1
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025; 16:7106-7129. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
2
|
Wei P, Gu N, Gu Q, Jiang J, Chen J, Du J. Preparation and Mechanism Insight of Biodegradable Kippah Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501838. [PMID: 40264332 DOI: 10.1002/smll.202501838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Indexed: 04/24/2025]
Abstract
Kippah vesicles, fully collapsed polymersomes formed during the self-assembly process, are characterized by a bowl-shaped nanostructure with a large specific surface area, high loading capacity, and an internal void. Current research shows that these structural features have primarily been achieved using non-biodegradable block copolymers, while the fundamental mechanism behind their formation is not well understood. Thus, designing biodegradable kippah vesicles and elucidating their formation mechanism is critical. In this study, a tetraphenylethylene (TPE) moiety - a luminogen with aggregation-induced emission (AIE) properties - is strategically introduced into the block copolymer side chain-, yielding the novel polypeptide poly(ethylene glycol)45-block-poly[(glutamic acid-TPE)26-stat-(glutamic acid)29] [PEG₄₅-b-P(GATPE₂₆-stat-GA₂₉)]. This polypeptide could self-assemble into kippah vesicles driven by hydrophobic interactions and hydrogen bonding, as confirmed by Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption, photoluminescence spectroscopy, and morphological characterization across different aggregation states. Notably, the intrinsic fluorescence of these kippah vesicles exhibited high cellular internalization efficiency and excellent cytocompatibility, highlighting their potential for biomedical applications such as bioimaging and targeted cellular delivery.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Nannan Gu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qianxi Gu
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Gao C, Feng Y, Liu S, Chen B, Ding M, Du D, Zhang W, Wilson DA, Tu Y, Peng F. Light-Driven Artificial Cell Micromotors for Degenerative Knee Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416349. [PMID: 40025988 DOI: 10.1002/adma.202416349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Indexed: 03/04/2025]
Abstract
Combining artificial cellular compartmentalization and intelligent motion benefits of micro/nanomotors, light is used as energy input to construct an artificial cell-based micromotor capable of photosynthetic anabolism and intelligent directional movement. This system is assembled from phospholipids functionalized with F-ATP synthase and molybdenum disulfide (MoS2) nanoparticles (Vesical@MoS2-ATPase). The underlying mechanism involves the generation of protons (H+) through photo-hydrolysis of MoS2 nanoparticles within vesicles, which generates a local electroosmotic flow inside the vesicles and drives the negatively charged MoS2 toward light. The established proton gradient across the phospholipid membrane, in turn, drives the ATP synthase to catalyze ATP production. Both in vitro and in vivo models demonstrate that the micromotor can elevate local intracellular ATP levels upon light and improve the metabolism of denatured chondrocytes. This cell mimicry, with capabilities of migration and biosynthesis, emerges as a promising platform for the next generation of functional bio-interface.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dailing Du
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenjing Zhang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Xu S, Hu Z, Zheng W, Qin C, Bai X, Yang Q, Zeng T, Mo D, Zhou B, Lu C, Chen X, Tan B, Zhao J, Zheng L. GSH-responsive Pt-based nanomotor with improved doxorubicin delivery for synergistic osteosarcoma chemotherapy. Acta Biomater 2025; 195:390-405. [PMID: 39921180 DOI: 10.1016/j.actbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Osteosarcoma (OS), a highly malignant primary tumor, poses significant threats. Chemotherapy remains the main treatment approach but is limited by low drug bioavailability, poor permeability, and notable side effects. Herein, a near-infrared light (NIR)-driven and GSH-responsive poly(ethylene glycol)-SS-polystyrene-doxorubicin and platinum nanoparticles (PSPDP) nanomotor, wherein disulfide bonds served as GSH sponsors and platinum nanoparticles as producers of reactive oxygen species (ROS) to induce cell apoptosis, combined with NIR-driven propulsion to enhance the inhibitory effect of encapsulated doxorubicin (DOX). The results demonstrated that the PSPDP nanomotor can be effectively driven due to its good photothermal properties, with its movement speed increased 2.10 times under NIR laser exposure. Additionally, the efficiency of DOX release increased with the increase in GSH concentration, demonstrating favorable GSH responsiveness. Pt-NPs also exhibited good photothermal properties, enabling self-thermophoresis to drive. Minimal cytotoxic effects of PSPDP were observed on a series of cell lines compared with DOX solution and Pt-NPs. Notably, the Pt-NPs generated a significant amount of ROS, synergistically enhancing the therapeutic effect of DOX, as evidenced by a 5.53-fold increase in OS cell growth inhibition and evident osteosarcoma growth inhibition in the nude mice model. Thus, the NIR-driven, localized, and low-toxic nanomotor may offer a promising therapeutic strategy for OS intervention. STATEMENT OF SIGNIFICANCE: Enhancing drug penetration efficiency and developing delivery systems that respond to the tumor microenvironment to release drugs are effective strategies for treating osteosarcoma (OS). Here, a near-infrared (NIR) light-driven and glutathione (GSH)-responsive nanomotor, integrating poly(ethylene glycol)-SS-polystyrene-doxorubicin and platinum nanoparticles (PSPDP), was produced and used for OS treatment. This PSPDP nanomotor exhibits significant advancements in photothermal activation and self-thermophoresis, enabling a 2.10-fold increase in movement speed under NIR exposure. Such enhanced motility improves the localized delivery and controlled release of doxorubicin, thus increasing drug bioavailability and minimizing systemic toxicity. Additionally, the nanomotor's ability to generate reactive oxygen species significantly amplifies its therapeutic impact, evidenced by a remarkable 5.53-fold increase in tumor growth inhibition. These features make the PSPDP nanomotor a promising candidate for effective and targeted OS treatment strategies.
Collapse
Affiliation(s)
- Sheng Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Ziwei Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weihao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chaozhen Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoyu Bai
- Terr Wildlife Rescue & Epidem Dis Surveillance Ctr, Nanning 530003, China
| | - Qinghua Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Tao Zeng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dandan Mo
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 5, 30006, China
| | - Xiaomin Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Biying Tan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Huang J, Wu P, Qin Y, Zhang J, Wang W, Yi X, Wang G, Leng Y, Chen Z. Tailoring the peroxidase-like properties of Mo atom nanoclusters/N-MXene nanozymes for sensitive colorimetric detection of glutathione. Talanta 2024; 278:126485. [PMID: 38943767 DOI: 10.1016/j.talanta.2024.126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Although nanozyme engineering has made tremendous progress, there is a huge gap between them and natural enzymes due to the enormous challenge of precisely adjusting the geometric and electronic structure of active sites. Considering that intentionally adjusting the metal-carrier interactions may bring the promising catalytic activity, in this work, a novel Mo atom nanocluster is successfully synthesized using nitrogen-doped Mxene (MoACs/N-MXene) nanozymes as carriers. The constructed MoACs/N-MXene displays excellent peroxidase-like catalytic activity and kinetics, outweighing its N-MXene and Mo nanoparticles (NPs)-MXene references and natural horse radish peroxidase. This work not only reports a successful example of MoACs/N-MXene nanozyme as a guide for achieving peroxidase-mimic performance of nanozymes for colorimetric glutathione sensing at 0.29 μM, but also expands the application prospects of two-dimensional MXene nanosheets by reasonably introducing metal atomic clusters and nonmetal atom doping and exploring related nanozyme properties.
Collapse
Affiliation(s)
- Juan Huang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Pengfei Wu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yuanlong Qin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiayue Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wenjing Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xueqian Yi
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
6
|
Kim H, Jo K, Choi H, Hahn SK. Biocompatible polymer-based micro/nanorobots for theranostic translational applications. J Control Release 2024; 374:606-626. [PMID: 39208932 DOI: 10.1016/j.jconrel.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungjoo Jo
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Deng T, Liu X, Fang X, Mo Y, Xie N, Nie G, Zhang B, Fan X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int J Nanomedicine 2024; 19:6253-6277. [PMID: 38911497 PMCID: PMC11193972 DOI: 10.2147/ijn.s459710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy.
Collapse
Affiliation(s)
- Yujie Wang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xi Liu
- Department of Nephrology, Shenzhen Longgang Central Hospital, Shenzhen, 518116, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Yongpan Mo
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Ni Xie
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xiaoqin Fan
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| |
Collapse
|
8
|
Luan X, Hu H, Zhu D, He P, Sun Z, Xi Y, Wei G. Injectable Chitosan Hydrogels Doped with 2D Peptide Nanosheet-Drug Conjugates for Glutathione-Responsive Sustained Drug Delivery. Chemistry 2024; 30:e202400021. [PMID: 38477386 DOI: 10.1002/chem.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
The development of novel and effective drug delivery systems aimed at enhancing therapeutic profile and efficacy of therapeutic agents is a critical challenge in modern medicine. This study presents an intelligent drug delivery system based on self-assembled two-dimensional peptide nanosheets (2D PNSs). Leveraging the tunable properties of amino acid structures and sequences, we design a peptide with the sequence of Fmoc-FKKGSHC, which self-assembles into 2D PNSs with uniform structure, high biocompatibility, and excellent degradability. Covalent attachment of thiol-modified doxorubicin (DOX) drugs to 2D PNSs via disulfide bond results in the peptide-drug conjugates (PDCs), which is denoted as PNS-SS-DOX. Subsequently, the PDCs are encapsulated within the injectable, thermosensitive chitosan (CS) hydrogels for drug delivery. The designed drug delivery system demonstrates outstanding pH-responsiveness and sustained drug release capabilities, which are facilitated by the characteristics of the CS hydrogels. Meanwhile, the covalently linked disulfide bond within the PNS-SS-DOX is responsive to intracellular glutathione (GSH) within tumor cells, enabling controlled drug release and significantly inhibiting the cancer cell growth. This responsive peptide-drug conjugate based on a 2D peptide nanoplatform paves the way for the development of smart drug delivery systems and has bright prospects in the future biomedicine field.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Huiqiang Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Zhengang Sun
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao, 266555, PR China
| | - Yongming Xi
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| |
Collapse
|
9
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Wang T, Wang Z, Hao J, Zhao J, Guo J, Gao Z, Song YY. Improved Sensitivity and Selectivity of Glutathione Detection through Target-Driven Electron Donor Generation in Photoelectrochemical Electrodes. Anal Chem 2023; 95:13242-13249. [PMID: 37615488 DOI: 10.1021/acs.analchem.3c02340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Glutathione (GSH) plays a vital role in many physiological processes, and its abnormal levels have been found to be associated with several diseases. In contrast to traditional methods using electron donor-containing electrolytes for photoelectrochemical (PEC) sensing, in this study, a target-driven electron donor generation in a PEC electrode was developed to detect GSH. Using well-aligned TiO2 nanotube arrays (TNTs) as the PEC substrate, mesoporous MIL-125(Ti) was grown in the TNTs through an in situ solvothermal method and subsequent two-step annealing treatment. The accommodation capacity of mesoporous MIL-125(Ti) allows a well loading of cystine and Pt nanoclusters (NCs). Taking advantage of the specific cleavage ability of disulfide bonds by GSH, cystine was converted to cysteine, which served as the electron donor for the PEC process. Benefiting from the confinement effect of mesoporous MIL-125(Ti), cysteine was effectively oxidized to cysteine sulfinic acid by the photogenerated holes. Importantly, the highly active Pt NCs decorated in the mesopores not only improved the charge transfer but also accelerated the above oxidation reaction. The synergistic effect of these factors enabled the efficient separation of the photogenerated electron-hole pairs, which induced a significant photocurrent increase and in turn led to the high-sensitivity detection of GSH. Consequently, the proposed PEC biosensor exhibited excellent performance in the detection of GSH in serum specimens. The target-driven electron donor generation designed in this study might open a new route for developing sensitive and selective PEC biosensors with application in complex biological environments.
Collapse
Affiliation(s)
- Tianmeng Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zirui Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Jiani Hao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
11
|
Feng Y, Gao C, Xie D, Liu L, Chen B, Liu S, Yang H, Gao Z, Wilson DA, Tu Y, Peng F. Directed Neural Stem Cells Differentiation via Signal Communication with Ni-Zn Micromotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301736. [PMID: 37402480 DOI: 10.1002/adma.202301736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/06/2023]
Abstract
Neural stem cells (NSCs), with the capability of self-renewal, differentiation, and environment modulation, are considered promising for stroke, brain injury therapy, and neuron regeneration. Activation of endogenous NSCs, is attracting increasing research enthusiasm, which avoids immune rejection and ethical issues of exogenous cell transplantation. Yet, how to induce directed growth and differentiation in situ remain a major challenge. In this study, a pure water-driven Ni-Zn micromotor via a self-established electric-chemical field is proposed. The micromotors can be magnetically guided and precisely approach target NSCs. Through the electric-chemical field, bioelectrical signal exchange and communication with endogenous NSCs are allowed, thus allowing for regulated proliferation and directed neuron differentiation in vivo. Therefore, the Ni-Zn micromotor provides a platform for controlling cell fate via a self-established electrochemical field and targeted activation of endogenous NSCs.
Collapse
Affiliation(s)
- Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haihong Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhan Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
12
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
13
|
Medical micro- and nanomotors in the body. Acta Pharm Sin B 2023; 13:517-541. [PMID: 36873176 PMCID: PMC9979267 DOI: 10.1016/j.apsb.2022.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Attributed to the miniaturized body size and active mobility, micro- and nanomotors (MNMs) have demonstrated tremendous potential for medical applications. However, from bench to bedside, massive efforts are needed to address critical issues, such as cost-effective fabrication, on-demand integration of multiple functions, biocompatibility, biodegradability, controlled propulsion and in vivo navigation. Herein, we summarize the advances of biomedical MNMs reported in the past two decades, with particular emphasis on the design, fabrication, propulsion, navigation, and the abilities of biological barriers penetration, biosensing, diagnosis, minimally invasive surgery and targeted cargo delivery. Future perspectives and challenges are discussed as well. This review can lay the foundation for the future direction of medical MNMs, pushing one step forward on the road to achieving practical theranostics using MNMs.
Collapse
|
14
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
15
|
Xu C, Liu Y, Li J, Ning P, Shi Z, Zhang W, Li Z, Zhou R, Tong Y, Li Y, Lv C, Shen Y, Cheng Q, He B, Cheng Y. Photomagnetically Powered Spiky Nanomachines with Thermal Control of Viscosity for Enhanced Cancer Mechanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204996. [PMID: 36515124 DOI: 10.1002/adma.202204996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomachines with active propulsion have emerged as an intelligent platform for targeted cancer therapy. Achieving an efficient locomotion performance using an external energy conversion is a key requirement in the design of nanomachines. In this study, inspired by diverse spiky structures in nature, a photomagnetically powered nanomachine (PMN) with a spiky surface and thermally dependent viscosity tunability is proposed to facilitate mechanical motion in lysosomes for cancer mechanotherapy. The hybrid nanomachine is integrated with magnetic nanoparticles as the core and covered with gold nanotips. Physical simulations and experimental results prove that the spiky structure endows nanomachines with an obvious photomagnetic coupling effect in the NIR-II region through the alignment and orienting movement of plasmons on the gold tips. Using a coupling-enhanced magnetic field, PMNs are efficiently assembled into chain-like structures to further elevate energy conversion efficiency. Notably, PMNs with the thermal control of viscosity are efficiently propelled under simultaneously applied dual external energy sources in cell lysosomes. Enhanced mechanical destruction of cancer cells via PMNs is confirmed both in vitro and in vivo under photomagnetic treatment. This study provides a new direction for designing integrated nanomachines with active adaptability to physiological environments for cancer treatment.
Collapse
Affiliation(s)
- Chang Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yali Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jiayan Li
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Peng Ning
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Zhong Shi
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Wei Zhang
- College of Electronics and Information Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhenguang Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Ruimei Zhou
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yifan Tong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yingze Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Cheng Lv
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yajing Shen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Bin He
- College of Electronics and Information Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yu Cheng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
16
|
Liu T, Xie L, Price CAH, Liu J, He Q, Kong B. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem Soc Rev 2022; 51:10083-10119. [PMID: 36416191 DOI: 10.1039/d2cs00432a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inspired by natural mobile microorganisms, researchers have developed micro/nanomotors (MNMs) that can autonomously move by transducing different kinds of energies into kinetic energy. The rapid development of MNMs has created tremendous opportunities for biomedical fields including diagnostics, therapeutics, and theranostics. Although the great progress has been made in MNM research, at a fundamental level, the accepted propulsion mechanisms are still a controversial matter. In practical applications such as precision nanomedicine, the precise control of the motion, including the speed and directionality, of MNMs is also important, which makes advanced motion manipulation desirable. Very recently, diverse MNMs with different propulsion strategies, morphologies, sizes, porosities and chemical structures have been fabricated and applied for various uses. Herein, we thoroughly summarize the physical principles behind propulsion strategies, as well as the recent advances in motion manipulation methods and relevant biomedical applications of these MNMs. The current challenges in MNM research are also discussed. We hope this review can provide a bird's eye overview of the MNM research and inspire researchers to create novel and more powerful MNMs.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China.
| | - Cameron-Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| |
Collapse
|
17
|
Xue X, Qu H, Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210134. [PMID: 37324805 PMCID: PMC10190936 DOI: 10.1002/exp.20210134] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomedicines are attractive paradigms to deliver drugs, contrast agents, immunomodulators, and gene editors for cancer therapy and diagnosis. However, the currently developed nanomedicine suffers from poor serum stability, premature drug release, and lack of responsiveness. Crosslinking strategy can be utilized to overcome these shortcomings by employing stimuli-responsive chemical bonds to tightly hold the nanostructure and releasing the payloads spatiotemporally in a highly controlled manner. In this Review, we summarize the recently ingenious design of the stimuli-responsive crosslinked nanomedicines (SCN) in the field of cancer treatment and their advances in circumventing the drawbacks of the conventional drug delivery system. We classify the SCNs into three categories based on the crosslinking strategies, including built-in, on-surface, and inter-particle crosslinking nanomedicines. Thanks to the stimuli-responsive crosslinkages, SCNs are capable of keeping robust stability during systemic circulation. They also respond to the particular tumoral conditions to experience a series of dynamic changes, such as the changes in size, surface charge, targeting moieties, integrity, and imaging signals. These characteristics allow them to efficiently overcome different biological barriers and substantially improve the drug delivery efficiency, tumor-targeting ability, and imaging sensitivities. With the examples discussed, we envision that our perspectives can inspire more attempts to engineer intelligent nanomedicine to achieve effective cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Xiangdong Xue
- School of Pharmacy, Pharm‐X CenterShanghai Jiao Tong UniversityShanghaiChina
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer CenterUniversity of California DavisSacramentoCaliforniaUSA
| | - Haijing Qu
- School of Pharmacy, Pharm‐X CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer CenterUniversity of California DavisSacramentoCaliforniaUSA
| |
Collapse
|
18
|
A nanodiamond chemotherapeutic folate receptor-targeting prodrug with triggerable drug release. Int J Pharm 2022; 630:122432. [PMID: 36435503 DOI: 10.1016/j.ijpharm.2022.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Cancer chemotherapy is often accompanied by severe off-target effects that both damage quality of life and can decrease therapeutic compliance. This could be minimized through selective delivery of cytotoxic agents directly to the cancer cells. This would decrease the drug dose, consequently minimizing side effects and cost. With this goal in mind, a dual-gated folate-functionalized nanodiamond drug delivery system (NPFSSD) for doxorubicin with activatable fluorescence and cytotoxicity has been prepared. Both the cytotoxic activity and the fluorescence of doxorubicin (DOX) are quenched when it is covalently immobilized on the nanodiamond. The NPFSSD is preferentially uptaken by cancer cells overexpressing the folate receptor. Then, once inside a cell, the drug is preferentially released within tumor cells due to their high levels of endogenous of glutathione, required for releasing DOX through cleavage of a disulfide linker. Interestingly, once free DOX is loaded onto the nanodiamond, it can also evade resistance mechanisms that use protein pumps to remove drugs from the cytoplasm. This nanodrug, used in an in vivo model with local injection of drugs, effectively inhibits tumor growth with fewer side effects than direct injection of free DOX, providing a potentially powerful platform to improve therapeutic outcomes.
Collapse
|
19
|
Wang F, Jin Y, Gao X, Huo H, Wang B, Niu B, Xia Z, Zhang J, Yang X. DNAzyme-assisted bioconstruction of logically activatable nanoplatforms for enhanced cancer therapy. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Li H, Li Y, Liu J, He Q, Wu Y. Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. NANOSCALE 2022; 14:7444-7459. [PMID: 35546337 DOI: 10.1039/d2nr00610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus colloidal motors (JCMs) are versatile anisotropic particles that can effectively move autonomously based on their asymmetric structures, providing unlimited possibilities for various tasks. Developing novel JCMs with controllable size, engineered nanostructure and functionalized surface properties has always been a challenge for chemists. This review summarizes the recent progress in synthesized JCMs in terms of their fabrication method, propulsion strategy, and biomedical applications. The design options, construction methods, and typical examples of JCMs are presented. Common propulsion mechanisms of JCMs are reviewed, as well as the approaches to control their motion under complex microscopic conditions based on symmetry-breaking strategies. The precisely controlled motion enables JCMs to be used in biomedicine, environmental remediation, analytical sensing and nanoengineering. Finally, perspectives on future research and development are presented. Through ingenious design and multi-functionality, new JCM-based technologies could address more and more special needs in complex environments.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yue Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Jun Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| |
Collapse
|
21
|
Pullan J, Dailey K, Bhallamudi S, Feng L, Alhalhooly L, Froberg J, Osborn J, Sarkar K, Molden T, Sathish V, Choi Y, Brooks A, Mallik S. Modified Bovine Milk Exosomes for Doxorubicin Delivery to Triple-Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:2163-2175. [PMID: 35417133 PMCID: PMC9245909 DOI: 10.1021/acsabm.2c00015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier. Additionally, exosomes have the intrinsic yet enigmatic, targeting characteristics of complex cellular communication. Hence, harnessing the natural transport abilities of exosomes for drug delivery requires predictably targeting these biological nanoparticles. This manuscript describes the use of two chemical modifications, incorporating a neuropilin receptor agonist peptide (iRGD) and a hypoxia-responsive lipid for targeting and release of an encapsulated drug from bovine milk exosomes to triple-negative breast cancer cells. Triple-negative breast cancer is a very aggressive and deadly form of malignancy with limited treatment options. Incorporation of both the iRGD peptide and hypoxia-responsive lipid into the lipid bilayer of bovine milk exosomes and encapsulation of the anticancer drug, doxorubicin, created the peptide targeted, hypoxia-responsive bovine milk exosomes, iDHRX. Initial studies confirmed the presence of iRGD peptide and the exosomes' ability to target the αvβ3 integrin, overexpressed on triple-negative breast cancer cells' surface. These modified exosomes were stable under normoxic conditions but fragmented in the reducing microenvironment created by 10 mM glutathione. In vitro cellular internalization studies in monolayer and three-dimensional (3D) spheroids of triple-negative breast cancer cells confirmed the cell-killing ability of iDHRX. Cell viability of 50% was reached at 10 μM iDHRX in the 3D spheroid models using four different triple-negative breast cancer cell lines. Overall, the tumor penetrating, hypoxia-responsive exosomes encapsulating doxorubicin would be effective in reducing triple-negative breast cancer cells' survival.
Collapse
Affiliation(s)
- Jessica Pullan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Kaitlin Dailey
- Cell and Molecular Biology Program, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Li Feng
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Lina Alhalhooly
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Jamie Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Jenna Osborn
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052 United States
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052 United States
| | - Todd Molden
- Department of Animal Science, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Amanda Brooks
- Office of Research and Scholarly Activity, Rocky Vista University, Ivins, Utah 84738 United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| |
Collapse
|
22
|
Liu Z, Zhou D, Liao L. pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multistage Drug Delivery. Front Bioeng Biotechnol 2022; 10:882308. [PMID: 35480969 PMCID: PMC9035699 DOI: 10.3389/fbioe.2022.882308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of current nanocarriers in cancer treatment fail to deliver encapsulated cargos to their final targets at therapeutic levels, which decreases the ultimate efficacy. In this work, a novel core–shell nanocarrier with a biodegradable property was synthesized for efficient drug release and subcellular organelle delivery. Initially, silver nanoparticles (AgNPs) were grafted with terminal double bonds originating from N, N′-bisacrylamide cystamine (BAC). Then, the outer coatings consisting of chitosan (CTS) and polyvinyl alcohol (PVA) were deposited on the surface of modified AgNPs using an emulsion method. To improve the stability, disulfide-containing BAC was simultaneously reintroduced to cross-link CTS. The as-prepared nanoparticles (CAB) possessed the desired colloidal stability and exhibited a high drug loading efficiency of cationic anticancer agent doxorubicin (DOX). Furthermore, CAB was tailored to transform their size into ultrasmall nanovehicles responding to weak acidity, high glutathione (GSH) levels, and overexpressed enzymes. The process of transformation was accompanied by sufficient DOX release from CAB. Due to the triple sensitivity, CAB enabled DOX to accumulate in the nucleus, leading to a great effect against malignant cells. In vivo assays demonstrated CAB loading DOX held excellent biosafety and superior antitumor capacity. Incorporating all the benefits, this proposed nanoplatform may provide valuable strategies for efficient drug delivery.
Collapse
Affiliation(s)
- Zhe Liu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Dong Zhou
- College of Chemistry, Nanchang University, Nanchang, China
| | - Lan Liao
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- *Correspondence: Lan Liao,
| |
Collapse
|
23
|
Banno T, Sawada D, Toyota T. Construction of Supramolecular Systems That Achieve Lifelike Functions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2391. [PMID: 35407724 PMCID: PMC8999524 DOI: 10.3390/ma15072391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
The Nobel Prize in Chemistry was awarded in 1987 and 2016 for research in supramolecular chemistry on the "development and use of molecules with structure-specific interactions of high selectivity" and the "design and production of molecular machines", respectively. This confirmed the explosive development of supramolecular chemistry. In addition, attempts have been made in systems chemistry to embody the complex functions of living organisms as artificial non-equilibrium chemical systems, which have not received much attention in supramolecular chemistry. In this review, we explain recent developments in supramolecular chemistry through four categories: stimuli-responsiveness, time evolution, dissipative self-assembly, and hierarchical expression of functions. We discuss the development of non-equilibrium supramolecular systems, including the use of molecules with precisely designed properties, to achieve functions found in life as a hierarchical chemical system.
Collapse
Affiliation(s)
- Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Daichi Sawada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
24
|
Fu D, Xie D, Wang F, Chen B, Wang Z, Peng F. Mechanically Optimize T Cells Activation by Spiky Nanomotors. Front Bioeng Biotechnol 2022; 10:844091. [PMID: 35273958 PMCID: PMC8902353 DOI: 10.3389/fbioe.2022.844091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
T cell activation is vital for immune response initiation and modulation. Except for the strength of the interaction between T cell receptors (TCR) and peptides on major histocompatibility complex molecules (MHC), mechanical force, mediated by professional mechanosensitive ion channels, contributes to activating T cells. The intrinsic characteristic of synthetic micro/nanomotors that convert diverse energy sources into physical movement and force, opening up new possibilities for T cell regulation. In this work, Pd/Au nanomotors with spiky morphology were fabricated, and in the presence of low concentrations of hydrogen peroxide fuel, the motors exhibited continuous locomotion in the cellular biological environment. Physical cues (force and pressure) generated by the dynamic performance are sensed by mechanosensitive ion channels of T cells and trigger Ca2+ influx and subsequent activation. The successful demonstration that mechanical signals generated in the bio microenvironment can potentiate T cells activation, represents a potential approach for cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Fei Wang
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Bin Chen
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhen Wang
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
- *Correspondence: Fei Peng,
| |
Collapse
|
25
|
Mena-Giraldo P, Orozco J. Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5897-5907. [PMID: 34978178 DOI: 10.1021/acsami.1c14663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immobilizing enzymes into microcarriers is a strategy to improve their long-term stability and reusability, hindered by (UV) light irradiation. However, in such approaches, enzyme-substrate interaction is mediated by diffusion, often at slow kinetics. In contrast, enzyme-linked self-propelled motors can accelerate this interaction, frequently mediated by the convection mechanism. This work reports on a new photosensitive polymeric Janus micromotor (JM) for UV-light protection of enzymatic activity and efficient degradation of substrates accelerated by the JMs. The JMs were assembled with UV-photosensitive modified chitosan, co-encapsulating fluorescent-labeled proteins and enzymes as models and magnetite and platinum nanoparticles for magnetic and catalytic motion. The JMs absorbed UV light, protecting the enzymatic activity and accelerating the enzyme-substrate degradation by magnetic/catalytic motion. Immobilizing proteins in photosensitive JMs is a promising strategy to improve the enzyme's stability and hasten the kinetics of substrate degradation, thereby enhancing the enzymatic process's efficiency.
Collapse
Affiliation(s)
- Pedro Mena-Giraldo
- Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exact Sciences, University of Antioquia, Calle 67 N° 52-20, Complejo Ruta N, Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exact Sciences, University of Antioquia, Calle 67 N° 52-20, Complejo Ruta N, Medellín 050010, Colombia
| |
Collapse
|
26
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Yan M, Liang K, Zhao D, Kong B. Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102887. [PMID: 34611979 DOI: 10.1002/smll.202102887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The successful integration of well-designed micro-nanomotors (MNMs) with diverse functional systems, such as, living systems, remote actuation systems, intelligent sensors, and sensing systems, offers many opportunities to not only endow them with diverse functionalization interfaces but also bring augmented or new properties in a wide variety of applications. Core-shell structured MNM systems have been considered to play an important role in a wide range of applications as they provide a platform to integrate multiple complementary components via decoration, encapsulation, or functionalization into a single functional system, being able to protect the active species from harsh environments, and bring improved propulsion performance, stability, non-toxicity, multi-functionality, and dispersibility, etc., which are not easily available from the isolated components. More importantly, the hetero-interfaces between individual components within a core-shell structure might give rise to boosted or new physiochemical properties. This review will bring together these key aspects of the core-shell structured MNMs, ranging from advanced protocols, enhanced/novel functionalities arising from diverse functional shells, to integrated core-shell structured MNMs for diverse applications. Finally, current challenges and future perspectives for the development of core-shell structured MNMs are discussed in term of synthesis, functions, propulsions, and applications.
Collapse
Affiliation(s)
- Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
28
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
29
|
Nambiar M, Schneider JP. Peptide hydrogels for affinity-controlled release of therapeutic cargo: Current and potential strategies. J Pept Sci 2022; 28:e3377. [PMID: 34747114 PMCID: PMC8678354 DOI: 10.1002/psc.3377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
The development of devices for the precise and controlled delivery of therapeutics has grown rapidly over the last few decades. Drug delivery materials must provide a depot with delivery profiles that satisfy pharmacodynamic and pharmacokinetic requirements resulting in clinical benefit. Therapeutic efficacy can be limited due to short half-life and poor stability. Thus, to compensate for this, frequent administration and high doses are often required to achieve therapeutic effect, which in turn increases potential side effects and systemic toxicity. This can potentially be mitigated by using materials that can deliver drugs at controlled rates, and material design principles that allow this are continuously evolving. Affinity-based release strategies incorporate a myriad of reversible interactions into a gel network, which have affinities for the therapeutic of interest. Reversible binding to the gel network impacts the release profile of the drug. Such affinity-based interactions can be modulated to control the release profile to meet pharmacokinetic benchmarks. Much work has been done developing affinity-based control in the context of polymer-based materials. However, this strategy has not been widely implemented in peptide-based hydrogels. Herein, we present recent advances in the use of affinity-controlled peptide gel release systems and their associated mechanisms for applications in drug delivery.
Collapse
Affiliation(s)
- Monessha Nambiar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
30
|
Fahmi MZ, Machmudah N, Indrawasih P, Wibrianto A, Ahmad MA, Sakti SCW, Chang JY. Naproxen release from carbon dot coated magnetite nanohybrid as versatile theranostics for HeLa cancer cells. RSC Adv 2022; 12:32328-32337. [PMID: 36425684 PMCID: PMC9650478 DOI: 10.1039/d2ra05673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging. The nanohybrid was prepared via pyrolysis and further loaded with naproxen (NAP) to promote drug delivery features. The characterization of the synthesized Fe3O4@CDs demonstrated the existence of Fe3O4 crystals by matching with JCPDS 75-0033 and its narrow size distribution at 11.30 nm; further, FTIR spectra confirmed the presence of Fe–O groups, C–O stretching, C–H sp2, and C–O bending, along with dual-active fluorescence and magnetic responses. The nanohybrids also exhibit particular properties such as a maximum wavelength of 230.5 nm, maximum emission in the 320–420 nm range, and slight superparamagnetic reduction (Fe3O4: 0.93620 emu per g; Fe3O4@CDs: 0.64784 emu per g). The cytotoxicity assessment of the nanohybrid revealed an excellent half-maximal inhibitory concentration (IC50) of 17 671.5 ± 1742.6 μg mL−1. Then, the incorporation of NAP decreased the cell viability to below 10%. The kinetic release properties of NAP are also confirmed as pH-dependent, and they follow the Korsmeyer–Peppas kinetics model. These results indicated that the proposed Fe3O4@CDs can be used as a new model for theranostic treatment. Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging.![]()
Collapse
Affiliation(s)
- Mochamad Z. Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Putri Indrawasih
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Musbahu A. Ahmad
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Satya C. W. Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| |
Collapse
|
31
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
32
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
33
|
Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Most forms of biomatter are ephemeral, which means they transform or deteriorate after a certain time. From this perspective, implantable healthcare devices designed for temporary treatments should exhibit the ability to degrade and either blend in with healthy tissues, or be cleared from the body with minimal disruption after accomplishing their designated tasks. This topic is currently being investigated in the field of biomedical micro- and nanoswimmers. These tiny devices have the ability to move through fluids by converting physical or chemical energy into motion. Several architectures of these devices have been designed to mimic the motion strategies of nature's motile microorganisms and cells. Due to their motion abilities, these devices have been proposed as minimally invasive tools for precision healthcare applications. Hence, a natural progression in this field is to produce motile structures that can adopt, or even surpass, similar transient features as biological systems. The fate of small-scale swimmers after accomplishing their therapeutic mission is critical for the successful translation of small-scale swimmers' technologies into clinical applications. In this review, recent research efforts are summarized on the topic of biodegradable micro- and nanoswimmers for biomedical applications, with a focus on targeted therapeutic delivery.
Collapse
Affiliation(s)
- Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Antón Rivas-Dapena
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica I Computacional, Barcelona, 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 0 8010, Spain
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
34
|
Nakayama S, Kojima T, Kaburagi M, Kikuchi T, Asakura K, Banno T. Chemotaxis of Oil Droplets and Their Phase Transition to Aggregates with Membrane Structures in Surfactant Solution Containing Metal Salts. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sepia Nakayama
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tomoya Kojima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Mari Kaburagi
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takanori Kikuchi
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouichi Asakura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Taisuke Banno
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
35
|
Ou J, Tian H, Wu J, Gao J, Jiang J, Liu K, Wang S, Wang F, Tong F, Ye Y, Liu L, Chen B, Ma X, Chen X, Peng F, Tu Y. MnO 2-Based Nanomotors with Active Fenton-like Mn 2+ Delivery for Enhanced Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38050-38060. [PMID: 34369138 DOI: 10.1021/acsami.1c08926] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging strategy for cancer treatment based on Fenton chemistry, which can convert endogenous H2O2 into toxic ·OH. However, the limited endocytosis of passive CDT nanoagents with low penetrating capability resulted in unsatisfactory anticancer efficacy. Herein, we propose the successful fabrication of a self-propelled biodegradable nanomotor system based on hollow MnO2 nanoparticles with catalytic activity for active Fenton-like Mn2+ delivery and enhanced CDT. Compared with the passive counterparts, the significantly improved penetration of nanomotors with enhanced diffusion is demonstrated in both the 2D cell culture system and 3D tumor multicellular spheroids. After the intracellular uptake of nanomotors, toxic Fenton-like Mn2+ is massively produced by consuming overexpressed intracellular glutathione (GSH), which has a strong scavenging effect on ·OH, thereby leading to enhanced cancer CDT. The as-developed MnO2-based nanomotor system with enhanced penetration and endogenous GSH scavenging capability shows much promise as a potential platform for cancer treatment in the near future.
Collapse
Affiliation(s)
- Juanfeng Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Juanyan Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lu Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Fan C, Zhai S, Hu W, Chi S, Song D, Liu Z. Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors. RSC Adv 2021; 11:21384-21389. [PMID: 35478781 PMCID: PMC9034094 DOI: 10.1039/d1ra03469c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Gold nanoclusters (Au NCs), which have the characteristics of small size, near infrared (NIR) absorption and long triplet excited lifetime, have been used as a new type of photosensitizer for deep tissue photodynamic therapy (PDT). However, the therapeutic efficiency of the nano-system based on Au NCs still needs to be improved. Herein, we proposed a strategy using Mito-Au25@MnO2 nanocomposites to achieve enhanced PDT. Au25(Capt)18− nanoclusters were applied as photosensitizers and further modified with peptides to target mitochondrial and MnO2 nanosheets to consume glutathione (GSH). In the presence of GSH, Mito-Au25@MnO2 dis-integrated and Mito-Au25 nanoparticles realized accurate mitochondrial targeting. Under the irradiation of 808 nm light, the nanocomposite ensured highly efficient PDT both in vitro and in vivo via oxidation pressure elevation and mitochondrial targeting in cancer cells. This is the first example of mitochondrial targeting Au NCs capable of improving the efficiency of photodynamic therapy. Mito-Au25@MnO2 can be activated by consuming GSH and elevating oxidation pressure in cancer cells.![]()
Collapse
Affiliation(s)
- Chen Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Shuyang Zhai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Siyu Chi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Dan Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
37
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
38
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021; 60:13158-13176. [PMID: 33145879 DOI: 10.1002/anie.202013689] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Due to their unique ability to actively move, micro/nanomotors offer the possibility of breaking through the limitations of traditional passive drug delivery systems for the treatment of many diseases, and have attracted the increasing attention of researchers. However, at present, the realization of many advantages of micro/nanomotors in disease treatment in vivo is still in its infancy, because of the complexity and particularity of diseases in different parts of human body. In this Minireview, we first focus on the biosafety and functionality of micro/nanomotors as a biomedical treatment system. Then, we address the treatment difficulties of various diseases in vivo (such as ophthalmic disease, orthopedic disease, gastrointestinal disease, cardiovascular disease, and cancer), and then review the research progress of biomedical micro/nanomotors in the past 20 years, Finally, we propose the challenges in this field and possible future development directions.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
39
|
Zhou D, Liu S, Hu Y, Yang S, Zhao B, Zheng K, Zhang Y, He P, Mo G, Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 2021; 8:3801-3813. [PMID: 32227025 DOI: 10.1039/d0tb00143k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lack of sufficient tumor penetration of the current nanomedicines is a major reason limiting their clinical success in cancer therapy. In this work, we aimed at the development of a novel biodegradable nanoplatform for the selective and controlled delivery of anticancer agents, with improved tumor permeability and the ability to release ultrasmall nanovesicles in the tumor microenvironment. To this end, positively charged nanogels were obtained through the double-crosslinking of chitosan with an ionic physical gelator and a disulfide-containing chemical crosslinker. After conjugation to an anionic oligomer, the cationic nanogels were transformed into negatively charged nanocarriers (CTCP), enabling effective encapsulation of the cationic anticancer agent doxorubicin (DOX) to generate a biodegradable nanomedicine (DOX@CTCP). DOX@CTCP could maintain sustained DOX release and decreased DOX toxicity. Upon arrival at the tumor tissue, the reductive and lysozyme-high microenvironment drives the cleavage of the nanomedicine to release DOX-carrying nanoblocks of smaller size, which together with their acidic-protonable feature achieves an effective therapeutic delivery into cancer cells. The nanomedicine described here showed excellent biocompatibility/biosafety and enhanced in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Dong Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Sainan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yongjun Hu
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Shiwei Yang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Bing Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Kaikai Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Guoyan Mo
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China. and The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
40
|
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Mobile micro- and nano-motors (MNMs) emerge as revolutionary platforms for biomedical applications, including drug delivery, biosensing, non-invasive surgery, and cancer therapy. While for applications in biomedical fields and practical clinical translation, the interactions of these untethered tiny machines with the immune system is an essential issue to be considered. This review highlights the recent approaches of surpassing immune barriers to prevent foreign motors from triggering immune responses. In addition to trials focusing on the function preservation of MNMs, examples of versatile MNMs working with the immune components (immune molecules, immune cells and the whole system) to achieve cancer immunotherapy, immunoassay, and detoxification are outlined. The immune interference part provides researchers an idea about what is the limit presented by the immune components. The coworking part suggests ways to bypass or even utilize the limit. With interdisciplinary cooperation of nanoengineering, materials science, and immunology field, the rationally designed functional MNMs are expected to provide novel opportunities for the biomedical field.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Zhen Wang
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
41
|
Zhao C, Jian X, Zhang X, Guo J, Gao Z, Song YY. Rapid Capture and Photocatalytic Inactivation of Target Cells from Whole Blood by Rotating Janus Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12972-12981. [PMID: 33689269 DOI: 10.1021/acsami.1c02042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective isolation and removal of target tumor cells from patients' peripheral blood are of great importance to clinical prognosis and recovery. However, the extremely low quantity of target cells in peripheral blood becomes one of the challenges in this respect. Herein, we design and synthesize an innovative nanostructure based on magnetic TiO2 nanotubes with Pt nanoparticles' asymmetrical decoration for effectively capturing and inactivating target cells. Using CCRF-CEM as the model cell, the resulting nanotubes with accurate modification of recognition probes exhibit high selectivity and cell-isolation efficiency upon real blood samples. Particularly, the target cells are selectively captured at a low concentration with a recovery rate of 73.0 ± 11.5% at five cells per milliliter for whole blood samples. Consequently, benefitting from the remarkable photocatalytic activity of the Janus nanotubes, these isolated cells can be rapidly inactivated via light-emitting diode (LED) irradiation with an ignorable effect on normal cells. This work offers a new paradigm for high-efficient isolating/killing target cells from a complex medium.
Collapse
Affiliation(s)
- Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xiaoxia Jian
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
42
|
Feng P, Du X, Guo J, Wang K, Song B. Light-Responsive Nanofibrous Motor with Simultaneously Precise Locomotion and Reversible Deformation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8985-8996. [PMID: 33583177 DOI: 10.1021/acsami.0c22340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light-powered micromotors have drawn enormous attention because of their potential applications in cargo delivery, environmental monitoring, and noninvasive surgery. However, the existing micromotors still suffer from some challenges, including slow speed, poor controllability, single locomotion mode, and no deformation during movement. Herein, we employ a combined electrospinning with brushing of Chinese ink to simply fabricate a light-responsive gradient-structured poly(vinyl alcohol)/carbon (PVA/carbon) composite motor. Because of the surface deposition and ultrahigh loading amount of carbon nanoparticles (ca. 43%), the motor exhibits rapid (39 mm/s), direction-controlled, and multimodal locomotion (vertical movement, horizontal motion, rotation) under light irradiation. Simultaneously, gradient alignment structure of the PVA nanofibrous matrix endows the motor with controllable and reversible deformation during locomotion. We finally demonstrate the potential applications of the motors in leakage monitoring, object salvage, smart access, and intelligent assembly. The present work will inspire the design of novel photosensitive motors for applications in various fields, such as microrobots, environmental monitoring, and biomedicine.
Collapse
Affiliation(s)
- Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiaolong Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Juan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| |
Collapse
|
43
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
44
|
Wang D, Gao C, Si T, Li Z, Guo B, He Q. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021; 13:341. [PMID: 33494545 PMCID: PMC7866063 DOI: 10.3390/polym13030341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymer nanoparticles and nano/micromotors are novel nanostructures that are of increased interest especially in the diagnosis and therapy of cancer. These structures are modified by antibodies or nucleic acid aptamers and can recognize the cancer markers at the membrane of the cancer cells or in the intracellular side. They can serve as a cargo for targeted transport of drugs or nucleic acids in chemo- immuno- or gene therapy. The various mechanisms, such as enzyme, ultrasound, magnetic, electrical, or light, served as a driving force for nano/micromotors, allowing their transport into the cells. This review is focused on the recent achievements in the development of polymer nanoparticles and nano/micromotors modified by antibodies and nucleic acid aptamers. The methods of preparation of polymer nanoparticles, their structure and properties are provided together with those for synthesis and the application of nano/micromotors. The various mechanisms of the driving of nano/micromotors such as chemical, light, ultrasound, electric and magnetic fields are explained. The targeting drug delivery is based on the modification of nanostructures by receptors such as nucleic acid aptamers and antibodies. Special focus is therefore on the method of selection aptamers for recognition cancer markers as well as on the comparison of the properties of nucleic acid aptamers and antibodies. The methods of immobilization of aptamers at the nanoparticles and nano/micromotors are provided. Examples of applications of polymer nanoparticles and nano/micromotors in targeted delivery and in controlled drug release are presented. The future perspectives of biomimetic nanostructures in personalized nanomedicine are also discussed.
Collapse
Affiliation(s)
| | | | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia; (V.S.); (V.O.)
| |
Collapse
|
46
|
Cao XT, Vu-Quang H, Doan VD, Nguyen VC. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04789-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
|
48
|
Lin R, Yu W, Chen X, Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Adv Healthc Mater 2021; 10:e2001212. [PMID: 32975892 DOI: 10.1002/adhm.202001212] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer is still one of the most serious diseases with threats to health and life. Although some advances have been made in targeting delivery of antitumor drugs over the past number of years, there are still many problems needing to be solved, such as poor efficacy and high systemic toxicity. Micro/nanomotors capable of self-propulsion in fluid provide promising platforms for improving the efficiency of tumor delivery. Herein, the recent progress in micro/nanomotors for tumor targeting delivery and therapy is reviewed, with special focus on the contributions of micro/nanomotors to the different stages of tumor targeting delivery as well as the combination therapy by micro/nanomotors. The present limitations and future directions are also put forward for further development.
Collapse
Affiliation(s)
- Ruyi Lin
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
49
|
Shi X, Yang X, Liu M, Wang R, Qiu N, Liu Y, Yang H, Ji J, Zhai G. Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydr Polym 2020; 254:117459. [PMID: 33357918 DOI: 10.1016/j.carbpol.2020.117459] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/02/2023]
Abstract
As a major therapeutic approach for cancer treatment, the effectiveness of chemotherapy is challenged by multidrug resistance (MDR). Herein, we fabricated novel redox-responsive, chondroitin sulfate-based nanoparticles that could simultaneously deliver quercetin (chemosensitizer), chlorin e6 (photosensitizer) and paclitaxel (chemotherapeutic agent) to exert enhanced chemo-photodynamic therapy for overcoming MDR and lung metastasis of breast cancer. In vitro cell study showed that nanoparticles down-regulated the expression of P-glycolprotein (P-gp) on MCF-7/ADR cells and thereby improved the anticancer efficacy of PTX against MCF-7/ADR cells. Moreover, NIR laser irradiation could induce nanoparticles to generate cellular reactive oxygen species (ROS), leading to mitochondrial membrane potential loss, and meanwhile facilitating lysosomal escape of drugs. Importantly, the novel nanoplatform exhibited effective in vivo MDR inhibition and anti-metastasis efficacy through enhanced chemo-photodynamic therapy. Thus, the study suggested that the multifunctional nanoplatform had good application prospect for effective breast cancer therapy.
Collapse
Affiliation(s)
- Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Mengyao Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Rujuan Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yuanxiu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Haotong Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
50
|
Gervasoni S, Terzopoulou A, Franco C, Veciana A, Pedrini N, Burri JT, de Marco C, Siringil EC, Chen XZ, Nelson BJ, Puigmartí-Luis J, Pané S. CANDYBOTS: A New Generation of 3D-Printed Sugar-Based Transient Small-Scale Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005652. [PMID: 33191553 DOI: 10.1002/adma.202005652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.
Collapse
Affiliation(s)
- Simone Gervasoni
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Anastasia Terzopoulou
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Carlos Franco
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Andrea Veciana
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Norman Pedrini
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Jan T Burri
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Carmela de Marco
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Erdem C Siringil
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, Barcelona, 08028, Spain
- Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| |
Collapse
|