1
|
Hao M, Li C, Ma Z, Wu M, Li Q, Wang W. Sub-3 nm 1 T-MoS 2 self-supported nanosheets with fast ion transport and bubble release for membrane-free water electrolysis. J Colloid Interface Sci 2025; 689:137181. [PMID: 40080982 DOI: 10.1016/j.jcis.2025.02.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Conventional water splitting is restricted by costly membrane electrode assemblies and a sluggish oxygen evolution reaction (OER) occurring at the anode. In light of this, the construction of a membrane-free water electrolysis system via a hydrazine-assisted seawater hydrogenation strategy surmounts both of these obstacles. Herein, we propose a new strategy to synthesize two-dimensional (2D) ultrathin porous 1 T-MoS2 (1 T-MoS2-10 %/CC), which consists of 2.3 nm triple-layer crystalline surface and has nano pores (2-4 nm). Due to the uniform and consistent nanosheet arrays composed of ultrathin large-layer-spacing nanosheets and abundant pores, the electrolyte and the 1 T-MoS2-10 %/CC can be fully contacted, showing superhydrophilicity, and increasing the bubble contact angle to release bubbles in time, showing superaerophobicity. Therefore, the special structure of 1 T-MoS2 shows advantageous for gas precipitation reaction-hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), which require only 55 mV overpotential for HER and 7 mV (vs. RHE) working potential for HzOR to achieve a current density of 10 mA cm-2. In addition, we constructed a hybrid seawater membrane-free electrolysis system in which a current density of 100 mA cm-2 can be achieve with a cell voltage of only 0.27 V, which not only effectively replaces the high-energy-consuming OER for energy-saving hydrogen production, but also avoids the electrochemical reaction of chlorine evolution reaction (ClER) with the low cell voltage.
Collapse
Affiliation(s)
- Minghui Hao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zhaoxuan Ma
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mingrui Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Quan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Wentai Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Wang P, Zhao D, Zhang P, Hui X, Zhang Z, Wang R, Wang C, Ge X, Liu X, Li YC, Yin L. P-block element modulated 1 T phase MoS 2 with Ru lattice grafting for high-performance Li | |O 2 batteries. Nat Commun 2025; 16:1453. [PMID: 39920107 PMCID: PMC11806026 DOI: 10.1038/s41467-024-55073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2024] [Indexed: 02/09/2025] Open
Abstract
The metallic phase MoS2 (1T-MoS2) supported metal-nanocatalyst is an appealing material system for accelerating the redox kinetics of non-aqueous Li | |O2 batteries. However, the drawbacks associated with the surface orbital steric effect and the internal electron coupling results in a detrimental effect for the stability of 1T-MoS2, especially for the interface charge transfer. This makes it difficult to incorporate guest metal nanoparticles without compromising the 1 T phase support. To circumvent these issues, here we propose a p-block element (In-O) doping strategy to stabilize the 1 T phase MoS2 by moderating the surface orbital steric effect and strengthening the internal chemical bonding, and thus for the epitaxial Ru nanocatalyst graft on the stabilized 1T-MoS2 for Li | |O2 batteries. The experimental and theoretical analyzes indicate that the In-O-MoS2@Ru enhances the O2 dissociation and facilitates the adsorption of LiO2 intermediates. This effect promotes the growth of weakly crystalline Li2O2 films during oxygen reduction reaction, which can be more easily decomposed during the oxygen evolution reaction, thereby enhancing the bifunctional-catalytic kinetics. When employed at the positive electrode for non-aqueous Li | |O2 batteries, In-O-MoS2@Ru shows an overpotential of 0.37 V and a cycling life of 284 cycles at 200 mA g-1 with a final discharge specific capacity of 1000 mAh g-1 at 25 °C.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China
| | - Danyang Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China
| | - Peng Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China
| | - Xiaobin Hui
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China
- The Hong Kong Polytechnic University, Yuk Choi Road No. 11, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China.
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China.
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China
| | - Xiaoli Ge
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA.
| | - Xiaojing Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, P.R. China.
| | - Yuguang C Li
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Hao M, Li C, Wu M, Li Q, Xiao Z, Shen D, Wang W. Superhydrophilicity and superaerophobicity Ni/Ni 3S 4/1T-MoS 2 for hydrazine-assisted seawater splitting. J Colloid Interface Sci 2025; 679:966-974. [PMID: 39418899 DOI: 10.1016/j.jcis.2024.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
The overall hydrazine splitting (OHzS) is a promising strategy to achieve the efficient hydrogen production in seawater through replacing the slow kinetic oxygen evolution reaction (OER) and toxic chlorine evolution reaction (ClOR) by hydrazine oxidation (HzOR). We report an efficient bifunctional electrocatalyst of Ni/Ni3S4/1T-MoS2 on carbon cloth (Ni/Ni3S4/1T-MoS2/CC), which was formed from large layer spacing MoS2 and Ni3S4 with metal-Ni, and was applied as for both hydrogen evolution reaction (HER) and HzOR. The MoS2 had expanded interlayer spacing and showed 1T phase, with significantly improved conductivity and hydrophilicity, which promotes transfer process of reactants. Furthermore, the introduction of Ni/Ni3S4 on the 1T-MoS2 base surface leaded to superhydrophilic and superaerophobic properties, which makes it more conducive to the adsorption of H. The improvement of electrical conductivity induced the excellent HER and HzOR electrocatalytic properties of Ni/Ni3S4/1T-MoS2/CC, which showed an ultralow overpotential of 24 mV and working potential of 0 mV at a current density of 10 mA cm-2, respectively. Inspiringly, Ni/Ni3S4/1T-MoS2/CC also showed excellent performance in hydrazine-assisted alkaline seawater electrolysis, as well as solar panel powered electrolysis of seawater OHzS, therefore, exhibiting great potential for practical applications.
Collapse
Affiliation(s)
- Minghui Hao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mingrui Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Quan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengting Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dongcai Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Wentai Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Zhu Y, Zhao Z, Xu Y, Wang R. Atomic-Scale Distribution and Evolution of Strain in Pt Nanoparticles Grown on MoS 2 Nanosheet. SMALL METHODS 2024; 8:e2400179. [PMID: 38763915 DOI: 10.1002/smtd.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Interface strain significantly affects the band structure and electronic states of metal-nanocrystal-2D-semiconductor heterostructures, impacting system performance. While transmission electron microscopy (TEM) is a powerful tool for studying interface strain, its accuracy may be compromised by sample overlap in high-resolution images due to the unique nature of the metal-nanocrystals-2D-semiconductors heterostructure. Utilizing digital dark-field technology, the substrate influence on metal atomic column contrasts is eliminated, improving the accuracy of quantitative analysis in high-resolution TEM images. Applying this method to investigate Pt on MoS2 surfaces reveals that the heterostructure introduces a tensile strain of ≈3% in Pt nanocrystal. The x-directional linear strain in Pt nanocrystals has a periodic distribution that matches the semi-coherent interface between Pt nanocrystals and MoS2, while the remaining strain components localize mainly on edge atomic steps. These results demonstrate an accurate and efficient method for studying interface strain and provide a theoretical foundation for precise heterostructure fabrication.
Collapse
Affiliation(s)
- Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, the State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhitao Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, the State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, the State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, the State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Wang Z, Zhao X, Hong F, Wang H, Lei H, Chou Z, Zheng J. Room-Temperature, Flexible Formaldehyde Gas Sensors Using Titanium-Incorporated 1T/2H MoS 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65185-65193. [PMID: 39533488 DOI: 10.1021/acsami.4c14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of room-temperature (RT) formaldehyde sensors is significant for indoor air quality monitoring. In this contribution, titanium (Ti)-incorporated 1T/2H molybdenum disulfide (MoS2) phase heterostructures were prepared via a facile hydrothermal method. Compared with 1T/2H MoS2, the as-prepared 1T/2H Mo1-xTixS2 nanosheets showed a boosted RT formaldehyde sensing performance, which was attributed to the enhanced gas adsorption and charge transfer processes induced by Ti incorporation and could be regulated by tuning the Mo/Ti ratio in Mo1-xTixS2. In addition, the Ti-incorporated phase heterostructures with an optimized 1T concentration showed further improved gas-sensing properties compared to the highly metallic or semiconducting nanosheets with the same chemical composition, which exhibited an obvious response of 0.035% to 1 ppm formaldehyde with an excellent limit of detection as low as 39 ppb, good repeatability, and short response and recovery times. Moreover, flexible gas sensors based on the optimized nanosheets showed well-maintained responses under moderately bent conditions. Our findings demonstrate that the creation of phase heterostructures with tunable compositions and phases may provide more opportunities to tailor their sensing properties.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou 23900, China
- Anhui Generic Technology Research Center for Semiconductor and Intelligent Sensing Industries, 1 West Huifeng Road, Chuzhou 23900, China
| | - Xiang Zhao
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou 23900, China
| | - Fangzhen Hong
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou 23900, China
| | - Hao Wang
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou 23900, China
| | - Heng Lei
- Nanjing Branch of Shanghai Megaunion Environmental Technology Co., Ltd., 19 Zifeng Road, Nanjing 210000, China
| | - Zhiming Chou
- Nanjing Branch of Shanghai Megaunion Environmental Technology Co., Ltd., 19 Zifeng Road, Nanjing 210000, China
| | - Jiandong Zheng
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou 23900, China
| |
Collapse
|
6
|
Wang P, Wang P, Wu T, Sun X, Zhang Y. Bimetal Metaphosphate/Molybdenum Oxide Heterostructure Nanowires for Boosting Overall Freshwater/Seawater Splitting at High Current Densities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407892. [PMID: 39348244 PMCID: PMC11600247 DOI: 10.1002/advs.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Indexed: 10/02/2024]
Abstract
Exploring excellent non-noble bifunctional electrocatalysts for freshwater/seawater splitting at high current densities has attracted extensive interest owing to strong anodic oxidation and severe chloride corrosion challenges. Herein, hierarchical bimetal Ni-Co metaphosphate/molybdenum oxide heterostructure nanowires (NiCoMoPO) are rationally designed and fabricated to efficiently boost oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline freshwater/seawater, where the favorable electronic structure from heterostructures, signified by X-ray absorption spectra, endows NiCoMoPO with the enhanced intrinsic activity, while its hierarchical nanowire structure and heterostructures provide abundant active sites. Additionally, the PO3 - improves the chloride-corrosion resistance and efficiently facilitates the OER kinetics verified by theoretical and experimental studies. Therefore, NiCoMoPO drives 1000 mA cm-2 at low overpotentials of 467 and 442 mV for OER and HER in alkaline freshwater respectively, as well as a small cell voltage of 2.135 V for overall freshwater splitting with robust durability of 300 h. Impressively, due to the strong corrosion resistance, at 500 mA cm-2 of overall seawater splitting, NiCoMoPO maintains almost 2.096 V for 1200 h, indicating promising practical applications. This work sheds light on the rational design and fabrication of outstanding electrocatalysts at high current densities of seawater/freshwater splitting.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Pai Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xuping Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- College of Chemistry Chemical Engineering and Materials ScienceShandong Normal UniversityJinan250014China
| | - Yanning Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
7
|
Zhang Y, Peng X, Tian HR, Yang B, Chen ZC, Li J, Zhang T, Zhang M, Liang X, Yu Z, Zhou Y, Zheng L, Wang X, Zheng JW, Tang Y, Au CT, Jiang L, Xie SY. Fullerene on non-iron cluster-matrix co-catalysts promotes collaborative H 2 and N 2 activation for ammonia synthesis. Nat Chem 2024; 16:1781-1787. [PMID: 39232136 DOI: 10.1038/s41557-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Developing highly effective catalysts for ammonia (NH3) synthesis is a challenging task. Even the current, prevalent iron-derived catalysts used for industrial NH3 synthesis require harsh reaction conditions and involve massive energy consumption. Here we show that anchoring buckminsterfullerene (C60) onto non-iron transition metals yields cluster-matrix co-catalysts that are highly efficient for NH3 synthesis. Such co-catalysts feature separate catalytic active sites for hydrogen and nitrogen. The 'electron buffer' behaviour of C60 balances the electron density at catalytic transition metal sites and enables the synergistic activation of nitrogen on transition metals in addition to the activation and migration of hydrogen on C60 sites. As demonstrated in long-term, continuous runs, the C60-promoting transition metal co-catalysts exhibit higher NH3 synthesis rates than catalysts without C60. With the involvement of C60, the rate-determining step in the cluster-matrix co-catalysis is found to be the hydrogenation of *NH2. C60 incorporation exemplifies a practical approach for solving hydrogen poisoning on a wide variety of oxide-supported Ru catalysts.
Collapse
Affiliation(s)
- Yangyu Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Xuanbei Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Han-Rui Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Zuo-Chang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Jiejie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Tianhua Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Mingyuan Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China.
| | - Jian-Wei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yu Tang
- Institute of Molecular Catalysis and In Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Chak-Tong Au
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, P. R. China.
| | - Su-Yuan Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.
| |
Collapse
|
8
|
Wu Q, Wang J, Wang X, Wei J, Wang J, Zhang C, Xu R, Yang L. Synergistic Effect of P and Co Dual Doping Endows CuNi with High-Performance Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402615. [PMID: 38830338 DOI: 10.1002/smll.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Indexed: 06/05/2024]
Abstract
The rational design of highly active and durable non-noble electrocatalysts for hydrogen evolution reaction (HER) is significantly important but technically challenging. Herein, a phosphor and cobalt dual doped copper-nickel alloy (P, Co-CuNi) electrocatalyst with high-efficient HER performance is prepared by one-step electrodeposition method and reported for the first time. As a result, P, Co-CuNi only requires an ultralow overpotential of 56 mV to drive the current density of 10 mA cm-2, with remarkable stability for over 360 h, surpassing most previously reported transition metal-based materials. It is discovered that the P doping can simultaneously increase the electrical conductivity and enhance the corrosion resistance, while the introduction of Co can precisely modulate the sub-nanosheets morphology to expose more accessible active sites. Moreover, XPS, UPS, and DFT calculations reveal that the synergistic effect of different dopants can achieve the most optimal electronic structure around Cu and Ni, causing a down-shifted d-band center, which reduces the hydrogen desorption free energy of the rate-determining step (H2O + e- + H* → H2 + OH-) and consequently enhances the intrinsic activity. This work provides a new cognition toward the development of excellent activity and stability HER electrocatalysts and spurs future study for other NiCu-based alloy materials.
Collapse
Affiliation(s)
- Quanshuo Wu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Junli Wang
- Researcher center for analysis and measurement, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xuanbing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinlong Wei
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Can Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
9
|
Zhao L, Liang S, Zhang L, Huang H, Zhang QH, Ge W, Wang S, Tan T, Huang L, An Q. Stabilizing and Activating Active Sites: 1T-MoS 2 Supported Pd Single Atoms for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401537. [PMID: 38822716 DOI: 10.1002/smll.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2 wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53 mV at the current density of 10 mA cm-2, a small Tafel slope of 37 mV dec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.
Collapse
Affiliation(s)
- Lu Zhao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Li Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoliang Huang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Qing-Hua Zhang
- Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiyi Ge
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Shuqi Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Ting Tan
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linbo Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
10
|
Lee TW, Chen C. Humic acid changes effect of naturally occurring oxidants on the environmental transformation of molybdenum disulfide nanosheets. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122190. [PMID: 39180818 DOI: 10.1016/j.jenvman.2024.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
2H-phase molybdenum disulfide (2H-MoS2) has been considered to be a chemically stable two-dimensional (2D) nanomaterial. Nonetheless, the persistence of 2H-MoS2 in the presence of environmental redox-active matrices, such as naturally occurring oxidants (e.g., manganese dioxide (MnO2)) and natural organic matter (NOM), remains largely unknown. Herein, we examined the interplay between 2H-MoS2, MnO2 (a common natural oxidant), and NOM species (i.e., Aldrich humic acid (ALHA) and Suwannee River natural organic matter (SRNOM)). The results show that MnO2 accelerates the oxidative dissolution of 2H-MoS2, regardless of the presence of dissolved oxygen. The effect of NOM on the MnO2-induced fate of 2H-MoS2 was found to depend on its affinity for 2H-MoS2 and the functionality of NOM. ALHA preferentially adsorbed on hydrophobic 2H-MoS2 nanosheets due to the enrichment of reductive polycyclic aromatics and polyphenolic constituents. The preferential ALHA adsorption counteracted the MnO2-triggered oxidative transformation of 2H-MoS2, as revealed by the cathodic response of 2H-MoS2 (i.e., decreased the open circuit potential by 0.0338 V) and the emergence of reductive Mo‒C bonds at 228.8 and 231.9 eV upon the addition of ALHA. This work evaluated the persistence of 2H-MoS2, illustrating its susceptibility to decomposition by naturally occurring oxidants and the influence of NOM on it. These findings are crucial for revealing the fate and transport of MoS2 in aquatic environments and provide guidelines for related applications in natural or engineered systems for MoS2 and potentially other 2D materials.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
11
|
Dharman RK, Im H, Kabiraz MK, Kim J, Shejale KP, Choi SI, Han JW, Kim SY. Stable 1T-MoS 2 by Facile Phase Transition Synthesis for Efficient Electrocatalytic Oxygen Evolution Reaction. SMALL METHODS 2024; 8:e2301251. [PMID: 38308408 DOI: 10.1002/smtd.202301251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Indexed: 02/04/2024]
Abstract
The 1T phase of MoS2 exhibits much higher electrocatalytic activity and better stability than the 2H phase. However, the harsh conditions of 1T phase synthesis remain a significant challenge for various extensions and applications of MoS2. In this work, a simple hydrothermal-based synthesis method for the phase transition of MoS2 is being developed. For this, the NH2-MIL-125(Ti) (Ti MOF) is successfully utilized to induce the phase transition of MoS2 from 2H to 1T, achieving a high conversion ratio of ≈78.3%. The optimum phase-induced MoS2/Ti MOF heterostructure demonstrates enhanced oxygen evolution reaction (OER) performance, showing an overpotential of 290 mV at a current density of 10 mA cm-2. The density functional theory (DFT) calculations are demonstrating the benefits of this phase transition, determining the electronic properties and OER performance of MoS2.
Collapse
Affiliation(s)
- Ranjith Kumar Dharman
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeonae Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kiran P Shejale
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Yeol Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
12
|
Peng Y, Hu J, Huan Y, Zhang Y. Chemical vapor deposition growth of graphene and other nanomaterials with 3D architectures towards electrocatalysis and secondary battery-related applications. NANOSCALE 2024; 16:7734-7751. [PMID: 38563120 DOI: 10.1039/d3nr06143d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recently, two-dimensional (2D) layered materials, such as graphene and transition metal dichalcogenides (TMDCs), have garnered a lot of attention in energy storage/conversion-related fields due to their novel physical and chemical properties. Constructing flat graphene and TMDCs nanosheets into 3D architectures can significantly increase their exposed surface area and prevent the restacking of adjacent 2D layers, thus dramatically promoting their applications in various energy-related fields. Chemical Vapor Deposition (CVD) is a low-cost, facile, and scalable method, which has been widely employed to produce high-quality graphene and TMDCs nanosheets with 3D architectures. During the CVD process, the morphologies and properties of the 3D architectures of such 2D materials can be designed by selecting substrates with different compositions, stacking geometries, and micro-structures. In this review, we focus on the recent advances in the CVD synthesis of graphene, TMDCs, and their hybrids with 3D architectures on different 3D-structured substrates, as well as their applications in the electrocatalytic hydrogen evolution reaction (HER) and various secondary batteries. In addition, the challenges and future prospects for the CVD synthesis and energy-related applications of these unique layered materials will also be discussed.
Collapse
Affiliation(s)
- You Peng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
13
|
Kumar P, Maia G, Praserthdam S, Praserthdam P. Renovated FeCoP-NC nanospheres wrapped by CoP-NC nanopetals: As a tremendously effectual and robust MOF-assisted electrocatalyst for hydrogen energy production. ENVIRONMENTAL RESEARCH 2024; 246:118153. [PMID: 38191036 DOI: 10.1016/j.envres.2024.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
The future of energy technology is significantly influenced by hydrogen (H2) energy. However, hydrogen energy production through water-splitting entirely depends on the catalyst's performance. Modifying the morphological structure and increasing the number of active sites by changing the metal composition are pivotal factors in enhancing the catalytic activity for the hydrogen evolution reaction (HER). In this context, we introduce the impact of metal-organic framework (MOF) strategies for decorating CoP petals onto α-Fe2O3 and FeCoP-NC (NC-nitrogen-doped carbon) nanoflowers. This method results in an excellent electrocatalyst for HER. The study demonstrated the influence of different MOF precursors, the impact of calcination temperatures, and the importance of composition percentages in Fe1-xCoxP-NC. As a result, FeCoP-NC shows excellent electrochemical performance potential (η) of 57 mV, a rapid kinetic Tafel value of 61 mV/dec, and remarkable electrochemical stability of around 2000 cycles and 20 h in stand potential. Additionally, the composite has numerous active surfaces at 4.7 mF/cm2 during the electrochemical reactions. This work concludes that MOF-assisted FeCoP-NC nanoflowers are an ideal electrocatalyst for HER in an alkaline medium.
Collapse
Affiliation(s)
- Premnath Kumar
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 1555, MS, Campo Grande, 79074-460, Brazil
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Zhan W, Zhang X, Yuan Y, Weng Q, Song S, Martínez-López MDJ, Arauz-Lara JL, Jia F. Regulating Chemisorption and Electrosorption Activity for Efficient Uptake of Rare Earth Elements in Low Concentration on Oxygen-Doped Molybdenum Disulfide. ACS NANO 2024; 18:7298-7310. [PMID: 38375824 DOI: 10.1021/acsnano.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Recovery of rare earth elements (REEs) with trace amount in environmental applications and nuclear energy is becoming an increasingly urgent issue due to their genotoxicity and important role in society. Here, highly efficient recovery of low-concentration REEs from aqueous solutions by an enhanced chemisorption and electrosorption process of oxygen-doped molybdenum disulfide (O-doped MoS2) electrodes is performed. All REEs could be extremely recovered through a chemisorption and electrosorption coupling (CEC) method, and sorption behaviors were related with their outer-shell electrons. Light, medium, and heavy ((La(III), Gd(III), and Y(III)) rare earth elements were chosen for further investigating the adsorption and recovery performances under low-concentration conditions. Recovery of REEs could approach 100% under a low initial concentration condition where different recovery behaviors occurred with variable chemisorption interactions between REEs and O-doped MoS2. Experimental and theoretical results proved that doping O in MoS2 not only reduced the transfer resistance and improved the electrical double layer thickness of ion storage but also enhanced the chemical interaction of REEs and MoS2. Various outer-shell electrons of REEs performed different surficial chemisorption interactions with exposed sulfur and oxygen atoms of O-doped MoS2. Effects of variants including environmental conditions and operating parameters, such as applied voltage, initial concentration, pH condition, and electrode distance on adsorption capacity and recovery of REEs were examined to optimize the recovery process in order to achieve an ideal selective recovery of REEs. The total desorption of REEs from the O-doped MoS2 electrode was realized within 120 min while the electrode demonstrated a good cycling performance. This work presented a prospective way in establishing a CEC process with a two-dimensional metal sulfide electrode through structure engineering for efficient recovery of REEs within a low concentration range.
Collapse
Affiliation(s)
- Weiquan Zhan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Xuan Zhang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Yuan Yuan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 530, San Luis Potosi 78210, Mexico
| | - Qizheng Weng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Shaoxian Song
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - María de Jesús Martínez-López
- Universidad de la Costa, Carretera al Libramiento Paraje de Las Pulgas, C.P. 71600, Santiago Pinotepa Nacional, Distrito Jamiltepec, Mexico
| | - José Luis Arauz-Lara
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Feifei Jia
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
15
|
Liang S, Dong C, Zhou C, Wang R, Huang F. Ion-Sieve-Confined Synthesis of Size-Tunable Ru for Electrochemical Hydrogen Evolution. NANO LETTERS 2024; 24:757-763. [PMID: 38166149 DOI: 10.1021/acs.nanolett.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.
Collapse
Affiliation(s)
- Song Liang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chenlong Dong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ce Zhou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ruiqi Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
16
|
Cao YM, Su Y, Zheng M, Luo P, Xue YB, Han BB, Zheng M, Wang Z, Liao LS, Zhuo MP. Vertical Phase-Engineering MoS 2 Nanosheet-Enhanced Textiles for Efficient Moisture-Based Energy Generation. ACS NANO 2024; 18:492-505. [PMID: 38117279 DOI: 10.1021/acsnano.3c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible moisture-electric generators (MEGs) capture chemical energy from atmospheric moisture for sustainable electricity, gaining attention in wearable electronics. However, challenges persist in the large-scale integration and miniaturization of MEGs for long-term, high-power output. Herein, a vertical heterogeneous phase-engineering MoS2 nanosheet structure based silk and cotton were rationally designed and successfully applied to construct wearable MEGs for moisture-energy conversion. The prepared METs exhibit ∼0.8 V open-circuit voltage, ∼0.27 mA/cm2 current density for >10 h, and >36.12 μW/cm2 peak output power density, 3 orders higher than current standards. And the large-scale device realizes a current output of 0.145 A. An internal phase gradient between the 2H semiconductor MoS2 in carbonized silks and 1T metallic MoS2 in cotton fibers enables a phase-engineering-based heterogeneous electric double layer functioning as an equivalent parallel circuit, leading to enhanced high-power output. Owing to their facile customization for seamless adaptation to the human body, we envision exciting possibilities for these wearable METs as integrated self-power sources, enabling real-time monitoring of physiological parameters in wearable electronics.
Collapse
Affiliation(s)
- Yuan-Ming Cao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yang Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mi Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yang-Biao Xue
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Bin-Bin Han
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zuoshan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
17
|
Li Q, Shi Y, Wang Z, Liu C, Bi J, Yu JC, Wu L. Nitrogen activation and surface charge regulation for enhancing the visible-light-driven N 2 fixation over MoS 2/UiO-66(SH) 2. J Colloid Interface Sci 2023; 652:1568-1577. [PMID: 37660613 DOI: 10.1016/j.jcis.2023.08.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
A series of dehydrated MoS2/UiO-66(SH)2 (MS/UiS) composites has been prepared as photocatalysts for N2 fixation. Typically, 10% MS/UiS exhibits the best performance with an NH4+ yield rate of 54.08 μmol∙g-1∙h-1. 15N isotope test confirmed that the sample 10% MS/UiS was most effective for reducing N2 to ammonia. Such enhanced activity was due to the presence of abundant unsaturated Zr and Mo sites which would synergistically promote the adsorption and activation of N2. The photogenerated electrons would transfer to the unsaturated Zr-O clusters while part of photogenerated electrons at the interface migrate to MS via MoVI-O interactions between MS and UiS. These two electron transfer pathways effectively promote the separation of photogenerated carriers. The activated N2 is reduced to ammonia by the synergistic effect of protonated hydrogen and photogenerated electrons. Finally, a possible N2 fixation mechanism is proposed which emphasizes the significant roles of nitrogen activation and interface interaction in composites photocatalyst for improving photocatalytic performance.
Collapse
Affiliation(s)
- Qingqing Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China
| | - Yingzhang Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China
| | - Zhiwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China; Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
| | - Jimmy C Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350116, Fuzhou, China.
| |
Collapse
|
18
|
Li Y, Wan Y, Yao J, Zheng H, Wang X, Liu X, Ouyang B, Huang C, Deng K, Kan E. Enhanced electrocatalytic hydrogen evolution from nitrogen plasma-tailored MoS 2 nanostructures. Phys Chem Chem Phys 2023; 25:31628-31635. [PMID: 37982294 DOI: 10.1039/d3cp04951e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.
Collapse
Affiliation(s)
- You Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yi Wan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiamin Yao
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hongqian Zheng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xuan Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kaiming Deng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
19
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
20
|
Aydin K, Kanade C, Kanade VK, Bahit G, Ahn C, Kim T. Synthesis of multiphase MoS 2 heterostructures using temperature-controlled plasma-sulfurization for photodetector applications. NANOSCALE 2023; 15:17326-17334. [PMID: 37877424 DOI: 10.1039/d3nr01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Two-dimensional (2D) materials exhibit outstanding performance in photodetectors because of their excellent optical and electronic properties. Specifically, 2D-MoS2, a transition metal dichalcogenide, is a prominent candidate for flexible and portable photodetectors based on its inherent phase-dependent tunable optical band gap properties. This research focused on creating high-performance photodetectors by carefully arranging out-of-plane 2D heterostructures. The process involved stacking different phases of MoS2 (1T and 2H) using controlled temperature during plasma-enhanced chemical vapor deposition. Among the various phase combinations, the best photocurrent response was obtained for the 1T/2H-MoS2 heterostructure, which exhibited an approximately two-fold higher photocurrent than the 2H/1T-MoS2 heterostructure and 2H/2H-MoS2 monostructure. The 1T/2H-MoS2 heterostructure exhibited a higher photoresponse than the monostructured MoS2 of the same thickness (1T/1T- and 2H/2H-MoS2, respectively). The effect of the stacking sequences of different phases was examined, and their photoperformances were investigated. This study demonstrates that phase engineering in 2D-MoS2 van der Waals heterostructures has significant potential for developing high-performance photodetectors.
Collapse
Affiliation(s)
- Kubra Aydin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chaitanya Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Centre for Materials for Electronics Technology, CMET Pune, Panchawati Rd, Mansarovar, Panchawati, Pashan, Pune, Maharashtra 411008, India
| | - Vinit Kaluram Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gulgun Bahit
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chisung Ahn
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology, 113-58 Seohaean-ro, Siheung-si, Gyeonggi-do 15014, Republic of Korea.
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
21
|
Liu QY, Ma C, Chen Y, Wang ZY, Zhang FG, Tang JP, Yuan YJ. Solar-Driven Photothermal Catalytic Lignocellulosic Biomass-to-H 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50206-50215. [PMID: 37871167 DOI: 10.1021/acsami.3c11091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The conversion of lignocellulosic biomass to chemical fuel can achieve the sustainable use of lignocellulosic biomass, but it was limited by the lack of an effective conversion strategy. Here, we reported a unique approach of photothermal catalysis by using MoS2-reduced graphene oxide (MoS2/RGO) as the catalyst to convert lignocellulosic biomass into H2 fuel in alkaline solution. The RGO acting as a support for the growth of MoS2 results in the high exposed Mo edges, which act as efficient Lewis acidic sites for the oxygenolysis of lignocellulosic biomass dissolved in alkaline solution. The broad light absorption capacity and abundant Lewis acidic sites make MoS2/RGO to be efficient catalysts for photothermal catalytic H2 production from lignocellulosic biomass, and the H2 generation rate with respect to catalyst under 300 W Xe lamp irradiation in cellulose, rice straw, wheat straw, polar wood chip, bamboo, rice hull, and corncob aqueous solution achieve 223, 168, 230, 564, 390, 234, and 55 μmol·h-1·g-1, respectively. It is believed that this photothermal catalysis is a simple and "green" approach for the lignocellulosic biomass-to-H2 conversion, which would have great potential as a promising approach for solar energy-driven H2 production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Chi Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fu-Guang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
22
|
Jia D. Evaluation on the application of conjugate materials in the sound effect and stage effect of modern dance. Front Chem 2023; 11:1256123. [PMID: 37854976 PMCID: PMC10579559 DOI: 10.3389/fchem.2023.1256123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
The emergence and application of conjugate materials provide a broader space for the performance of sound and presentation effects on the modern music stage. This article compared and analyzed the application of conjugated materials and traditional methods in modern dance sound effects and stage presentation effects through experiments, found that the application of conjugated materials on modern stages had the effect of enhancing visual effects. Its overall reflectivity, color saturation, brightness, transparency, etc. remain in the range of 78%-97%, which is better than traditional methods. In addition, the use of conjugated materials can also improve auditory performance, have greater penetration and durability, and reduce the impact of external noise; in terms of audience experience and dancer experience, the average proportions also reached 87.8893% and 89.3867% respectively. In addition, it also has high temperature resistance and antibacterial effects, with a maximum temperature resistance value of 314.28°C and an antibacterial effect of 95.86%, indicating that it can still maintain stability under high temperature conditions and has a good inhibitory effect on the proliferation of bacteria and viruses. These findings will lay the foundation for further expanding the application of conjugated materials on the modern dance stage.
Collapse
Affiliation(s)
- Di Jia
- Department of Dance, School of Music, Shanxi University, Taiyuan, Shanxi, China
- Department of Performing Arts and Culture, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
23
|
Zhao Y, Zheng X, Gao P, Li H. Recent advances in defect-engineered molybdenum sulfides for catalytic applications. MATERIALS HORIZONS 2023; 10:3948-3999. [PMID: 37466487 DOI: 10.1039/d3mh00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.
Collapse
Affiliation(s)
- Yunxing Zhao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | - Pingqi Gao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
24
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
25
|
Shi J, Qin W, Lin Y, Li M, Wu Y, Luo H, Yan J, Huang KJ, Tan X. Enhancing biosensing with fourfold amplification and self-powering capabilities: MoS 2@C hollow nanorods-mediated DNA hexahedral framework architecture for amol-level liver cancer tumor marker detection. Anal Chim Acta 2023; 1271:341413. [PMID: 37328239 DOI: 10.1016/j.aca.2023.341413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional carbon-coated molybdenum disulfide (MoS2@C) hollow nanorods are combined with nucleic acid signal amplification strategies and DNA hexahedral nanoframework to construct a novel self-powered biosensing platform for ultra-sensitive dual-mode detection of tumor suppressor microRNA-199a. The nanomaterial is applied on carbon cloth and then modified with glucose oxidase or using as bioanode. A large number of double helix DNA chains are produced on bicathode by nucleic acid technologies including 3D DNA walker, hybrid chain reaction and DNA hexahedral nanoframework to adsorb methylene blue, producing high EOCV signal. Methylene blue also is reduced and an increased RGB Blue value is observed. For microRNA-199a detection, the assay shows a extensive linear range of 0.0001-100 pM with a low detection limit of 4.94 amol/L (S/N = 3). The method has been applied to the detection of actual serum samples, providing a novel method for the accurate and sensitive detection of tumor markers.
Collapse
Affiliation(s)
- Jinyue Shi
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Weiling Qin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Yu Lin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Mingxiang Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Yeyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Hu Luo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| |
Collapse
|
26
|
Zhou J, Leung TK, Peng Z, Li X, Chen K, Yuan J, Leung MKH. Balancing Volmer Step by Superhydrophilic Dual-Active Domains for Enhanced Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300441. [PMID: 37118851 DOI: 10.1002/smll.202300441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The reaction kinetics of hydrogen evolution reaction (HER) is largely determined by balancing the Volmer step in alkaline media. Bifunctionality as a proposed strategy can divide the work of water dissociation and intermediates (OH* and H*) adsorption/desorption. However, sluggish OH* desorption plagues water re-adsorption, which leads to poisoning effects of active sites. Some active sites may even directly act as spectators and do not participate in the reaction. Furthermore, the activity comparison under approximate nanostructure between bifunctional effect and single-exposed active sites is not fully understood. Here, a facile three-step strategy is adopted to successfully grow molybdenum disulfide (MoS2 ) on cobalt-containing nitrogen-doped carbon nanotubes (Co-NCNTs), forming obvious dual active domains. The active sites on domains of Co-NCNTs and MoS2 and the tuned electronic structure at the heterointerface trigger the bifunctional effect to balance the Volmer step and improve the catalytic activity. The HER driven by the bifunctional effect can significantly optimize the Gibbs free energy of water dissociation and hydrogen adsorption, resulting in fast reaction kinetics and superior catalytic performance. As a result, the Co-NCNTs/MoS2 catalyst outperforms other HER electrocatalysts with low overpotential (58 and 84 mV at 10 mA cm-2 in alkaline and neutral conditions, respectively), exceptional stability, and negligible degradation.
Collapse
Affiliation(s)
- Jinsong Zhou
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tsz Kei Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zehua Peng
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xin Li
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Keda Chen
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiaxin Yuan
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Michael K H Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Zhang Y, Jiang Y, Bai S, Dong Z, Cao X, Wei Q, Wang Y, Zhang Z, Liu Y. Ultra-fast uranium capture via the synergistic interaction of the intrinsic sulfur atoms and the phosphoric acid groups adhered to edge sulfur of MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131745. [PMID: 37295327 DOI: 10.1016/j.jhazmat.2023.131745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In order to deal with the sudden nuclear leakage event to suppress the spread of radioactive contaminants in a short period of time, it is extremely urgent needed to explore an adsorbent that could be capable of in-situ remedial actions to rapidly capture the leaked radionuclides in split second. An adsorbent was developed that MoS2 via ultrasonic to expose more surface defects afterwards functionalized by phosphoric acid resulting in more active sites being endowed on the edge S atoms of Mo-vacancy defects, while simultaneously increased the hydrophilicity and interlayer spacing. Hence, an overwhelming fast adsorption rates (adsorption equilibrium within 30 s) are presented and place the MoS2-PO4 at the top of performing sorbent materials. Moreover, the maximum capacity calculated from Langmuir model is as high as 354.61 mg·g-1, the selective adsorption capacity (SU) achieving 71.2% in the multi-ion system and with more than 91% capacity retention after 5 cycles of recycling. Finally, XPS and DFT insight into the adsorption mechanism, which can be explained as interaction of UO22+ on the surface of MoS2-PO4 by forming U-O and U-S bonds. The successful fabrication of such a material may provide a promising solution for emergency treatment of radioactive wastewater during nuclear leakage events.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yuanping Jiang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Shuxuan Bai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Qianglin Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| |
Collapse
|
28
|
Zheng J, Zhang H, Lv J, Zhang M, Wan J, Gerrits N, Wu A, Lan B, Wang W, Wang S, Tu X, Bogaerts A, Li X. Enhanced NH 3 Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS 2. JACS AU 2023; 3:1328-1336. [PMID: 37234124 PMCID: PMC10207100 DOI: 10.1021/jacsau.3c00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2-NOx-NH3 pathway. To efficiently reduce NO2- to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h-1 cm-2 at -0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3-1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2- to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Collapse
Affiliation(s)
- Jiageng Zheng
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Zhang
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- College
of Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jieying Wan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Nick Gerrits
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Angjian Wu
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Bingru Lan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Weitao Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shuangyin Wang
- State
Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Xiaodong Li
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206126. [PMID: 36517115 DOI: 10.1002/smll.202206126] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.
Collapse
Affiliation(s)
- Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin, 132012, China
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
30
|
Xia H, Zan L, Yuan P, Qu G, Dong H, Wei Y, Yu Y, Wei Z, Yan W, Hu JS, Deng D, Zhang JN. Evolution of Stabilized 1T-MoS 2 by Atomic-Interface Engineering of 2H-MoS 2 /Fe-N x towards Enhanced Sodium Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202218282. [PMID: 36728690 DOI: 10.1002/anie.202218282] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Metallic conductive 1T phase molybdenum sulfide (MoS2 ) has been identified as promising anode for sodium ion (Na+ ) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe-N-C (SA Fe-N-C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe-N-C to 2H-MoS2 via the Fe-S bonds, which enhances the adsorption of Na+ by 2H-MoS2 , and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe-N-C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2 /SA Fe-N-C display a high electronic conductivity and a fast Na+ diffusion rate.
Collapse
Affiliation(s)
- Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lingxing Zan
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Pengfei Yuan
- College of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Gan Qu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research Pudong, Shanghai, 201203, P. R. China
| | - Yifan Wei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yue Yu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zeyu Wei
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wenfu Yan
- State Key Lab of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jin-Song Hu
- Chinese Academy of Sciences Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou, 450012, P. R. China
| |
Collapse
|
31
|
Lei D, Gui W, Zhao X, Tian X, Xiao W, Xue J, Wang Y, Peng X. New insight into poor flotation recovery of fine molybdenite: An overlooked phase transition from 2H to 1T MoS2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Zhang Y, Wang L, Chen Q, Cao J, Zhang C. Recent progress of electrochemical hydrogen evolution over 1T-MoS2 catalysts. Front Chem 2022; 10:1000406. [PMID: 36277349 PMCID: PMC9585176 DOI: 10.3389/fchem.2022.1000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Developing efficient and stable non-noble metal catalysts for the electrocatalytic hydrogen evolution reaction (HER) is of great significance. MoS2 has become a promising alternative to replace Pt-based electrocatalysts due to its unique layered structure and adjustable electronic property. However, most of the reported 2H-MoS2 materials are stable, but the catalytic activity is not very ideal. Therefore, a series of strategies such as phase modulation, element doping, defect engineering, and composite modification have been developed to improve the catalytic performance of MoS2 in the HER. Among them, phase engineering of 2H-MoS2 to 1T-MoS2 is considered to be the most effective strategy for regulating electronic properties and increasing active sites. Hence, in this mini-review, the common phase modulation strategies, characterization methods, and application of 1T-MoS2 in the HER were systematically summarized. In addition, some challenges and future directions are also proposed for the design of efficient and stable 1T-MoS2 HER catalysts. We hope this mini-review will be helpful to researchers currently working in or about to enter the field.
Collapse
Affiliation(s)
| | | | | | - Jing Cao
- *Correspondence: Jing Cao, ; Cen Zhang,
| | - Cen Zhang
- *Correspondence: Jing Cao, ; Cen Zhang,
| |
Collapse
|
34
|
Wang X, Wu J, Zhang Y, Sun Y, Ma K, Xie Y, Zheng W, Tian Z, Kang Z, Zhang Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206576. [PMID: 36189862 DOI: 10.1002/adma.202206576] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Vacancy defect engineering has been well leveraged to flexibly shape comprehensive physicochemical properties of diverse catalysts. In particular, growing research effort has been devoted to engineering chalcogen anionic vacancies (S/Se/Te) of 2D transition metal dichalcogenides (2D TMDs) toward the ultimate performance limit of electrocatalytic hydrogen evolution reaction (HER). In spite of remarkable progress achieved in the past decade, systematic and in-depth insights into the state-of-the-art vacancy engineering for 2D-TMDs-based electrocatalysis are still lacking. Herein, this review delivers a full picture of vacancy engineering evolving from aggregated to atomic configurations covering their development background, controllable manufacturing, thorough characterization, and representative HER application. Of particular interest, the deep-seated correlations between specific vacancy regulation routes and resulting catalytic performance improvement are logically clarified in terms of atomic rearrangement, charge redistribution, energy band variation, intermediate adsorption-desorption optimization, and charge/mass transfer facilitation. Beyond that, a broader vision is cast into the cutting-edge research fields of vacancy-engineering-based single-atom catalysis and dynamic structure-performance correlations across catalyst service lifetime. Together with critical discussion on residual challenges and future prospects, this review sheds new light on the rational design of advanced defect catalysts and navigates their broader application in high-efficiency energy conversion and storage fields.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
35
|
Yan Y, Ma Q, Cui F, Zhang J, Cui T. Carbon onions coated Ni/NiO nanoparticles as catalysts for alkaline hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Yang J, Xu Q, Zheng Y, Tian Z, Shi Y, Ma C, Liu G, Peng B, Wang Z, Zheng W. Phase Engineering of Metastable Transition Metal Dichalcogenides via Ionic Liquid Assisted Synthesis. ACS NANO 2022; 16:15215-15225. [PMID: 36048506 DOI: 10.1021/acsnano.2c06549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallic group VIB transition metal dichalcogenides (1T-TMDs) have attracted great interest because of their outstanding performance in electrocatalysis, supercapacitors, batteries, and so on, whereas the strict fabrication conditions and thermodynamical metastability of 1T-TMDs greatly restrict their extensive applications. Therefore, it is significant to obtain stable and high-concentration 1T-TMDs in a simple and large-scale strategy. Herein, we report a facile and large-scale synthesis of high-concentration 1T-TMDs via an ionic liquid (IL) assisted hydrothermal strategy, including 1T-MoS2 (the obtained MoS2 sample was denoted as MoS2-IL), 1T-WS2, 1T-MoSe2, and 1T-WSe2. More importantly, we found that IL can adsorb on the surface of 1T-MoS2, where the steric hindrance, π-π stacking, and hydrogen bonds of ionic liquid collectively induce the formation of the 1T-MoS2. In addition, DFT calculation reveals that electrons are transferred from [BMIM]SCN (1-butyl-3-methylimidazolium thiocyanate) to 1T-MoS2 layers by hydrogen bonds, which enhances the stability of 1T-MoS2, so the MoS2-IL performs with high stability for 180 days at room temperature without obvious change. Furthermore, the MoS2-IL exhibits excellent HER performance with an overpotential of 196 mV at 10 mA cm-2 in acid conditions.
Collapse
Affiliation(s)
- Jianing Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Qiuchen Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yiteng Zheng
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhangmin Tian
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yingying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Chenxu Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Guiying Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Bin Peng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Wang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, PR China
| | - Wenjun Zheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
37
|
Wu T, Xu S, Zhang Z, Luo M, Wang R, Tang Y, Wang J, Huang F. Bimetal Modulation Stabilizing a Metallic Heterostructure for Efficient Overall Water Splitting at Large Current Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202750. [PMID: 35818696 PMCID: PMC9443435 DOI: 10.1002/advs.202202750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Large current-driven alkaline water splitting for large-scale hydrogen production generally suffers from the sluggish charge transfer kinetics. Commercial noble-metal catalysts are unstable in large-current operation, while most non-noble metal catalysts can only achieve high activity at low current densities <200 mA cm-2 , far lower than industrially-required current densities (>500 mA cm-2 ). Herein, a sulfide-based metallic heterostructure is designed to meet the industrial demand by regulating the electronic structure of phase transition coupling with interfacial defects from Mo and Ni incorporation. The modulation of metallic Mo2 S3 and in situ epitaxial growth of bifunctional Ni-based catalyst to construct metallic heterostructure can facilitate the charge transfer for fast Volmer H and Heyrovsky H2 generation. The Mo2 S3 @NiMo3 S4 electrolyzer requires an ultralow voltage of 1.672 V at a large current density of 1000 mA cm-2 , with ≈100% retention over 100 h, outperforming the commercial RuO2 ||Pt/C, owing to the synergistic effect of the phase and interface electronic modulation. This work sheds light on the design of metallic heterostructure with an optimized interfacial electronic structure and abundant active sites for industrial water splitting.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shumao Xu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Zhuang Zhang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mengjia Luo
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Yufeng Tang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiacheng Wang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fuqiang Huang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
38
|
An ultralong-life SnS based anode through phosphate-induced structural regulation for high-performance sodium ion batteries. Sci Bull (Beijing) 2022; 67:2085-2095. [DOI: 10.1016/j.scib.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022]
|
39
|
Sun J, Zhang Z, Lian G, Li Y, Jing L, Zhao M, Cui D, Wang Q, Yu H, Wong CP. Electron-Injection and Atomic-Interface Engineering toward Stabilized Defected 1T-Rich MoS 2 as High Rate Anode for Sodium Storage. ACS NANO 2022; 16:12425-12436. [PMID: 35950963 DOI: 10.1021/acsnano.2c03623] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1T-phase MoS2 is a promising electrode material for electrochemical energy storage due to its metallic conductivity, abundant active sites, and high theoretical capacity. However, because of the habitual conversion of metastable 1T to stable 2H phase via restacking, the poor rate capacity and cycling stability at high current densities hamper their applications. Herein, a synergetic effect of electron-injection engineering and atomic-interface engineering is employed for the formation and stabilization of defected 1T-rich MoS2 nanoflowers. The 1T-rich MoS2 and carbon monolayers are alternately intercalated with each other in the nanohybrids. The metallic 1T-phase MoS2 and conductive carbon monolayers are favorable for charge transport. The expanded interlayer spacing ensures fast electrolyte diffusion and the decrease of the ion diffusion barrier. The obtained defected 1T-rich MoS2/m-C nanoflowers exhibit high Na-storage capacity (557 mAh g-1 after 80 cycles at 0.1 A g-1), excellent rate capacity (411 mAh g-1 at 10 A g-1), and long-term cycling performance (364 mAh g-1 after 1000 cycles at 2 A g-1). Furthermore, a Na-ion full cell composed of the 1T-rich MoS2/m-C anode and Na3V2(PO4)3/C cathode maintains excellent cycling stability at 0.5 A g-1 during 400 cycles. Theoretical calculations are also performed to evaluate the phase stability, electronic conductivity, and Na+ diffusion behavior of 1T-rich MoS2/m-C. The energy storage performance demonstrates its excellent application prospects.
Collapse
Affiliation(s)
- Junwei Sun
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Zhihua Zhang
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Gang Lian
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yangyang Li
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Laiying Jing
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Mingwen Zhao
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Deliang Cui
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Qilong Wang
- Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Haohai Yu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Chen Q, An X, Wu X, Zhang J, Yao W, Sun C, Wang Q, Kong Q. Mo‐Doped Sulfur‐Vacancy‐Rich V
1.11
S
2
Nanosheets for Efficient Hydrogen Evolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiuyue Chen
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Xuguang An
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Xiaoqiang Wu
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Jing Zhang
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Weitang Yao
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology and Center for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Qingyuan Wang
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
- College of Architecture and Environment Sichuan University Chengdu 610065 Sichuan PR China
| | - Qingquan Kong
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
- College of Architecture and Environment Sichuan University Chengdu 610065 Sichuan PR China
- Catastrophic Mechanics and Engineering Disaster Prevention Key Laboratory of Sichuan Province Sichuan University Chengdu 610065 PR China
| |
Collapse
|
41
|
Zhao J, Luo S, Chen Y, Zhu R, Liang J, Wang F, Fu X, Wu C. Heterostructured Mo‐Doped CoP on MXene Supports Enhanced the Alkaline Hydrogen Evolution Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiafu Zhao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Yonghui Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Runxian Zhu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Jinyi Liang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Fei Wang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Xiaobo Fu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
- Key Laboratory of Distributed Energy Systems of Guangdong Province & Department of Energy and Chemical Engineering Dongguan University of Technology Dongguan Guangdong 523808 China
| | - Chuande Wu
- Department of Chemistry Zhejiang University Hangzhou 310000 China
| |
Collapse
|
42
|
Ding YM, Li NW, Yuan S, Yu L. Surface engineering strategies for MoS2 towards electrochemical hydrogen evolution. Chem Asian J 2022; 17:e202200178. [PMID: 35438831 DOI: 10.1002/asia.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Water splitting driven by renewable energy sources is an environmentally friendly and sustainable way to produce hydrogen as an ideal energy source in the future. Electrocatalysts can promote the water splitting performance at the both ends. Therefore, the development of cost-effective, high-performance electrocatalysis is a key factor in promoting water decomposition and renewable energy conversion. Among candidates, layered molybdenum disulfide (MoS 2 ) is considered as a most promising electrocatalyst to replace Pt for hydrogen evolution reaction (HER). Surface atomic engineering and interface engineering can induce new physicochemical properties for MoS 2 to greatly enhance HER activity. In this report, we summarize the latest improvement strategies and research progress to improve the catalytic activity of MoS 2 -based material catalysts through the surface and interface atomic and molecular engineering, thus effectively improving HER process. In addition, some unsolved problems in the large-scale application of modified MoS 2 catalyst are also discussed.
Collapse
Affiliation(s)
- Yi Ming Ding
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Nian Wu Li
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Shuai Yuan
- Shanghai University, Research Center of Nanoscience and Nanotechnology, CHINA
| | - Le Yu
- Beijing University of Chemical Technology, College of Chemical Engineering, No. 15 North Third Ring Road East Road, 100029, Beijing, CHINA
| |
Collapse
|
43
|
Xu Y, Fo Y, Lv H, Cui X, Liu G, Zhou X, Jiang L. Anderson-Type Polyoxometalate-Assisted Synthesis of Defect-Rich Doped 1T/2H-MoSe 2 Nanosheets for Efficient Seawater Splitting and Mg/Seawater Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10246-10256. [PMID: 35184551 DOI: 10.1021/acsami.1c20459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing high-performance hydrogen evolution reaction (HER) catalysts is crucial for seawater splitting. Herein, we demonstrate a facile Anderson-type polyoxometalate-assisted synthesis route to prepare defect-rich doped 1T/2H-MoSe2 nanosheets. As demonstrated, the optimized defect-rich doped 1T/2H-MoSe2 nanosheets display low overpotentials of 116 and 274 mV to gain 10 mA cm-2 in acidic and simulated seawater for the HER, respectively. A magnesium (Mg)/seawater battery was fabricated with the defect-rich doped 1T/2H-MoSe2 nanosheet cathode, displaying the highest power density of up to 7.69 mW cm-2 and stable galvanostatic discharging over 24 h. The theoretical and experimental investigations show that the superior HER and battery performances of the heteroatom-doped MoSe2 nanosheets are attributed to both the improved intrinsic catalytic activity (effective activation of water and favorable subsequent hydrogen desorption) and the abundant active sites, benefiting from the favorable catalytic factors of the doped heteroatom, 1T phase, and defects. Our work presents an intriguing structural modulation strategy to design high-performance catalysts toward both HER and Mg/seawater batteries.
Collapse
Affiliation(s)
- Yingshuang Xu
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yumeng Fo
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Honghao Lv
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuejing Cui
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guangbo Liu
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Luhua Jiang
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
44
|
Zhou Y, Hao W, Zhao X, Zhou J, Yu H, Lin B, Liu Z, Pennycook SJ, Li S, Fan HJ. Electronegativity-Induced Charge Balancing to Boost Stability and Activity of Amorphous Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100537. [PMID: 34951727 DOI: 10.1002/adma.202100537] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Amorphization is an efficient strategy to activate intrinsically inert catalysts. However, the low crystallinity of amorphous catalysts often causes high solubility and poor electrochemical stability in aqueous solution. Here, a different mechanism is developed to simultaneously stabilize and activate the water-soluble amorphous MoSx Oy via a charge-balancing strategy, which is induced by different electronegativity between the co-dopants Rh (2.28) and Sn (1.96). The electron-rich Sn prefers to stabilize the unstable apical O sites in MoSx Oy through charge transfer, which can prevent the H from attacking. Meanwhile, the Rh, as the charge regulator, shifts the main active sites on the basal plane from inert Sn to active apical Rh sites. As a result, the amorphous RhSn-MoSx Oy exhibits drastic enhancement in electrochemical stability (η10 increases only by 12 mV) after 1000 cycles and a distinct activity (η10 : 26 mV and Tafel: 30.8 mV dec-1 ) for the hydrogen evolution reaction in acidic solution. This work paves a route for turning impracticably water-soluble catalysts into treasure and inspires new ideas to design high-performance amorphous electrocatalysts.
Collapse
Affiliation(s)
- Yao Zhou
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Hao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiadong Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huimei Yu
- Testing Platform of School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117543, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
45
|
Wu T, Song E, Zhang S, Luo M, Zhao C, Zhao W, Liu J, Huang F. Engineering Metallic Heterostructure Based on Ni 3 N and 2M-MoS 2 for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108505. [PMID: 34969159 DOI: 10.1002/adma.202108505] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Indexed: 05/24/2023]
Abstract
Alkaline water electrolysis is commercially desirable to realize large-scale hydrogen production. Although nonprecious catalysts exhibit high electrocatalytic activity at low current density (10-50 mA cm-2 ), it is still challenging to achieve industrially required current density over 500 mA cm-2 due to inefficient electron transport and competitive adsorption between hydroxyl and water. Herein, the authors design a novel metallic heterostructure based on nickel nitride and monoclinic molybdenum disulfide (Ni3 N@2M-MoS2 ) for extraordinary water electrolysis. The Ni3 N@2M-MoS2 composite with heterointerface provides two kinds of separated reaction sites to overcome the steric hindrance of competitive hydroxyl/water adsorption. The kinetically decoupled hydroxyl/water adsorption/dissociation and metallic conductivity of Ni3 N@2M-MoS2 enable hydrogen production from Ni3 N and oxygen evolution from the heterointerface at large current density. The metallic heterostructure is proved to be imperative for the stabilization and activation of Ni3 N@2M-MoS2 , which can efficiently regulate the active electronic states of Ni/N atoms around the Fermi-level through the charge transfer between the active atoms of Ni3 N and MoMo bonds of 2M-MoS2 to boost overall water splitting. The Ni3 N@2M-MoS2 incorporated water electrolyzer requires ultralow cell voltage of 1.644 V@1000 mA cm-2 with ≈100% retention over 300 h, far exceeding the commercial Pt/C║RuO2 (2.41 V@1000 mA cm-2 , 100 h, 58.2%).
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erhong Song
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoning Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjia Luo
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chendong Zhao
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhao
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Liu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Huang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
46
|
Huang J, Hao M, Mao B, Zheng L, Zhu J, Cao M. The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Trade‐Off in Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingbin Huang
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Mengyao Hao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Baoguang Mao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Laboratory Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jie Zhu
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
47
|
Li R, Liang J, Li T, Yue L, Liu Q, Luo Y, Hamdy MS, Sun Y, Sun X. Recent advances in MoS2-based materials for electrocatalysis. Chem Commun (Camb) 2022; 58:2259-2278. [DOI: 10.1039/d1cc04004a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing energy demand and related environmental issues have drawn great attention of the world, thus necessitating the development of sustainable technologies to preserve the ecosystems for future generations. Electrocatalysts...
Collapse
|
48
|
Jin D, Qiao F, Liu W, Liu Y, Xie Y, Li H. One-step fabrication of MoS 2/Ni 3S 2 with P-doping for efficient water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00493c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p-doped MoS2/Ni3S2/NF heterostructure catalyst designed in this work shows excellent HER and OER performance due to its electronic configuration and chemisorption performance, driving 10 mA cm−2 current density at 95 mV and 136 mV, respectively.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjie Liu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanzhen Liu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Haitao Li
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China
| |
Collapse
|
49
|
Huang J, Hao M, Mao B, Zheng L, Zhu J, Cao M. The Underlying Molecular Mechanism of Fence Engineering to Break the Activity-stability Trade-off of Catalysts. Angew Chem Int Ed Engl 2021; 61:e202114899. [PMID: 34931747 DOI: 10.1002/anie.202114899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/12/2022]
Abstract
Non-precious-metal (NPM) catalysts often face the formidable challenge of a trade-off between long-term stability and high activity, which has not yet been widely addressed. Here we propose distinct molecule-selective fence as a promising novel concept to solve this activity-stability trade-off. This unique fence has the characteristics of preventing poisonous species from invading catalysts, but allowing catalytic reaction-related species to diffuse freely. We applied this concept to construct CoS2 layer with the function of molecular selectivity on the external surface of highly active Co doped MoS2, achieving a remarkable catalytic stability towards alkaline hydrogen evolution reaction, along with a further optimized activity. In situ spectroscopy technologies uncovered the underlying molecule mechanism of the CoS2 fence for breaking the activity-stability trade-off of the MoS2 catalyst. This work offers valuable guidance for rationally designing efficient and stable NPM catalysts.
Collapse
Affiliation(s)
- Jingbin Huang
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Mengyao Hao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Baoguang Mao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, Beijing Synchrotron Radiation Laboratory, CHINA
| | - Jie Zhu
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Minhua Cao
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, CHINA
| |
Collapse
|
50
|
Cui H, Wang Y, Liu T, Chen Y, Shan P, Bai X, Jiang Q, Zhao X, Li Z, Li X, Chen F, Xiao T, Han Y, Feng R, Kang Q, Yuan H. Study of photogenerated exciton dissociation in transition metal dichalcogenide van der Waals heterojunction A2-MWS 4: a first-principles study. Phys Chem Chem Phys 2021; 23:26768-26779. [PMID: 34779460 DOI: 10.1039/d1cp03857e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to explore the photocatalytic hydrogen production efficiency of the MoS2/WSe2 heterostructure (A2-MWS4) as a photocatalyst, it is highly desirable to study the photogenerated exciton dissociation related to photocatalysis. The electronic properties, optical absorption, and lattice dynamic properties of A2-MWS4 were investigated using a first-principles approach. The results show that the type II energy band alignment of A2-MWS4 facilitates the dissociation of photogenerated excitons (electrons and holes). The highly localized d-state electrons of A2-MWS4 induce the formation of internal potentials that promote the dissociation of photogenerated excitons. The hot carrier diffuses its extra energy into the lattice by scattering with phonons and forms a hot spot in the lattice while releasing phonons, which are dragged away from the hot spot by Ridley decay to promote exciton dissociation. These findings could provide insights for research studies on photochemical reactions and photovoltaic devices.
Collapse
Affiliation(s)
- Hong Cui
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Yazhou Wang
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Tong Liu
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Yunjian Chen
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Pengyue Shan
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Xue Bai
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Qi Jiang
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Xingchen Zhao
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Zequan Li
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Xujie Li
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Fangfang Chen
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Taiyang Xiao
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Yang Han
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Rong Feng
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Qin Kang
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|