1
|
Li L, He Y, Zhao J, Yin H, Feng X, Fan X, Wu W, Lu Q. Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Autoimmune Diseases. Clin Rev Allergy Immunol 2025; 68:21. [PMID: 39982546 DOI: 10.1007/s12016-025-09030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Autoimmune diseases are characterized by immune dysregulation, resulting in aberrant reactivity of T cells and antibodies to self-antigens, leading to various patterns of inflammation and organ dysfunction. However, current therapeutic agents exhibit broad-spectrum activity and lack disease-specific selectivity, leading to enduring adverse effects, notably severe infections, and malignancies, and patients often fail to achieve the intended clinical goals. Mesenchymal stromal cells (MSCs) are multipotent stromal cells that can be easily derived from various tissues, such as adipose tissue, umbilical cords, Wharton's jelly, placenta, and dental tissues. MSCs offer advantages due to their immunomodulatory and anti-inflammatory abilities, low immunogenicity, and a high capacity for proliferation and multipotent differentiation, making them excellent candidates for cell-based treatment in autoimmune disorders. This review will cover preclinical studies and clinical trials involving MSCs in autoimmune diseases, as well as the primary challenges associated with the clinical application of MSC therapies and strategies for maximizing their therapeutic potential.
Collapse
Affiliation(s)
- Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong He
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
2
|
Bu S, Liu M, Yang L, Lee P, Miller H, Park CS, Byazrova M, Filatov A, Benlagha K, Gaber T, Buttgereit F, Gong Q, Zhai Z, Liu C. The function of T cells in immune thrombocytopenia. Front Immunol 2025; 16:1499014. [PMID: 40061938 PMCID: PMC11885273 DOI: 10.3389/fimmu.2025.1499014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by increased bleeding due to a reduced platelet count. The pathogenesis of ITP is very complex and involves autoantibody production and T-cell-mediated immune abnormalities. An imbalance of effector and regulatory CD4+ T cells and the breach of tolerance primarily cause ITP, leading to the dysfunctional development of autoreactive Th cells (including Th1, Th2, and Th17 cells) and Tregs. The loss of auto-platelet antigen tolerance in ITP results in autoantibody- and cytotoxic T-cell-mediated platelet clearance. T-cell-related genetic risk factors significantly influence the development and progression of this disease. New therapies targeting T cells have emerged as potentially effective cures for this disease. This review summarizes the role of T cells in ITP.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Maria Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Al-Mazroua HA, Nadeem A, Attia SM, Bakheet SA, Ahmad A, Ansari MA, Ibrahim KE, Alomar HA, Almutairi MM, Algarzae NK, Mahmoud MA, Hussein MH, Ahmed OM, Ahmad SF. The PPAR-α selective agonist WY14643 improves lupus nephritis via the downregulation of the RORγT/STAT3 signaling pathway in MRL/lpr mice. Int Immunopharmacol 2025; 145:113787. [PMID: 39653614 DOI: 10.1016/j.intimp.2024.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disorder that mostly affects young women and involves various organs, such as the skin, joints, central nervous system, and kidneys. WY14643, a selective agonist of peroxisome proliferator-activated receptor-α, has previously shown anti-inflammatory effects in various disease models. However, its effects on lupus nephritis are yet to be explored. Therefore, the efficacy of WY14643 on renal biomarkers and lupus nephritis was assessed in MRL/lpr mice. Flow cytometry was used to examinethe effects of WY14643 on the expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in splenic CD4+ T cells. We further investigated the impact of WY14643 on the mRNA expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in kidney tissue via RT-PCR analysis. The administration of WY14643 effectively improved the symptoms of lupus nephritis in MRL/lpr mice. The administration of WY14643 decreased serum albumin, urine protein, serum creatinine, and blood urea nitrogen levels in MRL/lpr mice. WY14643 reduced the levels of inflammatory markers, including CD4+IL-17A+, CD4+STAT3+, CD4+RORγT+, CD4+IL-21+, CD4+IL-21R+, CD4+IL-22+, and CD4+TNF-α+, in the spleen cells of MRL/lpr mice. Additionally, we discovered that the administration of WY14643 resulted in the suppression of mRNA levels of IL-17A, STAT3, RORγT, IL-21, IL-22, and TNF-α. The current work shows that the suppression of inflammatory cells by WY14643 may effectively reduce autoimmune characteristics, such as renal inflammation, in lupus-prone MRL/lpr mice. Therefore, WY14643, being a specific PPAR-α agonist, shows significant potential as a novel therapeutic option for treatingnephritis associated with SLE, offering hope for future treatments in this challenging field.
Collapse
Affiliation(s)
- Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah K Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Song ZC, Liu ST, Xia XY, Hu JJ, Leng RX, Zhao W. In vitro silencing of RIP2 in naive CD4 + T cells from lupus-prone mice promotes pathogenic Th17 cell differentiation. Clin Rheumatol 2024; 43:3515-3523. [PMID: 39235498 DOI: 10.1007/s10067-024-07124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE This work aims to investigate whether RIP2 silencing in naive CD4+ T cells from lupus-prone mice impacts Th17 cell activity or differentiation in vitro. METHODS Naive CD4+ T cells isolation from MRL/lpr mice's spleens. Three RNA interference target sequences of RIP2 were packaged with lentivirus and transfected into naive CD4+ T cells. The shRIP2 with the highest interference efficiency was selected and transfected into naive CD4+ T cells. Naive CD4+ T cells were cultured under conventional (TGF-β1 and IL-6) and pathogenic (IL-6, IL-23, IL-1β) differentiation environments, respectively. Then, RT-qPCR, Western blot or Flow Cytometry were used for measuring the amounts of RIP2 and IL-17 and the differentiation of Th17 cells in two settings. RESULTS Under the conventional Th17 (cTh17) cell differentiation environment (TGF-β1 and IL-6), RIP2 deficiency is linked to decreased IL-17A levels (1.00 ± 0.03 vs 0.80 ± 0.03) and attenuated cTh17 cell (2.46 ± 0.08 vs 0.78 ± 0.03) differentiation (all, P < 0.05). Under the pathogenic Th17 (pTh17) cell environment (IL-1β, IL-23, IL-6), RIP2 deficiency is linked to elevated IL-17A levels (1.03 ± 0.05 vs 1.63 ± 0.07) and enhanced pTh17 cell (3.69 ± 0.19 vs 5.49 ± 0.10) differentiation (all, P < 0.05). CONCLUSION Our data suggest that RIP2 inhibition induces preferential differentiation of naive CD4+ T cells to pathogenic Th17 cells, while being able to upregulate IL-17A levels in the context of pTh17 cell differentiation. Our study opens up new research areas to reveal the underlying mechanisms and potential therapeutic targets for the prevention and treatment of SLE patients. Key Points • Silencing of RIP2 in naive CD4+ T cells from lupus-prone mice promotes pathogenic Th17 (pTh17) cell differentiation and IL-17A production under pTh17 cell (IL-1β, IL-23, and IL-6) conditions. • RIP2 deficiency in naive CD4+ T cells reduces conventional Th17 (cTh17) cell differentiation and IL-17A production under cTh17 cell (TGF-β1 and IL-6) conditions. • RIP2-deficient naive CD4+ T cells preferentially differentiate towards pTh17 cells rather than cTh17 cells in vitro. • Inhibition of RIP2 may be involved in the development of SLE via effects on Th17/IL-17.
Collapse
Affiliation(s)
- Zi-Cheng Song
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Shu-Ting Liu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Xue-Ying Xia
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Jia Hu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Wei Zhao
- School of Nursing, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Yuan Y, Liu T. Influence of mesenchymal stem cells from different origins on the therapeutic effectiveness of systemic lupus erythematosus. Exp Cell Res 2024; 442:114263. [PMID: 39307406 DOI: 10.1016/j.yexcr.2024.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune inflammatory disorder characterized by alterations in the balance between inflammatory and regulatory cytokines. Mesenchymal stem cells (MSCs), which are non-hematopoietic stem cells with multipotent differentiation potential, due to their immunomodulatory, tissue repair, low immunogenicity, and chemotactic properties, have garnered increasing interest in SLE treatment. Studies increasingly reveal the heterogeneous nature of MSC populations. With sources including dental pulp, adipose tissue, bone marrow, and umbilical cord, the therapeutic effects of MSCs on SLE vary depending on their origin. This review consolidates clinical research on MSCs from different sources in treating SLE and analyzes the possible causes underlying these variable outcomes. Additionally, it elucidates five potential factors impacting the outcomes of MSC therapy in SLE: the influence of the microenvironment on MSCs, the complexity and paradoxical aspects of MSC mechanisms in SLE treatment, the heterogeneity of MSCs, the in vivo differentiation potential and post-transplant survival rates of MSCs, and disparities in MSC preparation conditions.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Tong Liu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
6
|
Zhang Y, Liu K, Guo M, Yang Y, Zhang H. Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int Immunopharmacol 2024; 136:112400. [PMID: 38850793 DOI: 10.1016/j.intimp.2024.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The decoy receptor interleukin 1 receptor 2 (IL-1R2), also known as CD121b, has different forms: membrane-bound (mIL-1R2), soluble secreted (ssIL-1R2), shedded (shIL-1R2), intracellular domain (IL-1R2ICD). The different forms of IL-1R2 exert not exactly similar functions. IL-1R2 can not only participate in the regulation of inflammatory response by competing with IL-1R1 to bind IL-1 and IL-1RAP, but also regulate IL-1 maturation and cell activation, promote cell survival, participate in IL-1-dependent internalization, and even have biological activity as a transcriptional cofactor. In this review, we provide a detailed description of the biological characteristics of IL-1R2 and discuss the expression and unique role of IL-1R2 in different immune cells. Importantly, we summarize the role of IL-1R2 in immune regulation from different autoimmune diseases, hoping to provide a new direction for in-depth studies of pathogenesis and therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Yiying Yang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
7
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Ramirez GA, Tassi E, Noviello M, Mazzi BA, Moroni L, Citterio L, Zagato L, Tombetti E, Doglio M, Baldissera EM, Bozzolo EP, Bonini C, Dagna L, Manfredi AA. Histone-Specific CD4 + T Cell Plasticity in Active and Quiescent Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:739-750. [PMID: 38111123 DOI: 10.1002/art.42778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether circulating histone-specific T cells represent tools for precision medicine in systemic lupus erythematosus (SLE). METHODS Seroprevalence of autoantibodies and HLA-DR beta (DRB) 1 profile were assessed among 185 patients with SLE and combined with bioinformatics and literature evidence to identify HLA-peptide autoepitope couples for ex vivo detection of antigen-specific T cells through flow cytometry. T cell differentiation and polarization was investigated in patients with SLE, patients with Takayasu arteritis, and healthy controls carrying HLA-DRB1*03:01 and/or HLA-DRB1*11:01. SLE Disease Activity Index 2000 and Lupus Low Disease Activity State were used to estimate disease activity and remission. RESULTS Histone-specific CD4+ T cells were selectively detected in patients with SLE. Among patients with a history of anti-DNA antibodies, 77% had detectable histone-specific T cells, whereas 50% had lymphocytes releasing cytokines or upregulating activation markers after in vitro challenge with histone peptide antigens. Histone-specific regulatory and effector T helper (Th) 1-, Th2-, and atypical Th1/Th17 (Th1*)-polarized cells were significantly more abundant in patients with SLE with quiescent disease. In contrast, total Th1-, Th2-, and Th1*-polarized and regulatory T cells were similarly represented between patients and controls or patients with SLE with active versus quiescent disease. Histone-specific effector memory T cells accumulated in the blood of patients with quiescent SLE, whereas total effector memory T cell counts did not change. Immunosuppressants were associated with expanded CD4+ histone-specific naive T (TN) and terminally differentiated T cells. CONCLUSION Histone-specific T cells are selectively detected in patients with SLE, and their concentration in the blood varies with disease activity, suggesting that they represent innovative tools for patient stratification and therapy.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | - Luca Moroni
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | - Chiara Bonini
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Dagna
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Xia Z, Liu J, Zu Y. Systemic lupus erythematosus and Atopic dermatitis: A two sample Mendelian randomization study. Clin Rheumatol 2024; 43:1311-1317. [PMID: 38349447 DOI: 10.1007/s10067-024-06900-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) and atopic dermatitis (AD) are common diseases in human populations. Previous studies have suggested a potential association between SLE and AD. However, the causal relationship and direction between the two conditions remain unclear. OBJECTIVE The aim of this study is to evaluate the causal relationship between SLE and AD. METHODS In this study, we employed Mendelian randomization (MR) analysis to investigate the causal relationship between SLE and AD. MR analysis has the advantage of reducing confounding factors, determining the direction of causality, and providing quantitative effect estimates. We obtained summary data from genome-wide association studies (GWAS) on SLE and AD from publicly available databases. Five MR methods, namely MR Egger, weighted median, inverse variance weighted, simple mode, and weighted mode, were used to assess the causal relationship between SLE and AD. Several techniques, including MR-Egger intercept, MR-PRESSO, and Cochran's Q test, were utilized to evaluate heterogeneity and pleiotropy. RESULTS Our study demonstrated a causal relationship between the prevalence of SLE and an increased risk of AD (MR Egger OR: 1.567, 95% CI: [1.041, 1.285], P = 0.009; IVW OR: 1.085, 95% CI: [1.005, 1.143], P = 0.035). Furthermore, sensitivity analyses did not detect heterogeneity or pleiotropy. CONCLUSION Our research finds that SLE is a contributing factor to the development of AD, providing valuable insights into the pathogenesis and prevention of both diseases. Key Points • Currently, there is no research that clearly indicates a causal relationship between SLE and AD. This study, for the first time, identified a positive causal relationship between SLE and AD. • The results of this study contribute to our understanding of the pathogenesis and treatment strategies for SLE and AD, providing some guidance for future clinical practice.
Collapse
Affiliation(s)
- Zhongbin Xia
- Health Management Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang, China.
| | - Jiahao Liu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Zu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Afsar B, Afsar RE. Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Curr Nutr Rep 2023; 12:830-844. [PMID: 37980312 DOI: 10.1007/s13668-023-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE OF REVIEW Sodium is vital for human health. High salt intake is a global health problem and is associated with cardiovascular morbidity and mortality. Recent evidence suggests that both innate and adaptive immune systems are affected by sodium. In general, excess salt intake drives immune cells toward a pro-inflammatory phenotype. The incidence of autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is steadily increasing. As excess salt induces a pro-inflammatory state, increased salt intake may have impacts on autoimmune diseases. The relationship between salt intake and autoimmune diseases is most widely studied in patients with SLE or RA. This review aimed to summarize the relationship between salt intake and SLE and RA. RECENT FINDINGS Most, but not all, of these studies showed that high salt intake might promote SLE by M1 macrophage shift, increase in Th17/Treg cell ratio, activation of dendritic and follicular helper T cells, and increased secretion of pro-inflammatory cytokines. In RA, apart from driving immune cells toward a pro-inflammatory state, high salt intake also influences cellular signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL), Rho GTPases, and MAPK (mitogen-activated protein kinase). There is now sufficient evidence that excess salt intake may be related to the development and progression of SLE and RA, although there are still knowledge gaps. More studies are warranted to further highlight the relationship between excess salt intake, SLE, and RA. Salt intake may affect cell types and pro-inflammatory cytokines and signaling pathways associated with the development and progression of systemic lupus erythematosus and rheumatoid arthritis. Bcl-6 B-cell lymphoma, 6 Erk extracellular signal-regulated kinases, IFN-γ interferon-gamma, JNK c-Jun N-terminal kinase, IL-4 interleukin 4, IL-6 interleukin 6, MAPK mitogen-activated protein kinase, STAT signal transducer and activator of transcription, Tnf-α tumor necrosis factor, Treg T regulatory cell.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
13
|
Ebrahimi Chaharom F, Ebrahimi AA, Feghhi Koochebagh F, Babalou Z, Ghojazadeh M, Aghebati Maleki L, Nader ND. Association of IL-17 serum levels with clinical findings and systemic lupus erythematosus disease activity index. Immunol Med 2023; 46:175-181. [PMID: 37073815 DOI: 10.1080/25785826.2023.2202050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/20/2023] Open
Abstract
The current study aims to investigate the relationship betweSen serum IL-17 (IL-17) levels and systemic lupus erythematosus disease activity index (SLE-DAEI) in systemic lupus erythematosus (SLE) patients. In this case-control study, 36 patients with SLE and 40 healthy individuals matched for age and sex were included as the control group. The study measured serum IL-17 in both groups. The correlation between serum IL-17 with disease activity (as per SLE-DAI) and organ involvement in SLE patients. The case group in this study consisted of 4 males and 32 females with a mean age of 35 (17-54) years old, and the control group included six males and 34 females with a mean age of 37 (25-53) years old (p = .35). Serum IL-17 was higher in the cases than in the controls (536 pg/mL vs. 110 pg/mL; p < .001). There was a positive correlation between the serum levels of IL-17 and disease activity index (p < .001, rho = 0.93) among cases. Additionally, the serum levels of IL-17 were higher in patients with renal (p = .003) or central nervous system involvement (p < .001) than in patients without such involvement. Serum Il-17 is associated with SLE, and its serum levels correlate positively with the disease activity and renal and nervous system involvement.
Collapse
Affiliation(s)
- Faegheh Ebrahimi Chaharom
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Ali Asghar Ebrahimi
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zohreh Babalou
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Development and Coordination Center (RDCC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
14
|
Chen K, Li X, Shang Y, Chen D, Qu S, Shu J, Zhang M, Wang Z, Huang J, Wu M, Ming S, Wu Y. FGL1-LAG3 axis impairs IL-10-Producing regulatory T cells associated with Systemic lupus erythematosus disease activity. Heliyon 2023; 9:e20806. [PMID: 37916085 PMCID: PMC10616153 DOI: 10.1016/j.heliyon.2023.e20806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Background Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disease, which is accompanied by liver damage. However, it remains unknown whether liver damage is associated with SLE progression. Method ology: HepG2 and L-02 cells were stimulated with cytokines, and FGL1 mRNA and protein expression levels were determined using Real-time PCR and ELISA, respectively. Regulatory T cells (Treg) isolated from healthy individuals as well as patients with SLE and SLE and liver damage (SLE-LD) were cultured with autologous effector CD4+T cells in the presence of a functional antibody or isotype control. The expression levels of LAG3, CD25, PD-1, CXCR5, ICOS and OX40 were evaluated by flow cytometry. FGL1, IL-10, IL-17a and IL-21 levels in serum or culture supernatants were quantified by ELISA. Results Patients with SLE-LD exhibits higher disease activity indices and anti-dsDNA antibody levels. Importantly, fibrinogen-like protein 1 (FGL1), a key factor released from the injured liver, is up-regulated in patients with SLE-LD and is associated with disease activity. FGL1 expression is induced by the inflammatory cytokine IL-6 signaling in hepatocytes. Higher expression of the FGL1 receptor lymphocyte activation gene 3 (LAG3) is detected in Treg cells from patients with SLE-LD. The FGL1-LAG3 signaling axis inhibits Treg cell proliferation and impairs the suppressive activity of Treg cells by limiting IL-10 secretion. Furthermore, FGL1-LAG3 signaling promotes the production of pathogenic IL-17a and IL-21 by CD4+T cells by reducing IL-10 level produced by Treg in patients with SLE. Conclusions The FGL1-LAG3 signal axis is a key mechanism that subverts the suppressive function of Treg cells. This may provide a new therapeutic target for SLE and SLE-induced liver damage.
Collapse
Affiliation(s)
- Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, 528403, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province, 519015, China
| | - Yuqi Shang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Daxiang Chen
- Department of Laboratory Medicine, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510091, China
| | - Siying Qu
- Department of Clinical Laboratory, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Zhuhai, Zhuhai, Guangdong, 519020, China
| | - Jinxian Shu
- Department of pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Mei Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| | - Zhiying Wang
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, 528403, China
| | - Jinmei Huang
- Department of Laboratory Medicine, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510091, China
| | - Minhao Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Siqi Ming
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province, 519015, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| |
Collapse
|
15
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
16
|
Richter P, Macovei LA, Mihai IR, Cardoneanu A, Burlui MA, Rezus E. Cytokines in Systemic Lupus Erythematosus-Focus on TNF-α and IL-17. Int J Mol Sci 2023; 24:14413. [PMID: 37833861 PMCID: PMC10572174 DOI: 10.3390/ijms241914413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder known for its complex pathogenesis, in which cytokines play an essential role. It seems that the modulation of these cytokines may impact disease progression, being considered potential biomarkers. Thus, TNF (tumor necrosis factor)-α and IL (interleukin)-17 are molecules of great interest in SLE. TNF-α plays a dual role in SLE, with both immunosuppressive and proinflammatory functions. The role of IL-17 is clearly described in the pathogenesis of SLE, having a close association with IL-23 in stimulating the inflammatory response and consecutive tissue destruction. It appears that patients with elevated levels of these cytokines are associated with high disease activity expressed by the SLE disease activity index (SLEDAI) score, although some studies do not confirm this association. However, TNF-α and IL-17 are found in increased titers in lupus patients compared to the general population. Whether inhibition of these cytokines would lead to effective treatment is under discussion. In the case of anti-TNF-α therapies in SLE, the possibility of ATIL (anti-TNF-induced lupus) is a serious concern that limits their use. The use of anti-IL-17 therapies in SLE is a promising option, but not yet approved. Future studies of these cytokines in large cohorts will provide valuable information for the management of SLE.
Collapse
Affiliation(s)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (I.R.M.); (A.C.); (M.A.B.); (E.R.)
| | | | | | | | | |
Collapse
|
17
|
Nasser M, Wadie M, Farid A, Amir AE. Nailfold capillaroscopy in Egyptian systemic lupus erythematosus (SLE) patients: correlation with demographic features and serum levels of IL 17A and IFNs I. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2023; 50:47. [DOI: 10.1186/s43166-023-00215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2024] Open
Abstract
Abstract
Background
In SLE patients, cytokines are linked to endothelial cell damage. Nailfold capillaroscopy (NFC) is a simple method for evaluating micro-vascular abnormalities in different connective tissue diseases (CTDs). The study aimed to detect the levels of interleukin 17A (IL 17A), type I interferons (IFNs I) in the serum, and NFC changes in Egyptian SLE patients compared to a control group and to correlate NFC findings with patients’ demographic features and serum levels of IL 17A and IFNs I.
Results
Serum levels of IL 17A, IFN α, and IFN β were significantly higher in SLE patients than in control group (P < 0.0001). About thirty nine patients (73.6%) of the 53 SLE patients showed abnormal NFC changes. Egyptian SLE patients had a high prevalence of the NFC non-specific pattern, with 32 (60.4%) patients showing non-specific changes and 7 (13.2%) patients showing scleroderma pattern, including 3 (5.6%) patients with active scleroderma pattern and 4 (7.55%) patients with late scleroderma pattern. Furthermore, Raynaud’s phenomenon (RP) was observed in 8 (15.1%) SLE patients, with 3 (5.6%) having normal NFC pattern and 5 (9.4%) having scleroderma pattern. All controls (n = 20) showed normal hairpin shape capillaries. Except for SLEDAI (P = 0.03) and the presence of RP (P < 0.0001), there were no significant differences in demographic and laboratory parameters between the three NFC patterns (normal, non-specific, and scleroderma); additionally, NFC score correlated significantly with SLEDAI (P = 0.021).
Conclusion
As a result of the high disease activity, Egyptian SLE patients had elevated serum levels of IL 17A and IFNs I. The most common NFC pattern in Egyptian SLE patients was a non-specific pattern. NFC abnormalities in Egyptian SLE patients were correlated with disease activity but not with patients’ ages, disease duration, or serum levels of IL 17A and IFNs I. SLE patients with scleroderma NFC pattern and RP should be closely followed for the possibility of appearance of anti-U1 RNP antibodies and MCTDS.
Collapse
|
18
|
Lyu MA, Tang X, Khoury JD, Raso MG, Huang M, Zeng K, Nishimoto M, Ma H, Sadeghi T, Flowers CR, Parmar S. Allogeneic cord blood regulatory T cells decrease dsDNA antibody and improve albuminuria in systemic lupus erythematosus. Front Immunol 2023; 14:1217121. [PMID: 37736101 PMCID: PMC10509479 DOI: 10.3389/fimmu.2023.1217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023] Open
Abstract
Background Lupus nephritis (LN) constitutes the most severe organ manifestations of systemic lupus erythematosus (SLE), where pathogenic T cells have been identified to play an essential role in 'helping' B cells to make autoantibodies and produce inflammatory cytokines that drive kidney injury in SLE. Regulatory T cells (Tregs), responsible for decreasing inflammation, are defective and decreased in SLE and have been associated with disease progression. We hypothesize that treatment with allogeneic, healthy Tregs derived from umbilical cord blood (UCB) may arrest such an inflammatory process and protect against kidney damage. Methods UCB-Tregs function was examined by their ability to suppress CellTrace Violet-labeled SLE peripheral blood mononuclear cells (PBMCs) or healthy donor (HD) conventional T cells (Tcons); and by inhibiting secretion of inflammatory cytokines by SLE PBMCs. Humanized SLE model was established where female Rag2-/-γc-/- mice were transplanted with 3 × 106 human SLE-PBMCs by intravenous injection on day 0, followed by single or multiple injection of UCB-Tregs to understand their impact on disease development. Mice PB was assessed weekly by flow cytometry. Phenotypic analysis of isolated cells from mouse PB, lung, spleen, liver and kidney was performed by flow cytometry. Kidney damage was assessed by quantifying urinary albumin and creatinine secretion. Systemic disease was evaluated by anti-dsDNA IgG Ab analysis as well as immunohistochemistry analysis of organs. Systemic inflammation was determined by measuring cytokine levels. Results In vitro, UCB-Tregs are able to suppress HD Tcons and pathogenic SLE-PBMCs to a similar extent. UCB-Tregs decrease secretion of several inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, IL-17A, and sCD40L by SLE PBMCs in a time-dependent manner, with a corresponding increase in secretion of suppressor cytokine, IL-10. In vivo, single or multiple doses of UCB-Tregs led to a decrease in CD8+ T effector cells in different organs and a decrease in circulating inflammatory cytokines. Improvement in skin inflammation and loss of hair; and resolution of CD3+, CD8+, CD20+ and Ki67+ SLE-PBMC infiltration was observed in UCB-Treg recipients with a corresponding decrease in plasma anti-double stranded DNA IgG antibody levels and improved albuminuria. Conclusions UCB-Tregs can decrease inflammatory burden in SLE, reduce auto-antibody production and resolve end organ damage especially, improve kidney function. Adoptive therapy with UCB-Tregs should be explored for treatment of lupus nephritis in the clinical setting.
Collapse
Affiliation(s)
- Mi-Ae Lyu
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Meixian Huang
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ke Zeng
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Mitsutaka Nishimoto
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongbing Ma
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | | | - Christopher R. Flowers
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Simrit Parmar
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Mesquita FV, Ferreira V, Mesquita D, Andrade LEC. CD4 T lymphocyte subsets display heterogeneous susceptibility to apoptosis induced by serum from patients with systemic lupus erythematosus. Adv Rheumatol 2023; 63:40. [PMID: 37587510 DOI: 10.1186/s42358-023-00321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Serum from systemic lupus erythematosus (SLE) patients has been shown to induce T-lymphocyte (TL) apoptosis. Given that different cells of the immune system display different sensitivity to apoptosis, we set to evaluate the in vitro effect of SLE serum on regulatory T-cells (Treg), Th17, Th1 and Th2 from SLE patients and healthy controls. METHODS Peripheral blood mononuclear cells from SLE patients or normal controls were exposed to a pool of sera from SLE patients or normal controls. Annexin V was used to label cells in apoptosis or necrosis. Annexin V-labeled Treg, Th17, Th1 and Th2 cells were determined using flow cytometry. RESULTS Total CD3 + and CD4 + cells from SLE patients showed higher frequency of spontaneous apoptosis/necrosis, whereas Th1 cells from SLE patients presented reduced spontaneous apoptosis/necrosis rate as compared with cells from controls. Incubation with SLE serum induced increased frequency of apoptotic/necrotic CD3 + , CD4 + and Th2 cells from normal controls or from SLE patients as compared with cultures incubated with normal human serum (NHS) or without human serum at all. Incubation with SLE serum did not increase the apoptosis/necrosis rate in Th1 or Th17 cells. Treg cells from SLE patients were more prone to apoptosis/necrosis induced by SLE serum than Treg cells from normal individuals. Th1, Th2, and Th17 cells presented increased apoptosis rates in cultures without human serum. CONCLUSION Our findings indicate that the serum of patients with active SLE stimulates apoptosis of CD4 + T cells in general and exhibit differentiated effects on CD4 + T-cell subsets.
Collapse
Affiliation(s)
- Fernanda Vieira Mesquita
- Division of Rheumatology - Escola Paulista de Medicina, UNIFESP, Universidade Federal de São Paulo, Rua Botucatu 740, SP, 04023-062, São Paulo, Brazil
| | - Vanessa Ferreira
- Division of Rheumatology - Escola Paulista de Medicina, UNIFESP, Universidade Federal de São Paulo, Rua Botucatu 740, SP, 04023-062, São Paulo, Brazil
| | - Danilo Mesquita
- Division of Rheumatology - Escola Paulista de Medicina, UNIFESP, Universidade Federal de São Paulo, Rua Botucatu 740, SP, 04023-062, São Paulo, Brazil
| | - Luís Eduardo Coelho Andrade
- Division of Rheumatology - Escola Paulista de Medicina, UNIFESP, Universidade Federal de São Paulo, Rua Botucatu 740, SP, 04023-062, São Paulo, Brazil.
| |
Collapse
|
20
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
21
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
22
|
Cheng J, Wang S, Lv SQ, Song Y, Guo NH. Resveratrol inhibits AhR/Notch axis and reverses Th17/Treg imbalance in purpura by activating Foxp3. Toxicol Res (Camb) 2023; 12:381-391. [PMID: 37397914 PMCID: PMC10311159 DOI: 10.1093/toxres/tfad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background Resveratrol has been reported to reverse the imbalance of T helper 17/regulatory T (Th17/Treg) by inhibiting the aryl hydrocarbon receptor pathway to treat immune thrombocytopenia. However, the regulation mechanism of the Notch signaling pathway by resveratrol has not been reported in purpura. This study is aimed to explore the mechanism of resveratrol ultrafine nanoemulsion (Res-mNE) in immune thrombocytopenia. Methods The immune thrombocytopenia mouse model was constructed to explore the effect of RES-mNE on immune thrombocytopenia. Cluster of differentiation 4 (CD4+) T cells were isolated and treated with different medications. CD4+ T cells were induced to differentiate into Th17 cells and Treg cells. Flow cytometry was used to detect the proportion of Th17 cells and Treg cells. The secretion was measured by the enzyme-linked immunosorbent assay (ELISA). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein levels. Results Th17 cells, IL-17A and IL-22 increased in the immune thrombocytopenia mouse model, and the Treg cells and IL-10 decreased. Res-mNE promoted Treg cell differentiation and IL-10 secretion in CD4+ T cells while inhibiting Th17 cell differentiation and IL-17A and IL-22 levels. The AhR activator 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reversed the effect of Res-mNE. Notch inhibitors reduced the ratio of Th17/Treg differentiation. Res-mNE activated the expression of Foxp3 by mediating AhR/Notch signaling to reverse the imbalance of Th17/Treg differentiation in immune thrombocytopenia. Conclusion Taken together, our findings demonstrated that RES-mNE inhibited the AhR/Notch axis and reversed Th17/Treg imbalance by activating Foxp3.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Sheng Wang
- Department of Psychiatry, Jiangxi Mental Hospital, Shangfang Road, Nanchang 330008, Jiangxi Province, P.R. China
| | - Shi-Qin Lv
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ning-Hong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
23
|
Namazi Bayegi S, Ali Hamidieh A, Behfar M, Saghazadeh A, Bozorgmehr M, Tajik N, Delbandi AA, Delavari S, Shekarabi M, Rezaei N. Unbalanced T-cell subsets in pediatric patients with beta-thalassemia. Hum Immunol 2023; 84:224-234. [PMID: 36604193 DOI: 10.1016/j.humimm.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Beta-thalassemia major is an autosomal recessive disorder in hemoglobin synthesis. Ineffective erythropoiesis is the main characteristic of the disease, which results in anemia following the extensive destruction of red blood cells. Chronic antigenic stimulation following frequent blood transfusions lead to immune abnormalities, especially regarding T cells, which is one of the reasons for the high susceptibility to infection in beta-thalassemia. METHODS Six pediatric patients and six age- and sex-matched healthy children were selected. Immunophenotyping of functional T-cells was performed using flow cytometry with staining for surface and intracellular markers. The proliferative response of T lymphocytes was also investigated after labeling with CFSE and following stimulation with anti-CD3 and anti-CD28. RESULTS Examination of T lymphocyte subpopulations showed a significant increase in regulatory T cells (Tregs) in beta-thalassemia patients. Hence, the Treg:Tcons (conventional T cells) and Treg:CD8 ratios were significantly increased. In addition, a significant increase in CD8 T cell proliferation activity was observed. Multivariate analysis showed a significant association of central memory cells with serum ferritin levels and the duration of transfusion. In particular, patients with cytomegalovirus (CMV) infection exhibited a significant increase in CD4 central memory cells. CONCLUSION Patients with beta-thalassemia have functionally distinct CD4 and CD8 T cell subsets imbalances, and this may contribute to their high susceptibility to infections and immune dysregulation.
Collapse
Affiliation(s)
- Shideh Namazi Bayegi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
24
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
25
|
Lin YF, Lee WI, Ho CH, Chen SH, Hsu MH, Wu RC, Lee WF, Jaing TH, Huang JL, Tsai SF. Lymphocyte disturbance and functional assessment of the [Asp521Asn] ZAP70 mutation. Clin Immunol 2023; 247:109236. [PMID: 36669607 DOI: 10.1016/j.clim.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Activated zeta-chain-associated protein kinase 70 (ZAP70) phosphorylates the TCRαβ:CD3:zeta complex to diversify and amplify TCR signaling. Patients with ZAP70 mutations can present with phenotypes of immune dysregulation as well as infection. We identified the first Taiwanese boy with the [Asp521Asn] ZAP70 mutation who presented with recurrent pneumonia, inflammatory bowel disease-like diarrhea, transient hematuria and autoimmune hepatitis. He had isolated CD8 lymphopenia, eosinophilia, hypogammaglobulinemia, and impaired lymphocyte proliferation. Downstream CD3/CD28 signaling, phosphorylation of AKT, ZAP70 and Ca2+ influx were decreased in [Asp521Asn] ZAP70 lymphocytes. Immunophenotyping analysis revealed expansion of transitional B and CD21-low B cells, Th2-skewing T follicular helper cells, but lower Treg cells. The Asp521Asn-ZAP70 hindered TCR-CD3 downstream phosphorylation and disturbed lymphocyte subgroup "profiles" leading to autoimmunity/autoinflammation. Further large-scale studies are warranted to clarify this lymphocyte disturbance. The prognosis significantly depends on hematopoietic stem cell transplantation, but not the genotype, the presence of opportunistic infections or immune dysregulation.
Collapse
Affiliation(s)
- Yung-Feng Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wen-I Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ching-Huang Ho
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hsiang Chen
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wan-Fang Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
26
|
Yang Y, Yan C, Yu L, Zhang X, Shang J, Fan J, Zhang R, Ren J, Duan X. The star target in SLE: IL-17. Inflamm Res 2023; 72:313-328. [PMID: 36538077 DOI: 10.1007/s00011-022-01674-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of this review is to discuss the significance of IL-17 in SLE and the potential of IL-17-targeted therapy. BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs and tissues throughout the body. It is characterized by overactive B and T cells and loss of immune tolerance to autoantigens. Interleukin-17 (IL-17) is a cytokine that promotes inflammation and has been implicated in the pathogenesis of several autoimmune diseases as well as inflammatory diseases. In in vitro cellular experiments in lupus susceptible mice or SLE patients, there is substantial evidence that IL-17 is a highly promising therapeutic target. METHODS We searched papers from PubMed database using the search terms, such as interleukin-17, systemic lupus erythematosus, treatment targets, T cells, lupus nephritis, and other relevant terms. RESULTS We discuss in this paper the molecular mechanisms of IL-17 expression, Th17 cell proliferation, and the relationship between IL-17 and Th17. The significance of IL-17 in SLE and the potential of IL-17-targeted therapy are further discussed in detail. CONCLUSION IL-17 has a very high potential for the development as a star target in SLE.
Collapse
Affiliation(s)
- Yi Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Yan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
27
|
Hirano A, Fujioka K, Kida T, Omura S, Sofue H, Sakashita A, Sagawa T, Isoda Y, Kasahara A, Sagawa R, Fujii W, Seno T, Wada M, Kohno M, Kawahito Y. Association between early immunophenotypic changes and therapeutic response of belimumab in patients with systemic lupus erythematosus. Lupus 2023; 32:63-73. [PMID: 36317306 DOI: 10.1177/09612033221137249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Belimumab is a therapeutic medication that inhibits the B-cell-activating factor (BAFF) used for systemic lupus erythematosus (SLE); however, the response sometimes varies among individuals, even when patients are stratified based on general clinical characteristics. Therefore, we focused on immunological phenotypic changes with belimumab, investigated their association with subsequent clinical courses, and sought to identify relevant immunological indicators to stratify patients who would benefit from belimumab. We assessed changes in B and T cell phenotypes, as well as BAFF-related factors, such as levels of BAFF and a proliferation-inducing ligand, and expression of three BAFF receptors: BAFF receptor (BAFF-R), B-cell maturation antigen (BCMA), transmembrane activator and cyclophilin ligand interactor (TACI), in 19 patients with SLE who were treated with belimumab before and 3 months after treatment. First, to visualize patterns in complex and diverse data, we summarized B cell changes such as subsets and BAFF receptor expressions into two axes, the first and second principal components (PC1 and PC2), and characterized broad phenotypic changes by cluster analysis. Next, we evaluated whether the B cell changes represented by PC1 and PC2 were associated with other concurrent phenotypic changes, baseline factors, and treatment response at 6 months. We found that lower PC2, indicating increased BAFF-R expression and decreased percentage of naïve B cells, was associated with a subsequent therapeutic response at 6 months (odds ratio 5.3, 95% confidence interval 1.2-24, p = .031). Furthermore, higher percentages of effector memory CD3+CD4+ T cells at baseline were associated with lower PC2 and therapeutic response. Further analysis revealed that increased PC1, as reflected by increased BCMA and TACI expression and an increase in the percentage of class-switched memory B cells, was associated with both T and B cell activation. Although belimumab is a B-cell targeted therapy, it can also influence T-cell phenotypes. Thus, early B cell changes could be used to predict treatment response, and their changes could be predicted from baseline T cell phenotypes, indicating the importance of B and T cell interactions.
Collapse
Affiliation(s)
- Aiko Hirano
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Fujioka
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kida
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Omura
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideaki Sofue
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aki Sakashita
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Sagawa
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Isoda
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Kasahara
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Sagawa
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fujii
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Seno
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Wada
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, 12898Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
A functional microRNA binding site variant in IL-23R gene in systemic lupus erythematosus and rheumatoid arthritis: is there any correlation? Mol Biol Rep 2022; 49:11821-11828. [DOI: 10.1007/s11033-022-07922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
29
|
Robinson GA, Peng J, Peckham H, Butler G, Pineda-Torra I, Ciurtin C, Jury EC. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. THE LANCET. RHEUMATOLOGY 2022; 4:e710-e724. [PMID: 36353692 PMCID: PMC9633330 DOI: 10.1016/s2665-9913(22)00198-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Sexual dimorphisms, which vary depending on age group and pubertal status, have been described across both the innate and adaptive immune system. We explored the influence of sex hormones on immune phenotype in the context of adolescent health and autoimmunity. Methods In this cross-sectional study, healthy, post-pubertal cisgender individuals (aged 16-25 years); healthy, pre-pubertal cisgender individuals (aged 6-11 years); transgender individuals (aged 18-19 years) undergoing gender-affirming treatment (testosterone in individuals assigned female sex at birth and oestradiol in individuals assigned male sex at birth); and post-pubertal cisgender individuals (aged 14-25 years) with juvenile-onset systemic lupus erythematosus (SLE) age-matched to cisgender individuals without juvenile-onset SLE were eligible for inclusion. Frequencies of 28 immune-cell subsets (including different T cell, B cell, and monocyte subsets) from each participant were measured in peripheral blood mononuclear cells by flow cytometry and analysed by balanced random forest machine learning. RNA-sequencing was used to compare sex and gender differences in regulatory T (Treg) cell phenotype between participants with juvenile-onset SLE, age-matched cis-gender participants without the disease, and age matched transgender individuals on gender-affirming sex hormone treatment. Differentially expressed genes were analysed by cluster and pathway analysis. Suppression assays assessed the anti-inflammatory function of Treg cells in vitro. Findings Between Sept 5, 2012, and Nov 6, 2019, peripheral blood was collected from 39 individuals in the post-pubertal group (17 [44%] cisgender men, mean age 18·76 years [SD 2·66]; 22 [56%] cisgender women, mean age 18·59 years [2·81]), 14 children in the cisgender pre-pubertal group (seven [50%] cisgender boys, mean age 8·90 [1·66]; seven [50%] cisgender girls, mean age 8·40 [1·58]), ten people in the transgender group (five [50%] transgender men, mean age 18·20 years [0·47]; five [50%] transgender women, mean age 18·70 years [0·55]), and 35 people in the juvenile-onset SLE group (12 [34%] cisgender men, mean age 18·58 years [2·35]; 23 [66%] cisgender women, mean age 19·48 [3·08]). Statistically significantly elevated frequencies of Treg cells were one of the top immune-cell features differentiating young post-pubertal cisgender men from similarly aged cisgender women (p=0·0097). Treg cells from young cisgender men had a statistically significantly increased suppressive capacity in vitro compared with those from cisgender women and a distinct transcriptomic signature significantly enriched for genes in the PI3K-AKT signalling pathway. Gender-affirming sex hormones in transgender men and transgender women induced multiple statistically significant changes in the Treg-cell transcriptome, many of which enriched functional pathways that overlapped with those altered between cisgender men and cisgender women, highlighting a hormonal influence on Treg-cell function by gender. Finally, sex differences in Treg-cell frequency were absent and suppressive capacity was reversed in patients with juvenile-onset SLE, but sex differences in Treg-cell transcriptional signatures were significantly more pronounced in patients with juvenile-onset SLE compared with individuals without juvenile-onset SLE, suggesting that sex hormone signalling could be dysregulated in autoimmunity. Interpretation Sex-chromosomes and hormones might drive changes in Treg-cell frequency and function. Young post-pubertal men have a more anti-inflammatory Treg-cell profile, which could explain inflammatory disease susceptibilities, and inform sex-tailored therapeutic strategies. Funding Versus Arthritis, UK National Institute for Health Research University College London Hospital Biomedical Research Centre, Lupus UK, and The Rosetrees Trust.
Collapse
Affiliation(s)
- George A Robinson
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Junjie Peng
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, University College London Hospital and Great Ormond Street Institute of Child Health, University College London, London, UK
- Gender Identity Development Service, Tavistock and Portman NHS Foundation Trust, London, UK
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| |
Collapse
|
30
|
Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022; 30:1517-1531. [PMID: 36028612 PMCID: PMC9417079 DOI: 10.1007/s10787-022-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
The immune response plays a crucial role in preventing diseases, such as infections. There are two types of immune responses, specific and innate immunity, each of which consists of two components: cellular immunity and humoral immunity. Dysfunction in any immune system component increases the risk of developing certain diseases. Systemic lupus erythematosus (SLE), an autoimmune disease in the human body, develops an immune response against its own components. In these patients, due to underlying immune system disorders and receipt of immunosuppressive drugs, the susceptibility to infections is higher than in the general population and is the single largest cause of mortality in this group. COVID-19 infection, which first appeared in late 2019, has caused several concerns in patients with SLE. However, there is no strong proof of additional risk of developing COVID-19 in patients with SLE, and in some cases, studies have shown less severity of the disease in these individuals. This review paper discusses the immune disorders in SLE and COVID-19.
Collapse
Affiliation(s)
- Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Mehana NA, Ghaiad HR, Hassan M, Elsabagh YA, Labib S, Abd-Elmawla MA. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behçet's disease and systemic lupus erythematosus. Life Sci 2022; 309:120965. [PMID: 36155183 DOI: 10.1016/j.lfs.2022.120965] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Behçet's disease (BD) and systemic lupus erythematosus (SLE) are two autoimmune inflammatory diseases of indefinite etiology. However, up till now, no study has explored the exact regulatory mechanisms of lncRNA maternally expressed gene-3 (MEG3) over the balance between regulatory T-cells (Treg) and T helper-17 (Th17) cells in BD and SLE. AIM The current study aimed to investigate the role of lncRNA MEG3 in the interplay between the anti-inflammatory Treg/transcription factor forkhead box P3 (FOXP3) axis versus the pro-inflammatory Th17/retinoic acid orphan receptor-γt (RORγt) axis. MAIN METHODS 100 subjects, 35 with BD and 35 with SLE in addition to 30 healthy participants were included in the study. Gene expression analysis was performed and ShinyGO database was utilized for in-depth analysis and graphical visualization of the gene ontology (GO) and pathway enrichment analysis for lncRNA and the other target genes. KEY FINDINGS The current results demonstrate the upregulation of lncRNA MEG3 in BD but not SLE patients. Moreover, significant differences in RORγt and FOXP3 were found between BD and SLE patients. The present findings linked lncRNA MEG3 to BD activity scores as well as CRP levels. Finally, lncRNA MEG3 showed excellent diagnostic power for BD, in addition to adequate discriminative power that can be used to differentiate between BD and SLE. SIGNIFICANCE The current study objectively elucidated a framework for the involvement of Treg/Th17 through transcription factors RORγt and FOXP3, in addition to their links to the downstream cytokines network including TGF-ꞵ, IL-10, IL-17 and IL-23 in BD and SLE pathogenesis and activity.
Collapse
Affiliation(s)
- Noha A Mehana
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Labib
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Rezayat AA, Niloufar Jafari, Mir Nourbakhsh SH, Hasheminezhad Hoseini FS, Hooshmand N, Ghasemi Nour M, Handjani F, Tabrizi R. The effect of air pollution on systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2022; 31:1606-1618. [PMID: 36134726 DOI: 10.1177/09612033221127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from impaired inflammatory responses. Given the role of air pollution on increasing inflammatory mediators, thus, we aimed to systematically review and meta-analyze evidence regarding an association between short-term exposure to air pollution and SLE onset, activity, and hospitalization. METHODS Electronic databases including Web of Science, PubMed, Scopus, and Embase were searched for all published articles until July 5, 2021. Newcastle Ottawa Scale (NOS) checklist was used to assess the quality of individual studies. Relevant demographic data and the intended results of the selected studies were extracted, and their adjusted risk ratios (RRs) were pooled using random and fixed effect analysis based on the heterogeneity index. FINDINGS Twelve studies were entered in our systematic review, and finally, six publications were enrolled in meta-analysis. Overall, Meta-analysis showed no significant association between an increase of PM2.5 on the third day and SLEDAI score with pooled adjusted RR of 1.212 (95% CI, 0,853-1.721), p-value = 0.284. However, there was a positive relationship between 6 days increase of Particulate matter (PM) 2.5 and the systemic lupus erythematosus disease activity Index (SLEDAI) score (pooled adjusted RR 1.112; 95% CI, 1.005-1.231), p-value = 0.040. There was no significant association between carbon monoxide (CO), nitrogen dioxide (NO2), PM2.5, and PM10 increase in the air and hospitalization of SLE patients with pooled RR of 1.021 (95% CI, 0,986-1.1.057), p-value = 0.249, 1.034 (95% CI, 0.996-1.068); p-value = 0.079, 1.042 (95% CI, 0.994-1.092); p-value = 0.084 and 1.004 (95% CI, 0.996-1.013); p-value = 0.323, respectively. Also, analysis showed a significant relation between ozone (O3) increase and hospitalization with a pooled RR of 1.076 (95% CI, 1.009-1.147); p-value = 0.025. Finally, analysis of SO2 increase and risk of hospitalization demonstrated no significant relationship with the pooled RR of 1.011; (95% CI, 0.962-1.062), p-value = 0.0.671. CONCLUSION Our findings prove that PM2.5 was associated with increased SLE risk. We also showed that only O3 was associated with increased hospital admissions of SLE patients.
Collapse
Affiliation(s)
- Arash Akhavan Rezayat
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Niloofar Hooshmand
- Student research committee, 68106Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Mohammad Ghasemi Nour
- Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Handjani
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Dermatology, University Hospitals Coventry & Warwickshire NHS Trust, 2708Coventry, UK
| | - Reza Tabrizi
- Non-communicable Diseases Research Center, 158767Fasa University of Medical Science, Fasa, Iran.,Clinical Research Development Unit, 158767Fasa University of Medical Science, Fasa, Iran.,USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
33
|
Li M, Luo L, Wu Y, Song Z, Ni B, Hao F, Luo N. Elevated apoptosis and abnormal apoptosis signaling of regulatory T cells in patients with systemic lupus erythematosus. Lupus 2022; 31:1441-1455. [PMID: 35950636 DOI: 10.1177/09612033221119455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In systemic lupus erythematosus (SLE), immune tolerance is influenced by defects in naturally occurring T cells (Tregs). To investigate the apoptosis rate of Tregs and their suppressive activity in patients with SLE and then to recognize the genes and signaling pathways that cause Treg apoptosis. FACS was used to assess the frequency and apoptosis rates of Tregs in 48 SLE patients and 28 normal controls (NCs). Coculture of Tregs with CD4+CD25-CD127dim/- T cells was used to assess the suppressive activity of Tregs. Microarray analysis was used to generate unstimulated Tregs gene expression profiles from very high activity patients with SLE and NCs. Real-time PCR was used to confirm differential gene expression. In patients with SLE, the frequency of Tregs was substantially reduced compared to Tregs from NCs. Furthermore, Tregs from SLE patients had an elevated rate of apoptosis and a lower suppressing ability than Tregs from NCs. Tregs apoptosis was negatively associated with the total count of Tregs and positively related to disease activity. Unstimulated Tregs gene expression profiles from patients with recent-onset SLE revealed a biological response that can cause apoptosis, partially triggered by stress, DNA damage, and cytokine stimulation. The discovery of pathway-specific expression signatures is a significant step forward in understanding how Tregs defects contribute to the pathogenesis of SLE. Our findings may contribute to the development of new strategies for treating SLE based on abnormal Tregs apoptosis and restoring immune homeostasis in patients with SLE.
Collapse
Affiliation(s)
- Mingfang Li
- Department of Dermatology, 117980The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Li Luo
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Yi Wu
- Digital Medicine Institute, Biomedical Engineering College, PLA, 12525Third Military Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude MilitaryMedicine, PLA, 12525Third Military Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Na Luo
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| |
Collapse
|
34
|
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease with a complex pathogenesis and genetic predisposition. With continued understanding of this disease, it was found that SLE is related to the interferon gene signature. Most studies have emphasized the important role of IFN-α in SLE, but our previous study suggested a nonnegligible role of IFN-γ in SLE. Some scholars previously found that IFN-γ is abnormally elevated as early as before the classification of SLE and before the emergence of autoantibodies and IFN-α. Due to the large overlap between IFN-α and IFN-γ, SLE is mostly characterized by expression of the IFN-α gene after onset. Therefore, the role of IFN-γ in SLE may be underestimated. This article mainly reviews the role of IFN-γ in SLE and focuses on the nonnegligible role of IFN-γ in SLE to gain a more comprehensive understanding of the disease.
Collapse
|
35
|
Chen H, Zhang N, Li C, Zhang H. Effects of Astragalus membranaceus on systemic lupus erythematosus in a mouse model of pregnancy. Immun Inflamm Dis 2022; 10:e624. [PMID: 35634952 PMCID: PMC9092001 DOI: 10.1002/iid3.624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study used astragalus membranaceus (AM) to treat systemic lupus erythematosus (SLE) model mice during pregnancy, aiming to explore the role of AM in Helper T cell 17 (Th17) differentiation and SLE during pregnancy. METHODS We used lipopolysaccharide to constructed the SLE mouse model. AM decoction given by intragastric administration lasted from the eighth week of the mouse age until the mouse was killed. We estimated the messenger RNA levels of IL-17a and Rorc, counted the Th17 cell number and examined the levels of cytokines including interleukin (IL)-12, tumor necrosis factor α, interferon gamma, IL-17A in mouse serum. Periodic acid-Schiff staining and renal glomerular/tubulointerstitial (TI) score were used to evaluate the progression of lupus nephritis (LN). RESULTS AM treatment improved the conception rate and increased the number and average weight of fetuses in SLE mice. It significantly decreased the urinary albumin/creatinine ratios and reduced the glomerular scores and TI scores in the pregnant SLE mice. AM gavage significantly decreased the weight of spleen, mesenteric lymph node, total splenocytes and T cells, and the expression of proinflammatory factors. Furthermore, AM treatment reduced the ratio of Th17 cells and the expression levels of RORγt and IL-17A. CONCLUSION AM significantly improved pregnancy outcomes and inhibited lupus nephritis during pregnancy in SLE mice.
Collapse
Affiliation(s)
- Hong‐Qing Chen
- Department of ObstetricsHengshui Fourth People's HospitalHengshuiHebeiChina
| | - Na Zhang
- Department of Clinical PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Cai‐Xia Li
- The Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Hong‐Xia Zhang
- Department of PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| |
Collapse
|
36
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
37
|
Fujiwara M, Raheja R, Garo LP, Ajay AK, Kadowaki-Saga R, Karandikar SH, Gabriely G, Krishnan R, Beynon V, Paul A, Patel A, Saxena S, Hu D, Healy BC, Chitnis T, Gandhi R, Weiner HL, Murugaiyan G. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest 2022; 132:e155693. [PMID: 35298438 PMCID: PMC9106347 DOI: 10.1172/jci155693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
A disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. miR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg responses and dampening inflammatory T cell responses. Analogous to our findings in mice, miR-92a was elevated in CD4+ T cells from patients with MS, and miR-92a silencing in patients' T cells promoted Treg development but limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lucien P. Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryoko Kadowaki-Saga
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sukrut H. Karandikar
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amee Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian C. Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022; 44:309-324. [PMID: 35355124 PMCID: PMC9064999 DOI: 10.1007/s00281-022-00922-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022. [PMID: 35355124 DOI: 10.1007/s00281-02200922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022; 19:98. [PMID: 35459141 PMCID: PMC9034482 DOI: 10.1186/s12974-022-02446-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
42
|
Xie Y, Zhang H, Huang J, Zhang Q. Interleukin-35 in autoimmune dermatoses: Current concepts. Open Med (Wars) 2022; 17:589-600. [PMID: 35434379 PMCID: PMC8941186 DOI: 10.1515/med-2022-0455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Interleukin-35 (IL-35) is a lately observed cytokine and is part of the IL-12 cytokine family. IL-35 includes two subunits, p35 and Epstein-Barr virus-induced gene 3, and activates subsequent signaling pathways by binding to receptors to mediate signal transduction, thereby modulating the immunoregulatory functions of T cells, B cells, macrophages, and other immune cell types. Although there is currently limited research on the roles of IL-35 in human autoimmunity, many studies have demonstrated that IL-35 may mediate immunosuppression. Therefore, it plays an essential role in some autoimmune dermatoses, including systemic lupus erythematosus, psoriasis, systemic sclerosis, and dermatomyositis. We will introduce the structure and biological characteristics of IL-35 and summarize its effects on the occurrence and development of autoimmune dermatoses in this article. It is suggested that IL-35 is a possible target for therapy in the aforementioned diseases.
Collapse
Affiliation(s)
- Yuming Xie
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , Changsha , Hunan 410011 , China
| | - Huilin Zhang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University , Changsha , Hunan 410011 , China
| | - Junke Huang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , Changsha , Hunan 410011 , China
| | - Qing Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , #139 Renmin Middle Rd , Changsha , Hunan 410011 , China
| |
Collapse
|
43
|
Maeno M, Tamagawa-Mineoka R, Arakawa Y, Masuda K, Katoh N. Facial discoid lupus erythematosus during dupilumab treatment for atopic dermatitis. J Dermatol 2022; 49:e234-e235. [PMID: 35302254 DOI: 10.1111/1346-8138.16356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Misato Maeno
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Masuda
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
44
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
45
|
Huang S, Tian F, Yang X, Fang S, Fan Y, Bao J. Physical Activity and Systemic Lupus Erythematosus Among European Populations: A Two-Sample Mendelian Randomization Study. Front Genet 2022; 12:784922. [PMID: 35211151 PMCID: PMC8861300 DOI: 10.3389/fgene.2021.784922] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The causal relationship between physical activity (PA) and systemic lupus erythematosus (SLE) remains uncertain. We aimed to assess the causal effect of PA on SLE by two-sample Mendelian randomization (MR) study. Methods: Summary statistics of SLE were obtained from a genome-wide association study (GWAS) meta-analysis of European descent, including 4,036 cases and 6,959 controls. Genetic instruments for PA, including MVPA, VPA, SSOE, and average acceleration, were identified from a large-scale GWAS meta-analysis among 377,234 individuals of European ancestry from United Kingdom biobank and Atherosclerosis Risk in Communities (ARIC) study, and another GWAS with 91,105 European participants was employed for sedentary behavior. The two-sample MR study was conducted to estimate causal relationship between PA and SLE, with the inverse-variance weighted (IVW) method, simple- and weighted-median method. Moreover, MR-Egger regression, MR-PRESSO and leave-one-out analysis were performed to evaluate the potential pleiotropy effect. Results: In the end, we totally selected 37 SNPs (15 SNPs for MVPA, 5 SNPs for VPA, 9 SNPs for SSOE, 5 SNPs for average acceleration and 3 SNPs for sedentary behavior). According to the IVW results, as the primary method, we found that genetically predicted PA was not causally associated with risk of SLE (MVPA: OR 0.44, 95% CI 0.09–2.10, p = 0.305; VPA: OR 0.20, 95% CI 0.00–18.97, p = 0.490; SSOE: OR 0.96, 95% CI 0.03–29.24, p = 0.983; average acceleration: OR 0.91, 95% CI 0.79–1.05, p = 0.190; sedentary behavior: OR 1.54, 95% CI 0.35–6.81, p = 0.572). MR-Egger, MR-PRESSO, and leave-one-out analysis did not indicate horizontal pleiotropy. Conclusions: Our MR study suggested that genetically predicted PA was not causally associated with SLE among the European populations.
Collapse
Affiliation(s)
- Shuo Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengyuan Tian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxuan Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sijia Fang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Salehi A, Nasrollahzadeh Sabet M, Esmaeilzadeh E, Mousavi M, Karimi J, Pakzad B. Impact of miRNA-binding site polymorphisms in STAT3 gene on occurrence and clinical characteristics of systemic lupus erythematosus. Lupus 2022; 31:338-346. [PMID: 35073195 DOI: 10.1177/09612033221076739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a major regulator of immune response and chronic inflammatory conditions acting through regulation of B cells, T-helper 17 (Th17) cells, and IL-17 production. Previous studies have demonstrated that dysregulation of STAT3 is crucial for SLE pathogenesis and disease severity. It is believed that single nucleotide polymorphisms (SNPs) located at the 3'-UTR sequence of the target genes could dysregulate their expression by disrupting the binding site of miRNAs. In the present study, we assessed the possible association between rs1053005 and rs1053023 SNPs at miRNA binding sites in the STAT3 gene and the risk of SLE in the Iranian population for the first time. METHODS 112 SLE cases and 120 healthy controls were genotyped for rs1053005 (A>G) and rs1053023 (A>G) polymorphisms in STAT3 using real-time PCR high resolution melting method (HRM). RESULTS Our results revealed substantial associations between GG genotype and G allele of rs1053023 with enhanced risk of SLE (OR for GG genotype= 3.13; 95%CI [1.61-6.1], OR for G allele = 2.22; 95%CI [1.51-3.25]). However, no important correlations have been found between rs1053005 polymorphism and SLE susceptibility in this population (p>0.05). Moreover, stratification analysis showed that these polymorphisms are correlated with parameters indicating disease activity and more severe course of the disease. These factors include some laboratory test results and clinical manifestations such as renal involvements. CONCLUSION The current study suggests a significant association between STAT3 polymorphisms and augmented risk of SLE, clinical symptoms, disease activity, and severity.
Collapse
Affiliation(s)
- Amirhossein Salehi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, 48455Isfahan University of Medical Science, Isfahan, Iran
| | | | | | - Maryam Mousavi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, 48455Isfahan University of Medical Science, Isfahan, Iran
| | - Jalal Karimi
- Department of Social Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Pakzad
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, 48455Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
47
|
Th17 cell-mediated immune response in a subpopulation of dogs with idiopathic epilepsy. PLoS One 2022; 17:e0262285. [PMID: 35025939 PMCID: PMC8757915 DOI: 10.1371/journal.pone.0262285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Canine idiopathic epilepsy (IE) is a common neurological disease with severe impact on the owner´s and the dog's quality of life. A subpopulation of dogs with IE does not respond to antiseizure drugs (non-responder). Th17 cells (T helper cells) and their proinflammatory Interleukin-17 (IL-17) are part of the immune system and previous studies showed their involvement in the pathogenesis of several autoimmune diseases. Non-responder might have an abnormal immune response against structures of the central nervous system. To discover a new aetiology of canine IE and thereby optimising the therapy of intractable IE, this prospective study aimed to investigate Th17 cells and IL-17 in dogs with IE. The underlying hypothesis was that in some dogs with IE a Th17 cell-mediated immune response could be detectable. METHODS 57 dogs with IE and 10 healthy dogs (control group, C) were enrolled in the study. EDTA blood was taken to measure Th17 cells by flow cytometry. IL-17 was measured in 35 cerebrospinal fluid (CSF) and 33 serum samples using an enzyme-linked immunosorbent assay (ELISA). It was investigated whether there was a significant increase of stimulated Th17 cells in blood samples or of IL-17 in serum and CSF samples of dogs with IE in comparison to C. Correlations between the amount of Th17 cells/μL or IL-17 and different clinical parameters e.g. seizure frequency, seizure type, seizure severity or treatment response were evaluated. Additionally, Th17 cells/μL were randomly controlled of 17 dogs with IE and were examined for changes over time and in relation to treatment response. RESULTS Ten dogs with IE had strongly elevated stimulated Th17 cells/μL within the blood (>100 Th17 cells/μL). A slight positive correlation between stimulated Th17 cells/μL and seizure severity (p = 0.046; rSpear = 0.27) was proven in these dogs. In addition, 4/10 dogs with elevated Th17 levels experienced cluster seizures and status epilepticus in comparison to 9% of the dogs with non-elevated Th17 levels (<100 Th17 cells/μL). Dogs with IE had significantly higher IL-17 values in CSF and serum samples compared to C (p<0.001; p<0.002; respectively). CONCLUSION In single dogs with IE, strongly increased amounts of Th17 cells were detectable and dogs with elevated Th17 cells seemed to have a greater risk for experiencing a combination of cluster seizures and status epilepticus. Therefore, an underlying Th17-cell mediated immune response was suspected and hence anti-inflammatory drugs could be indicated in these single cases with intractable epilepsy.
Collapse
|
48
|
Kaur H, Ghorai SM. Role of Cytokines as Immunomodulators. IMMUNOMODULATORS AND HUMAN HEALTH 2022:371-414. [DOI: 10.1007/978-981-16-6379-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
He S, Xue M, Cai G. IL-6 alters migration capacity of CD4 +Foxp3 + regulatory T cells in systemic lupus erythematosus. Scand J Immunol 2021; 94:e13099. [PMID: 34940981 DOI: 10.1111/sji.13099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023]
Abstract
Regulatory T cells (Tregs) are impaired in human systemic lupus erythematosus (SLE) and involved in disease pathogenesis. However, the mechanisms responsible for the Treg dysfunction in SLE remain unclear. In this study, we aimed to investigate the chemotaxis of Treg response to inflammatory stimulation. Sixty two patients were enrolled, and chemokine receptors, including CCR4, CCR5, CCR6, CCR8 and CXCR3 on CD4+Foxp3+Tregs and non-Treg CD4 T cells, were analysed using FACS. The expression of CCR4 and CCR6 on Tregs of SLE patients decreased, while the expression of CCR4 on non-Treg CD4 T cells increased, as compared with those of age- and sex-matched healthy donors. In parallel, in SLE, the chemotactic capacity of non-Treg CD4 T cells response to CCR4 and CCR6 ligands dramatically increased, while that of Tregs significantly decreased. Moreover, we found that cytokines IL-6 and IL-10 positively and negatively modulate the expression of those receptors respectively. IL-6, the significantly increased cytokine in active SLE, dramatically elevated CCR4 and CCR6 expression on non-Treg CD4 T cells. However, as for Tregs, these cells produced more IL-10 than non-Treg CD4 T cells upon IL-6 stimulation, and these IL-10 led to the inhibition of CCR4 and CCR6. In sum, our data provided new evidence suggesting a functional deficiency of Tregs in SLE. It may suggest that those dysfunctional Tregs have less access to the inflammation locus to exert inhibitory capacity.
Collapse
Affiliation(s)
- SiWei He
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - MingHui Xue
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Kim DS, Park Y, Choi JW, Park SH, Cho ML, Kwok SK. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway. Front Immunol 2021; 12:696074. [PMID: 34956169 PMCID: PMC8704231 DOI: 10.3389/fimmu.2021.696074] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. Lactobacillus acidophilus (LA) is reported to have therapeutic efficacy in immune-mediated diseases via T cell regulation.MethodsThis study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE. Eight-week-old MRL/lpr mice were orally administered with 5 mg/kg of Tac and/or 50 mg/kg of LA daily for 8 weeks. Cecal microbiota compositions, serum autoantibodies levels, the degree of proteinuria, histological changes in the kidney, and populations of various T cell subsets in the spleen were analyzed.ResultsMice presented with significant gut dysbiosis, which were subsequently recovered by the combination treatment of Tac and LA. Double negative T cells in the peripheral blood and spleens of MRL/lpr mice were significantly decreased by the combination therapy. The combination treatment reduced serum levels of anti-dsDNA antibodies and Immunoglobulin G2a, and renal pathology scores were also markedly alleviated. The combination therapy induced Treg cells and decreased T helper 17 (Th17) cells both in vitro and in vivo. In vitro treatment with LA induced the production of indoleamine-2,3-dioxygenase, programmed death-ligand 1, and interleukin-10 via the specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 receptor signals.ConclusionThe present findings indicate that LA augments the therapeutic effect of Tac and modulates Th17/Treg balance in a murine model of SLE.
Collapse
Affiliation(s)
- Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| |
Collapse
|