1
|
Liao HX, Ou DN, Zhou XF, Ouyang YQ, Jiang HH, Li N, Liu ZQ. Static magnetic field-enhanced cathodic electrocatalysis of Fe 3O 4-based nitrogen-doped carbon for improving the performance of microbial fuel cells. BIORESOURCE TECHNOLOGY 2025; 426:132345. [PMID: 40049336 DOI: 10.1016/j.biortech.2025.132345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Enhancing oxygen reduction reaction (ORR) electrocatalysis through an external static magnetic field to improve the performance of microbial fuel cells (MFCs) is technically feasible, but its application in MFCs remains largely unexplored. Herein, we present a Fe3O4-based nitrogen-doped carbon (Fe3O4@NC2) magnetic catalyst that significantly boosts ORR catalytic activity, increasing the half-wave potential (E1/2) of the ORR by approximately 20 mV with a magnetic field strength of 140 mT. When the Fe3O4@NC2 cathode is combined with an external magnetic field into the MFCs, the maximum power density of the MFC can reach 553.17 ± 7.16 mW m-2. This performance notably exceeds that of the same MFCs operated without a magnetic field (522.26 ± 4.25 m-2) and that of MFCs equipped with a Pt/C cathode (447.29 ± 2.16 mW m-2). This study introduces an effective and straightforward cathodic magnetic enhancement approach, offering promising avenues for advancing MFCs technology.
Collapse
Affiliation(s)
- Hai-Xia Liao
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Dong-Ni Ou
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Feng Zhou
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Ying-Qi Ouyang
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Hui-Huan Jiang
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Nan Li
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Li S, Zhu Z, Zhang Y, Liu Y, Zhang X, Hui KN. Innovative engineering strategies and mechanistic insights for enhanced carbon-based electrocatalysts in sustainable H 2O 2 production. MATERIALS HORIZONS 2025. [PMID: 40364583 DOI: 10.1039/d5mh00221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in various industrial sectors and everyday applications. Given the energy-intensive nature of the current anthraquinone process for its production, the quest for cost-effective, efficient, and stable catalysts for H2O2 synthesis is paramount. A promising sustainable approach lies in small-scale, decentralized electrochemical methods. Carbon nanomaterials have emerged as standout candidates, offering low costs, high surface areas, excellent conductivity, and adjustable electronic properties. This review presents a thorough examination of recent strides in engineering strategies of carbon-based nanomaterials for enhanced electrochemical H2O2 generation. It delves into tailored microstructures (e.g., 1D, 2D, porous architectures), defect/surface engineering (e.g., edge sites, heteroatom doping, surface modification), and heterostructure assembly (e.g., semiconductor-carbon composites, single-atom, dual-single-atom catalysts). Moreover, the review explores structure-performance interplays in these carbon electrocatalysts, drawing from advanced experimental analyses and theoretical models to unveil the mechanisms governing selective electrocatalytic H2O2 synthesis. Lastly, this review identifies challenges and charts future research avenues to propel carbon electrocatalysts towards greener and more effective H2O2 production methods.
Collapse
Affiliation(s)
- Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhanpeng Zhu
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yong Liu
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Xinyue Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
3
|
Wang C, Yang Y, Yuan Y, Lv Q, Zhou L, Wang L, Zheng X, Liu J, Wu H, Pang D, Zheng J. Applications, performance enhancement strategies and prospects of Ni xP y in electrocatalysis. MATERIALS HORIZONS 2025; 12:2840-2877. [PMID: 39916638 DOI: 10.1039/d4mh01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Developing low-cost and high-efficiency electrocatalysts is the key to making energy-related electrocatalytic technologies commercially feasible. In recent years, nickel phosphide (NixPy) electrocatalysts have received extensive attention due to their multiple active sites, adjustable structure and composition, and unique physicochemical properties. In this review, the latest progress of NixPy in the field of electrocatalysis is reviewed from the aspects of the properties of NixPy, different synthesis methods, and ingenious modulation strategies. The significant enhancement effects of elemental doping, vacancy defect, interfacial engineering, synergistic effect, and the external magnetic field excitation-enhanced strategy on the electrocatalytic performance of NixPy are emphasized, Moreover, a forward-looking outlook for its future development direction is provided. Finally, some basic problems and research directions of NixPy in high-efficiency energy electrocatalysis are presented.
Collapse
Affiliation(s)
- Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yanru Yuan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qian Lv
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100083, China.
| | - Li Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lulu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaoyue Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dawei Pang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100083, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|
4
|
Radford A, Szalay D, Chen Q, Ying M, Luo M, Pan X, Stamatakis M, Li Y, Wu C, Tsang SCE. Untangling the Mechanisms in Magneto-Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412852. [PMID: 40317682 DOI: 10.1002/smll.202412852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Indexed: 05/07/2025]
Abstract
External magnetic fields emerge as a promising method for enhancing the electrocatalytic oxygen evolution reaction (OER), yet the underlying magneto-electric (ME) mechanisms are not well understood. The slow kinetics of OER make it a key challenge in electrocatalytic water-splitting, a promising technique for sustainable H2 fuel production. Herein, a systematic approach is presented to analyzing the ME mechanisms governing OER, using metallic-plate (Ni foam, Ni sheet, and Pt sheet) and powder-based (Co3O4/BaFe12O19 on carbon paper) electrodes. Through controlled experiments using varying magnetic field strengths and orientations, Lorentz force and spin-polarization mechanisms are separated. For metallic electrodes, the effects are orientation-dependent, indicating domination by Lorentz force. Magnetic flux density about the electrode surface is shown to govern the Lorentz force behavior. Interestingly, a "pseudo" effect is discovered which results from the relative position of the reference electrode, highlighting the importance of experimental design. The Co3O4 systems display minimal orientation dependence, indicating spin-polarization domination. Introducing BaFe12O19 as a magnetic co-catalyst further amplifies the ME effect, marking the first demonstration of magnetic co-catalyst enhancement in magneto-electrocatalysis. This work provides key insights into ME mechanisms, linking electrode composition, magnetism, and geometry to performance, offering new pathways for optimizing future magneto-electrocatalytic systems.
Collapse
Affiliation(s)
- Amy Radford
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Dorottya Szalay
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Qiming Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Mengfan Ying
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Mingyu Luo
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Xuelei Pan
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Michail Stamatakis
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Yiyang Li
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Chen Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Shik Chi Edman Tsang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| |
Collapse
|
5
|
Szalay D, Radford A, Li Y, Tsang SCE. System Design Considerations for Magneto-Electrocatalysis of the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500001. [PMID: 40091343 DOI: 10.1002/smll.202500001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The integration of an external magnetic field into electrocatalysis, termed magneto-electrocatalysis, can target efficiency challenges in the oxygen evolution reaction (OER). Reaction rates can be enhanced through improved mass transport of reactants and products, manipulation of spin states, and lowered resistance. The OER is a kinetic bottleneck in electrocatalytic water splitting for sustainable hydrogen fuel. Previous studies lack comprehensive analyses and consistent reporting of magnetic field effects, resulting in varied interpretations. To establish optimized and reliable systems at larger scales, significant research advancements are required. This perspective explores the complex impact of magnetic fields on OER, emphasizing the interplay between various mechanisms such as spin-polarization of oxygen intermediates, Lorentz force-induced magnetohydrodynamics, and magnetoresistance. Here, how experimental design - such as electrode magnetism, shape, positioning, and reactor setup - can significantly influence these mechanisms is highlighted. Through a comprehensive review of current studies, major knowledge gaps and propose methodologies are identified to improve experimental reproducibility and comparability. This article aims to guide researchers toward the development of more efficient, scalable systems that leverage magnetic fields to enhance water splitting to push forward commercial green hydrogen production.
Collapse
Affiliation(s)
- Dorottya Szalay
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Amy Radford
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Yiyang Li
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| |
Collapse
|
6
|
Wang K, Xu Y, Daneshvariesfahlan V, Rafique M, Fu Q, Wei H, Zhang Y, Zhang J, Zhang B, Song B. Insight into the structural reconstruction of alkaline water oxidation electrocatalysts. NANOSCALE 2025; 17:6287-6307. [PMID: 39957262 DOI: 10.1039/d4nr05426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The oxygen-evolution reaction (OER) is an indispensable component of various energy storage and conversion electrocatalytic systems. However, the slow reaction kinetics have forced the development of advanced, efficient, and inexpensive OER electrocatalysts to break through the bottleneck of its application. Recently, the structural reconstruction of precatalysts has provided a promising avenue to boost the catalytic activity of electrocatalysts. Structural reconstruction implies atomic rearrangement and composition change of the pristine catalytic materials, which is a very complex process. Therefore, it is very crucial to have a deep understanding of the reconstruction chemical process and then modulate the reconstruction by deliberate design of electrochemical conditions and precatalysts. However, a systematic review of the structural reconstruction process, research methods, influencing factors and structure-performance relationship remains elusive, significantly impeding the further developments of efficient electrocatalysts based on structural reconstruction chemistry. This critical review is dedicated to providing a deep insight into the structural reconstruction during alkaline water oxidation, comprehensively summarizing the basic research methods to understand the structural evolution process and various factors affecting the structural reconstruction process, and providing a reference and basis for regulating the dynamic reconstruction. Moreover, the impact of reconstruction on the structure and performance is also covered. Finally, challenges and perspectives for the future study on structural reconstruction are discussed. This review will offer future guidelines for the rational development of state-of-the-art OER electrocatalysts.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Yifei Xu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Yumin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiheng Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bing Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bo Song
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
7
|
Gao C, Cai B. Spin Effects in Optimizing Electrochemical Applications. ACS MATERIALS AU 2025; 5:253-267. [PMID: 40093830 PMCID: PMC11907292 DOI: 10.1021/acsmaterialsau.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
Efficient electrocatalyst development is crucial for addressing global energy challenges, and recent advances have highlighted the significant role of electron spin-a fundamental property of electrons-in influencing catalytic processes. Regulating the spin states of active sites has emerged as a powerful strategy to enhance catalytic performance. In response to growing interest in spin-induced electrocatalysis, this review offers a comprehensive examination of the impact of spin states on electrocatalytic activity. We explore various strategies for modulating spin states, review state-of-the-art techniques for spin state characterization, and elucidate the mechanisms by which spin effects enhance catalytic efficiency. Additionally, we discuss future research directions, emphasizing the potential of spin regulation to drive innovation in electrocatalyst design and application. This review aims to provide a foundational understanding of spin effects in electrocatalysis, guiding future efforts in the rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
8
|
Wang H, Dong Y, Ying J, Zhu Z, Feng Y, Xiao YX, Tian G, Shen L, Geng W, Lu Y, Wu S, Yang XY. Ferromagnetic transformation of α-Fe 2O 3via Co doping for efficient water oxidation under magnetic field. Chem Commun (Camb) 2025; 61:4343-4346. [PMID: 39980433 DOI: 10.1039/d4cc05940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The introduction of a magnetic field has great potential for enhancing oxygen evolution reaction (OER) performance, but it requires the catalyst to be ferromagnetic and there is a lack of understanding of the fundamental mechanisms. Herein, we achieved the transformation of non-ferromagnetic α-Fe2O3 into ferromagnetic Co0.14FeOx by Co doping. Compared to α-Fe2O3, the OER activity of Co0.14FeOx considerably increased under a magnetic field of 3000 Oe and is proportional to the magnetic field strength within a certain range. This can be ascribed to the external magnetic field enhancing the degree of the magnetic moment ordering of Co0.14FeOx, which improved electron spin polarization.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yuan Dong
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Ziheng Zhu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yuan Feng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yu-Xuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Ge Tian
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ling Shen
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Yi Lu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, P. R. China
| | - Siming Wu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, P. R. China
| |
Collapse
|
9
|
Li H, Zhang Y, Chen Y, Li Y, Li Z, Yang B, Zhang Q, Lu J, Lei L, Xu ZJ, Hou Y. Leveraging Iron in the Electrolyte to Improve Oxygen Evolution Reaction Performance: Fundamentals, Strategies, and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202423071. [PMID: 39807697 DOI: 10.1002/anie.202423071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element. Although the profound impact of adventitious electrolyte Fen+ species on OER catalysis had been reported forty years ago, recent interest in tailoring the electrode-electrolyte interface has spurred studies on the controlled introduction of Fe ions into the electrolyte to improve OER performance. During the catalytic process, scenarios where the rate of Fen+ deposition on a specific host material outruns that of dissolution pave the way for establishing highly efficient and dynamically stable electrochemical interfaces for long-term steady operation. This review systematically summarizes recent endeavors devoted to elucidating the behaviors of in situ Fe(aq.) incorporation, the role of incorporated Fe sites in the OER, and critical factors influencing the interplay between the electrode surface and Fe ions in the electrolyte environment. Finally, unexplored issues related to comprehensively understanding and leveraging the dynamic exchange of Fen+ at the interface for improved OER catalysis are summarized.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| |
Collapse
|
10
|
Salinas G, Safarik T, Meneghello M, Bichon S, Gounel S, Mano N, Kuhn A. Magnetohydrodynamic Enhancement of Biofuel Cell Performance. Chemistry 2025; 31:e202403329. [PMID: 39559962 PMCID: PMC11814500 DOI: 10.1002/chem.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine-tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300 %.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. BordeauxCNRSBordeaux INP, ISM UMR 525533607PessacFrance
| | - Tatjana Safarik
- Univ. BordeauxCNRSBordeaux INP, ISM UMR 525533607PessacFrance
- Centre de Recherche Paul PascalUniv. BordeauxCNRS, UMR 5031PessacFrance
| | | | - Sabrina Bichon
- Centre de Recherche Paul PascalUniv. BordeauxCNRS, UMR 5031PessacFrance
| | - Sebastien Gounel
- Centre de Recherche Paul PascalUniv. BordeauxCNRS, UMR 5031PessacFrance
| | - Nicolas Mano
- Centre de Recherche Paul PascalUniv. BordeauxCNRS, UMR 5031PessacFrance
| | - Alexander Kuhn
- Univ. BordeauxCNRSBordeaux INP, ISM UMR 525533607PessacFrance
| |
Collapse
|
11
|
Gao C, Zhen S, Wang Y, Wang L, Cao Y, Zhan J, Zhang L, Cai B. Spin effects in regulating the adsorption characteristics of metal ions. Chem Sci 2025; 16:2429-2436. [PMID: 39790990 PMCID: PMC11708777 DOI: 10.1039/d4sc06477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the adsorption behavior of intermediates at interfaces is crucial for various heterogeneous systems, but less attention has been paid to metal species. This study investigates the manipulation of Co3+ spin states in ZnCo2O4 spinel oxides and establishes their impact on metal ion adsorption. Using electrochemical sensing as a metric, we reveal a quasi-linear relationship between the adsorption affinity of metal ions and the high-spin state fraction of Co3+ sites. Increasing the high-spin state of Co3+ shifts its d-band center downward relative to the Fermi level, thereby weakening metal ion adsorption and enhancing sensing performance. These findings demonstrate a spin-state-dependent mechanism for optimizing interactions with various metal species, including Cu2+, Cd2+, and Pb2+. This work provides new insights into the physicochemical determinants of metal ion adsorption, paving the way for advanced sensing technologies and beyond.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Shiyu Zhen
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University Beijing 100084 China
| | - Yutong Wang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University Beijing 100084 China
- Beijing Huairou Laboratory Beijing 101400 China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| |
Collapse
|
12
|
Wang J, Zhao K, Yao Y, Xue F, Lu F, Yan W, Yuan F, Wang X. Ferromagnetic Fe-TiO 2 spin catalysts for enhanced ammonia electrosynthesis. Nat Commun 2025; 16:1129. [PMID: 39875424 PMCID: PMC11775347 DOI: 10.1038/s41467-025-56566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NO3RR), a pioneering approach towards NH3 production involving the conversion from diamagnetic NO3- to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO2 to investigate MFE on NO3RR. Fe-TiO2 possesses a high density of atomically dispersed Fe sites and exhibits an intermediate-spin state, resulting in magnetic ordering through ferromagnetism. Assisted by a magnetic field, Fe-TiO2 achieves a Faradaic efficiency (FE) of up to 97% and an NH3 yield of 24.69 mg mgcat-1 at -0.5 V versus reversible hydrogen electrode. Compared to conditions without an external magnetic field, the FE and NH3 yield for Fe-TiO2 under an external magnetic field is increased by ~21.8% and ~ 3.1 times, respectively. In-situ characterization and theoretical calculations show that spin polarization enhances the critical step of NO hydrogenation to NOH by optimizing electron transfer pathways between Fe and NO, significantly boosting NO3RR activity.
Collapse
Affiliation(s)
- Jingnan Wang
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Kaiheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongbin Yao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fan Xue
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fangli Yuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
13
|
Hu C, Dong Y, Shi Q, Long R, Xiong Y. Catalysis under electric-/magnetic-/electromagnetic-field coupling. Chem Soc Rev 2025; 54:524-559. [PMID: 39698872 DOI: 10.1039/d4cs00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The ultimate goal of catalysis is to control the cleavage and formation of chemical bonds at the molecular or even atomic level, enabling the customization of catalytic products. The essence of chemical bonding is the electromagnetic interaction between atoms, which makes it possible to directly manipulate the dynamic behavior of molecules and electrons in catalytic processes using external electric, magnetic and electromagnetic fields. In this tutorial review, we first introduce the feasibility and importance of field effects in regulating catalytic reaction processes and then outline the basic principles of electric-/magnetic-/electromagnetic-field interaction with matter, respectively. In each section, we further summarize the relevant important advances from two complementary perspectives: the macroscopic molecular motion (including translation, vibration and rotation) and the microscopic intramolecular electron state alteration (including spin polarization, transfer or excitation, and density of states redistribution). Finally, we discuss the challenges and opportunities for further development of catalysis under electric-/magnetic-/electromagnetic-field coupling.
Collapse
Affiliation(s)
- Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qianqi Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
14
|
Zhu J, Dong Y, Wang Q, Han J, Li Z, Xu D, Fischer L, Ulbricht M, Ren Z. Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177595. [PMID: 39571808 DOI: 10.1016/j.scitotenv.2024.177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time. Under an external magnetic field, magnetic catalysts exhibit satisfactory energy bandgaps and charge transfer rates for photocatalysis, enabling wide and comprehensive photocatalytic applications. In addition, they are strong candidate materials for wastewater treatment and new-energy applications. In summary, the review provides future directions for the development of novel magnetic catalysts, contaminant removal, and even large-scale practical applications.
Collapse
Affiliation(s)
- Jinyu Zhu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yilin Dong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuwen Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinlong Han
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zexun Li
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongyu Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| |
Collapse
|
15
|
Su S, Wang C, Duan H, Lv X, Chen J, Jia H. Unveiling the role of oxygen vacancy of manganese oxide coating on Ni foam to magnetocaloric catalytic oxidation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136279. [PMID: 39471610 DOI: 10.1016/j.jhazmat.2024.136279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Using a pulsed-voltage technique, the manganese oxide (MnOx) coating on Ni foam (NF) was regulated to encourage magnetocaloric oxidation, which lowers volatile organic compounds (VOCs). The MnOx/NF was obtained by electrodeposition of MnOx onto NF. Subsequently, MnOx/NF-PV was obtained by pulsed-voltage modification. According to the structural characterization, the pulsed-voltage modification changed the interaction between the coating and the support, resulting in increased toluene adsorption capacity, oxygen desorption capability, oxygen vacancy (OV) quantity of MnOx/NF-PV. The MnOx/NF-PV exhibits excellent catalytic performance, with a 90 % conversion of toluene at 170 °C, where OV play an important role as electronic intermediates in magnetocaloric oxidation reactions. Furthermore, compared to traditional thermal catalysis, electromagnetic induction heating (EMIH) can promote the reactivity of OV in magnetocaloric catalysts by increasing the activation and dissociation of oxygen species and thus catalytic activity, which was demonstrated in the 18O isotope exchange experiment.
Collapse
Affiliation(s)
- Shuangyong Su
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangyu Duan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Ma S, Wang K, Rafique M, Han J, Fu Q, Jiang S, Wang X, Yao T, Xu P, Song B. Reconstruction of Ferromagnetic/Paramagnetic Cobalt-Based Electrocatalysts under Gradient Magnetic Fields for Enhanced Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202412821. [PMID: 39105426 DOI: 10.1002/anie.202412821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
The rational manipulation of the surface reconstruction of catalysts is a key factor in achieving highly efficient water oxidation, but it is a challenge due to the complex reaction conditions. Herein, we introduce a novel in situ reconstruction strategy under a gradient magnetic field to form highly catalytically active species on the surface of ferromagnetic/paramagnetic CoFe2O4@CoBDC core-shell structure for electrochemical oxygen evolution reaction (OER). We demonstrate that the Kelvin force from the cores' local gradient magnetic field modulates the shells' surface reconstruction, leading to a higher proportion of Co2+ as active sites. These Co sites with optimized electronic configuration exhibit more favorable adsorption energy for oxygen-containing intermediates and lower the activation energy of the overall catalytic reaction. As a result, a significant enhancement in OER performance is achieved with a large current density increment about 128 % at 1.63 V and an overpotential reduction by 28 mV at 10 mA cm-2 after reconstruction. Interestingly, after removing the external magnetic field, the activity could persist for over 100 h. This work showcases the directional surface reconstruction of catalysts under a gradient magnetic field for enhanced water oxidation.
Collapse
Affiliation(s)
- Shengyu Ma
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Kaixi Wang
- Zhengzhou Research Institute, Harbin Institute of Technology, 450046, Zhengzhou, China
| | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Sida Jiang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
| | - Xianjie Wang
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Tai Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Ping Xu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Bo Song
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
- National Key Laboratory of Laser Spatial Information, 150001, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, 450046, Zhengzhou, China
- Frontier Research Center of Space Environment Interacting with Matter, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
17
|
Yu Z, Zhang D, Wang Y, Liu F, She F, Chen J, Zhang Y, Wang R, Zeng Z, Song L, Chen Y, Li H, Wei L. Spin Manipulation of Heterogeneous Molecular Electrocatalysts by an Integrated Magnetic Field for Efficient Oxygen Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408461. [PMID: 39285843 DOI: 10.1002/adma.202408461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Indexed: 11/08/2024]
Abstract
Understanding the spin-dependent activity of nitrogen-coordinated single metal atom (M-N-C) electrocatalysts for oxygen reduction and evolution reactions (ORR and OER) remains challenging due to the lack of structure-defined catalysts and effective spin manipulation tools. Herein, both challenges using a magnetic field integrated heterogeneous molecular electrocatalyst prepared by anchoring cobalt phthalocyanine (CoPc) deposited carbon black on polymer-protected magnet nanoparticles, are addressed. The built-in magnetic field can shift the Co center from low- to high-spin (HS) state without atomic structure modification, affording one-order higher turnover frequency, a 50% increased H2O2 selectivity for ORR, and a ≈4000% magnetocurrent enhancement for OER. This catalyst can significantly minimize magnet usage, enabling safe and continuous production of a pure H2O2 solution for 100 h from a 100 cm2 electrolyzer. The new strategy demonstrated here also applies to other metal phthalocyanine-based catalysts, offering a universal platform for studying spin-related electrochemical processes.
Collapse
Affiliation(s)
- Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yangyang Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Jiaxiang Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ruijie Wang
- National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| |
Collapse
|
18
|
Pollet BG, Kalanur SS. Applications of Ferric Oxide in Water Splitting by Electrolysis: A Comprehensive Review. Molecules 2024; 29:4990. [PMID: 39519631 PMCID: PMC11547600 DOI: 10.3390/molecules29214990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In water electrolysis, the use of an efficient catalyst derived from earth-abundant materials which is cost-effective and stable is essential for the economic sustainability of hydrogen production. A wide range of catalytic materials have been reported upon so far, among which Fe2O3 stands out as one of the most credible candidates in terms of cost and abundance. However, Fe2O3 faces several limitations due to its poor charge transfer properties and catalytic ability; thus, significant modifications are essential for its effective utilization. Considering the future of water electrolysis, this review provides a detailed summary of Fe2O3 materials employed in electrolytic applications with a focus on critically assessing the key electrode modifications that are essential for the materials' utilization as efficient electrocatalysts. With this in mind, Fe2O3 was implemented in a heterojunction/composite, doped, carbon supported, crystal facet tuned system, as well as in metal organic framework (MOF) systems. Furthermore, Fe2O3 was utilized in alkaline, seawater, anion exchange membrane, and solid oxide electrolysis systems. Recently, magnetic field-assisted water electrolysis has also been explored. This comprehensive review highlights the fact that the applicability of Fe2O3 in electrolysis is limited, and hence, intense and strategically focused research is vital for converting Fe2O3 into a commercially viable, cost-effective, and efficient catalyst material.
Collapse
Affiliation(s)
| | - Shankara S. Kalanur
- Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada;
| |
Collapse
|
19
|
Yang Y, Han G, Xie M, Silva GVDO, Miao GX, Huang Y, Fu J. Magnetic Field Enhanced Oxygen Reduction Reaction via Oxygen Diffusion Speedup. SMALL METHODS 2024; 8:e2301594. [PMID: 38263805 DOI: 10.1002/smtd.202301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The mass-transfer of oxygen in liquid phases (including in the bulk electrolyte and near the electrode surface) is a critical step to deliver oxygen to catalyst sites (especially immersed catalyst sites) and use the full capacity of oxygen reduction reaction (ORR). Despite the extensive efforts of optimizing the complex three-phase reaction interfaces to enhance the gaseous oxygen transfer, strong limitations remain due to oxygen's poor solubility and slow diffusion in electrolytes. Herein, a magnetic method for boosting the directional hydrodynamic pumping of oxygen toward immersed catalyst sites is demonstrated which allows the ORR to reach otherwise inaccessible catalytic regions where high currents normally would have depleted oxygen. For Pt foil electrodes without forced oxygen saturation in KOH electrolytes, the mass-transfer-limited current densities can be improved by 60% under an external magnetic field of 435 mT due to the synergistic effect between bulk- and surface-magnetohydrodynamic (MHD) flows induced by Lorentz forces. The residual magnetic fields are further used at the surface of magnetic materials (such as CoPt alloys and Pt/FeCo heterostructures) to enhance the surface-MHD effect, which helps to retain part of the ORR enhancement permanently without applying external magnetic fields.
Collapse
Affiliation(s)
- Yongqiang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Guojun Han
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Minghui Xie
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | | | - Guo-Xing Miao
- Institute for Quantum Computing, Department of Electrical and Computer Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Yunhui Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, Shanghai, 201804, P. R. China
| |
Collapse
|
20
|
Lozon C, Cornet A, Reculusa S, Garrigue P, Kuhn A, Salinas G. Chemically-Driven Autonomous Janus Electromagnets as Magnetotactic Swimmers. Angew Chem Int Ed Engl 2024; 63:e202408198. [PMID: 38924323 DOI: 10.1002/anie.202408198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of μT upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.
Collapse
Affiliation(s)
- Cara Lozon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Antoine Cornet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
21
|
Zhang C, Ye C, Yao J, Wu LZ. Spin-related excited-state phenomena in photochemistry. Natl Sci Rev 2024; 11:nwae244. [PMID: 39211835 PMCID: PMC11360185 DOI: 10.1093/nsr/nwae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Chen Z, Li X, Ma H, Zhang Y, Peng J, Ma T, Cheng Z, Gracia J, Sun Y, Xu ZJ. Spin-dependent electrocatalysis. Natl Sci Rev 2024; 11:nwae314. [PMID: 39363911 PMCID: PMC11448474 DOI: 10.1093/nsr/nwae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The shift towards sustainable energy requires efficient electrochemical conversion technologies, emphasizing the crucial need for robust electrocatalyst design. Recent findings reveal that the efficiency of some electrocatalytic reactions is spin-dependent, with spin configuration dictating performance. Consequently, understanding the spin's role and controlling it in electrocatalysts is important. This review succinctly outlines recent investigations into spin-dependent electrocatalysis, stressing its importance in energy conversion. It begins with an introduction to spin-related features, discusses characterization techniques for identifying spin configurations, and explores strategies for fine-tuning them. At the end, the article provides insights into future research directions, aiming to reveal more unknown fundamentals of spin-dependent electrocatalysis and encourage further exploration in spin-related research and applications.
Collapse
Affiliation(s)
- Zhengjie Chen
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Hao Ma
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, North Wollongong 2500, Australia
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, Alicante 03012, Spain
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
23
|
Zhang Y, Wu Q, Seow JZY, Jia Y, Ren X, Xu ZJ. Spin states of metal centers in electrocatalysis. Chem Soc Rev 2024; 53:8123-8136. [PMID: 39005214 DOI: 10.1039/d3cs00913k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding the electronic structure of active sites is crucial in efficient catalyst design. The spin state, spin configurations of d-electrons, has been frequently discussed recently. However, its systematic depiction in electrocatalysis is lacking. In this tutorial review, a comprehensive interpretation of the spin state of metal centers in electrocatalysts and its role in electrocatalysis is provided. This review starts with the basics of spin states, including molecular field theory, crystal field theory, and ligand field theory. It further introduces the differences in low spin, intermediate spin, and high spin, and intrinsic factors affecting the spin state. Popular characterization techniques and modeling approaches that can reveal the spin state, such as X-ray absorption microscopy, electron spin resonance spectroscopy, Mössbauer spectroscopy, and density functional theory (DFT) calculations, are introduced as well with examples from the literature. The examples include the most recent progress in tuning the spin state of metal centers for various reactions, e.g., the oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and urea oxidation reaction. Challenges and potential implications for future research related to the spin state are discussed at the end.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| | - Yingjie Jia
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Xiao Ren
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
24
|
Gao C, Wang J, Hübner R, Zhan J, Zhao M, Li Y, Cai B. Spin Effect to Regulate the Electronic Structure of Ir─Fe Aerogels for Efficient Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400875. [PMID: 38558285 DOI: 10.1002/smll.202400875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
"Spin" has been recently reported as an important degree of electronic freedom to promote catalysis, yet how it influences electronic structure remains unexplored. This work reports the spin-induced orbital hybridization in Ir─Fe bimetallic aerogels, where the electronic structure of Ir sites is effectively regulated by tuning the spin property of Fe atoms. The spin-optimized electronic structure boosts oxygen evolution reaction (OER) electrocatalysis in acidic media, resulting in a largely improved catalytic performance with an overpotential of as low as 236 mV at 10 mA cm-2. Furthermore, the gelation kinetics for the aerogel synthesis is improved by an order of magnitude based on the introduction of a magnetic field. Density functional theory calculation reveals that the increased magnetic moment of Fe (3d orbital) changes the d-band structure (i.e., the d-band center and bandwidth) of Ir (5d orbital) via orbital hybridization, resulting in optimized binding of reaction intermediates. This strategy builds the bridge between the electron spin theory with the d-band theory and provides a new way for the design of high-performance electrocatalysts by using spin-induced orbital interaction.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Juan Wang
- School of Physics, Shandong University, Jinan, 250100, China
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yangyang Li
- School of Physics, Shandong University, Jinan, 250100, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| |
Collapse
|
25
|
Karki N, Marquina IG, Hemmer JV, Yu Y, Wilson AJ. Suppressing Competing Solvent Reduction in CO 2 Electroreduction with a Magnetic Field. J Phys Chem Lett 2024; 15:7045-7054. [PMID: 38949788 DOI: 10.1021/acs.jpclett.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The presence of an external magnetic field is found to affect the competition between the H2O and CO2 reduction reactions by increasing mass transport via the Lorentz force. Increasing the magnetic field strength at the electrode surface from 0 to 325 mT increases the selectivity of CO over H2 by 3×, while an increase in current density from 0.5 to 5 mA/cm2 increases the selectivity of CO production by 5×. Cyclic voltammetry and finite-element simulations reveal that the origin of the enhanced CO selectivity is attributable to a magnetic field lowering the electrode-electrolyte interfacial pH. A drop in interfacial pH enables increased production of CO from CO2 reduction due to a decrease in the activity of H2O reduction and increase in CO2 solubility near the electrode surface. The insight provided in this study offers new opportunities to control reaction selectivity in electrocatalysis with magnetic field vectors.
Collapse
Affiliation(s)
- Nawaraj Karki
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Ingrid Guillen Marquina
- Chemistry and Biochemistry Department, George Mason University, Fairfax, Virginia 22030, United States
| | - Johann V Hemmer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Yun Yu
- Chemistry and Biochemistry Department, George Mason University, Fairfax, Virginia 22030, United States
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
26
|
Jia Y, Wu W, Chen R, Wang H, Zhang C, Chen L, Yao J. Magneto-electrochemical method for chiral recognition of amino acid enantiomers. Analyst 2024; 149:3732-3738. [PMID: 38842499 DOI: 10.1039/d4an00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chiral recognition of enantiomers with identical mirror-symmetric molecular structures is important for the analysis of biomolecules, and it conventionally relies on stereoselective interactions in chiral chemical environments. Here, we develop a magneto-electrochemical method for the enhanced detection of chiral amino acids (AAs), that combines the advantages of the high sensitivity of electrochemiluminescent (ECL) biosensors and chirality-induced effects under a magnetic field. The ECL difference between L- and D-enantiomers can be amplified over 35-fold under a field of 3.5 kG, and the chiral discrimination can be achieved in dilute AA solutions down to the nM level. The field-dependent ECL and chronocoulometry measurements suggest that chiral AAs can lock the spins on their radicals and thus enlarge the ECL change under applied magnetic fields (magneto-ECL, MECL), which explains the field-enhanced chiral discrimination of AA enantiomers. Finally, a detailed protocol is demonstrated for the identification of unknown AA solutions, in which the species, chirality and concentration of AAs can be determined simultaneously from the 2D plots of the ECL and MECL results. This work benefits the development of field-assisted detection methods and represents a promising and universal strategy for the comprehensive analysis of chiral biomolecules.
Collapse
Affiliation(s)
- Yueqian Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lili Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Mitra K, Adalder A, Mandal S, Ghorai UK. Enhancing Electrochemical Reactivity with Magnetic Fields: Unraveling the Role of Magneto-Electrochemistry. SMALL METHODS 2024; 8:e2301132. [PMID: 38221715 DOI: 10.1002/smtd.202301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Electrocatalysis performs a vital role in numerous energy transformation and repository mechanics, including power cells, Electric field-assisted catalysis, and batteries. It is crucial to investigate new methods to improve electrocatalytic performance if effective and long-lasting power systems are developed. The modulation of catalytic activity and selectivity by external magnetic fields over electrochemical processes has received a lot of interest lately. How the use of various magnetic fields in electrocatalysis has great promise for building effective and selective catalysts, opening the door for the advancement of sophisticated energy conversion is discussed. Furthermore, the challenges and possibilities of incorporating magnetic fields into electrocatalytic systems and suggestions for future research areas are discussed.
Collapse
Affiliation(s)
- Koushik Mitra
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - Ashadul Adalder
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - Sumit Mandal
- Department of Physics, Vidyasagar College, Kolkata, 700006, India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| |
Collapse
|
28
|
Wei S, Liu W, Bai P, Yang C, Kong X, Xu L. Magnetic fields promote electrocatalytic CO 2 reduction via subtle modulations of magnetic moments and molecular bonding. ECO-ENVIRONMENT & HEALTH 2024; 3:247-255. [PMID: 38708006 PMCID: PMC11068524 DOI: 10.1016/j.eehl.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 05/07/2024]
Abstract
Introducing a magnetic-field gradient into an electrically driven chemical reaction is expected to give rise to intriguing research possibilities. In this work, we elaborate on the modes and mechanisms of electrocatalytic activity (from the perspective of alignment of magnetic moments) and selectivity (at the molecular level) for the CO2 reduction reaction in response to external magnetic fields. We establish a positive correlation between magnetic field strengths and apparent current densities. This correlation can be rationalized by the formation of longer-range ordering of magnetic moments and the resulting decrease in the scattering of conduction electrons and charge-transfer resistances as the field strength increases. Furthermore, aided by the magnetic-field-equipped operando infrared spectroscopy, we find that applied magnetic fields are capable of weakening the C-O bond strength of the key intermediate ∗COOH and elongating the C-O bond length, thereby increasing the faradaic efficiency for the electroreduction of CO2 to CO.
Collapse
Affiliation(s)
- Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiao Kong
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
29
|
Zhong W, Jiang J. The Rational Design of Atomically Dispersed Catalysts via Spin Manipulation. J Phys Chem Lett 2024; 15:5445-5451. [PMID: 38747537 DOI: 10.1021/acs.jpclett.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The catalytic activity of transition-metal-based atomically dispersed catalysts is closely related to the spin states. Manipulating the spin state of metal active centers could directly adjust the d orbital occupancy and optimize the adsorption behavior and electron transfer of the intermediates and transition metals, which would enhance the catalytic activity. We summarize the means of manipulating spin states and the spin-related catalytic descriptors. In future work, we will build a quantifiable and accurate prediction intelligent model through artificial intelligence (AI) and machine learning tools. Furthermore, we will develop new spin regulation methods to carry out the directional regulation of atomically dispersed catalysts through this model, providing new insight into the rational design of transition-metal-based atomically dispersed catalysts through spin manipulation.
Collapse
Affiliation(s)
- Wenhui Zhong
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Li L, Wang Y, Nazmutdinov RR, Zairov RR, Shao Q, Lu J. Magnetic Field Enhanced Cobalt Iridium Alloy Catalyst for Acidic Oxygen Evolution Reaction. NANO LETTERS 2024; 24:6148-6157. [PMID: 38728265 DOI: 10.1021/acs.nanolett.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants. Interestingly, CoIr nanoclusters (NCs) exhibit an excellent magnetic field enhanced acidic OER activity, with the lowest overpotential of 220 mV at 10 mA cm-2 and s long-term stability of 120 h under a constant magnetic field (vs 260 mV/20 h without a magnetic field). The turnover frequency reaches 7.4 s-1 at 1.5 V (vs RHE), which is 3.0 times higher than that without magnetization. Density functional theory results show that CoIr NCs have a pronounced spin polarization intensity, which is preferable for OER enhancement.
Collapse
Affiliation(s)
- Lamei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Renat R Nazmutdinov
- Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Rustem R Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
31
|
Huang Q, Sheng H. Magnetic-Field-Induced Spin Regulation in Electrocatalytic Reactions. Chemistry 2024; 30:e202400352. [PMID: 38470164 DOI: 10.1002/chem.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
The utilization of a magnetic field to manipulate spin states has emerged as a novel approach to enhance efficiency in electrocatalytic reactions, distinguishing from traditional strategies that focus on tuning activation energy barriers. Currently, this approach is specifically tailored to reactions where spin states change during the catalytic process, such as the oxidation of singlet H2O to triplet O2. In the magnetically enhanced oxygen evolution reaction (OER) procedure, the parallel spin alignment on the ferromagnetic catalyst was induced by the external magnetic field, facilitating the triplet O-O bonding, which is the rate limiting step in OER. This review centers on recent advancements in harnessing external magnetic fields to enhance OER performance, delving into mechanistic approaches for this magnetic promotion. Additionally, we provide a summary of magnetic field application in other electrocatalytic reactions, including oxygen reduction, methanol oxidation, and CO2 reduction.
Collapse
Affiliation(s)
- Qing Huang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
32
|
Gao S, Fan J, Cui K, Wang Z, Huang T, Tan Z, Niu C, Luo W, Chao Z. Synthesis of FeOOH/Zn(OH) 2/CoS Ferromagnetic Nanocomposites and the Enhanced Mechanism of Magnetic Field for Their Electrochemical Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308212. [PMID: 38100280 DOI: 10.1002/smll.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Indexed: 12/17/2023]
Abstract
The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .
Collapse
Affiliation(s)
- Shanqiang Gao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Kexin Cui
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihao Wang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ting Huang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zicong Tan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Chaoqun Niu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Wenbin Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zisheng Chao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
33
|
Deng Q, Chen S, Wu W, Zhang S, An C, Hu N, Han X. Ultrasound-Assisted Preparation and Performance Regulation of Electrocatalytic Materials. Chempluschem 2024; 89:e202300688. [PMID: 38199955 DOI: 10.1002/cplu.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
With the advancement of scientific research, the introduction of external physical methods not only adds extra freedom to the design of electro-catalytical processes for green technologies but also effectively improves the reactivity of materials. Physical methods can adjust the intrinsic activity of materials and modulate the local environment at the solid-liquid interface. In particular, this approach holds great promise in the field of electrocatalysis. Among them, the ultrasonic waves have shown reasonable control over the preparation of materials and the electrocatalytic process. However, the research on coupling ultrasonic waves and electrocatalysis is still early. The understanding of their mechanisms needs to be more comprehensive and deep enough. Firstly, this article extensively discusses the adhibition of the ultrasonic-assisted preparation of metal-based catalysts and their catalytic performance as electrocatalysts. The obtained metal-based catalysts exhibit improved electrocatalytic performances due to their high surface area and more exposed active sites. Additionally, this article also points out some urgent unresolved issues in the synthesis of materials using ultrasonic waves and the regulation of electrocatalytic performance. Lastly, the challenges and opportunities in this field are discussed, providing new insights for improving the catalytic performance of transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuang Chen
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenliu Wu
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cuihua An
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
34
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|
35
|
Vensaus P, Liang Y, Ansermet JP, Soler-Illia GJAA, Lingenfelder M. Enhancement of electrocatalysis through magnetic field effects on mass transport. Nat Commun 2024; 15:2867. [PMID: 38570499 PMCID: PMC10991325 DOI: 10.1038/s41467-024-46980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles' movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Priscila Vensaus
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
36
|
Xiang Z, Wang H, Zhao P, Fa X, Wan J, Wang Y, Xu C, Yao S, Zhao W, Zhang H, Han M. Hard Magnetic Graphene Nanocomposite for Multimodal, Reconfigurable Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308575. [PMID: 38153331 DOI: 10.1002/adma.202308575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Soft electronics provide effective means for continuous monitoring of a diverse set of biophysical and biochemical signals from the human body. However, the sensitivities, functions, spatial distributions, and many other features of such sensors remain fixed after deployment and cannot be adjusted on demand. Here, laser-induced porous graphene is exploited as the sensing material, and dope it with permanent magnetic particles to create hard magnetic graphene nanocomposite (HMGN) that can self-assemble onto a flexible carrying substrate through magnetic force, in a reversible and reconfigurable manner. A set of soft electronics in HMGN exhibits enhanced performances in the measurements of electrophysiological signals, temperature, and concentrations of metabolites. All these flexible HMGN sensors can adhere to a carrying substrate at any position and in any spatial arrangement, to allow for wearable sensing with customizable sensitivity, modality, and spatial coverage. The HMGN represents a promising material for constructing soft electronics that can be reconfigured for various applications.
Collapse
Affiliation(s)
- Zehua Xiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Haobin Wang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Pengcheng Zhao
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Xinying Fa
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yaozheng Wang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Chen Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haixia Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Mengdi Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
37
|
Knoche Gupta K, Lee HC, Leddy J. Magnetoelectrocatalysis: Evidence from the Hydrogen Evolution Reaction. ACS PHYSICAL CHEMISTRY AU 2024; 4:148-159. [PMID: 38560752 PMCID: PMC10979484 DOI: 10.1021/acsphyschemau.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 04/04/2024]
Abstract
Hydrogen evolution reaction (HER) rates are higher where magnetic gradients are established at electrode surfaces. In comparison of literature data for metals with comparable work functions, we note 1000× higher rates for paramagnetic metals than diamagnetic metals. With unpaired electron spins, paramagnetic and ferromagnetic metals establish interfacial magnetic gradients. At diamagnetic electrodes, gradients are induced by addition of magnetized microparticles. Onset of hydrogen evolution for magnetized γ-Fe2O3 microparticles in Nafion on diamagnetic glassy carbon electrodes is lower by 190 mV (-18 kJ mol-1) relative to demagnetized microparticles. Chemically the same as demagnetized particles, the physical distinction of magnetic field and gradient at magnetized microparticles increases electron transfer rate. For magnetized Fe3O4 microparticles, the onset is lower by 280 mV (-27 kJ mol-1). Paramagnetic platinum electrodes are unaffected by addition of magnetized microparticles. Magnetoelectrocatalysis is established by magnetic gradients.
Collapse
Affiliation(s)
| | | | - Johna Leddy
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52240, United States
| |
Collapse
|
38
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Tieriekhov K, Sojic N, Bouffier L, Salinas G, Kuhn A. Wireless Magnetoelectrochemical Induction of Rotational Motion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306635. [PMID: 38126582 PMCID: PMC10916613 DOI: 10.1002/advs.202306635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Electromagnetically induced rotation is a key process of many technological systems that are used in daily life, especially for energy conversion. In this context, the Lorentz force-induced deviation of charges is a crucial physical phenomenon to generate rotation. Herein, they combine the latter with the concept of bipolar electrochemistry to design a wireless magnetoelectrochemical rotor. Such a device can be considered as a wet analog of a conventional electric motor. The main driving force that propels this actuator is the result of the synergy between the charge-compensating ion flux along a bipolar electrode and an external magnetic field applied orthogonally to the surface of the object. The trajectory of the wirelessly polarized rotor can be controlled by the orientation of the magnetic field relative to the direction of the global electric field, producing a predictable clockwise or anticlockwise motion. Fine-tuning of the applied electric field allows for addressing conducting objects having variable characteristic lengths.
Collapse
Affiliation(s)
| | - Neso Sojic
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Laurent Bouffier
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Gerardo Salinas
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Alexander Kuhn
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| |
Collapse
|
40
|
Biz C, Gracia J, Fianchini M. Experimental Evidences on Magnetism-Covalent Bonding Interplay in Structural Properties of Solids and during Chemisorption. Int J Mol Sci 2024; 25:1793. [PMID: 38339071 PMCID: PMC10855376 DOI: 10.3390/ijms25031793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Valence electrons are one of the main players in solid catalysts and in catalytic reactions, since they are involved in several correlated phenomena like chemical bonding, magnetism, chemisorption, and bond activation. This is particularly true in the case of solid catalysts containing d-transition metals, which exhibit a wide range of magnetic phenomena, from paramagnetism to collective behaviour. Indeed, the electrons of the outer d-shells are, on one hand, involved in the formation of bonds within the structure of a catalyst and on its surface, and, on the other, they are accountable for the magnetic properties of the material. For this reason, the relationship between magnetism and heterogeneous catalysis has been a source of great interest since the mid-20th century. The subject has gained a lot of attention in the last decade, thanks to the orbital engineering of quantum spin-exchange interactions and to the widespread application of external magnetic fields as boosting tools in several catalytic reactions. The topic is discussed here through experimental examples and evidences of the interplay between magnetism and covalent bonding in the structure of solids and during the chemisorption process. Covalent bonding is discussed since it represents one of the strongest contributions to bonds encountered in materials.
Collapse
Affiliation(s)
| | - Jose Gracia
- MagnetoCat SL, Calle General Polavieja 9, 3 Izq, 03012 Alicante, Spain;
| | - Mauro Fianchini
- MagnetoCat SL, Calle General Polavieja 9, 3 Izq, 03012 Alicante, Spain;
| |
Collapse
|
41
|
Shao D, Wu T, Li X, Ren X, Xu ZJ. A Perspective of Magnetoelectric Effect in Electrocatalysis. SMALL SCIENCE 2023; 3:2300065. [PMID: 40213132 PMCID: PMC11936001 DOI: 10.1002/smsc.202300065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Indexed: 05/04/2025] Open
Abstract
The integration of magnetic fields with magnetoelectric (ME) coupling materials has been recently reported for electrocatalysis applications. Highly efficient energy conversion and storage can be potentially provided by this emerging approach. The ME properties, that is, the coexistence of ferromagnetic (FM) and ferroelectric (FE) ordering in some multiferroic materials, can be manipulated by magnetic or electric fields. The ME coupling can result in unique spin-related physical properties in catalysts, further leading to interesting effects on electrocatalytic reactions. Herein, a discussion on the ME coupling multiferroic materials, as well as their potential opportunities and challenges as electrocatalysts in selected electrochemical reactions, is provided.
Collapse
Affiliation(s)
- Dongsheng Shao
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Tianze Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Xiaoning Li
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Xiaoming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Zhichuan J. Xu
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- The Centre of Advanced Catalysis Science and TechnologyNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
42
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
43
|
Ling Y, Yu X, Yuan S, He A, Han Z, Du J, Fan Q, Yan S, Xu Q. Flexomagnetic Effect Enhanced Ferromagnetism and Magnetoelectrochemistry in Freestanding High-Entropy Alloy Films. ACS NANO 2023; 17:17299-17307. [PMID: 37643207 DOI: 10.1021/acsnano.3c05255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Freestanding thin films of functional materials enable the tuning of properties via strain and strain gradients, broadening their applications. Here, a systematic approach is proposed to fabricate freestanding CrMnFeCoNi high-entropy alloy (HEA) thin films by pulsed laser deposition using expansion-contraction of NaCl substrates and weak van der Waals interaction of the interface, which form wrinkles with inhomogeneous strain gradients when transferred to a viscous handle. We demonstrate that the nonuniform gradients of external strain (flexomagnetic effect) can induce the partial structural phase transition from FCC to BCC in the wrinkled HEA film, resulting in a 10-fold increase in its room-temperature saturation magnetization compared with the unstrained flat HEA film. Furthermore, after applying an external magnetic field, due to the different electron transfer behavior caused by the electron scattering in wrinkled and flat HEA films, their electrocatalytic magnetic responses showed a diametrically opposite picture. Our work provides a promising strategy for tuning physical and chemical properties via complex strained geometries.
Collapse
Affiliation(s)
- Yechao Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Yu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shijun Yuan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Anpeng He
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhida Han
- College of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jun Du
- Department of Physics, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
| | - Qi Fan
- School of Materials Science and Enigneering, Southeast University, Nanjing 211189, China
| | - Shicheng Yan
- Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qingyu Xu
- School of Physics, Southeast University, Nanjing 211189, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
| |
Collapse
|
44
|
Jiao H, An J, Jia Y, Liu Q, Wang Z, Gao Y, Wang M, Fang D, Zhu H, Jiao S. Operando probing and adjusting of the complicated electrode process of multivalent metals at extreme temperature. Proc Natl Acad Sci U S A 2023; 120:e2301780120. [PMID: 37399420 PMCID: PMC10334782 DOI: 10.1073/pnas.2301780120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023] Open
Abstract
Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.
Collapse
Affiliation(s)
- Handong Jiao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing100081, PR China
| | - Jialiang An
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Yongzheng Jia
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Qiang Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Zhe Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Yang Gao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing100081, PR China
| | - Hongmin Zhu
- Tohoku University, Aobo-ku, Sendai980-8579, Japan
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing100083, PR China
| |
Collapse
|
45
|
Xu H, Qi J, Zhang Y, Liu H, Hu L, Feng M, Lü W. Magnetic Field-Enhanced Oxygen Evolution Reaction via the Tuneability of Spin Polarization in a Half-Metal Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384856 DOI: 10.1021/acsami.3c03713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The magnetic field response of an electrochemistry process, such as the oxygen evolution reaction (OER), provides not only a strategy for enhanced catalytic activity by applying an external field but also a platform for revealing the functionality of the multiple degrees of freedom of the catalyst. However, the mechanism of the magnetic field tuneable OER is controversial. The strong correlation between the d and p orbitals of transition metal and oxygen still puzzles the dominant role of spin in an OER process. Here in this study, we have employed the manganite La0.7Sr0.2Ca0.1MnO3 as the ferromagnetic OER catalyst, which has a ferromagnetic/paramagnetic transition (TC) around the room temperature. It is found that the overpotential can be reduced by ∼18% after applying a 5 kOe magnetic field. Furthermore, this magnetic field can trigger a further improvement of the OER performance, and it demonstrates a strong temperature dependence which is incongruent with its magnetoresistive behavior. So our experiments suggest that the observed magnetic response originates dominantly from the triplet state of the O2, where the spin-polarized d and oxygen p orbitals lower the Gibbs free energy for every reaction step in OER. This study offers experimental evidence on comprehending the spin degree in the OER process, meanwhile benefiting the further design and engineering of the promising magnetic electrochemistry catalysts.
Collapse
Affiliation(s)
- Hang Xu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ji Qi
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Huan Liu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Linglong Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Weiming Lü
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
46
|
Gao Y, Wang J, Yang Y, Wang J, Zhang C, Wang X, Yao J. Engineering Spin States of Isolated Copper Species in a Metal-Organic Framework Improves Urea Electrosynthesis. NANO-MICRO LETTERS 2023; 15:158. [PMID: 37341868 PMCID: PMC10284786 DOI: 10.1007/s40820-023-01127-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/14/2023] [Indexed: 06/22/2023]
Abstract
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal-organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h-1 g-1 and an enhanced Faradaic efficiency of 23.09% at - 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty [Formula: see text] orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C-N coupling process, while CuII with a single-spin state ([Formula: see text]) in CuII-HHTP undergoes a two-electron migration pathway.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingnan Wang
- Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yijun Yang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jian Wang
- Research Center for Magnetic and Spintronic Materials National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
47
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
48
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
49
|
Jiang X, Chen Y, Zhang X, You F, Yao J, Yang H, Xia BY. Magnetic Field-Assisted Construction and Enhancement of Electrocatalysts. CHEMSUSCHEM 2022; 15:e202201551. [PMID: 36193685 DOI: 10.1002/cssc.202201551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Driven by the energy crisis and environmental pollution, developing sustainable clean energy is an effective strategy to realize carbon neutrality. Electrocatalytic reactions are crucial to sustainable energy conversion and storage technologies, and advanced electrocatalysts are required to improve the sluggish electrocatalytic reactions. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the construction of electrocatalysts and enhancement of electrocatalysis. In this Review, the recent progress of magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis is comprehensively summarized. Originating from the structure-activity-performance relationship of electrocatalysts, the fundamentals of the magnetic field-induced construction of electrocatalysts, including the magnetocaloric effect, nucleation and growth, and phase regulation, have been illustrated. In addition, the magnetic effect on the electrocatalytic reaction, namely, the magnetothermal, magnetohydrodynamic and micro magnetohydrodynamic, Maxwell stress, Kelvin force, and spin selection effects, are discussed. Finally, the perspective and challenges for magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis are proposed.
Collapse
Affiliation(s)
- Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
50
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|