.
Collapse
Affiliation(s)
- Ji Hu
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Wanhui Wang
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Binghua Zhou
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Jianguo Sun
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
| | - Wee Shong Chin
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Li Lu
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| |
Collapse
|
28
|
Batool H, Majid A, Ahmad S, Mubeen A, Alkhedher M, Saeed WS, Al-Owais AA, Afzal A. Phase-Dependent Properties of Manganese Oxides and Applications in Electrovoltaics. ACS OMEGA 2024; 9:2457-2467. [PMID: 38250427 PMCID: PMC10795039 DOI: 10.1021/acsomega.3c06913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
This study reports first-principles predictions as well as experimental synthesis of manganese oxide nanoparticles under different conditions. The theoretical part of the work comprised density functional theory (DFT)-based calculations and first-principles molecular dynamics (MD) simulations. The extensive research efforts and the current challenges in enhancing the performance of the lithium-ion battery (LIB) provided motivation to explore the potential of these materials for use as an anode in the battery. The structural analysis of the synthesized samples carried out using X-ray diffraction (XRD) confirmed the tetragonal structure of Mn3O4 on heating at 450 and 550 °C and the cubic structure of Mn2O3 on heating at 650 °C. The structures are found in the form of nanoparticles at 450 and 550 °C, but at 650 °C, the material appeared in the form of a nanoporous structure. Further, we investigated the electrochemical functionality of Mn2O3 and Mn3O4 as anode materials for utilization in LIBs via MD simulations. Based on the investigations of their electrical, structural, diffusion, and storage behavior, the anodic character of Mn2O3 and Mn3O4 is predicted. The findings indicated that 10 lithium atoms adsorb on Mn2O3, whereas 5 lithium atoms adsorb on Mn3O4 when saturation is taken into account. The storage capacities of Mn2O3 and Mn3O4 are estimated to be 1697 and 585 mAh g-1, respectively. The maximum value of lithium insertion voltage per Li in Mn2O3 is 0.93 and 0.22 V in Mn3O4. Further, the diffusion coefficient values are found as 2.69 × 10-9 and 2.65 × 10-10 m2 s-1 for Mn2O3 and Mn3O4, respectively, at 300 K. The climbing image nudged elastic band method (Cl-NEB) was implemented, which revealed activation energy barriers of Li as 0.30 and 0.75 eV for Mn2O3 and Mn3O4, respectively. The findings of the work revealed high specific capacity, low Li diffusion energy barrier, and low open circuit voltage for the Mn2O3-based anode for use in LIBs.
Collapse
Affiliation(s)
- Hira Batool
- Department
of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Abdul Majid
- Department
of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Sheraz Ahmad
- Department
of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Adil Mubeen
- Department
of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Mohammad Alkhedher
- Mechanical
and Industrial Engineering Department, Abu
Dhabi University, Abu Dhabi 59911, United Arab
Emirates
| | - Waseem Sharaf Saeed
- Department
of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Ahmad Abdulaziz Al-Owais
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aqeel Afzal
- Ryan
Institute’s Centre for Climate and Air Pollution Studies, Physics,
School of Natural Sciences, University of
Galway, Galway H91 TK33, Ireland
| |
Collapse
|
29
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
30
|
Yin H, Tang J, Zhang K, Lin S, Xu G, Qin LC. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:45. [PMID: 38202500 PMCID: PMC10780324 DOI: 10.3390/nano14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Developing electrode materials with high voltage and high specific capacity has always been an important strategy for increasing the energy density of lithium-ion capacitors (LICs). However, organic-based electrolytes with lithium salts limit their potential for application in LICs to voltages below 3.8 V in terms of polarization reactions. In this work, we introduce Li[N(C2F5SO2)2] (lithium Bis (pentafluoroethanesulfonyl)imide or LiBETI), an electrolyte with high conductivity and superior electrochemical and mechanical stability, to construct a three-electrode LIC system. After graphite anode pre-lithiation, the anode potential was stabilized in the three-electrode LIC system, and a stable solid electrolyte interface (SEI) film formed on the anode surface as expected. Meanwhile, the LIC device using LiBETI as the electrolyte, and a self-synthesized graphene/single-walled carbon nanotube (SWCNT) composite as the cathode, showed a high voltage window, allowing the LIC to achieve an operating voltage of 4.5 V. As a result, the LIC device has a high energy density of up to 182 Wh kg-1 and a 2678 W kg-1 power density at 4.5 V. At a current density of 2 A g-1, the capacity retention rate is 72.7% after 10,000 cycles.
Collapse
Affiliation(s)
- Hang Yin
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; (H.Y.); (K.Z.); (S.L.); (G.X.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-0006, Ibaraki, Japan
| | - Jie Tang
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; (H.Y.); (K.Z.); (S.L.); (G.X.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-0006, Ibaraki, Japan
| | - Kun Zhang
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; (H.Y.); (K.Z.); (S.L.); (G.X.)
| | - Shiqi Lin
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; (H.Y.); (K.Z.); (S.L.); (G.X.)
| | - Guangxu Xu
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; (H.Y.); (K.Z.); (S.L.); (G.X.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-0006, Ibaraki, Japan
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA;
| |
Collapse
|
31
|
Zhao CX, Liu X, Liu JN, Wang J, Wan X, Li XY, Tang C, Wang C, Song L, Shui J, Peng HJ, Li BQ, Zhang Q. Inductive Effect on Single-Atom Sites. J Am Chem Soc 2023; 145:27531-27538. [PMID: 38054906 DOI: 10.1021/jacs.3c09190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xi-Yao Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Wang B, Zhang W, Lai C, Liu Y, Guo H, Zhang D, Guo Z. Facile Design of Flexible, Strong, and Highly Conductive MXene-Based Composite Films for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302335. [PMID: 37661587 DOI: 10.1002/smll.202302335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Weiye Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Chenhuan Lai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yi Liu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Hongwu Guo
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Daihui Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
33
|
Derelli D, Caddeo F, Frank K, Krötzsch K, Ewerhardt P, Krüger M, Medicus S, Klemeyer L, Skiba M, Ruhmlieb C, Gutowski O, Dippel AC, Parak WJ, Nickel B, Koziej D. Photodegradation of CuBi 2 O 4 Films Evidenced by Fast Formation of Metallic Bi using Operando Surface-sensitive X-ray Scattering. Angew Chem Int Ed Engl 2023; 62:e202307948. [PMID: 37635657 DOI: 10.1002/anie.202307948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.
Collapse
Affiliation(s)
- Davide Derelli
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Francesco Caddeo
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Kilian Frank
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Kilian Krötzsch
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Patrick Ewerhardt
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Marco Krüger
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Sophie Medicus
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Lars Klemeyer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Marvin Skiba
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Charlotte Ruhmlieb
- University of Hamburg, Institute of Physical Chemistry, Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Wolfgang J Parak
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Bert Nickel
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
34
|
Song Z, Wang Z, Yu R. Strategies for Advanced Supercapacitors Based on 2D Transition Metal Dichalcogenides: From Material Design to Device Setup. SMALL METHODS 2023:e2300808. [PMID: 37735990 DOI: 10.1002/smtd.202300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Recently, the development of new materials and devices has become the main research focus in the field of energy. Supercapacitors (SCs) have attracted significant attention due to their high power density, fast charge/discharge rate, and excellent cycling stability. With a lamellar structure, 2D transition metal dichalcogenides (2D TMDs) emerge as electrode materials for SCs. Although many 2D TMDs with excellent energy storage capability have been reported, further optimization of electrode materials and devices is still needed for competitive electrochemical performance. Previous reviews have focused on the performance of 2D TMDs as electrode materials in SCs, especially on their modification. Herein, the effects of element doping, morphology, structure and phase, composite, hybrid configuration, and electrolyte are emphatically discussed on the overall performance of 2D TMDs-based SCs from the perspective of device optimization. Finally, the opportunities and challenges of 2D TMDs-based SCs in the field are highlighted, and personal perspectives on methods and ideas for high-performance energy storage devices are provided.
Collapse
Affiliation(s)
- Zhifan Song
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zumin Wang
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ranbo Yu
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
35
|
Zhang Y, Yuan Z, Zhao L, Li Y, Qin X, Li J, Han W, Wang L. Review of Design Routines of MXene Materials for Magnesium-Ion Energy Storage Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301815. [PMID: 37183303 DOI: 10.1002/smll.202301815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Zeyu Yuan
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Lianjia Zhao
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Yilin Li
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiaokun Qin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junzhi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Han
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Jiang T, Wang Y, Chen GZ. Electrochemistry of Titanium Carbide MXenes in Supercapacitor. SMALL METHODS 2023; 7:e2201724. [PMID: 37127861 DOI: 10.1002/smtd.202201724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Novel electrode materials are always explored to achieve better performance of supercapacitors. Titanium carbide MXenes, Ti3 C2 Tx , are one of the very promising candidates for electrode materials in supercapacitors due to their unique structural and ion storage properties as 2D materials. Their large specific surface area, adjustable functionalized surface terminals, high electrical conductivities, hydrophilicity, and high Faradaic capacitance, also known widely but confusingly as pseudocapacitance, are highly desirable for making high-performance electrodes with increased dis-/charging rates and capacities. Herein, some selective electrochemical considerations of Ti3 C2 Tx MXenes for uses in supercapacitors are critically reviewed and assessed, aiming at a better fundamental understanding of the electrochemical basics and processes in Ti3 C2 Tx MXene-based electrode materials for supercapacitor applications.
Collapse
Affiliation(s)
- Tingting Jiang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yichen Wang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - George Z Chen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG2 7RD, UK
| |
Collapse
|
37
|
Yang X, Shu T, Huang H, Yi H, Zhang Y, Xiao W, Li L, Zhang Y, Ma M, Liu X, Yao K. Construction of Microporous Zincophilic Interface for Stable Zn Anode. Molecules 2023; 28:4789. [PMID: 37375344 DOI: 10.3390/molecules28124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Aqueous zinc ion batteries (AZIBs) are promising electrochemical energy storage devices due to their high theoretical specific capacity, low cost, and environmental friendliness. However, uncontrolled dendrite growth poses a serious threat to the reversibility of Zn plating/stripping, which impacts the stability of batteries. Therefore, controlling the disordered dendrite growth remains a considerable challenge in the development of AZIBs. Herein, a ZIF-8-derived ZnO/C/N composite (ZOCC) interface layer was constructed on the surface of the Zn anode. The homogeneous distribution of zincophilic ZnO and the N element in the ZOCC facilitates directional Zn deposition on the (002) crystal plane. Moreover, the conductive skeleton with a microporous structure accelerates Zn2+ transport kinetics, resulting in a reduction in polarization. As a result, the stability and electrochemical properties of AZIBs are improved. Specifically, the ZOCC@Zn symmetric cell sustains over 1150 h at 0.5 mA cm-2 with 0.25 mA h cm-2, while the ZOCC@Zn half-cell achieves an outstanding Coulombic efficiency of 99.79% over 2000 cycles. This work provides a simple and effective strategy for improving the lifespan of AZIBs.
Collapse
Affiliation(s)
- Xin Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Tie Shu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Haoyu Huang
- Undergraduate School, Chongqing University, Chongqing 400044, China
| | - Hongquan Yi
- Undergraduate School, Chongqing University, Chongqing 400044, China
| | - Yanchi Zhang
- Undergraduate School, Chongqing University, Chongqing 400044, China
| | - Wei Xiao
- Undergraduate School, Chongqing University, Chongqing 400044, China
| | - Liang Li
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi P.O. Box 38044, United Arab Emirates
| | - Yuxin Zhang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Minghao Ma
- Hang Tian School Affiliated to HSXJTU, Xi'an 710043, China
| | - Xingyuan Liu
- Chongqing Joint School of Famous Schools, Chongqing 400030, China
| | - Kexin Yao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
38
|
Mou M, Patel A, Mallick S, Jayanthi K, Sun XG, Paranthaman MP, Kothe S, Baral E, Saleh S, Mugumya JH, Rasche ML, Gupta RB, Lopez H, Jiang M. Slug Flow Coprecipitation Synthesis of Uniformly-Sized Oxalate Precursor Microparticles for Improved Reproducibility and Tap Density of Li(Ni 0.8Co 0.1Mn 0.1)O 2 Cathode Materials. ACS APPLIED ENERGY MATERIALS 2023; 6:3213-3224. [PMID: 37013178 PMCID: PMC10064804 DOI: 10.1021/acsaem.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The microparticle quality and reproducibility of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode materials are important for Li-ion battery performance but can be challenging to control directly from synthesis. Here, a scalable reproducible synthesis process is designed based on slug flow to rapidly generate uniform micron-size spherical-shape NCM oxalate precursor microparticles at 25-34 °C. The whole process takes only 10 min, from solution mixing to precursor microparticle generation, without needing aging that typically takes hours. These oxalate precursors are convertible to spherical-shape NCM811 oxide microparticles, through a preliminary design of low heating rates (e.g., 0.1 and 0.8 °C/min) for calcination and lithiation. The outcome oxide cathode particles also demonstrate improved tap density (e.g., 2.4 g mL-1 for NCM811) and good specific capacity (202 mAh g-1 at 0.1 C) in coin cells and reasonably good cycling performance with LiF coating.
Collapse
Affiliation(s)
- Mingyao Mou
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Arjun Patel
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Sourav Mallick
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - K. Jayanthi
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao-Guang Sun
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Sophie Kothe
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ena Baral
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Selma Saleh
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jethrine H. Mugumya
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Michael L. Rasche
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ram B. Gupta
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Herman Lopez
- Ionblox
Inc., Fremont, California 94538, United States
| | - Mo Jiang
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
39
|
Otgonbayar Z, Yang S, Kim IJ, Oh WC. Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:919. [PMID: 36903797 PMCID: PMC10005138 DOI: 10.3390/nano13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
MXene is a type of two-dimensional (2D) transition metal carbide and nitride, and its promising energy storage materials highlight its characteristics of high density, high metal-like conductivity, tunable terminals, and charge storage mechanisms known as pseudo-alternative capacitance. MXenes are a class of 2D materials synthesized by chemical etching of the A element in MAX phases. Since they were first discovered more than 10 years ago, the number of distinct MXenes has grown substantially to include numerous MnXn-1 (n = 1, 2, 3, 4, or 5), solid solutions (ordered and disordered), and vacancy solids. To date, MXenes used in energy storage system applications have been broadly synthesized, and this paper summarizes the current developments, successes, and challenges of using MXenes in supercapacitors. This paper also reports the synthesis approaches, various compositional issues, material and electrode topology, chemistry, and hybridization of MXene with other active materials. The present study also summarizes MXene's electrochemical properties, applicability in pliant-structured electrodes, and energy storage capabilities when using aqueous/non-aqueous electrolytes. Finally, we conclude by discussing how to reshape the face of the latest MXene and what to consider when designing the next generation of MXene-based capacitors and supercapacitors.
Collapse
Affiliation(s)
- Zambaga Otgonbayar
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| | - Sunhye Yang
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Ick-Jun Kim
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| |
Collapse
|
40
|
Etman A, Ibrahim A, Darwish F, Qasim K. A 10 years-developmental study on conducting polymers composites for supercapacitors electrodes: a review for extensive data interpretation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
41
|
Wang Y, Ai R, Wang F, Hu X, Zeng Y, Hou J, Zhao J, Zhang Y, Zhang Y, Li X. Research Progress on Multifunctional Modified Separator for Lithium-Sulfur Batteries. Polymers (Basel) 2023; 15:polym15040993. [PMID: 36850275 PMCID: PMC9966612 DOI: 10.3390/polym15040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Lithium-sulfur batteries (LSBs) are recognized as one of the second-generation electrochemical energy storage systems with the most potential due to their high theoretical specific capacity of the sulfur cathode (1675 mAhg-1), abundant elemental sulfur energy storage, low price, and green friendliness. However, the shuttle effect of polysulfides results in the passivation of the lithium metal anode, resulting in a decrease in battery capacity, Coulombic efficiency, and cycle stability, which seriously restricts the commercialization of LSBs. Starting from the separator layer before the positive sulfur cathode and lithium metal anode, introducing a barrier layer for the shuttle of polysulfides is considered an extremely effective research strategy. These research strategies are effective in alleviating the shuttle of polysulfide ions, improving the utilization of active materials, enhancing the battery cycle stability, and prolonging the cycle life. This paper reviews the research progress of the separator functionalization in LSBs in recent years and the research trend of separator functionalization in the future is predicted.
Collapse
Affiliation(s)
- Ying Wang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- College of Electrical Information Engineering, Panzhihua University, Panzhihua 617000, China
| | - Rui Ai
- College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China
| | - Fei Wang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiuqiong Hu
- College of Electrical Information Engineering, Panzhihua University, Panzhihua 617000, China
| | - Yuejing Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials, Provincial Government New Energy Vehicle Power Technology Joint Engineering Laboratory, State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiyue Hou
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinbao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, Provincial Government New Energy Vehicle Power Technology Joint Engineering Laboratory, State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Correspondence: (Y.Z.); (X.L.)
| | - Xue Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Correspondence: (Y.Z.); (X.L.)
| |
Collapse
|
42
|
Yang T, Chin CT, Cheng CH, Zhao J. Enhancing the Electrochemical Performance of High Voltage LiNi 0.5Mn 1.5O 4 Cathode Materials by Surface Modification with Li 1.3Al 0.3Ti 1.7(PO 4) 3/C. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:628. [PMID: 36838996 PMCID: PMC9959452 DOI: 10.3390/nano13040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A novel method for surface modification of LiNi0.5Mn1.5O4 (LNMO) was proposed, in which a hybrid layer combined by Li1.3Al0.3Ti1.7(PO4)3 (LATP) and carbon (C) composite on LNMO material were connected by lithium iodide. Structure and morphology analyses illustrated that a higher contact area of active substances was achieved by the LATP/C composite layer without changing the original crystal structure of LNMO. XPS analysis proved that I- promoted the reduction of trace Mn4+, resulting in a higher ion conductivity. Galvanostatic charge-discharge tests exhibited the capacity of the LNMO with 5% LATP/C improved with 35.83% at 25 °C and 95.77% at 50 °C, respectively, compared with the bare after 100 cycles, implying the modification of high-temperature deterioration. EIS results demonstrated that one order of magnitude of improvement of the lithium-ion diffusion coefficient of LATP/C-LNMO was achieved (3.04 × 10-11 S cm-1). In conclusion, the effective low-temperature modification strategy improved the ionic and electronic conductivities of the cathode and suppressed the side reactions of high-temperature treatment.
Collapse
Affiliation(s)
- Tingting Yang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Chi-Te Chin
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| | - Ching-Hsiang Cheng
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
43
|
Gan T, Wang J, Liao Y, Lin Z, Wu F. Catalytic performance of binary transition metal sulfide FeCoS2/rGO for lithium–sulfur batteries. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Guschlbauer J, Niedzicki L, Jacob L, Rzeszotarska E, Pociecha D, Kaszyński P. Liquid Crystalline Electrolytes Derived from the 1,12-Disubstituted [closo-CB11H12]– Anion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
45
|
Fang Z, Deng Q, Zhou Y, Fu X, Yi J, Wu L, Dai Q, Yang Y. Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5283-5292. [PMID: 36691802 DOI: 10.1021/acsami.2c20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of solid-state polymer electrolytes (SPEs) has been plagued by poor ionic conductivity, low ionic transference number, and limited electrochemical potential window. The exploitation of ionized SPEs is a feasible avenue to solve this problem. Herein, conjugated organic polymers (COPs) with excellent designability and rich pore structures have been selected as platforms for exploration. Three cationic COPs with different chain lengths of quaternary ammonium salts (CbzT@Cx, x = 4, 6, 9) are designed and applied to SPEs for the first time. Meanwhile, the effects of chain lengths on their electrochemical performances are compared. Especially, CbzT@C9 shows the most attractive electrochemical performance due to its high specific surface area of 212.3 m2 g-1. The larger specific surface area allows more exposure of the long-chain quaternary ammonium cation groups, which is more favorable for the dissociation of lithium salts. Moreover, the flexible long-chain structure increases the compatibility with poly(ethylene oxide) (PEO) and reduces the crystallinity of PEO to some extent. The richer pore structure can accommodate more PEO, further disrupting the crystallinity of PEO and creating more channels for the ether-oxygen chain to transport lithium ions. At 60 °C, the SPE (CbzTM@C9) presents an excellent ionic conductivity (σ) of 8.00 × 10-4 S cm-1. CbzTM@C9 has a lithium-ion transference number (tLi+) of 0.48. Thus, the assembled Li/CbzTM@C9/LiFePO4 battery provides a good discharge capacity of 158.8 mAh g-1 at 0.1C. After 70 cycles, the capacity retention rate is 93.8% with a Coulombic efficiency of 98%. The excellent flexibility brings stable power supply capability under various bending angles to the assembled Li/CbzTM@C9/LiFePO4 soft-packed battery. The project uses conjugated organic polymers in SPEs and creates an avenue to develop flexible energy storage equipment.
Collapse
Affiliation(s)
- Zhao Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yang Zhou
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing401120, P. R. China
| | - Xiaolong Fu
- Xi'an Modern Chemistry Research Institute, Xi'an710065, Shannxi, P. R. China
| | - Jiacheng Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Lizhi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qingyang Dai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
46
|
Zhou W, Tang Y, Zhang X, Zhang S, Xue H, Pang H. MOF derived metal oxide composites and their applications in energy storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Wang S, Mei Y, Shao Z, Wang J, Tan Z, Qiu Z, Wang M, Zheng H. Biomass Hierarchical Porous Carbonized Typha angustifolia Prepared by Green Pore-Making Technology for Energy Storage. ACS OMEGA 2023; 8:1353-1361. [PMID: 36643506 PMCID: PMC9835543 DOI: 10.1021/acsomega.2c06782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The cost-effective biomass-derived carbon with high electrochemical performance is highly desirable for the sustainable development of advanced energy storage devices. In this manuscript, Typha angustifolia with a large output and loose porous characteristics was selected as the raw material of biomass. In the synthesis process, KHCO3, which is more environmentally friendly, is used as a pore-forming agent, and the low-cost, easy-to-clean fluxing agent NaCl is used to assist the pore-forming process. Based on the analysis of thermogravimetric-infrared test results, the calcination procedure of porous carbon was designed reasonably, so that the functions of the pore-forming agent and fluxing agent could be fully exerted. Its high electrochemical performance is attributed to combined contributions from high surface area and hierarchical porous structures. The as-prepared carbon also showed an outstanding capacitance of 317.2 F/g at a current density of 1 A g-1 and a high capacitance retention of over 97.83% after 5000 cycles at a current density of 4 A g-1. This work provides an outstanding renewable candidate and a feasible route design strategy for the fabrication of high-performance electrodes.
Collapse
|
48
|
Teoh KS, Melchiorre M, Kreth FA, Bothe A, Köps L, Ruffo F, Balducci A. γ-Valerolactone as Sustainable and Low-Toxic Solvent for Electrical Double Layer Capacitors. CHEMSUSCHEM 2023; 16:e202201845. [PMID: 36378225 PMCID: PMC10099548 DOI: 10.1002/cssc.202201845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this work, γ-valerolactone (GVL), a green solvent based on largely available biomass (carbohydrates), highly biodegradable, and with low eco-toxicological profile, was used as electrolyte component in energy storage devices. This solvent allowed the realization of electrolytes with good transport properties and high thermal stability, which could be successfully applied in electrical double layer capacitors (EDLCs). GVL-based EDLCs could operate at 2.7-2.9 V and displayed good performance in term of capacitance, cycling stability, as well as specific energy and power. The results of this study indicate that the use of solvent obtained from largely available natural sources is a feasible strategy for the realization of sustainable and safe electrolytes for EDLCs.
Collapse
Affiliation(s)
- Khai Shin Teoh
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
| | - Massimo Melchiorre
- Dipartimento di Scienze ChimicheUniversità degli Studi di Napoli Federico II, Complesso Universitario diMonte S. Angelovia Cintia 2180216NapoliItaly
- Consorzio Interuniversitario di Reattività Chimica e CatalisiVia Celso Ulpiano 2770126BariItaly
| | - Fabian Alexander Kreth
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
| | - Annika Bothe
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
| | - Lukas Köps
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
| | - Francesco Ruffo
- Dipartimento di Scienze ChimicheUniversità degli Studi di Napoli Federico II, Complesso Universitario diMonte S. Angelovia Cintia 2180216NapoliItaly
- Consorzio Interuniversitario di Reattività Chimica e CatalisiVia Celso Ulpiano 2770126BariItaly
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental ChemistryFriedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-UniversityPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
49
|
Mei J, Han J, Wu F, Pan Q, Zheng F, Jiang J, Huang Y, Wang H, Liu K, Li Q. SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries. Front Chem 2023; 10:1105997. [PMID: 36688027 PMCID: PMC9845928 DOI: 10.3389/fchem.2022.1105997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Tin (II) sulfide (SnS) has been regarded as an attractive anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity. However, sulfide undergoes significant volume change during lithiation/delithiation, leading to rapid capacity degradation, which severely hinders its further practical application in lithium-ion batteries. Here, we report a simple and effective method for the synthesis of SnS@C/G composites, where SnS@C nanoparticles are strongly coupled onto the graphene oxide nanosheets through dopamine-derived carbon species. In such a designed architecture, the SnS@C/G composites show various advantages including buffering the volume expansion of Sn, suppressing the coarsening of Sn, and dissolving Li2S during the cyclic lithiation/delithiation process by graphene oxide and N-doped carbon. As a result, the SnS@C/G composite exhibits outstanding rate performance as an anode material for lithium-ion batteries with a capacity of up to 434 mAh g-1 at a current density of 5.0 A g-1 and excellent cycle stability with a capacity retention of 839 mAh g-1 at 1.0 A g-1 after 450 cycles.
Collapse
Affiliation(s)
- Jing Mei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Jinlu Han
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Fujun Wu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China,*Correspondence: Qichang Pan, ; Juantao Jiang, ; Kui Liu,
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Juantao Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China,*Correspondence: Qichang Pan, ; Juantao Jiang, ; Kui Liu,
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| | - Kui Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China,*Correspondence: Qichang Pan, ; Juantao Jiang, ; Kui Liu,
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China,Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, China
| |
Collapse
|
50
|
Highly defective N-doped carbon/reduced graphene oxide composite cathode material with rapid electrons/ions dual transport channels for high energy density lithium-ion capacitor. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|