1
|
Liu J, Han X, Han N, Li B, Sun Y, Wang M, Wu G. One-Pot 'Click' Synthesis of Ring-in-Rings Complexes with Customizable π-Stacked Dyads. J Am Chem Soc 2025. [PMID: 40272249 DOI: 10.1021/jacs.5c03926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
We report an efficient one-pot aqueous synthesis of ring-in-rings complexes featuring customizable π-stacked dyads. Conventional methods for such complexes often suffer from poor solubility and low yields due to irreversible kinetically controlled reactions. To overcome these limitations, we developed a strategy combining noncovalent preassembly with efficient dynamic covalent bonding to secure a ring-in-rings complex as the exclusive thermodynamic product. Through complexation with cucurbit[8]uril (CB[8]), a folded conformation was induced in an aldehyde-functionalized bis(phenylpyridinium) derivative, predisposing the reactive aldehyde groups to promote acylhydrazone condensation with aromatic dihydrazides. The method achieves high conversion and purity, enabling direct single-crystal growth without the need for purification. We successfully synthesized π-stacked dyads across diverse aromatic moieties, including five distinct single-crystal structures demonstrating dimeric cofacial stacking. Kinetic analysis reveals that CB[8] complexation increases the ceiling temperature of the condensation reaction, rendering the process both thermodynamically and kinetically favorable. The modular nature of this strategy allows for precise tuning of photophysical properties by simply altering the linker lengths and the central aromatic cores, providing a facile platform for exploring structure-function relationships in ring-in-rings complexes and beyond.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiujie Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yibin Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
2
|
Díaz-Abellás M, Neira I, Blanco-Gómez A, Peinador C, García MD. Synergy-Promoted Specific Alkyltriphenylphosphonium Binding to CB[8]. J Org Chem 2025; 90:4149-4157. [PMID: 39924904 DOI: 10.1021/acs.joc.4c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Biological substrate specificity ensures that organisms interact accurately with biomolecular receptors, crucial for key functions such as signaling and immunity. Nevertheless, this phenomenon is still poorly understood, with host-guest chemistry offering a suitable platform for studying simplified models. Herein, we report an in-depth study of the host-guest chemistry of alkyltriphenylphosphonium cations with cucurbit[8]uril (CB[8]), initiated by the serendipitous discovery of salt forming a tightly bound pseudoheteroternary 1:1 complex with CB[8]. A first generation of model substrates was designed to explore an unusual binding mode characterized by the simultaneous introduction of two distinct guest fragments within the host cavity. Structural features of the complexes were elucidated using ESI-MS and NMR 1D/2D techniques; thermodynamic properties were assessed by isothermal titration calorimetry, and kinetic parameters were derived from selective inversion-recovery NMR. Experimental results aligned well with electronic structure calculations, revealing a reproducible binding motif with submicromolar affinities. This peculiar complexation mode involves a synergistic effect caused by steric crowding around the P+ atom, facilitating the insertion of two aromatic units into CB[8] while hindering association with CB[7]. Based on these findings, a second generation of minimalistic substrates was developed, preserving the synergistic interaction mode and exhibiting specific binding to CB[8].
Collapse
Affiliation(s)
- Mauro Díaz-Abellás
- Departamento de Química and Centro Interdisciplinar de Química y Biología (CICA). Facultad de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Iago Neira
- Departamento de Química and Centro Interdisciplinar de Química y Biología (CICA). Facultad de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro Interdisciplinar de Química y Biología (CICA). Facultad de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Carlos Peinador
- Departamento de Química and Centro Interdisciplinar de Química y Biología (CICA). Facultad de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Marcos D García
- Departamento de Química and Centro Interdisciplinar de Química y Biología (CICA). Facultad de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| |
Collapse
|
3
|
Yu W, Yang Z, Yu C, Li X, Yuan L. Hydrogen-bonded macrocycle-mediated dimerization for orthogonal supramolecular polymerization. Beilstein J Org Chem 2025; 21:179-188. [PMID: 39834893 PMCID: PMC11744735 DOI: 10.3762/bjoc.21.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers. The macrocycle-mediated connectivity was confirmed by single-crystal X-ray diffraction, which revealed a unique 2:2 binding motif between host and guest, bridged by two cationic pyridinium end groups through π-stacking interactions and other cooperative intermolecular forces. Zinc ion-induced coordination with the macrocycle and a terpyridinium derivative enabled orthogonal polymerization, as revealed by 1H NMR, DLS, and TEM techniques. In addition, viscosity measurements showed a transition from oligomers to polymers at the critical polymerization concentration of 17 μM. These polymers were highly concentration-dependent. Establishing this new dimerization motif with shape-persistent H-bonded macrocycles widens the scope of noncovalent building blocks for supramolecular polymers and augurs well for the future development of functional materials.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyao Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengkan Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Muheyati M, Wu G, Li Y, Pan Z, Chen Y. Supramolecular nanotherapeutics based on cucurbiturils. J Nanobiotechnology 2024; 22:790. [PMID: 39710716 DOI: 10.1186/s12951-024-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention. Therefore, this paper reviews recent advances in CB[n] material-based supramolecular therapeutics for clinical treatments, including targeted delivery applications and related imaging and sensing systems. This study also covers the distinctive benefits of CB materials for biological applications, as well as the trends and prospects of this interdisciplinary subject, based on numerous state-of-the-art research findings.
Collapse
Affiliation(s)
- Maiyier Muheyati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guangheng Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ziting Pan
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
- School of Basic Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
5
|
Sacristán-Martín A, Álvarez-Llorente N, Masson E, Diez-Varga A, Barbero H. Supramolecular self-sorting predicted by a simple harmonic oscillator model. Chem Commun (Camb) 2024; 60:14109-14112. [PMID: 39526438 DOI: 10.1039/d4cc05336b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Macrocycles that encapsulate two guests can self-sort those into homo- and heterodimers. We report here a family of self-sorting homobimetallic Pt(II) terpyridyl acetylide dimers secured together with a pair of Cucurbit[8]uril macrocycles (CB[8]). The rigid bridging unit between both Pt centers introduces varying "hinge" angles, resulting in disparities in Pt-Pt distances in the heterodimers, and leads to recognition motif mismatch. We found that the self-sorting process can be quantified using a simple model, in which each complex behaves as a simple harmonic oscillator, whose heteroassembly tends to minimize geometry distorsions through C(aryl)-CC-Pt axis deformation.
Collapse
Affiliation(s)
| | - Nerea Álvarez-Llorente
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| | - Alberto Diez-Varga
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| |
Collapse
|
6
|
Alnajjar MA, Hennig A. Fluorescence Turn-ON Displacement Assays with Cucurbit[7]uril-Thiophenylpyridinium Complexes as Host-Dye Reporter Pairs. Org Lett 2024; 26:9126-9131. [PMID: 39401389 DOI: 10.1021/acs.orglett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The N-methyl-4-thiophenylpyridinium cation (ThioPy) is a high affinity (Kd ca. 5 nM), fast-exchanging fluorescent probe for cucurbit[7]uril (CB7). The CB7/ThioPy complex shows a unique fluorescence turn-ON response upon displacement by an analyte in sensing application. This enabled the development of a real-time fluorescence assay with the MRFA peptide for the protease thermolysin, which is also suitable for the cancer biomarker cathepsin B. Moreover, liposome encapsulation of CB7/ThioPy in large unilamellar vesicles (LUVs) provided mechanistic insight into intravesicular dye displacement reactions.
Collapse
Affiliation(s)
- Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| |
Collapse
|
7
|
Li H, Li Z, Lin C, Jiang J, Wang L. Precise recognition of benzonitrile derivatives with supramolecular macrocycle of phosphorylated cavitand by co-crystallization method. Nat Commun 2024; 15:5315. [PMID: 38909020 PMCID: PMC11193764 DOI: 10.1038/s41467-024-49540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
The importance of molecular docking in drug discovery lies in the precise recognition between potential drug compounds and their target receptors, which is generally based on the computational method. However, it will become quite interesting if the rigid cavity structure of supramolecular macrocycles can precisely recognize a series of guests with specific fragments by mimicking molecular docking through co-crystallization experiments. Herein, we report a phenylphosphine oxide-bridged aromatic supramolecular macrocycle, F[3]A1-[P(O)Ph]3, which precisely recognizes benzonitrile derivatives through non-covalent interactions to form key-lock complexes by co-crystallization method. A total of 15 various benzonitrile derivatives as guest molecules are specifically bound by F[3]A1-[P(O)Ph]3 in co-crystal structures, respectively. Notably, among them, crisaborole (anti-dermatitis) and alectinib (anti-cancer) with the benzonitrile fragment, which are two commercial drug molecules approved by the U.S. Food and Drug Administration (FDA), could also form a key-lock complex with F[3]A1-[P(O)Ph]3 in the crystal state, respectively.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhijin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chen Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
8
|
Blanco-Gómez A, Díaz-Abellás M, Montes de Oca I, Peinador C, Pazos E, García MD. Host-Guest Stimuli-Responsive Click Chemistry. Chemistry 2024; 30:e202400743. [PMID: 38597381 DOI: 10.1002/chem.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Iván Montes de Oca
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Marcos D García
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
9
|
Huo M, Song SQ, Dai XY, Li FF, Hu YY, Liu Y. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour. Chem Sci 2024; 15:5163-5173. [PMID: 38577356 PMCID: PMC10988582 DOI: 10.1039/d4sc00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 μs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Shuang-Qi Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Fan-Fan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu-Yang Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Lu Y, Yu Z, Zhang T, Pan D, Dai J, Li Q, Tao Z, Xiao X. A Cucurbit[8]uril-Based Supramolecular Framework Material for Reversible Iodine Capture in the Vapor Phase and Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308175. [PMID: 38032163 DOI: 10.1002/smll.202308175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The safe and efficient management of hazardous radioactive iodine is significant for nuclear waste reprocessing and environmental industries. A novel supramolecular framework compound based on cucurbit[8]uril (Q[8]) and 4-aminopyridine (4-AP) is reported in this paper. In the single crystal structure of Q[8]-(4-AP), two 4-AP molecules interact with the outer surface of Q[8] and the two other 4-AP molecules are encapsulated into the Q[8] cavity to form the self-assembly Q[8]-(4-AP). Iodine adsorption experiments show that the as-prepared Q[8]-(4-AP) not only has a high adsorption capacity (1.74 g· g-1) for iodine vapor but also can remove the iodine in the organic solvent and the aqueous solution with the removal efficiencies of 95% and 91%, respectively. The presence of a large number of hydrogen bonds between the iodine molecule and the absorbent, as seen in the single crystal structure of iodine-loaded Q[8]-(4-AP) (I2@Q[8]-(4-AP)), is thought to be responsible for the exceptional iodine adsorption capacity of the material. In addition, the adsorption-desorption tests reveal that the self-assembly material has no significant loss of iodine capture capacity after five cycles, indicating that it has sufficient reusability.
Collapse
Affiliation(s)
- Yun Lu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhichao Yu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Tingting Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Dingwu Pan
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jingjing Dai
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qing Li
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhu Tao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Nie X, Yan S, He J, Wang Y, Deng G, Zhang S, Chen H, Liu J. CB[8]- and triarylboron-based supramolecular organic framework for microRNA detection, tumor-targeted drug delivery, and photodynamic therapy. Analyst 2024; 149:1055-1060. [PMID: 38252028 DOI: 10.1039/d4an00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Supramolecular organic frameworks (SOFs) are widely used for biological detection and drug delivery. In this study, a SOF system was fabricated through the self-assembly of photosensitive triarylboron (TAB), TAB-6-methyl, and CB[8]. The maximum fluorescence emission of TAB-6-methyl was greatly enhanced and red-shifted from 560 nm to 610 nm after SOF formation. The SOF can specifically respond to a microRNA by dissembling and then combining with microRNA, which is accompanied by a fluorescence shift from 610 nm to 560 nm, thus providing a ratiometric readout for microRNA detection. The photosensitivity of TAB-6-methyl can be further improved by forming a SOF, which can be used in photodynamic therapy. By constructing another guest molecule, TAB-5-1-cRGD, we successfully embedded cRGD in the SOF system to improve its tumor-targeting ability. Moreover, we used this SOF system as a fluorescence imaging probe for targeted tumor imaging and as a drug carrier system for loading DOX to achieve combined photodynamic and chemotherapy treatment of tumors.
Collapse
Affiliation(s)
- Xufeng Nie
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Sijie Yan
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Jian He
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Yachuan Wang
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Shilu Zhang
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Hongyu Chen
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| | - Jun Liu
- School of Pharmacy, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China.
| |
Collapse
|
12
|
Yin H, Rosas R, Viel S, Giorgi M, Monnier V, Charles L, Siri D, Gigmes D, Nassar Y, Chevallier F, Bucher C, Wang R, Kermagoret A, Bardelang D. Internal Dynamics and Modular Peripheral Binding in Stimuli-Responsive 3 : 2 Host:Guest Complexes. Angew Chem Int Ed Engl 2024; 63:e202315985. [PMID: 38009627 DOI: 10.1002/anie.202315985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Valerie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Youssef Nassar
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Floris Chevallier
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Christophe Bucher
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
13
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
14
|
Chen Y, Kuvayskaya A, Pink M, Sellinger A, Flood AH. A library of vinyl phosphonate anions dimerize with cyanostars, form supramolecular polymers and undergo statistical sorting. Chem Sci 2023; 15:389-398. [PMID: 38131081 PMCID: PMC10732014 DOI: 10.1039/d3sc03685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Supramolecular dimers are elementary units allowing the build-up of multi-molecule architectures. New among these are cyanostar-stabilized dimers of phosphate and phosphonate anions. While the anion dimerization at the heart of these assemblies is reliable, the covalent synthesis leading to this class of designer anions serves as a bottleneck in the pathway to supramolecular assemblies. Herein, we demonstrate the reliable synthesis of 14 diverse anionic monomers by Heck coupling between vinyl phosphonic acid and aryl bromide compounds. When this synthesis is combined with reliable anion dimerization, we show formation of supramolecular dimers and polymers by co-assembly with cyanostar macrocycles. The removal of the covalent bottleneck opened up a seamless synthetic route to iterate through three monomers affording the solubility needed to characterize the mechanism of supramolecular polymerization. We also test the idea that the small size of these vinyl phosphonates provide identical dimer stabilities across the library by showing how mixtures of anions undergo statistical (social) self-sorting. We exploit this property by preparing soluble copolymers from the mixing of different monomers. This multi-anion assembly shows the utility of a library for programming properties.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Anastasia Kuvayskaya
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
| | - Maren Pink
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alan Sellinger
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
- National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
15
|
Liu F, Kriat A, Rosas R, Bergé-Lefranc D, Gigmes D, Pascal S, Siri O, Liu S, Kermagoret A, Bardelang D. Controlled oligomeric guest stacking by cucurbiturils in water. Org Biomol Chem 2023; 21:9433-9442. [PMID: 37991010 DOI: 10.1039/d3ob01723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Previously, we reported a guest molecule containing a viologen (V), a phenylene (P) and an imidazole (I) fragment (VPI) forming a host : guest 2 : 2 complex with cucurbit[8]uril (CB[8]) and an unprecedented 2 : 3 complex with cucurbit[10]uril (CB[10]). To better address the structural features required to form these complexes, two VPI analogues were designed and synthesized: the first with a tolyl (T) group grafted on the V part (T-VPI) and the second with a naphthalene (N) fused on the imidazole (I) part (VPI-N). While VPI-N afforded a discrete well-defined 2 : 2 complex with CB[8] and a 2 : 3 complex with CB[10], T-VPI organized also as a 2 : 2 complex with CB[8] but no well-defined complex was obtained with CB[10]. These complexes were studied by NMR spectroscopy, notably DOSY, which allowed us to estimate binding constants for 2 : 2 complex formation with CB[8], pointing to more stable 2 : 2 complexes with more hydrophobic guests. UV-vis and fluorescence spectroscopy confirmed complex formation, suggesting host-stabilized charge-transfer interactions. Therefore, the simple addition of CB[8] or CB[10] enabled us to control the level of guest stacking (dimer or trimer) using relevant pairs of synthetic hosts through spontaneous host : guest quaternary or quinary self-assembly.
Collapse
Affiliation(s)
- Fengbo Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| | - Amine Kriat
- Aix Marseille Univ, CNRS, ICR, AMUTech, Marseille, France.
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, FSCM, Spectropole, Marseille, France
| | | | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUTech, Marseille, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS, CINAM, AMUTech, Marseille, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS, CINAM, AMUTech, Marseille, France.
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| | | | | |
Collapse
|
16
|
Kermagoret A, Bardelang D. The Diversity of Cucurbituril Molecular Switches and Shuttles. Chemistry 2023:e202302114. [PMID: 37725407 DOI: 10.1002/chem.202302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Ring translocation switches and shuttles featuring a macrocycle (or a ring molecule) navigating between two or more stations continue to attract attention. While the vast majority of these systems are developed in organic solvents, the cucurbituril (CB) macrocycles are ideally suited to prepare such systems in water. Indeed, their stability and their relatively high affinity for relevant guest molecules are key attributes toward translating the progresses made in organic solvents, into water. This concept article summarizes the findings, key advances and multiple possibilities offered by CBs toward advanced molecular switches and shuttles in water.
Collapse
|
17
|
Jin XY, Ge Q, Cong H, Zhang YQ, Zhao JL, Jiang N. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. CHEMSUSCHEM 2023; 16:e202300027. [PMID: 36946375 DOI: 10.1002/cssc.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Indexed: 06/04/2023]
Abstract
Supercapacitors are essential for electrochemical energy storage because of their high-power density, good cycle stability, fast charging and discharging rates, and low maintenance cost. Macrocycles, including cucurbiturils, calixarene, and cyclodextrins, are cage-like organic compounds (with a nanocavity that contains O and N heteroatoms) with unique potential in supercapacitors. Here, we review the applications of macrocycles in supercapacitor systems, and we illustrate the merits of organic macrocycles in electrodes and electrolytes for improving the electrochemical double-layer capacitors and pseudocapacitance via supramolecular strategies. Then, the observed relationships between electrochemical performance and macrocyclic structures are introduced. This comprehensive review describes recent progress on macrocycle-block supercapacitors for researchers.
Collapse
Affiliation(s)
- Xian-Yi Jin
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Qingmei Ge
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Hang Cong
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, 519080, Guangdong, P. R. China
| | - Nan Jiang
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| |
Collapse
|
18
|
Wu Y, Sun L, Chen X, Liu J, Ouyang J, Zhang X, Guo Y, Chen Y, Yuan W, Wang D, He T, Zeng F, Chen H, Wu S, Zhao Y. Cucurbit[8]uril-based water-dispersible assemblies with enhanced optoacoustic performance for multispectral optoacoustic imaging. Nat Commun 2023; 14:3918. [PMID: 37400468 DOI: 10.1038/s41467-023-39610-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Organic small-molecule contrast agents have attracted considerable attention in the field of multispectral optoacoustic imaging, but their weak optoacoustic performance resulted from relatively low extinction coefficient and poor water solubility restrains their widespread applications. Herein, we address these limitations by constructing supramolecular assemblies based on cucurbit[8]uril (CB[8]). Two dixanthene-based chromophores (DXP and DXBTZ) are synthesized as the model guest compounds, and then included in CB[8] to prepare host-guest complexes. The obtained DXP-CB[8] and DXBTZ-CB[8] display red-shifted and increased absorption as well as decreased fluorescence, thereby leading to a substantial enhancement in optoacoustic performance. Biological application potential of DXBTZ-CB[8] is investigated after co-assembly with chondroitin sulfate A (CSA). Benefiting from the excellent optoacoustic property of DXBTZ-CB[8] and the CD44-targeting feature of CSA, the formulated DXBTZ-CB[8]/CSA can effectively detect and diagnose subcutaneous tumors, orthotopic bladder tumors, lymphatic metastasis of tumors and ischemia/reperfusion-induced acute kidney injury in mouse models with multispectral optoacoustic imaging.
Collapse
Affiliation(s)
- Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yi Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
19
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
20
|
Ramberg KO, Crowley PB. Cage versus Sheet: Probing the Determinants of Protein - Cucurbit[7]uril Crystalline Architectures. J Struct Biol 2023; 215:107969. [PMID: 37137399 DOI: 10.1016/j.jsb.2023.107969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The donut-shaped cucurbit[n]urils (Qn) are a class of rigid macrocyclic receptor with protein recognition capabilities. Qn encapsulation of amino acid side chains can enable protein assembly. Recently, cucurbit[7]uril (Q7) has been applied as a molecular glue for organizing protein building blocks into crystalline architectures. Q7 co-crystallization with dimethylated Ralstonia solanacearum lectin (RSL*) has yielded novel crystalline architectures. Co-crystallization of RSL* and Q7 yields either cage- or sheet-like architectures which may be modulated via protein engineering. However, questions remain as to the factors dictating the formation of one architecture over another (cage versus sheet). Here, we make use of an engineered RSL*-Q7 system which co-crystallizes as the cage or sheet assembly with easily-distinguished crystal morphologies. Using this model system, we probe how the crystallization conditions dictate which crystalline architecture is adopted. Protein-ligand ratios and the sodium concentration were identified as key determinants for the growth of the cage versus sheet assemblies.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Peter B Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
21
|
Il Kim S, Ju Kim H, Young Park S. Highly Fluorescent Supramolecular Nanoring Composed of Bent-Shaped Cyanostilbene Derivatives and Cucurbit[8]urils. Chemistry 2023; 29:e202203828. [PMID: 36722015 DOI: 10.1002/chem.202203828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Supramolecular organic frameworks (SOFs) made of organic guest molecule and cucurbit[8]uril (CB[8]) in aqueous solution have great potential for diverse applications. Herein, we designed highly fluorescent zero-dimensional (0D) nano-ring SOF with CB[8] as a host and novel bent-shaped cyanostilbene guest. This host-guest complex successfully formed macrocyclic hexamer and showed significantly enhanced fluorescence (ΦF =68 %) compared to non-assembled monomer (ΦF =2 %). Unlike other SOFs, this 0D SOF could be dispersed uniformly without bundling phenomenon in water.
Collapse
Affiliation(s)
- Seong Il Kim
- Department of Materials Science and Engineering and, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyeong Ju Kim
- Department of Materials Science and Engineering and, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Soo Young Park
- Department of Materials Science and Engineering and, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| |
Collapse
|
22
|
A study of the supramolecular assembly formed by cucurbit[7]uril and 4-cyanophenol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Liu Z, Lin W, Liu Y. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications. Acc Chem Res 2022; 55:3417-3429. [PMID: 36380600 DOI: 10.1021/acs.accounts.2c00462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.
Collapse
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300000, China
| |
Collapse
|
24
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Li C, Manick A, Zhao Y, Liu F, Chatelet B, Rosas R, Siri D, Gigmes D, Monnier V, Charles L, Broggi J, Liu S, Martinez A, Kermagoret A, Bardelang D. Sequential Formation of Heteroternary Cucurbit[10]uril (CB[10]) Complexes. Chemistry 2022; 28:e202201656. [PMID: 35980006 PMCID: PMC9826255 DOI: 10.1002/chem.202201656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/11/2023]
Abstract
The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]⋅AZAP⋅CG complexes potentially opening new perspectives in supramolecular chemistry.
Collapse
Affiliation(s)
- Chunyang Li
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
- School of Materials Science and EngineeringSichuan University of Science & EngineeringZigong643000P. R. China
- Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
| | - Anne‐Doriane Manick
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Yuxi Zhao
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Fengbo Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, SpectropoleFR 1739MarseilleFrance
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | | | | | - Julie Broggi
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Simin Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | | | | |
Collapse
|
26
|
Sawanaka Y, Yamashina M, Ohtsu H, Toyota S. A self-complementary macrocycle by a dual interaction system. Nat Commun 2022; 13:5648. [PMID: 36163173 PMCID: PMC9512892 DOI: 10.1038/s41467-022-33357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Self-complementary assembly is one of the most promising phenomena for the formation of discrete assemblies, e.g., proteins and capsids. However, self-complementary assembly based on multiple host-guest systems has been scarcely reported due to the difficulty in controlling each assembly. Herein, we report a dual interaction system in which the key assembly direction is well regulated by both π-π stacking and hydrogen bonding to construct a self-complementary macrocycle. Continuous host-guest behavior of anthracene-based molecular tweezers during crystallization leads to successful construction of a cyclic hexamer, which is reminiscent of Kekulé’s monkey model. Furthermore, the cyclic hexamer in a tight and triple-layered fashion shows hierarchical assembly into cuboctahedron and rhombohedral assemblies in the presence of trifluoroacetic acid. Our findings would be potentially one of metal-free strategies for constructing anthracene-based supramolecular assemblies with higher-order structure. In nature, HIV capsid consists of single class of protein unit by self-complementarity. Here, the authors find that a molecular tweezer forms a cyclic hexamer by its continuous host-guest behavior, and constructs a large cuboctahedron by hierarchical assembly.
Collapse
Affiliation(s)
- Yuta Sawanaka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
27
|
Tang M, Liu YH, Liu H, Mao Q, Yu Q, Kitagishi H, Zhang YM, Xiao L, Liu Y. Supramolecular Dual Polypeptides Induced Tubulin Aggregation for Synergistic Cancer Theranostics. J Med Chem 2022; 65:13473-13481. [DOI: 10.1021/acs.jmedchem.2c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mian Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
28
|
Luo Y, Zhang W, Zhao J, Yang MX, Ren Q, Redshaw C, Tao Z, Xiao X. A novel pillar[5]arene-cucurbit[10]uril based host-guest complex: Synthesis, characterization and detection of paraquat. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Sun X, Liu Z, Wang Z, Huo M, Zhang HY, Liu Y. Inclusion-Activated Reversible E/ Z Isomerization of a Cyanostilbene Derivative Based on Cucurbit[8]uril under 365 nm Ultraviolet Irradiation. J Org Chem 2022; 87:7658-7664. [PMID: 35658514 DOI: 10.1021/acs.joc.2c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The photoisomerization behavior of cyanostilbene molecules is a hotspot in supramolecular configuration transformation research. Here, we reported a cyanostilbene derivative that converted from the Z,Z-isomer to the E,E-isomer under UV light irradiation at 365 nm. This process can be reversibly converted only in the presence of cucurbit[8]uril under the same light source, accompanied by the reversible conversion of fluorescence from green to yellow. No effective configuration transformation occurred with guest molecules only or upon the addition of cucurbit[7]uril. The photoisomerization was fully characterized by UV-vis and fluorescence spectroscopy, NMR, high-resolution mass spectrometry, and transmission electron microscopy. This work provides a new method for the supramolecular macrocyclic-activated configuration transformation.
Collapse
Affiliation(s)
- Xiaohan Sun
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ze Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Heng-Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
30
|
Yang MX, Luo Y, Zhang W, Lin WH, He J, Shan PH, Tao Z, Xiao X. Cucurbit[10]uril-mediated Supramolecular Assembly for Optically Tunable Dimers and Near White-light Emissive Materials. Chem Asian J 2022; 17:e202200378. [PMID: 35578824 DOI: 10.1002/asia.202200378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Indexed: 11/10/2022]
Abstract
Cucurbit[10]uril (Q[10]), the cucurbit[ n ]uril with the greatest cavity, exhibits several new features in the development of the host-guest complex. Thus, based on Q[10] and π-conjugated molecule, oligo(p-phenylenevinylene) derivative (OPVCOOH), the host-guest complexes with three different interaction ratios of 1:2, 2:2, and 3:2 assemblies (Q[10]: guest) were fabricated. Depending on the host/guest ratio, the emission color of these complexes ranged from blue to yellow-green. The extra Fe 2+ coordinated with a bare carboxyl group of the Q[10]-OPVCOOH (3:2) assembly, obstructing its rotaxane structure and forming Q[10]-OPVCOOH-Fe 2+ assembly, which may be used as a coating for near-white LED bulbs.
Collapse
Affiliation(s)
- Mao-Xia Yang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Yang Luo
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, guiyang, guizhou,china, 550025, guizhou,china, CHINA
| | - Wei Zhang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Wen-Hao Lin
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Jiao He
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Pei-Hui Shan
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Zhu Tao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Xin Xiao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, 550025, Guiyang, CHINA
| |
Collapse
|
31
|
Soavi G, Pedrini A, Devi Das A, Terenziani F, Pinalli R, Hickey N, Medagli B, Geremia S, Dalcanale E. Encapsulation of Trimethine Cyanine in Cucurbit[8]uril: Solution versus Solid‐State Inclusion Behavior. Chemistry 2022; 28:e202200185. [PMID: 35201658 PMCID: PMC9313864 DOI: 10.1002/chem.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host‐guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host‐guest complex with an association constant of 1.5×106 M−1. At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X‐ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Collapse
Affiliation(s)
- Giuseppe Soavi
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Barbara Medagli
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
32
|
Wang Y, Liang RZ, Jia TZ, Cao XL, Wang Q, Cao JR, Li S, Shi Q, Isaacs L, Sun SP. Voltage-Gated Membranes Incorporating Cucurbit[ n]uril Molecular Containers for Molecular Nanofiltration. J Am Chem Soc 2022; 144:6483-6492. [DOI: 10.1021/jacs.2c01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rong-Zu Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Rong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
33
|
Wang K, Wang XY, Gao GJ, Wang MN, Yu YY, Xing S, Zhu B. pH-Triggered Transition from Micellar Aggregation to a Host-Guest Complex Accompanied by a Color Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2145-2152. [PMID: 35107017 DOI: 10.1021/acs.langmuir.1c03299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A pH-triggered transition from micellar aggregation to a host-guest complex was achieved based on the supramolecular interactions between calixpyridinium and pyrroloquinoline quinone disodium salt (PQQ-2Na) accompanied by a color change. Our design has the following three advantages: (1) a regular spherical micellar assembly is fabricated by the supramolecular interactions between calixpyridinium and PQQ-2Na at pH 6 in an aqueous solution, (2) increasing the pH can lead to a transition from micellar aggregation to a host-guest complex due to the deprotonation of calixpyridinium, and at the same time (3) increasing the pH can lead to a color change owing to the deprotonation of calixpyridinium and the complexation of deprotonated calixpyridinium with PQQ-2Na. Benefitting from the low toxicity of calixpyridinium and PQQ-2Na, this pH-induced transition from micellar aggregation to a host-guest complex was further studied as a controllable-release model.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiao-Yan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guo-Jie Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Mi-Ni Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Ying-Ying Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
34
|
Xu DA, Zhou QY, Dai X, Ma XK, Zhang YM, Xu X, Liu Y. Cucurbit[8]uril-mediated phosphorescent supramolecular foldamer for antibiotics sensing in water and cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Yu J, Wang H, Dai X, Chen Y, Liu Y. Multivalent Supramolecular Assembly Based on a Triphenylamine Derivative for Near-Infrared Lysosome Targeted Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4417-4422. [PMID: 35005883 DOI: 10.1021/acsami.1c19698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) targeted cell imaging has become a research hotspot due to the advantages of deeper tissue penetration, minimal interference from the background signals, and lower light damage. Herein, we report a multivalent supramolecular aggregate with NIR fluorescence emission, which was fabricated from triphenylamine derivatives (TPAs), cucurbit[8]uril (CB[8]), Si-rhodamine (SiR), and hyaluronic acid (HA). Interestingly, possessing a rigid luminescent core and cationic phenylpyridinium units linked by flexible alkyl chains, the tripaddle hexacationic TPA could bind with CB[8] at a 2:3 stoichiometric ratio to form a network-like multivalent assembly with enhanced red luminescence. Such organic two-dimensional network-like aggregate further co-assembled with the energy acceptor SiR and cancer cell targeting agent HA, leading to nanoparticles with NIR emission at 675 nm via an intermolecular energy transfer pathway. Furthermore, the obtained multivalent supramolecular aggregate was successfully applied in lysosome targeted imaging toward A549 cancer cells, which provides a convenient strategy for NIR targeted cell imaging.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Hui Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
36
|
Chen Y, Yang J, Zhang S, Xi Z, Luo H. Construction of a room-temperature phosphorescence system by cucurbit[8]uril-based supramolecular assembly. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Li F, Zheng J, Yang X, Deng S, Shi L, Ma P. Supramolecular Self-assembly of Symmetric Tetramethyl Cucurbit[6]uril and Catechol. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Zhang LP, Liu CZ, Liu M, Lu S, Yu SB, Qi QY, Yang GY, Li X, Yang B, Li ZT. CB[10]-driven self-assembly of a homotrimer from a symmetric organic dye: tunable multicolor fluorescence and higher solid-state stability than that of a CB[8]-included homodimer. Org Chem Front 2022. [DOI: 10.1039/d2qo01438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A symmetric organic dye can form a highly stable homotrimer in the cavity of CB[10], which exhibits unique multicolour fluorescence different from that of the single molecule or its dimer.
Collapse
Affiliation(s)
- Le-Ping Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan-Zhi Liu
- School of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Ming Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guiyang 550025, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guan-Yu Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
39
|
Lei Z, Li Q, Sun JD, Wang ZK, Wang H, Li ZT, Zhang DW. A cucurbit[8]uril-stabilized 3D charge transfer supramolecular polymer with a remarkable confinement effect for enhanced photocatalytic proton reduction and thioether oxidation. Org Chem Front 2022. [DOI: 10.1039/d1qo01939b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A water-soluble porous supramolecular polymer is assembled through a CB[8]-based 2 + 2 host–guest binding motif, which can greatly increase the efficiency of photocatalysis.
Collapse
Affiliation(s)
- Zhuo Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Jian-Da Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| |
Collapse
|
40
|
Jin XY, Dai X, Zhao J, Ge Q, Liu M, Tao Z, Cong H. Improved electrochemical properties of polypyrrole with cucurbit[6]uril via supramolecular interactions. Phys Chem Chem Phys 2022; 24:13773-13783. [DOI: 10.1039/d2cp00321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular polymer was developed through the encapsulation of polypyrrole by cucurbit[6]uril (PPy@Q[6]), which was employed as the electrode material to improve the capacitor ability of conductive polypyrrole. In the...
Collapse
|
41
|
Yu HJ, Zhou XL, Dai X, Shen FF, Zhou Q, Zhang YM, Xu X, Liu Y. A tunable full-color lanthanide noncovalent polymer based on cucurbituril-mediated supramolecular dimerization. Chem Sci 2022; 13:8187-8192. [PMID: 35919438 PMCID: PMC9278346 DOI: 10.1039/d2sc02384a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
The construction of lanthanide multicolor luminescent materials with tunable photoluminescence properties has been developed as one of the increasingly significant topics and shown inventive applications in miscellaneous fields. However, fabricating such materials based on synergistically assembly-induced emission rather than simple blending of different fluorescent dyes together still remains a challenge. Herein, we report a europium-based noncovalent polymer with tunable full-color emission, which is constructed from the 2,6-pyridinedicarboxylic acid-bearing bromophenylpyridinium salt. This rationally designed bifunctional component can concurrently serve as a guest molecule and a chelating ligand to associate with cucurbit[8]uril and europium ions, thus leading to the formation of a trichromatic (red–green–blue, RGB) photoluminescent polypseudorotaxane-type noncovalent polymer in aqueous solution. Meanwhile, the full-color emission enclosed within the RGB color triangle could be readily produced by simply tuning the molar ratio of cucurbit[8]uril and europium ions. The lanthanide supramolecular polymer featuring tricolor emission, long lifetime, high photoluminescence efficiency and low cytotoxicity could be further applied in multicolor imaging in a cellular environment. These results provide a new and feasible strategy for the construction of full-color single lanthanide self-assembled nanoconstructs. A lanthanide noncovalent polymer is constructed by integrating host–guest complexation and metal–ligand coordination, and can exhibit tunable trichromatic emission and multiple excited-state lifetimes under single wavelength excitation.![]()
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Lu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
42
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
43
|
Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Amino Acid-Viologen Hybrids: Synthesis, Cucurbituril Host-Guest Chemistry, and Implementation on the Production of Peptides. J Org Chem 2021; 87:760-764. [PMID: 34889610 PMCID: PMC8749954 DOI: 10.1021/acs.joc.1c02040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present herein
the development of a series of viologen–amino
acid hybrids, obtained in good yields either by successive alkylations
of 4,4′-bipyridine, or by Zincke reactions followed by a second
alkylation step. The potential of the obtained amino acids has been
exemplified, either as typical guests of the curcubituril family of
hosts (particularly CB[7]/[8]) or as suitable building blocks for
the solution/solid-phase synthesis of two model tripeptides with the
viologen core inserted within their sequences.
Collapse
Affiliation(s)
- Liliana Barravecchia
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Iago Neira
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Elena Pazos
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Carlos Peinador
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Marcos D García
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| |
Collapse
|
44
|
Ramberg KO, Guagnini F, Engilberge S, Wrońska MA, Rennie ML, Pérez J, Crowley PB. Segregated Protein-Cucurbit[7]uril Crystalline Architectures via Modulatory Peptide Tectons. Chemistry 2021; 27:14619-14627. [PMID: 34432924 PMCID: PMC8596587 DOI: 10.1002/chem.202103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/30/2022]
Abstract
One approach to protein assembly involves water-soluble supramolecular receptors that act like glues. Bionanoarchitectures directed by these scaffolds are often system-specific, with few studies investigating their customization. Herein, the modulation of cucurbituril-mediated protein assemblies through the inclusion of peptide tectons is described. Three peptides of varying length and structural order were N-terminally appended to RSL, a β-propeller building block. Each fusion protein was incorporated into crystalline architectures mediated by cucurbit[7]uril (Q7). A trimeric coiled-coil served as a spacer within a Q7-directed sheet assembly of RSL, giving rise to a layered material of varying porosity. Within the spacer layers, the coiled-coils were dynamic. This result prompted consideration of intrinsically disordered peptides (IDPs) as modulatory tectons. Similar to the coiled-coil, a mussel adhesion peptide (Mefp) also acted as a spacer between protein-Q7 sheets. In contrast, the fusion of a nucleoporin peptide (Nup) to RSL did not recapitulate the sheet assembly. Instead, a Q7-directed cage was adopted, within which disordered Nup peptides were partially "captured" by Q7 receptors. IDP capture occurred by macrocycle recognition of an intrapeptide Phe-Gly motif in which the benzyl group was encapsulated by Q7. The modularity of these protein-cucurbituril architectures adds a new dimension to macrocycle-mediated protein assembly. Segregated protein crystals, with alternating layers of high and low porosity, could provide a basis for new types of materials.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Francesca Guagnini
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Małgorzata A Wrońska
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Martin L Rennie
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Javier Pérez
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192, Gif-sur-Yvette Cedex, France
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
45
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Fan G, Yu X, Han X, Zhao Z, Liu S. Tunable White-Light Emissions of Azapyrene Derivatives with Cucurbit[ n]uril Hosts in Aqueous Solution. Org Lett 2021; 23:6633-6637. [PMID: 34409834 DOI: 10.1021/acs.orglett.1c02081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cucurbit[n]uril (CB[n])-mediated assembly of π-conjugated azapyrene derivatives with rigid aromatic rings as bridging units into optically tunable complexes is reported. Due to the hindrance of rotation of diazapyrene moieties and the enhancement of intramolecular charge transfer of chromophore guests within the cavity of the CB[8] host, color tuning including white-light emission was easily achieved by introducing CB[8] into the guest aqueous solution, therefore suggesting a feasible strategy for the creation of tunable white-light emission materials through CB[n]-based host-guest interactions.
Collapse
Affiliation(s)
- Guangtan Fan
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiang Yu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xie Han
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
47
|
Anastácio R, Seco A, Mateus P, Parola AJ, Basílio N. Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Flavylium-based molecular switches are attractive molecular components to devise stimuli-responsive host-guest systems such as rotaxanes and pseudorotaxanes. These compounds display a pH-dependent reaction network of several species that reversibly interconvert within different time scales. Therefore, to explore and take profit of exceptional stimuli-responsive properties of these systems, detailed kinetic and thermodynamic characterizations are often required. In this work, we present the results of such characterization for a new flavylium compound decorated with a trimethylalkylammonium substituent designed to form a pseudorotaxane with cucurbit[7]uril (CB7). The formation of the pseudorotaxane was characterized in detail, and the thermodynamic and kinetic aspects of the flavylium interconversion reactions in the assembly were investigated and compared with the free molecular switch.
Collapse
Affiliation(s)
- Rita Anastácio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| | - André Seco
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| | - Pedro Mateus
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| | - A. Jorge Parola
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
48
|
Liu F, Chowdhury S, Rosas R, Monnier V, Charles L, Karoui H, Gigmes D, Ouari O, Chevallier F, Bucher C, Kermagoret A, Liu S, Bardelang D. Triple Stack of a Viologen Derivative in a CB[10] Pair. Org Lett 2021; 23:5283-5287. [PMID: 33851849 DOI: 10.1021/acs.orglett.1c00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A viologen-phenylene-imidazole (VPI) conjugate, previously shown to be singly complexed by CB[7] and doubly bound by CB[8], is herein shown to form antiparallel triple stacks in water with cucurbit[10]uril (CB[10]), pairwise complexing the guest trimer. The quinary host:guest 2:3 complex showed features assignable to charge-transfer interactions. Under reductive conditions, CB[10] could solubilize a VPI radical, even though CB[10] and reduced VPI are almost insoluble, thereby illustrating a possible new application for CB[10].
Collapse
Affiliation(s)
- Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Shagor Chowdhury
- Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Spectropole, FR 1739, Marseille, France
| | - Valérie Monnier
- Aix Marseille Univ, CNRS, Spectropole, FR 1739, Marseille, France
| | | | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | | | | | - Floris Chevallier
- Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Christophe Bucher
- Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | | | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | | |
Collapse
|
49
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
50
|
Yang B, Zhang JW, Yu SB, Wang ZK, Zhang PQ, Yang XD, Qi QY, Yang GY, Ma D, Li ZT. A self-assembled framework that interpenetrates in crystal but does not interpenetrate in solution. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1012-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|