1
|
Li L, Dai Y, Zhao J. Modeling of Photodynamic Self-Oscillation Based on a Suspended Liquid Crystal Elastomer Ball System. Polymers (Basel) 2024; 16:3119. [PMID: 39599210 PMCID: PMC11598173 DOI: 10.3390/polym16223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Self-oscillation enables continuous motion by transforming constant external stimuli into mechanical work, eliminating the necessity for supplementary control systems. This holds considerable promise in domains like actuators, wearable devices and biomedicine. In the current study, a novel suspended liquid crystal elastomer (LCEs) ball system consisting of a light-responsive hollow LCE ball and an air blower is constructed. Stable illumination allows for its continuous periodic oscillation. Drawing from the theoretical model in conjunction with the dynamic LCE model, the control equations for the system are established, and its dynamic motion characteristics are explored from theoretical viewpoint. The numerical calculations suggest that two motion patterns are present, i.e., hovering and self-oscillatory patterns. The critical conditions required to initiate the transition between two motion patterns are quantified for different system parameters. As evidenced by the outcomes, manipulating the light intensity, damping coefficient, contraction coefficient, air density, gravitational acceleration, bottom illumination zone height, characteristic coefficient and vertical wind speed at the blower outlet facilitates precise control over the motion patterns as well as the amplitude and frequency. With its simple structure, customizable dimensions, remote activation and active manipulation, this system may potentially change the design approach for energy harvesting, microsensors and aerial vehicles.
Collapse
Affiliation(s)
| | | | - Jun Zhao
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (L.L.); (Y.D.)
| |
Collapse
|
2
|
Zhou L, Wang Z, Gao L, Yang H, Fang S. Preparation and Properties of Multi-Responsive Liquid Crystalline Poly(urethane-acrylate)s and Its Composite Membranes. Polymers (Basel) 2024; 16:1854. [PMID: 39000707 PMCID: PMC11244038 DOI: 10.3390/polym16131854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
In this work, a kind of side chain liquid crystalline poly(urethane-acrylate)s was synthesized by free polymerization based on self-made liquid crystalline monomers, and a series of liquid crystalline polyurethane/shape memory polyurethane composite membranes were prepared by electrospinning. The synthesized liquid crystalline poly(urethane-acrylate)s have excellent thermal stability. Due to the regular arrangement of azobenzene on the side chains, polymers can rapidly undergo a photoinduced transition from trans-isomerism to cis-isomerism in THF solution and restore reversible configurational changes under visible light. The composite membranes prepared by electrospinning can also undergo photoinduced deformation within 6 s, and the deformation slowly returns under visible light. Meanwhile, the composites have shape memory, and after deformation caused by stretching, the membranes can quickly recover their original shape under thermal stimulation. These results indicate that the composites have triple response performances of photoinduced deformation, photo-, and thermal recovery.
Collapse
Affiliation(s)
| | | | - Lijun Gao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | | | - Shaoming Fang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
3
|
Dai S, Zhong J, Yang X, Chen C, Zhou L, Liu X, Sun J, Ye K, Zhang H, Li L, Naumov P, Lu R. Strategies to Diversification of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2024; 63:e202320223. [PMID: 38588224 DOI: 10.1002/anie.202320223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.
Collapse
Affiliation(s)
- Shuting Dai
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jiangbin Zhong
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xiqiao Yang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Chao Chen
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liping Zhou
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xinyu Liu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingbo Sun
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Kaiqi Ye
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Hongyu Zhang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188, Abu Dhabi, UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Ran Lu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Zhang J, Liu S, Wang X, Zhang X, Hu X, Zhang L, Sun Q, Liu X. 4D Printable liquid crystal elastomers with restricted nanointerfacial slippage for long-term-cyclic-stability photothermal actuation. MATERIALS HORIZONS 2024; 11:2483-2493. [PMID: 38477135 DOI: 10.1039/d3mh02230g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Liquid crystal elastomers (LCEs) blended with photothermal nanofillers can reversibly and rapidly deform their shapes under external optical stimuli. However, nanointerfacial slipping inevitably occurs between the LCE molecules and the nanofillers due to their weak physical interactions, eventually resulting in cyclic instability. This work presents a versatile strategy to fabricate nanointerfacial-slipping-restricted photoactuation elastomers by chemically bonding the nanofillers into a thermally actuatable liquid crystal network. We experimentally and theoretically investigated three types of metal-based nanofillers, including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, and two-dimensional (2D) nanosheets. The toughly crosslinked nanointerface allows for remarkably promoted interfacial thermal conductivity and stress transfer. Therefore, the resultant actuators enable the realization of long-term-cyclic-stability 4D-printed flexible intelligent systems such as the optical gripper, crawling robot, light-powered self-sustained windmill, butterflies with fluttering wings, and intelligent solar energy collection system.
Collapse
Affiliation(s)
- Juzhong Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuiren Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xianghong Wang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoguang Hu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Linlin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Qingqing Sun
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuying Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
6
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
7
|
Wu H, Zhang B, Li K. Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields. Phys Rev E 2024; 109:024701. [PMID: 38491566 DOI: 10.1103/physreve.109.024701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 03/18/2024]
Abstract
Self-oscillating coupled systems possess the ability to actively absorb external environmental energy to sustain their motion. This quality endows them with autonomy and sustainability, making them have application value in the fields of synchronization and clustering, thereby furthering research and exploration in these domains. Building upon the foundation of thermal responsive liquid crystal elastomer-based (LCE-based) spring oscillators, a synchronous system comprising three LCE-based spring oscillators interconnected by springs is established. In this paper, the synchronization phenomenon is described, and the self-oscillation mechanism is revealed. The results indicate that by varying system parameters and initial conditions, three synchronization patterns emerge, namely, full synchronous mode, partial synchronous mode, and asynchronous mode. For strongly interacting systems, full synchronous mode always prevails, while for weak interactions, the adjustment of initial velocities in magnitude and direction yields the three synchronization patterns. Additionally, this study explores the impact of several system parameters, including LCE elasticity coefficient and spring elasticity coefficient, on the amplitude, frequency, and synchronous mode of the system. The findings in this paper can enhance our understanding of the synchronization behavior of multiple mutually coupled LCE-based spring oscillators, with promising applications in energy harvesting, soft robotics, signal monitoring, and various other fields.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601,China
| | - Biao Zhang
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601,China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601,China
| |
Collapse
|
8
|
Sun X, Dai Y, Li K, Xu P. Self-Sustained Chaotic Jumping of Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers (Basel) 2023; 15:4651. [PMID: 38139903 PMCID: PMC10747744 DOI: 10.3390/polym15244651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Self-sustained chaotic jumping systems composed of active materials are characterized by their ability to maintain motion through drawing energy from the steady external environment, holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz contact theory. Under steady illumination, the stationary LCE balloon experiences contraction and expansion, and through the work of contact expansion between LCE balloon and elastic substrate, it ultimately jumps up from the elastic substrate, achieving self-sustained jumping. Numerical calculations reveal that the LCE balloon exhibits periodic jumping and chaotic jumping under steady illumination. Moreover, we reveal the mechanism underlying self-sustained periodic jumping of the balloon in which the damping dissipation is compensated through balloon contact with the elastic substrate, as well as the mechanism involved behind self-sustained chaotic jumping. Furthermore, we provide insights into the effects of system parameters on the self-sustained jumping behaviors. The emphasis in this study is on the self-sustained chaotic jumping system, and the variation of the balloon jumping modes with parameters is illustrated through bifurcation diagrams. This work deepens the understanding of chaotic motion, contributes to the research of motion behavior control of smart materials, and provides ideas for the bionic design of chaotic vibrators and chaotic jumping robots.
Collapse
Affiliation(s)
| | | | | | - Peibao Xu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (X.S.); (Y.D.); (K.L.)
| |
Collapse
|
9
|
Yu Y, Yang F, Dai Y, Li K. Liquid crystal elastomer self-oscillator with embedded light source. Phys Rev E 2023; 108:054702. [PMID: 38115449 DOI: 10.1103/physreve.108.054702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Light sources that switch periodically over time have a wide range of application value in life and engineering, and generally require additional controller to periodically switch circuits to achieve periodic lighting. In this paper, a self-oscillating spring oscillator based on optically responsive liquid crystal elastomer (LCE) fiber is constructed, which consists of a embedded light source and a LCE fiber. The spring oscillator can oscillate autonomously to achieve periodic switching of the light source. On the basis of the well-established dynamic LCE model, a nonlinear dynamic model is proposed and its dynamic behavior is studied. Numerical calculations demonstrate that the spring oscillator presents two motion regimes, namely the self-oscillation regime and the static regime. The self-oscillation of spring oscillator is maintained by the energy competition between light energy and damping dissipation. Furthermore, the critical conditions for triggering self-oscillation are also investigated in detail, as well as the key system parameters that affect its frequency and amplitude. Different from the existing abundant self-oscillating systems, this self-oscillating structure with simple structure and convenient fabrication does not require complex controller to obtain periodic lighting, and it is expected to provide more diversified design ideas for soft robots and sensors.
Collapse
Affiliation(s)
- Yong Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Fan Yang
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| |
Collapse
|
10
|
Li J, Deng B, Ye J. Fluorescence-free bis(dithiolene)nickel dyes for surface-enhanced resonance Raman imaging in the second near-infrared window. Biomaterials 2023; 300:122211. [PMID: 37379685 DOI: 10.1016/j.biomaterials.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
11
|
Wu H, Dai Y, Li K. Self-Vibration of Liquid Crystal Elastomer Strings under Steady Illumination. Polymers (Basel) 2023; 15:3483. [PMID: 37631540 PMCID: PMC10458575 DOI: 10.3390/polym15163483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Self-vibrating systems based on active materials have been widely developed, but most of the existing self-oscillating systems are complex and difficult to control. To fulfill the requirements of different functions and applications, it is necessary to construct more self-vibrating systems that are easy to control, simple in material preparation and fast in response. This paper proposes a liquid crystal elastomer (LCE) string-mass structure capable of continuous vibration under steady illumination. Based on the linear elastic model and the dynamic LCE model, the dynamic governing equations of the LCE string-mass system are established. Through numerical calculation, two regimes of the LCE string-mass system, namely the static regime and the self-vibration regime, are obtained. In addition, the light intensity, contraction coefficient and elastic coefficient of the LCE can increase the amplitude and frequency of the self-vibration, while the damping coefficient suppresses the self-oscillation. The LCE string--mass system proposed in this paper has the advantages of simple structure, easy control and customizable size, which has a wide application prospect in the fields of energy harvesting, autonomous robots, bionic instruments and medical equipment.
Collapse
Affiliation(s)
| | | | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (H.W.); (Y.D.)
| |
Collapse
|
12
|
Li K, Liu Y, Dai Y, Yu Y. Self-Vibration of a Liquid Crystal Elastomer Fiber-Cantilever System under Steady Illumination. Polymers (Basel) 2023; 15:3397. [PMID: 37631454 PMCID: PMC10458184 DOI: 10.3390/polym15163397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
A new type of self-oscillating system has been developed with the potential to expand its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and military industries. This system is capable of sustaining its own motion by absorbing energy from the stable external environment without the need for an additional controller. The existing self-sustained oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus limited in their implementation in practical and complex scenarios. In this paper, we creatively propose a novel light-powered liquid crystal elastomer (LCE) fiber-cantilever system that can perform self-sustained oscillation under steady illumination. Considering the well-established LCE dynamic model, beam theory, and deflection formula, the control equations for the self-oscillating system are derived to theoretically study the dynamics of self-vibration. The LCE fiber-cantilever system under steady illumination is found to exhibit two motion regimes, namely, the static and self-vibration regimes. The positive work done by the tension of the light-powered LCE fiber provides some compensation against the structural resistance from cantilever and the air damping. In addition, the influences of system parameters on self-vibration amplitude and frequency are also studied. The newly constructed light-powered LCE fiber-cantilever system in this paper has a simple structure, easy assembly/disassembly, easy preparation, and strong expandability as a one-dimensional fiber-based system. It is expected to meet the application requirements of practical complex scenarios and has important application value in fields such as autonomous robots, energy harvesters, autonomous separators, sensors, mechanical logic devices, and biomimetic design.
Collapse
Affiliation(s)
| | | | | | - Yong Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
13
|
Ye L, Liu M, Wang X, Yu Z, Huang Z, Zhou N, Zhang Z, Zhu X. Sequence effect on the self-assembly of discrete amphiphilic co-oligomers with fluorene-azobenzene semirigid backbones. RSC Adv 2023; 13:24181-24190. [PMID: 37575403 PMCID: PMC10416705 DOI: 10.1039/d3ra04205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.
Collapse
Affiliation(s)
- Liandong Ye
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Min Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiao Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihong Yu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihao Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
14
|
Li K, Wu H, Zhang B, Dai Y, Yu Y. Heat-Driven Synchronization in Coupled Liquid Crystal Elastomer Spring Self-Oscillators. Polymers (Basel) 2023; 15:3349. [PMID: 37631406 PMCID: PMC10458843 DOI: 10.3390/polym15163349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Self-oscillating coupled machines are capable of absorbing energy from the external environment to maintain their own motion and have the advantages of autonomy and portability, which also contribute to the exploration of the field of synchronization and clustering. Based on a thermally responsive liquid crystal elastomer (LCE) spring self-oscillator in a linear temperature field, this paper constructs a coupling and synchronization model of two self-oscillators connected by springs. Based on the existing dynamic LCE model, this paper theoretically reveals the self-oscillation mechanism and synchronization mechanism of two self-oscillators. The results show that adjusting the initial conditions and system parameters causes the coupled system to exhibit two synchronization modes: in-phase mode and anti-phase mode. The work conducted by the driving force compensates for the damping dissipation of the system, thus maintaining self-oscillation. The phase diagrams of different system parameters are drawn to illuminate the self-oscillation and synchronization mechanism. For weak interaction, changing the initial conditions may obtain the modes of in-phase and anti-phase. Under conditions of strong interactions, the system consistently exhibits an in-phase mode. Furthermore, an investigation is conducted on the influence of system parameters, such as the LCE elastic coefficient and spring elastic coefficient, on the amplitudes and frequencies of the two synchronization modes. This study aims to enhance the understanding of self-oscillator synchronization and its potential applications in areas such as energy harvesting, power generation, detection, soft robotics, medical devices and micro/nanodevices.
Collapse
Affiliation(s)
| | | | | | | | - Yong Yu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
15
|
Jiang J, Zhao Y. Liquid Crystalline Elastomer for Separate or Collective Sensing and Actuation Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301932. [PMID: 37162491 DOI: 10.1002/smll.202301932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
A porous liquid crystalline elastomer actuator filled with an ionic liquid (PLCE-IL) is shown to exhibit the functions of two classes of materials: electrically responsive, deformable materials for sensing and soft active materials for stimuli-triggered actuation. On one hand, upon the order-disorder phase transition of aligned mesogens, PLCE-IL behaves like a typical actuator capable of reversible shape change and can be used to assemble light-fuelled soft robot. On the other hand, at temperatures below the phase transition, PLCE-IL is an elastomer that can sustain and sense large deformations of various modes as well as environmental condition changes by reporting the corresponding electrical resistance variation. The two distinguished functions can also be used collectively with PLCE-IL integrated in one device. This intelligent feature is demonstrated with an artificial arm. When the arm is manually powered to fold and unfold, the PLCE-IL strip serves as a deformation sensor; while when the manual power is not available, the role of the PLCE-IL strip is switched to an actuator that enables light-driven folding and unfolding of the arm. This study shows that electrically responsive LCEs are a potential materials platform that offers possibilities for merging deformable electronic and actuation applications.
Collapse
Affiliation(s)
- Jie Jiang
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
16
|
Li K, Zhang B, Cheng Q, Dai Y, Yu Y. Light-Fueled Synchronization of Two Coupled Liquid Crystal Elastomer Self-Oscillators. Polymers (Basel) 2023; 15:2886. [PMID: 37447528 DOI: 10.3390/polym15132886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The synchronization and group behaviors of self-excited coupled oscillators are common in nature and deserve to be explored, for self-excited motions have the advantages of actively collecting energy from the environment, being autonomous, making equipment portable, and so on. Based on light-powered self-excited oscillators composed of liquid crystal elastomer (LCE) bars, the synchronization of two self-excited coupled oscillators is theoretically studied. Numerical calculations show that self-excited oscillations of the system have two synchronization modes, in-phase mode and anti-phase mode, which are mainly determined by their interaction. The time histories of various quantities are calculated to elucidate the mechanism of self-excited oscillation and synchronization. For strong interactions, the system always develops into in-phase synchronization mode, while for weak interaction, the system will evolve into anti-phase synchronization mode. Furthermore, the effects of initial conditions, contraction coefficient, light intensity, and damping coefficient on the two synchronization modes of the self-excited oscillation are investigated extensively. The initial condition generally does not affect the synchronization mode and its amplitude. The amplitude of self-oscillation always increases with increasing contraction coefficient, gravitational acceleration, and light intensity, while it decreases with the increasing damping coefficient. This work will deepen people's understanding of the synchronization behaviors of self-excited coupled oscillators, and the theoretical framework could be extended to scenarios involving large-scale synchronization of the systems with numerous interacting oscillators.
Collapse
Affiliation(s)
- Kai Li
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Biao Zhang
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Quanbao Cheng
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yuntong Dai
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yong Yu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
17
|
Song B, Zhang J, Zhou J, Qin A, Lam JWY, Tang BZ. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat Commun 2023; 14:3115. [PMID: 37253717 DOI: 10.1038/s41467-023-38769-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Exploring approaches to utilize abundant water to synthesize functional molecules and polymers with efficient clusteroluminescence properties is highly significant but has yet to be reported. Herein, a chemistry of water and alkyne is developed. The synthesized products are proven as nonaromatic clusteroluminogens that could emit visible light. Their emission colors and luminescent efficiency could be adjusted by manipulating through-space interaction using different starting materials. Besides, the free-standing polymeric films with much high photoluminescence quantum yields (up to 45.7%) are in situ generated via a water-involved interfacial polymerization. The interfacial polymerization-enhanced emission of the polymeric films is observed, where the emission red-shifts and efficiency increases when the polymerization time is prolonged. The synthesized polymeric film is also verified as a Janus film. It exhibits a vapor-triggered reversible mechanical response which could be applied as a smart actuator. Thus, this work develops a method to synthesize clusteroluminogens using water, builds a clear structure-property relationship of clusteroluminogens, and provides a strategy to in situ construct functional water-based polymeric films.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China.
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
19
|
Wu J, Wang Y, Ye W, She J, Su CY. Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2023. [DOI: 10.20965/jaciii.2023.p0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.
Collapse
Affiliation(s)
- Jundong Wu
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Yawu Wang
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Wenjun Ye
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| | - Jinhua She
- School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Chun-Yi Su
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
20
|
Xu P, Wu H, Dai Y, Li K. Self-sustained chaotic floating of a liquid crystal elastomer balloon under steady illumination. Heliyon 2023; 9:e14447. [PMID: 36967936 PMCID: PMC10036649 DOI: 10.1016/j.heliyon.2023.e14447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Self-sustained chaotic system has the capability to maintain its own motion through directly absorbing energy from the steady external environment, showing extensive application potential in energy harvesters, self-cleaning, biomimetic robots, encrypted communication and other fields. In this paper, a novel light-powered chaotic self-floating system is proposed by virtue of a nonlinear spring and a liquid crystal elastomer (LCE) balloon, which is capable of self-floating under steady illumination due to self-beating. The corresponding theoretical model is formulated by combining dynamic LCE model and Newtonian dynamics. Numerical calculations show that the periodic self-floating of LCE balloon can occur under steady illumination, which is attributed to the light-powered self-beating of LCE balloon with shading coating. Furthermore, the chaotic self-floating is presented to be developed from the periodic self-floating through period doubling bifurcation. In addition, the effects of system parameters on the self-floating behaviors of the system are also investigated. The detailed calculations demonstrate that the regime of self-floating LCE balloon depends on a combination of system parameters. The chaotic self-floating system of current study may inspire the design of other chaotic self-sustained motion based on stimuli-responsive materials, and have guiding significance for energy harvesters, self-cleaning, biomimetic robots, encrypted communication and other applications.
Collapse
|
21
|
Zhang X, Yao L, Yan H, Zhang Y, Han D, He Y, Li C, Zhang J. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. SOFT MATTER 2022; 18:9181-9196. [PMID: 36437786 DOI: 10.1039/d2sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
22
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
23
|
Wang Q, Wu Z, Li J, Wei J, Guo J, Yin M. Spontaneous and Continuous Actuators Driven by Fluctuations in Ambient Humidity for Energy-Harvesting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38972-38980. [PMID: 35994317 DOI: 10.1021/acsami.2c11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-oscillating soft actuators that enable spontaneous and continuous motion under an external stimulus with no human intervention have attracted extensive attention due to the great value of the realization of more sustainable and low-power-consumption actuators. However, the achievement of such actuators that collect chemical energy from the fluctuations in ambient humidity is still a great challenge. Here, an actuator film based on spiropyran@agarose (SP@AG) that can spontaneously and continuously collect chemical energy from the fluctuations in ambient humidity is developed. It is noteworthy that the SP@AG film has excellent self-oscillation behavior and a high oscillation amplitude (184°) under the size (40 × 8 mm) or load of 116 mg (about 5.2 times of the film weight). Moreover, on the basis of the self-oscillating motion, an energy conversion device is constructed by integrating the soft actuator with a piezoelectric PVDF film, which can spontaneously and continuously generate an output voltage of about 30 mV. Finally, a proof of concept for an "intelligent light-controllable window" that can open under humidity stimulus and change color under light is proposed herein. Overall, the self-oscillating actuator driven by fluctuations in ambient humidity shows immense potential in response to the atmospheric humidity of day-night rhythm and humid-energy-harvesting devices.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Jie Wei
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| |
Collapse
|
24
|
Zhou L, Yu W, Li K. Dynamical Behaviors of a Translating Liquid Crystal Elastomer Fiber in a Linear Temperature Field. Polymers (Basel) 2022; 14:polym14153185. [PMID: 35956704 PMCID: PMC9371172 DOI: 10.3390/polym14153185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Liquid crystal elastomer (LCE) fiber with a fixed end in an inhomogeneous temperature field is capable of self-oscillating because of coupling between heat transfer and deformation, and the dynamics of a translating LCE fiber in an inhomogeneous temperature field are worth investigating to widen its applications. In this paper, we propose a theoretic constitutive model and the asymptotic relationship of a LCE fiber translating in a linear temperature field and investigate the dynamical behaviors of a corresponding fiber-mass system. In the three cases of the frame at rest, uniform, and accelerating translation, the fiber-mass system can still self-oscillate, which is determined by the combination of the heat-transfer characteristic time, the temperature gradient, and the thermal expansion coefficient. The self-oscillation is maintained by the energy input from the ambient linear temperature field to compensate for damping dissipation. Meanwhile, the amplitude and frequency of the self-oscillation are not affected by the translating frame for the three cases. Compared with the cases of the frame at rest, the translating frame can change the equilibrium position of the self-oscillation. The results are expected to provide some useful recommendations for the design and motion control in the fields of micro-robots, energy harvesters, and clinical surgical scenarios.
Collapse
Affiliation(s)
- Lin Zhou
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Wangyang Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
25
|
Synchronization of a Passive Oscillator and a Liquid Crystal Elastomer Self-Oscillator Powered by Steady Illumination. Polymers (Basel) 2022; 14:polym14153058. [PMID: 35956572 PMCID: PMC9370277 DOI: 10.3390/polym14153058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Self-oscillators have the advantages of actively harvesting energy from external steady environment, autonomy, and portability, and can be adopted as an engine to drive additional working equipment. The synchronous behavior of self-oscillators and passive oscillators may have an important impact on their functions. In this paper, we construct a self-oscillating system composed of a passive oscillator and an active liquid crystal elastomer self-oscillator powered by steady illumination, and theoretically investigate the synchronization of two coupled oscillators. There exist three synchronous regimes of the two coupled oscillators: static, in-phase, and anti-phase. The mechanisms of self-oscillations in in-phase and anti-phase synchronous regimes are elucidated in detail by calculating several key physical parameters. In addition, the effects of spring constant, initial velocity, contraction coefficient, light intensity, and damping coefficient on the self-oscillations of two coupled oscillators are further investigated, and the critical conditions for triggering self-oscillations are obtained. Numerical calculations show that the synchronous regime of self-oscillations is mainly determined by the spring constant, and the amplitudes of self-oscillations of two oscillators increase with increasing contraction coefficient, light intensity, and spring constant, while decrease with increasing damping coefficient. This study deepens the understanding of synchronization between coupled oscillators and may provide new design ideas for energy harvesters, soft robotics, signal detection, active motors, and self-sustained machinery.
Collapse
|
26
|
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules 2022; 27:molecules27144330. [PMID: 35889204 PMCID: PMC9317631 DOI: 10.3390/molecules27144330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities.
Collapse
|
27
|
Jayoti D, Peeketi AR, Annabattula RK, Prasad SK. Dynamics of the photo-thermo-mechanical actuations in NIR-dye doped liquid crystal polymer networks. SOFT MATTER 2022; 18:3358-3368. [PMID: 35411357 DOI: 10.1039/d2sm00156j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe photo-thermo-mechanical actuation and its dynamics in thin films of a liquid crystal networks (LCN) under near infrared (NIR) illumination through experiments and simulations. Splay aligned films of different thicknesses (25 μm to 100 μm) were obtained by crosslinking a mixture of mono-functional and bi-functional liquid crystal monomers. The NIR-driven thermo-mechanical actuation was achieved by adding an NIR dye to the monomer mixture. The absorption of incoming radiation by the dye molecules raises the local temperature of the film causing an order-disorder (nematic-isotropic) transition, thereby resulting in a macroscopic shape change. We have investigated the effect of film thickness, NIR laser power and dye concentration on the tip displacement of the films in a cantilever configuration. The experimental findings and finite element simulation results are in reasonably good quantitative agreement. Despite using lower NIR powers than typically employed, the films show high actuation and large displacements. After achieving saturation in actuation, the films exhibit a flutter behavior which is discussed in light of the observed overshoot in the tip displacement for certain intensities and thicknesses. Finally, using a solar simulator, we also show the visible light response of the film.
Collapse
Affiliation(s)
- Divya Jayoti
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Akhil R Peeketi
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ratna K Annabattula
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
| |
Collapse
|
28
|
A Light-Powered Liquid Crystal Elastomer Spring Oscillator with Self-Shading Coatings. Polymers (Basel) 2022; 14:polym14081525. [PMID: 35458275 PMCID: PMC9028186 DOI: 10.3390/polym14081525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The self-oscillating systems based on stimuli-responsive materials, without complex controllers and additional batteries, have great application prospects in the fields of intelligent machines, soft robotics, and light-powered motors. Recently, the periodic oscillation of an LCE fiber with a mass block under periodic illumination was reported. This system requires periodic illumination, which limits the application of self-sustained systems. In this paper, we creatively proposed a light-powered liquid crystal elastomer (LCE) spring oscillator with self-shading coatings, which can self-oscillate continuously under steady illumination. On the basis of the well-established dynamic LCE model, the governing equation of the LCE spring oscillator is formulated, and the self-excited oscillation is studied theoretically. The numerical calculations show that the LCE spring oscillator has two motion modes, static mode and oscillation mode, and the self-oscillation arises from the coupling between the light-driven deformation and its movement. Furthermore, the contraction coefficient, damping coefficient, painting stretch, light intensity, spring constant, and gravitational acceleration all affect the self-excited oscillation of the spring oscillator, and each parameter is a critical value for triggering self-excited oscillation. This work will provide effective help in designing new optically responsive structures for engineering applications.
Collapse
|
29
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid–Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022; 61:e202117390. [DOI: 10.1002/anie.202117390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Affiliation(s)
- En Lin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Xiuyu Zhao
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhaoyi Liu
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Dong Yan
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Fazheng Jin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Thermally Driven Self-Rotation of a Hollow Torus Motor. MICROMACHINES 2022; 13:mi13030434. [PMID: 35334726 PMCID: PMC8949297 DOI: 10.3390/mi13030434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Self-oscillating systems based on thermally responsive polymer materials can realize heat-mechanical transduction in a steady ambient temperature field and have huge application potential in the field of micro-active machines, micro-robotics and energy harvesters. Recently, experiments have found that a torus on a hot surface can rotate autonomously and continuously, and its rotating velocity is determined by the competition between the thermally induced driving moment and the sliding friction moment. In this article, we theoretically study the self-sustained rotation of a hollow torus on a hot surface and explore the effect of the radius ratio on its rotational angular velocity and energy efficiency. By establishing a theoretical model of heat-driven self-sustained rotation, its analytical driving moment is derived, and the equilibrium equation for its steady rotation is obtained. Numerical calculation shows that with the increase in the radius ratio, the angular velocity of its rotation monotonously increases, while the energy efficiency of the self-rotating hollow torus motor first increases and then decreases. In addition, the effects of several system parameters on the angular velocity of it are also extensively investigated. The results in this paper have a guiding role in the application of hollow torus motor in the fields of micro-active machines, thermally driven motors and waste heat harvesters.
Collapse
|
31
|
Self-Sustained Collective Motion of Two Joint Liquid Crystal Elastomer Spring Oscillator Powered by Steady Illumination. MICROMACHINES 2022; 13:mi13020271. [PMID: 35208395 PMCID: PMC8876739 DOI: 10.3390/mi13020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
For complex micro-active machines or micro-robotics, it is crucial to clarify the coupling and collective motion of their multiple self-oscillators. In this article, we construct two joint liquid crystal elastomer (LCE) spring oscillators connected by a spring and theoretically investigate their collective motion based on a well-established dynamic LCE model. The numerical calculations show that the coupled system has three steady synchronization modes: in-phase mode, anti-phase mode, and non-phase-locked mode, and the in-phase mode is more easily achieved than the anti-phase mode and the non-phase-locked mode. Meanwhile, the self-excited oscillation mechanism is elucidated by the competition between network that is achieved by the driving force and the damping dissipation. Furthermore, the phase diagram of three steady synchronization modes under different coupling stiffness and different initial states is given. The effects of several key physical quantities on the amplitude and frequency of the three synchronization modes are studied in detail, and the equivalent systems of in-phase mode and anti-phase mode are proposed. The study of the coupled LCE spring oscillators will deepen people’s understanding of collective motion and has potential applications in the fields of micro-active machines and micro-robots with multiple coupled self-oscillators.
Collapse
|
32
|
Yang J, Gong J, Tao L, Tang Z, Yang Z, Cao P, Wang Q, Wang T, Luo H, Zhang Y. Reconfigurable and NIR-responsive shape memory polymer containing bipheunit units and graphene. Polym J 2022. [DOI: 10.1038/s41428-021-00609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Abstract
Photoactuators have attracted significant interest for soft robot and gripper applications, yet most of them rely on free-space illumination, which requires a line-of-site low-loss optical path. While waveguide photoactuators can overcome this limitation, their actuating performances are fundamentally restricted by the nature of standard optical fibres. Herein, we demonstrated miniature photoactuators by embedding optical fibre taper in a polydimethylsiloxane/Au nanorod-graphene oxide photothermal film. The special geometric features of the taper endow the designed photoactuator with microscale active layer thickness, high energy density and optical coupling efficiency. Hence, our photoactuator show large bending angles (>270°), fast response (1.8 s for 180° bending), and low energy consumption (<0.55 mW/°), significantly exceeding the performance of state-of-the-art waveguide photoactuators. As a proof-of-concept study, one-arm and two-arm photoactuator-based soft grippers are demonstrated for capturing/moving small objects, which is challenging for free-space light-driven photoactuators. Despite promising devices, waveguide photoactuators actuating performances have been fundamentally restricted by the nature of standard optical fibres. To overcome these challenges, authors propose an optical fibre taper-enabled waveguide photoactuator and show enhanced performance.
Collapse
|
34
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid‐Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- En Lin
- Nankai University College of Chemistry CHINA
| | | | - Xiuyu Zhao
- Nankai University College of Chemistry CHINA
| | - Zhaoyi Liu
- Nankai University College of Chemistry CHINA
| | - Dong Yan
- Nankai University College of Chemistry CHINA
| | - Fazheng Jin
- Nankai University College of Chemistry CHINA
| | - Yao Chen
- Nankai University College of Chemistry CHINA
| | - Peng Cheng
- Nankai University College of Chemistry CHINA
| | - Zhenjie Zhang
- Nankai University Chemistry Weijin Road 94# 300071 Tianjin CHINA
| |
Collapse
|
35
|
Sun X, Wei J, Yu Y. Photoinduced deformation of amorphous polyimide enabled by an improved azobenzene isomerization efficiency. Polym Chem 2022. [DOI: 10.1039/d2py00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly designed azo-PI, without pre-stretching or polarized-light irradiation, exhibits reversible bending behaviors under alternate UV and visible light irradiation, providing a facile route to deformable 2D/3D structure actuators.
Collapse
Affiliation(s)
- Xuejie Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jia Wei
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021; 61:e202116689. [PMID: 34970834 DOI: 10.1002/anie.202116689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
A porous liquid crystalline network (LCN), prepared using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100% swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures thermally induced shape change associated with LC-isotropic phase transition. Combining the characteristic actuation mechanisms of LCN (order-disorder transition of mesogens) and hydrogel (water absorption), such porous LCN can be explored for versatile stimuli-triggered shape transformations. Moreover, the porosity enables loading/removal/reloading of functional fillers such as ionic liquid, photothermal dye and fluorophore, which imparts a same porous LCN actuator with reconfigurable functions such as ionic conductivity, light-driven locomotion, and emissive color.
Collapse
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, Department of Chemistry, University of Sherbrooke, J1K2R1, Sherbrooke, CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yue Zhao
- University of Sherbrooke, Department of Chemistry, Blvd. Universite, J1K 2R1, Sherbrooke, CANADA
| |
Collapse
|
37
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel‐Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke Chemistry Department of ChemistryUniversity of Sherbrooke J1K2R1 Sherbrooke CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yue Zhao
- University of Sherbrooke Department of Chemistry Blvd. Universite J1K 2R1 Sherbrooke CANADA
| |
Collapse
|
38
|
Fang M, Liu T, Xu Y, Jin B, Zheng N, Zhang Y, Zhao Q, Jia Z, Xie T. Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105597. [PMID: 34600442 DOI: 10.1002/adma.202105597] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Indexed: 05/15/2023]
Abstract
The muscle-like activities of liquid crystalline elastomers (LCEs) offer great potential for designing future soft machines. Their motion complexity, however, relies on inflexible and cumbersome mesogen alignment techniques. Here, a digital photocuring method for ultrafast template-free fabrication of LCE artificial muscles capable of designable complex motions is reported. This method utilizes the intrinsic light attenuation in the through-plane direction to create mesogen alignment for reversible bending action. To turn this simple actuation into complex motions, the principles of muscles are borrowed which realize diverse motions through the cooperative actions of otherwise simple contraction/expansion of individual muscle bundles. Specifically, the spatiotemporal digital light is utilized to design LCE architectures composed of strategically arranged bending modules. As such, LCE capable of highly designable motions can be fabricated within 25 s light curing without employing any physical alignment templates, which offers an attractive option toward designing functionally diverse soft machines.
Collapse
Affiliation(s)
- Mengqi Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Tao Liu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yang Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Zheng Jia
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
39
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light‐Driven Self‐Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Bin Zi
- School of Mechanical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| |
Collapse
|
40
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light-Driven Self-Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021; 60:20511-20517. [PMID: 34272927 DOI: 10.1002/anie.202108058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Developing self-oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently-bridged black phosphorus-carbon nanotubes heterostructure with self-oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light-driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self-feedback loop to generate self-oscillation, an inchworm-like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized.
Collapse
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bin Zi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
41
|
Yin L, Miao TF, Cheng XX, Jiang ZC, Tong X, Zhang W, Zhao Y. Chiral Liquid Crystalline Elastomer for Twisting Motion without Preset Alignment of Mesogens. ACS Macro Lett 2021; 10:690-696. [PMID: 35549093 DOI: 10.1021/acsmacrolett.1c00286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chiral liquid crystalline elastomer (CLCE) actuator is demonstrated. The solution-cast polydomain film of CLCE can twist upon order-disorder phase transition without any preset alignment of mesogens. The handedness of twisting is specific to the molecular chirality of the chiral dopant in the CLCE structure, while the degree of twisting, in terms of helical pitch and diameter, is sensitive to the aspect ratio and the thickness of the CLCE strip as well as the chiral dopant content. This phenomenon appears to stem from the local twisting forces and deformations of randomly oriented helical domains, which cannot cancel each other out due to the chirality and thus result in a macroscopic "chiral" force acting on the CLCE actuator. This finding reveals a materials design for preparing twisting LCE actuators.
Collapse
Affiliation(s)
- Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Teng-Fei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China
| | - Xiao-Xiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China
| | - Zhi-Chao Jiang
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Xia Tong
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
42
|
Sun D, Zhang J, Li H, Shi Z, Meng Q, Liu S, Chen J, Liu X. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers (Basel) 2021; 13:1889. [PMID: 34204168 PMCID: PMC8201031 DOI: 10.3390/polym13111889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Liquid crystalline elastomers (LCEs) are lightly crosslinked polymers that combine liquid crystalline order and rubber elasticity. Owing to their unique anisotropic behavior and reversible shape responses to external stimulation (temperature, light, etc.), LCEs have emerged as preferred candidates for actuators, artificial muscles, sensors, smart robots, or other intelligent devices. Herein, we discuss the basic action, control mechanisms, phase transitions, and the structure-property correlation of LCEs; this review provides a comprehensive overview of LCEs for applications in actuators and other smart devices. Furthermore, the synthesis and processing of liquid crystal elastomer are briefly discussed, and the current challenges and future opportunities are prospected. With all recent progress pertaining to material design, sophisticated manipulation, and advanced applications presented, a vision for the application of LCEs in the next generation smart robots or automatic action systems is outlined.
Collapse
Affiliation(s)
- Dandan Sun
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Juzhong Zhang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Zhengya Shi
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Qi Meng
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Shuiren Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Jinzhou Chen
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Xuying Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| |
Collapse
|
43
|
|
44
|
Zhang P, Lan Z, Wei J, Yu Y. Photodeformable Azobenzene-Containing Polyimide with Flexible Linkers and Molecular Alignment. ACS Macro Lett 2021; 10:469-475. [PMID: 35549227 DOI: 10.1021/acsmacrolett.1c00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azobenzene-containing polyimides (azo-PIs) as photodeformable materials have attracted scientific attention in view of combining photoresponse and high performance (such as excellent mechanical and thermal properties). In the previously reported photodeformation of azo-PIs, polarized blue-green light was utilized to produce concerted motion of azobenzene moieties based on the mechanism of photoinduced reorientation. Herein, we explored a designed azo-PI undergoing photodeformation upon unpolarized light irradiation. The azo-PI film aligned by the hot-stretching process exhibited fast and reversible bending behavior under alternate ultraviolet (UV) and visible (vis) light irradiation, indicating the efficient nano-to-macroscopic propagation of molecular deformation of azobenzene. Besides, the aligned azo-PI film even bent in hot water (80 °C) and hot silicone oil (100 and 120 °C) with UV light irradiation.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhongxu Lan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jia Wei
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
45
|
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Infrared (IR) adaptation phenomena are ubiquitous in nature and biological systems. Taking inspiration from natural creatures, researchers have devoted extensive efforts for developing advanced IR adaptive materials and exploring their applications in areas of smart camouflage, thermal energy management, biomedical science, and many other IR-related technological fields. Herein, an up-to-date review is provided on the recent advancements of bioinspired IR adaptive materials and their promising applications. First an overview of IR adaptation in nature and advanced artificial IR technologies is presented. Recent endeavors are then introduced toward developing bioinspired adaptive materials for IR camouflage and IR radiative cooling. According to the Stefan-Boltzmann law, IR camouflage can be realized by either emissivity engineering or thermal cloaks. IR radiative cooling can maximize the thermal radiation of an object through an IR atmospheric transparency window, and thus holds great potential for use in energy-efficient green buildings and smart personal thermal management systems. Recent advances in bioinspired adaptive materials for emerging near-IR (NIR) applications are also discussed, including NIR-triggered biological technologies, NIR light-fueled soft robotics, and NIR light-driven supramolecular nanosystems. This review concludes with a perspective on the challenges and opportunities for the future development of bioinspired IR adaptive materials.
Collapse
Affiliation(s)
- Jiajia Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinfang Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
46
|
Sheng M, Zhang L, Jiang S, Yang L, Zaaboul F, Fu S. Bioinspired Electro-Responsive Multispectral Controllable Dye-Doped Liquid Crystal Yolk-Shell Microcapsules for Advanced Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13586-13595. [PMID: 33715345 DOI: 10.1021/acsami.1c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Liquid crystal microcapsules have attracted increasing attention due to their sophisticated structures and adjustable multifunctional features. However, the synthesis of a microscale substrate with wide electromagnetic waveband modulation characteristics and good photoelectric stabilization is still limited and challenging. Herein, a new breed of microcapsules containing dye-doped liquid crystals in a yolk-shell configuration with VTES (vinyl-trim-ethyl-silane)-modified Fe3O4@SiO2 is created. It exhibits an unexpected color enhancement effect, reversible electrochromic performance, and excellent magnetically controllable characteristics. Additionally, a multispectral (visible light, near-infrared light, and high-frequency electromagnetic wave) electro-responsive fabric based on the proposed microcapsules was developed to explore its application in wearable sensors. The present work opens an avenue toward the fabrication of microscale microencapsulated soft materials with a continuous and stable yolk-shell structure. Moreover, it will expand the application regimes of liquid crystal materials in smart windows and advanced textiles.
Collapse
Affiliation(s)
- Mingfei Sheng
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Liping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Shan Jiang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Li Yang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Farah Zaaboul
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shaohai Fu
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| |
Collapse
|
47
|
Feng P, Du X, Guo J, Wang K, Song B. Light-Responsive Nanofibrous Motor with Simultaneously Precise Locomotion and Reversible Deformation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8985-8996. [PMID: 33583177 DOI: 10.1021/acsami.0c22340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light-powered micromotors have drawn enormous attention because of their potential applications in cargo delivery, environmental monitoring, and noninvasive surgery. However, the existing micromotors still suffer from some challenges, including slow speed, poor controllability, single locomotion mode, and no deformation during movement. Herein, we employ a combined electrospinning with brushing of Chinese ink to simply fabricate a light-responsive gradient-structured poly(vinyl alcohol)/carbon (PVA/carbon) composite motor. Because of the surface deposition and ultrahigh loading amount of carbon nanoparticles (ca. 43%), the motor exhibits rapid (39 mm/s), direction-controlled, and multimodal locomotion (vertical movement, horizontal motion, rotation) under light irradiation. Simultaneously, gradient alignment structure of the PVA nanofibrous matrix endows the motor with controllable and reversible deformation during locomotion. We finally demonstrate the potential applications of the motors in leakage monitoring, object salvage, smart access, and intelligent assembly. The present work will inspire the design of novel photosensitive motors for applications in various fields, such as microrobots, environmental monitoring, and biomedicine.
Collapse
Affiliation(s)
- Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiaolong Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Juan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| |
Collapse
|
48
|
Chen L, Chu D, Cheng ZA, Wang M, Huang S. Designing seamless-welded liquid-crystalline soft actuators with a “glue-free” method by dynamic boroxines. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Wang Y, Dang A, Zhang Z, Yin R, Gao Y, Feng L, Yang S. Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004270. [PMID: 33043501 DOI: 10.1002/adma.202004270] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Indexed: 05/18/2023]
Abstract
Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape-morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light-absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near-infrared-responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)-modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm-2 , while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Alei Dang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
- School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zhifeng Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S 33rd Street, Philadelphia, PA, 19104, USA
| | - Rui Yin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yuchong Gao
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Liang Feng
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S 33rd Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Robust Dynamics of Synthetic Molecular Systems as a Consequence of Broken Symmetry. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The construction of molecular robot-like objects that imitate living things is an important challenge for current chemists. Such molecular devices are expected to perform their duties robustly to carry out mechanical motion, process information, and make independent decisions. Dissipative self-organization plays an essential role in meeting these purposes. To produce a micro-robot that can perform the above tasks autonomously as a single entity, a function generator is required. Although many elegant review articles featuring chemical devices that mimic biological mechanical functions have been published recently, the dissipative structure, which is the minimum requirement for mimicking these functions, has not been sufficiently discussed. This article aims to show clearly that dissipative self-organization is a phenomenon involving autonomy, robustness, mechanical functions, and energy transformation. Moreover, it reports the results of recent experiments with an autonomous light-driven molecular device that achieves all of these features. In addition, a chemical model of cell-amplification is also discussed to focus on the generation of hierarchical movement by dissipative self-organization. By reviewing this research, it may be perceived that mainstream approaches to synthetic chemistry have not always been appropriate. In summary, the author proposes that the integration of catalytic functions is a key issue for the creation of autonomous microarchitecture.
Collapse
|