1
|
Shen DM, Byth KF, Bertheloot D, Braams S, Bradley S, Dean D, Dekker C, El-Kattan AF, Franchi L, Glick GD, Ghosh S, Hinniger A, Katz JD, Kitanovic A, Lu X, Olhava EJ, Opipari AW, Sanchez B, Seidel HM, Stunden J, Stutz A, Telling A, Venkatraman S, Winkler DG, Roush WR. Discovery of DFV890, a Potent Sulfonimidamide-Containing NLRP3 Inflammasome Inhibitor. J Med Chem 2025; 68:5529-5550. [PMID: 40036600 DOI: 10.1021/acs.jmedchem.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The discovery of DFV890 ((R)-1), a potent and selective NLRP3 antagonist, is described. Replacement of the sulfonyl urea core from the first-generation NLRP3 antagonist CRID3 with a sulfonimidamide core afforded a novel and potent series of NLRP3 antagonists. The (R)-enantiomers of the sulfonimidamide series were found to be consistently more potent than structurally related sulfonyl ureas. Replacement of the furan unit of CRID3 with a 5-substituted thiazole unit led to DFV890 ((R)-1), which potently inhibited IL-1β production in THP-1 cells and in primary human cells, blocked multiple downstream effectors of NLRP3 activation, and substantially improved PK properties and significantly lowered the predicted human dose compared to that for CRID3. DFV890 ((R)-1) was also effective in an air pouch model of gout.
Collapse
Affiliation(s)
- Dong-Ming Shen
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - Kate F Byth
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | | | | | - Sarah Bradley
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - Dennis Dean
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - Carien Dekker
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | - Luigi Franchi
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - Gary D Glick
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - Shomir Ghosh
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | | | - Jason D Katz
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | | | - Xiaokang Lu
- IFM Therapeutics, Ann Arbor, Michigan 48108, United States
| | - Edward J Olhava
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | | | - Brian Sanchez
- IFM Therapeutics, Ann Arbor, Michigan 48108, United States
| | - H Martin Seidel
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | | | | | - Alissa Telling
- IFM Therapeutics, Ann Arbor, Michigan 48108, United States
| | | | - David G Winkler
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| | - William R Roush
- IFM Therapeutics, Boston, Massachusetts 02116, United States
| |
Collapse
|
2
|
Yin C, Lyu Q, Dong Z, Liu B, Zhang K, Liu Z, Yu Q, Li P, Wei Z, Tai Y, Wang C, Fang J, Liu W, Liu B. Well-defined alginate oligosaccharides ameliorate joint pain and inflammation in a mouse model of gouty arthritis. Theranostics 2024; 14:3082-3103. [PMID: 38855180 PMCID: PMC11155397 DOI: 10.7150/thno.95611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background: Gouty arthritis causes severe pain and inflammation. Alginate oligosaccharides (AOSs) are natural products derived from alginate and have anti-inflammatory properties. We explored the potential effects of AOSs with different degrees of polymerization (Dp) on gouty arthritis and associated mechanisms. Methods: We established a mouse model of gouty arthritis by injecting monosodium urate (MSU) into ankle joint. Nocifensive behavior, gait and ankle swelling were used to study AOS's effects. Biochemical assays, in vivo imaging, live cell Ca2+ imaging, electrophysiology, RNA-sequencing, etc. were used for mechanism exploration. Results: AOS2 (Dp=2), AOS3 (Dp=3) and AOS4 (Dp=4) all inhibited ankle swelling, whereas AOS2&3 produced the most obvious analgesia on model mice. AOS3, which was picked for further evaluation, produced dose-dependent ameliorative effects on model mice. AOS3 reversed gait impairments but did not alter locomotor activity. AOS3 inhibited NLRP3 inflammasome activation and inflammatory cytokine up-regulation in ankle joint. AOS3 ameliorated MSU-induced oxidative stress and reactive oxygen species (ROS) production both in vivo and in vitro and reversed the impaired mitochondrial bioenergetics. AOS3 activated the Nrf2 pathway and promoted Nrf2 disassociation from Keap1-bound complex and Nrf2 nuclear translocation, thus facilitating antioxidant gene expression via Nrf2-dependent mechanism. Nrf2 gene deficiency abolished AOS3's ameliorative effects on pain, inflammation and oxidative stress in ankle joints of model mice. AOS3 reduced TRPV1 functional enhancement in DRG neurons and constrained neuroactive peptide release. Conclusions: AOS3 ameliorates gouty arthritis via activating Nrf2-dependent antioxidant signaling, resulting in suppression of ROS-mediated NLRP3 inflammasome activation and TRPV1 enhancement. AOS3 may be novel therapeutics for gouty arthritis.
Collapse
Affiliation(s)
- Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianqian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zishan Dong
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keke Zhang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhende Liu
- Haitang (Jiangsu) Biotechnology Co, Ltd., Nantong, Jiangsu, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoqun Wei
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Putnam CD, Broderick L, Hoffman HM. The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity. Immunol Rev 2024; 322:259-282. [PMID: 38146057 PMCID: PMC10950545 DOI: 10.1111/imr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lori Broderick
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hal M. Hoffman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
4
|
Balci CN, Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: A comprehensive review. J Reprod Immunol 2024; 161:104173. [PMID: 38043434 DOI: 10.1016/j.jri.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The balance of the inflammatory response is indispensable during pregnancy. Inflammasomes are the cytosolic supramolecular protein complexes activated by pattern recognition receptors. These receptors recognize the pathogen and damage/danger-associated molecular patterns. NLRP3 inflammasome complex consists mainly of NLRP3 (leucine-rich repeat-containing and pyrin domain-containing protein 3), a cytosolic sensor molecule, ASC (apoptosis-associated speck-like protein containing a CARD) protein and a cysteine protease pro-caspase-1 as an effector molecule. This complex has a role in producing inflammatory cytokines, interleukin 1 beta and interleukin 18, and inflammasome-dependent programmed cell death pathway pyroptosis. In this review, we focused on and summarised the NLRP3 inflammasome and its roles in normal and pathological pregnancies. The NLRP3 inflammasome pathway influences endometrial receptivity and embryo invasion by inducing epithelial-mesenchymal transition. Abnormal inflammasome activation in the endometrium may adversely affect endometrial receptivity. In addition, NLRP3 inflammasome pathway overactivation may mediate the abnormal inflammatory response at the maternal-fetal interface and be associated with pregnancy complications, such as recurrent implantation failure, pregnancy loss, pre-term birth and pre-eclampsia. Therefore, targeting the NLRP3 inflammasome pathway could develop a new therapeutic approach to prevent the aforementioned pregnancy pathologies.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
5
|
Ma ZY, Jiang C, Xu LL. Protein-protein interactions and related inhibitors involved in the NLRP3 inflammasome pathway. Cytokine Growth Factor Rev 2023; 74:14-28. [PMID: 37758629 DOI: 10.1016/j.cytogfr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) receptor serves as the central node of immune sensing in the innate immune system, and plays an important role in the initiation and progression of chronic diseases. Cryo-electron microscopy (cryo-EM) has provided insights into the conformation of various oligomers within the NLRP3 activation pathway, significantly advancing our understanding of the mechanisms underlying NLRP3 inflammasome activation. Despite the extensive network of protein-protein interactions (PPIs) involved in the assembly and activation of NLRP3 inflammasome, the utilization of protein-protein interactions has been relatively overlooked in the development of NLRP3 inhibitors. This review focuses on summarizing PPIs within the NLRP3 inflammasome activation pathway and small molecule inhibitors capable of interfering with PPIs to counteract the NLRP3 overactivation. Small molecule NLRP3 inhibitors have been gained significant attention owing to their remarkable efficacy, excellent safety profiles, and unique mechanisms of action.
Collapse
Affiliation(s)
- Zhen-Yu Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Zheng J, Gong S, Wu G, Zheng X, Li J, Nie J, Liu Y, Chen B, Liu Y, Su Z, Chen J, Li Y. Berberine attenuates uric acid-induced cell injury by inhibiting NLRP3 signaling pathway in HK-2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2405-2416. [PMID: 37193772 PMCID: PMC10497693 DOI: 10.1007/s00210-023-02451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease that can cause renal failure and even death in severe cases. Berberine (BBR) is an isoquinoline alkaloid derived from Phellodendri Cortex with strong antioxidant, anti-inflammatory, and anti-apoptotic properties. The purpose of this study was to investigate the protective effects of berberine (BBR) against uric acid (UA)-induced HK-2 cells and unravel their regulatory potential mechanisms. The CCK8 assay was carried out to detect cell viability. The expression levels of inflammatory factors interleukin-1β (IL-1β) and interleukin-18 (IL-18) and Lactate dehydrogenase (LDH) were measured using Enzyme-linked immunosorbent assays (ELISA). The expression of the apoptosis-related protein (cleaved-Caspase3, cleaved-Caspase9, BAX, BCL-2) was detected by western blot. The effects of BBR on the activities of the NOD-like receptor family pyrin domain containing 3 (NLRP3) and the expression of the downstream genes were determined by RT-PCR and western blot in HK-2 cells. From the data, BBR significantly reversed the up-regulation of inflammatory factors (IL-1β, IL-18) and LDH. Furthermore, BBR down-regulated protein expression of pro-apoptotic proteins BAX, cleaved caspase3 (cl-Caspase3), cleaved caspase9 (cl-Caspase9), and enhanced the expression of antiapoptotic protein BCL-2. Simultaneously, BBR inhibited the activated NLPR3 and reduced the mRNA levels of NLRP3, Caspase1, IL-18, and IL-1β. Also, BBR attenuated the expression of NLRP3 pathway-related proteins (NLRP3, ASC, Caspase1, cleaved-Caspase1, IL-18, IL-1β, and GSDMD). Furthermore, specific NLRP3-siRNA efficiently blocked UA-induced the level of inflammatory factors (IL-1β, IL-18) and LDH and further inhibited activated NLRP3 pathway. Collectively, our results suggested that BBR can alleviate cell injury induced by UA. The underlying unctionary mechanism may be through the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Gong Wu
- Department of TCM Orthopedics & Traumatology, Orthopedic Hospital of Longgang, Shenzhen, 518116 Guangdong China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Juan Nie
- Medical School, Hubei Minzu University, Enshi, 445000 Hubei China
| | - Yanlu Liu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526040 Guangdong China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| |
Collapse
|
7
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
8
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|
9
|
Inflammasome inhibition under physiological and pharmacological conditions. Genes Immun 2020; 21:211-223. [PMID: 32681062 DOI: 10.1038/s41435-020-0104-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Inflammasomes are key regulators of the host response against microbial pathogens, in addition to limiting aberrant responses to sterile insults, as mediated by environmental agents such as toxins or nanoparticles, and also by endogenous danger signals such as monosodium urate, ATP and amyloid-β. To date at least six different inflammasome signalling platforms have been reported (Bauernfeind & Hornung, EMBO Mol Med. 2013;5:814-26; Broz & Dixit, Nat Rev Immunol. 2016;16:407). This review focuses on the complex molecular machinery involved in activation and regulation of the best characterised inflammasome, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), and the development of molecular agents to modulate NLRP3 inflammasome function. Activation of the NLRP3 inflammasome induces inflammation via secretion of interleukin-1β (IL-1β) and interleukin-18 (IL-18) proinflammatory cytokines, with orchestration of pyroptotic cell death, to eliminate invading microbial pathogens. This field has gradually moved from an emphasis on monogenic autoinflammatory conditions, such as cryopyrin-associated periodic syndromes (CAPS), to the broad spectrum of innate immune-mediated disease. NLRP3 inflammasome activation is also linked to a range of common disorders in humans including type 2 diabetes (Krainer et al., J Autoimmun. 2020:102421), cystic fibrosis (Scambler et al., eLife. 2019;8), myocardial infarction, Parkinson's disease, Alzheimer's disease (Savic et al., Nat Rev Rheumatol. 2020:1-16) and cancers such as mesotheliomas and gliomas (Moossavi et al., Mol Cancer. 2018;17:158). We describe how laboratory-based assessment of NLRP3 inflammasome activation is emerging as an integral part of the clinical evaluation and treatment of a range of undifferentiated systemic autoinflammatory disorders (uSAID) (Harrison et al., JCI Insight. 2016;1), where a DNA-based diagnosis has not been possible. In addition, this review summarises the current literature on physiological inhibitors and features various pharmacological approaches that are currently being developed, with potential for clinical translation in autoinflammatory and immune-mediated conditions. We discuss the possibilities of rational drug design, based on detailed structural analyses, and some of the challenges in transferring exciting preliminary results from trials of small-molecule inhibitors of the NLRP3 inflammasome, in animal models of disease, to the clinical situation in human pathology.
Collapse
|
10
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Tu-Teng-Cao Extract Alleviates Monosodium Urate-Induced Acute Gouty Arthritis in Rats by Inhibiting Uric Acid and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3095624. [PMID: 32382282 PMCID: PMC7193269 DOI: 10.1155/2020/3095624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
Gouty arthritis is an inflammatory joint disease closely related to hyperuricemia. It is characterized by deposition of monosodium urate crystals in the joints, resulting in an intense inflammatory process and pain. Control of hyperuricemia and anti-inflammation treatments are the main therapeutic approaches. However, the commonly used drugs for inhibiting uric acid and acute gouty arthritis have obvious gastrointestinal and renal toxicity; thus, there is an urgency to develop new alternative therapeutic drugs. An extract of Tu-Teng-Cao (TTC), a compound drug used in traditional Chinese medicine, has been widely applied to the clinical treatment of arthritis. In this study, we investigated the therapeutic effects of TTC on gouty arthritis. In this study, an animal model of acute gouty arthritis with hyperuricemia was established using potassium oxonate and monosodium urate crystals. After treatment with TTC, the results showed obvious therapeutic effects on the rat model of acute gouty arthritis. The treatment significantly attenuated the degree of ankle swelling, inflammation, and dysfunction index, and the levels of proinflammatory cytokines. In addition, TTC has significant antihyperuricemia activity in rats with hyperuricemia induced by potassium oxonate. Histological evaluation showed that TTC relieved pathological damage in rats with acute gouty arthritis induced by monosodium urate crystals. All the groups treated with TTC showed improvement in cartilage degeneration, cell degeneration, synovial hyperplasia, and inflammatory cell invasion in the ankle joint of rats. TTC significantly alleviated swelling, inflammation, and bleeding of the renal corpuscle and convoluted tubules of rats. The results of this study suggest that TTC is capable of treating gouty arthritis and decreasing ankle injury through the control of uric acid and inflammation.
Collapse
|
12
|
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev 2020; 294:48-62. [DOI: 10.1111/imr.12839] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lotte Spel
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| | - Fabio Martinon
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| |
Collapse
|
13
|
Rashidi M, Simpson DS, Hempel A, Frank D, Petrie E, Vince A, Feltham R, Murphy J, Chatfield SM, Salvesen GS, Murphy JM, Wicks IP, Vince JE. The Pyroptotic Cell Death Effector Gasdermin D Is Activated by Gout-Associated Uric Acid Crystals but Is Dispensable for Cell Death and IL-1β Release. THE JOURNAL OF IMMUNOLOGY 2019; 203:736-748. [PMID: 31209100 DOI: 10.4049/jimmunol.1900228] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022]
Abstract
The pyroptotic cell death effector gasdermin D (GSDMD) is required for murine models of hereditary inflammasome-driven, IL-1β-dependent, autoinflammatory disease, making it an attractive therapeutic target. However, the importance of GSDMD for more common conditions mediated by pathological IL-1β activation, such as gout, remain unclear. In this study, we address whether GSDMD and the recently described GSDMD inhibitor necrosulfonamide (NSA) contribute to monosodium urate (MSU) crystal-induced cell death, IL-1β release, and autoinflammation. We demonstrate that MSU crystals, the etiological agent of gout, rapidly activate GSDMD in murine macrophages. Despite this, the genetic deletion of GSDMD or the other lytic effector implicated in MSU crystal killing, mixed lineage kinase domain-like (MLKL), did not prevent MSU crystal-induced cell death. Consequently, GSDMD or MLKL loss did not hinder MSU crystal-mediated release of bioactive IL-1β. Consistent with in vitro findings, IL-1β induction and autoinflammation in MSU crystal-induced peritonitis was not reduced in GSDMD-deficient mice. Moreover, we show that the reported GSDMD inhibitor, NSA, blocks inflammasome priming and caspase-1 activation, thereby preventing pyroptosis independent of GSDMD targeting. The inhibition of cathepsins, widely implicated in particle-induced macrophage killing, also failed to prevent MSU crystal-mediated cell death. These findings 1) demonstrate that not all IL-1β-driven autoinflammatory conditions will benefit from the therapeutic targeting of GSDMD, 2) document a unique mechanism of MSU crystal-induced macrophage cell death not rescued by pan-cathepsin inhibition, and 3) show that NSA inhibits inflammasomes upstream of GSDMD to prevent pyroptotic cell death and IL-1β release.
Collapse
Affiliation(s)
- Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Emma Petrie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Angelina Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Jane Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Simon M Chatfield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; .,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
14
|
Cowie AM, Dittel BN, Stucky CL. A Novel Sex-Dependent Target for the Treatment of Postoperative Pain: The NLRP3 Inflammasome. Front Neurol 2019; 10:622. [PMID: 31244767 PMCID: PMC6581722 DOI: 10.3389/fneur.2019.00622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years the innate immune system has been shown to be crucial for the pathogenesis of postoperative pain. The mediators released by innate immune cells drive the sensitization of sensory neurons following injury by directly acting on peripheral nerve terminals at the injury site. The predominate sensitization signaling pathway involves the proinflammatory cytokine interleukin-1β (IL-1β). IL-1β is known to cause pain by directly acting on sensory neurons. Evidence demonstrates that blockade of IL-1β signaling decreases postoperative pain, however complete blockade of IL-1β signaling increases the risk of infection and decreases effective wound healing. IL-1β requires activation by an inflammasome; inflammasomes are cytosolic receptors of the innate immune system. NOD-like receptor protein 3 (NLRP3) is the predominant inflammasome activated by endogenous molecules that are released by tissue injury such as that which occurs during neuropathic and inflammatory pain disorders. Given that selective inhibition of NLRP3 alleviates postoperative mechanical pain, its selective targeting may be a novel and effective strategy for the treatment of pain that would avoid complications of global IL-1β inhibition. Moreover, NLRP3 is activated in pain in a sex-dependent and cell type-dependent manner. Sex differences in the innate immune system have been shown to drive pain and sensitization through different mechanisms in inflammatory and neuropathic pain disorders, indicating that it is imperative that both sexes are studied when researchers investigate and identify new targets for pain therapeutics. This review will highlight the roles of the innate immune response, the NLRP3 inflammasome, and sex differences in neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ashley M Cowie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Sanchez-Lopez E, Zhong Z, Stubelius A, Sweeney SR, Booshehri LM, Antonucci L, Liu-Bryan R, Lodi A, Terkeltaub R, Lacal JC, Murphy AN, Hoffman HM, Tiziani S, Guma M, Karin M. Choline Uptake and Metabolism Modulate Macrophage IL-1β and IL-18 Production. Cell Metab 2019; 29:1350-1362.e7. [PMID: 30982734 PMCID: PMC6675591 DOI: 10.1016/j.cmet.2019.03.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Choline is a vitamin-like nutrient that is taken up via specific transporters and metabolized by choline kinase, which converts it to phosphocholine needed for de novo synthesis of phosphatidylcholine (PC), the main phospholipid of cellular membranes. We found that Toll-like receptor (TLR) activation enhances choline uptake by macrophages and microglia through induction of the choline transporter CTL1. Inhibition of CTL1 expression or choline phosphorylation attenuated NLRP3 inflammasome activation and IL-1β and IL-18 production in stimulated macrophages. Mechanistically, reduced choline uptake altered mitochondrial lipid profile, attenuated mitochondrial ATP synthesis, and activated the energy sensor AMP-activated protein kinase (AMPK). By potentiating mitochondrial recruitment of DRP1, AMPK stimulates mitophagy, which contributes to termination of NLRP3 inflammasome activation. Correspondingly, choline kinase inhibitors ameliorated acute and chronic models of IL-1β-dependent inflammation.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Zhenyu Zhong
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA; Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390, USA
| | - Alexandra Stubelius
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Shannon R Sweeney
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Laela M Booshehri
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, 92037, USA
| | - Laura Antonucci
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ru Liu-Bryan
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA; VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, 92037, USA
| | - Alessia Lodi
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA; VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, 92037, USA
| | - Juan Carlos Lacal
- Translational Oncology, Department of Oncology, Hospital Universitario Fuenlabrada, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Anne N Murphy
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Hal M Hoffman
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, 92037, USA
| | - Stefano Tiziani
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Hafner-Bratkovič I, Sušjan P, Lainšček D, Tapia-Abellán A, Cerović K, Kadunc L, Angosto-Bazarra D, Pelegrin P, Jerala R. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun 2018; 9:5182. [PMID: 30518920 PMCID: PMC6281599 DOI: 10.1038/s41467-018-07573-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022] Open
Abstract
NLRP3 is a cytosolic sensor triggered by different pathogen- and self-derived signals that plays a central role in a variety of pathological conditions, including sterile inflammation. The leucine-rich repeat domain is present in several innate immune receptors, where it is frequently responsible for sensing danger signals and regulation of activation. Here we show by reconstitution of truncated and chimeric variants into Nlrp3−/− macrophages that the leucine-rich repeat domain is dispensable for activation and self-regulation of NLRP3 by several different triggers. The pyrin domain on the other hand is required to maintain NLRP3 in the inactive conformation. A fully responsive minimal NLRP3 truncation variant reconstitutes peritonitis in Nlrp3−/− mice. We demonstrate that in contrast to pathogen-activated NLRC4, the constitutively active NLRP3 molecule cannot engage wild-type NLRP3 molecules in a self-catalytic oligomerization. This lack of signal amplification is likely a protective mechanism to decrease sensitivity to endogenous triggers to impede autoinflammation. Activation of the NLRP3 inflammasome is associated with various diseases but its activation mechanism is not fully understood. Here, the authors determine the impact of different NLRP3 domains on sensing NLRP3 triggers, inflammasome assembly and regulation of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000, Ljubljana, Slovenia.
| | - Petra Sušjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Ana Tapia-Abellán
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120 El Palmar, Murcia, Spain
| | - Kosta Cerović
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Lucija Kadunc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Diego Angosto-Bazarra
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120 El Palmar, Murcia, Spain
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120 El Palmar, Murcia, Spain
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Zhou X, Wu M, Xie Y, Li GB, Li T, Xie R, Wang K, Zhang Y, Zou C, Wu W, Wang Q, Wang X, Zhang X, Li J, Li J, Wei YQ. Identification of Glycine Receptor α3 as a Colchicine-Binding Protein. Front Pharmacol 2018; 9:1238. [PMID: 30467477 PMCID: PMC6236057 DOI: 10.3389/fphar.2018.01238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Colchicine (Col) is considered a kind of highly effective alkaloid for preventing and treating acute gout attacks (flares). However, little is known about the underlying mechanism of Col in pain treatment. We have previously developed a customized virtual target identification method, termed IFPTarget, for small-molecule target identification. In this study, by using IFPTarget and ligand similarity ensemble approach (SEA), we show that the glycine receptor alpha 3 (GlyRα3), which play a key role in the processing of inflammatory pain, is a potential target of Col. Moreover, Col binds directly to the GlyRα3 as determined by the immunoprecipitation and bio-layer interferometry assays using the synthesized Col-biotin conjugate (linked Col and biotin with polyethylene glycol). These results suggest that GlyRα3 may mediate Col-induced suppression of inflammatory pain. However, whether GlyRα3 is the functional target of Col and serves as potential therapeutic target in gouty arthritis requires further investigations.
Collapse
Affiliation(s)
- Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingbo Wu
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Guo-Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao Li
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rou Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kailun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiangwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ximu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Zhang H, Li F, Li WW, Stary C, Clark JD, Xu S, Xiong X. The inflammasome as a target for pain therapy. Br J Anaesth 2018; 117:693-707. [PMID: 27956668 DOI: 10.1093/bja/aew376] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The interleukin-1 family of cytokines are potent inducers of inflammation and pain. Proteolytic activation of this family of cytokines is under the control of several innate immune receptors that coordinate to form large multiprotein signalling platforms, termed inflammasomes. Recent evidence suggests that a wide range of inflammatory diseases, cancers, and metabolic and autoimmune disorders, in which pain is a common complaint, may be coordinated by inflammasomes. Activation of inflammasomes results in cleavage of caspase-1, which subsequently induces downstream initiation of several potent pro-inflammatory cascades. Therefore, it has been proposed that targeting inflammasome activity may be a novel and effective therapeutic strategy for these pain-related diseases. The purpose of this narrative review article is to provide the reader with an overview of the activation and regulation of inflammasomes and to investigate the potential therapeutic role of inflammasome inhibition in the treatment of diseases characterized by pain, including the following: complex regional pain syndrome, gout, rheumatoid arthritis, inflammatory pain, neuropathic pain, chronic prostatitis, chronic pelvic pain syndrome, and fibromyalgia. We conclude that the role of the inflammasome in pain-associated diseases is likely to be inflammasome subtype and disease specific. The currently available evidence suggests that disease-specific targeting of the assembly and activity of the inflammasome complex may be a novel therapeutic opportunity for the treatment of refractory pain in many settings.
Collapse
Affiliation(s)
- H Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - F Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - W-W Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - C Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J D Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - S Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - X Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
19
|
Ma T, Liu X, Cen Z, Xin C, Guo M, Zou C, Song W, Xie R, Wang K, Zhou H, Zhang J, Wang Z, Bian C, Cui K, Li J, Wei YQ, Li J, Zhou X. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis Res Ther 2018; 20:34. [PMID: 29482609 PMCID: PMC5828083 DOI: 10.1186/s13075-018-1528-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/26/2018] [Indexed: 02/05/2023] Open
Abstract
Background Interleukin-1β (IL-1β) is a pivotal proinflammatory cytokine that is strongly associated with the inflammation of gout. However, the underlying mechanism through which the production of IL-1β is regulated has not been fully elucidated. Our previous work identified that miR-302b had an important immune regulatory role in bacterial lung infections. This study was conducted to evaluate the function of miR-302b on monosodium urate (MSU) crystal-induced inflammation and its mechanism. Methods The expression pattern and the immune-regulatory role of miR-302b were evaluated both in vitro and in vivo. The functional targets of miR-302b were predicted by bioinformatics, and then validated by genetic approaches. In addition, the clinical feature of miR-302b was analyzed using serum samples of patients with gouty arthritis. Results The extremely high expression of miR-302b was observed in both macrophages and mouse air membranes treated with MSU. Intriguingly, overexpression of miR-302b regulated NF-κB and caspase-1 signaling, leading to significantly attenuate MSU-induced IL-1β. By genetic analysis, miR-302b exhibited inhibitory function on IRAK4 and EphA2 by binding to their 3′-UTR regions. Corporately silencing IRAK4 and EphA2 largely impaired MSU-induced IL-1β protein production. Moreover, it was also found that miR-302b and EphA2 suppressed the migration of macrophages. Finally, it was observed that high expression of miR-302b was a general feature in patients with gouty arthritis. Conclusions These results suggest that miR-302b can regulate IL-1β production in MSU-induced inflammation by targeting NF-κB and caspase-1 signaling, and may be a potential therapeutic target for gouty arthritis. Electronic supplementary material The online version of this article (10.1186/s13075-018-1528-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teng Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhifu Cen
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingfeng Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Wenpeng Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rou Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kailun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ce Bian
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaijun Cui
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
20
|
Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs Patrol Inflammasome Activation. J Mol Biol 2017; 430:153-173. [PMID: 29024695 DOI: 10.1016/j.jmb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.
Collapse
Affiliation(s)
- Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11:63. [PMID: 28337127 PMCID: PMC5343070 DOI: 10.3389/fncel.2017.00063] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
22
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
23
|
Daniels MJD, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S, Wong R, Latta C, Yu S, Jackson J, Fischer N, Koziel V, Pillot T, Bagnall J, Allan SM, Paszek P, Galea J, Harte MK, Eder C, Lawrence CB, Brough D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat Commun 2016; 7:12504. [PMID: 27509875 PMCID: PMC4987536 DOI: 10.1038/ncomms12504] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Michael J. D. Daniels
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Schilling
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - Nicholas G. Spencer
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - William Watremez
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Fasolino
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Sophie J. Booth
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Claire S. White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Alex G. Baldwin
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Sally Freeman
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Clare Latta
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Shi Yu
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Jackson
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - James Galea
- Division of Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael K. Harte
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Claudia Eder
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - Catherine B. Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Sabina EP, Indu H, Rasool M. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice. Asian Pac J Trop Biomed 2015; 2:128-33. [PMID: 23569882 DOI: 10.1016/s2221-1691(11)60206-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/07/2011] [Accepted: 08/20/2011] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. METHODS The mice were divided into four experimental groups. Group I served as control; mice in group II were injected with monosodium urate crystal; group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.); group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-α were determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. RESULTS The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-α levels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. CONCLUSIONS The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.
Collapse
Affiliation(s)
- Evan Prince Sabina
- School of Bio Sciences and Technology, VIT University Vellore-632 014, Tamil Nadu, India
| | | | | |
Collapse
|
25
|
Zheng SC, Zhu XX, Xue Y, Zhang LH, Zou HJ, Qiu JH, Liu Q. Role of the NLRP3 inflammasome in the transient release of IL-1β induced by monosodium urate crystals in human fibroblast-like synoviocytes. JOURNAL OF INFLAMMATION-LONDON 2015; 12:30. [PMID: 25897296 PMCID: PMC4403983 DOI: 10.1186/s12950-015-0070-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND To investigate whether monosodium urate (MSU) crystals induce interleukin (IL)-1β in human fibroblast-like synoviocytes (FLS), and whether the NLRP3 inflammasome is involved in the inflammatory mechanism. METHODS Human FLS isolated from explants of synovial tissue were stimulated with MSU crystals (0.001 to 0.5 mg/ml) for different time course (6 hours to 48 hours). The expressions of IL-1β, IL-6, TNF-α and NLRP3 were evaluated with ELISA, Western blot and quantitative real-time PCR. RESULTS Exposure of FLS to MSU crystals transiently induced a significant increase in IL-1β expression in culture medium with a peak at 6 h. The mRNA level of IL-1β in the FLS cells had a similar pattern at this time point. Changes in IL-6 and TNF-α expression were not observed. Simultaneously, intercellular pro-IL-1β was detected at 6 h. Furthermore, MSU crystals also induced NLRP3 mRNA and protein expression at 6 h to 48 h after MSU treatment. CONCLUSIONS MSU crystals directly increased IL-1β and intercellular NLRP3 expression in FLS cells. It is suggested that the NLRP3 inflammasome may be associated with IL-1β in FLS treated with MSU. Altogether, MSU could induce production and release of IL-1β through the NLRP3 inflammasome in human synoviocytes.
Collapse
Affiliation(s)
- Shu-Cong Zheng
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiao-Xia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Li-Hong Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 PR China
| | - He-Jian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Jian-Hua Qiu
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Qiong Liu
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 PR China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 138 Yixueyuan Road, Shanghai, 200032 PR China
| |
Collapse
|
26
|
Reber LL, Marichal T, Sokolove J, Starkl P, Gaudenzio N, Iwakura Y, Karasuyama H, Schwartz LB, Robinson WH, Tsai M, Galli SJ. Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol 2014; 66:2881-91. [PMID: 24943488 DOI: 10.1002/art.38747] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gouty arthritis is caused by the precipitation of monosodium urate monohydrate (MSU) crystals in the joints. While it has been reported that mast cells (MCs) infiltrate gouty tophi, little is known about the actual roles of MCs during acute attacks of gout. This study was undertaken to assess the role of MCs in a mouse model of MSU crystal-induced acute arthritis. METHODS We assessed the effects of intraarticular (IA) injection of MSU crystals in various strains of mice with constitutive or inducible MC deficiency or in mice lacking interleukin-1β (IL-1β) or other elements of innate immunity. We also assessed the response to IA injection of MSU crystals in genetically MC-deficient mice after IA engraftment of wild-type or IL-1β(-/-) bone marrow-derived cultured MCs. RESULTS MCs were found to augment acute tissue swelling following IA injection of MSU crystals in mice. IL-1β production by MCs contributed importantly to MSU crystal-induced tissue swelling, particularly during its early stages. Selective depletion of synovial MCs was able to diminish MSU crystal-induced acute inflammation in the joints. CONCLUSION Our findings identify a previously unrecognized role of MCs and MC-derived IL-1β in the early stages of MSU crystal-induced acute arthritis in mice.
Collapse
|
27
|
Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289:35237-45. [PMID: 25391648 DOI: 10.1074/jbc.r114.619304] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated.
Collapse
Affiliation(s)
- Liliana Schaefer
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und -Sicherheit (ZAFES), Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Robbins GR, Wen H, Ting JPY. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54:297-308. [PMID: 24766894 DOI: 10.1016/j.molcel.2014.03.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Modern medical and hygienic practices have greatly improved human health and longevity; however, increased human life span occurs concomitantly with the emergence of metabolic and age-related diseases. Studies over the past decade have strongly linked host inflammatory responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes (T2D), obesity, and gout. A common immunological factor to these diseases is the activation of the inflammasome and release of proinflammatory cytokines that promote disease progression. Here we review the molecular mechanism(s) of inflammasome activation in response to metabolic damage-associated molecular patterns (DAMPs) and discuss potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Gregory R Robbins
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Wen
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Review of hyperuricemia as new marker for metabolic syndrome. ISRN RHEUMATOLOGY 2014; 2014:852954. [PMID: 24693449 PMCID: PMC3945178 DOI: 10.1155/2014/852954] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/12/2013] [Indexed: 01/29/2023]
Abstract
Hyperuricemia has long been established as the major etiologic factor in gout. In recent years, a large body of evidence has accumulated that suggests that hyperuricemia may play a role in the development and pathogenesis of a number of metabolic, hemodynamic, and systemic pathologic diseases, including metabolic syndrome, hypertension, stroke, and atherosclerosis. A number of epidemiologic studies have linked hyperuricemia with each of these disorders. In some studies, therapies that lower uric acid may prevent or improve certain components of the metabolic syndrome. There is an association between uric acid and the development of systemic lupus erythematosus; the connection between other rheumatic diseases such as rheumatoid arthritis and osteoarthritis is less clear. The mechanism for the role of uric acid in disorders other than gout is not well established but recent investigations point towards systemic inflammation induced by urate, as the major pathophysiological event common to systemic diseases, including atherosclerosis.
Collapse
|
30
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
31
|
Phytochemical Compositions and Antioxidant and Anti-Inflammatory Activities of Crude Extracts from Ficus pandurata H. (Moraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:215036. [PMID: 24191163 PMCID: PMC3804050 DOI: 10.1155/2013/215036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
Background. Ficus pandurata H. (Moraceae) is widely used in traditional Chinese medicine as a healthy food condiment or a medicine for treatment of various diseases including inflammation. Objective. The purpose of the present study is to investigate the phytochemical compositions and antioxidant and anti-inflammatory activities of crude water (FPW) and ethanolic extracts (FPE) from Ficus pandurata H. Methods. Phytochemical compositions were identified by a high-performance liquid chromatography-electrospray ionization-mass spectrometry method (HPLC-ESI-MS). The antioxidant activities were evaluated by diphenylpicrylhydrazyl (DPPH) and hydroxyl radical assays, and the anti-inflammatory activities were evaluated by paw edema and levels of inflammatory mediator TNF-α and PGE2 in monosodium urate (MSU) crystal-induced rats. Results. Six compounds were identified by HPLC-MS method, and abundance of phenolics was found in FPE. The FPE showed concentration-dependent-significant scavenging of DPPH and hydroxyl radicals with IC50 values 118.4 and 192.9 μg/mL, respectively. The FPE treatment significantly inhibited the paw edema and the production of TNF-α and PGE2 in MSU crystal-induced rats. Conclusion. The FPE exerted stronger antioxidant and anti-inflammatory activities which may be attributed to its high phenolic content.
Collapse
|
32
|
Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect 2013; 15:630-9. [PMID: 23618810 PMCID: PMC3722249 DOI: 10.1016/j.micinf.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.
Collapse
Affiliation(s)
- Alexander D. Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
33
|
Abstract
Monosodium urate crystal deposition in gout precedes the first attack and, while hyperuricaemia persists, it grows and expands to other sites. Fortunately, it is reversible and slowly dissolves when serum uric acid (SUA) is lowered below its saturation point of about 6.8 mg/dl and with certainty below 6 mg/dl. Crystals finally disappear from joints, taking longer in those patients with longer disease duration, probably because of a larger accumulated load of crystals. The SUA level achieved affects the velocity of crystal dissolution and tophi reduction. Accordingly, by deciding the SUA level cut-off point to be achieved by treatment we are determining the time of crystal disappearance and cure of gout. 6 mg/dl is the usual target level, but lower levels appear appropriate to us, particularly in certain situations.
Collapse
Affiliation(s)
- Eliseo Pascual
- Sección de Reumatología, Hospital General Universitario de Alicante, Universidad Miguel Hernández, Av. Pintor Baeza 12, Alicante 03010, Spain.
| | | | | |
Collapse
|
34
|
Kubota K, Ohnishi H, Teramoto T, Matsui E, Murase K, Kanoh H, Kato Z, Kaneko H, Seishima M, Kondo N. In vitro analysis of the functional effects of an NLRP3 G809S variant with the co-existence of MEFV haplotype variants in atypical autoinflammatory syndrome. J Clin Immunol 2012; 33:325-34. [PMID: 23015306 DOI: 10.1007/s10875-012-9805-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Hereditary periodic fever syndromes have been considered monogenic diseases. However, some recent reports have described patients with co-existence of recurrent fever responsible genes. This study assessed whether a rare variant, found in Japanese children showing atypical autoinflammatory syndrome, located in the leucine-rich repeat domain of Nod-like receptor family, pyrin domain containing 3 (NLRP3) with co-existence of Mediterranean fever (MEFV) haplotype variants may contribute to a proinflammatory phenotype using a systematic approach. METHODS Cytokine production in serum or from peripheral blood monocytes was measured by ELISA. DNA sequence analysis of genes including NLRP3, MEFV, mevalonate kinase (MVK), and tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) were performed on patient samples. In vitro functional assays determined the effects of the NLRP3 variants and pyrin using NF-κB activation and speck formation assays. RESULTS A heterozygous genetic variant of NLRP3, G809S, was found in samples from both patients. Additionally the previously reported heterozygous MEFV variants (P369S-R408Q or E148Q-P369S-R408Q) were also detected in both patients. Serum IL-1ra and sTNFR1 levels increased in the attack phase of the disease in both patients. The production levels of IL-1β from monocytes isolated from both cases were elevated following LPS and IFN-γ stimulation. The NLRP3 G809S variant demonstrated no increase of NF-κB activity following monosodium urate stimulation, whereas it significantly increased speck formation by interacting with apoptosis-associated speck-like protein with caspase recruitment domain. CONCLUSIONS The phenotype of atypical autoinflammatory disease in patients could be modified by a synergistic effect with two other variants of autoinflammatory-associated genes.
Collapse
Affiliation(s)
- Kazuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Uric acid is a waste product of purine catabolism. This molecule comes to clinical attention when it nucleates to form crystals of monosodium urate (MSU) in joints or other tissues, and thereby causes the inflammatory disease of gout. Patients with gout frequently suffer from a number of comorbid conditions including hypertension, diabetes mellitus and cardiovascular disease. Why MSU crystals trigger inflammation and are associated with comorbidities of gout has been unclear, but recent studies provide new insights into these issues. Rather than simply being a waste product, uric acid could serve a pathophysiological role as a local alarm signal that alerts the immune system to cell injury and helps to trigger both innate and adaptive immune responses. The inflammatory component of these immune responses is caused when urate crystals trigger both inflammasome-dependent and independent pathways to generate the proinflammatory cytokine IL-1. The resulting bioactive IL-1 stimulates the inflammation of gout and might contribute to the development of other comorbidities. Surprisingly, the same mechanisms underlie the inflammatory response to a number of irritant particles, many of which also cause disease. These new insights help to explain the pathogenesis of gout and point to potential new therapeutic targets for this and other sterile inflammatory diseases.
Collapse
|
36
|
McGeough MD, Pena CA, Mueller JL, Pociask DA, Broderick L, Hoffman HM, Brydges SD. Cutting edge: IL-6 is a marker of inflammation with no direct role in inflammasome-mediated mouse models. THE JOURNAL OF IMMUNOLOGY 2012; 189:2707-11. [PMID: 22904305 DOI: 10.4049/jimmunol.1101737] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-6 is a known downstream target of IL-1β and is consistently increased in serum from patients with NLRP3 inflammasome-mediated conditions. Therefore, IL-6 could be a therapeutic target in the treatment of IL-1β-provoked inflammation. IL-6 was increased in serum with accompanying neutrophilia in tissues of an inducible mouse model of Muckle-Wells syndrome. However, an IL-6-null background failed to provide phenotypic rescue and did not significantly impact inflammatory cytokine levels. In a second model of IL-1β-driven inflammation, NLRP3 activation by monosodium urate crystals similarly increased IL-6. Consistent with our Muckle-Wells syndrome model, ablation of IL-6 did not impact an acute neutrophilic response in this in vivo evaluation of gouty arthritis. Taken together, our results indicate that IL-6 is a reliable marker of inflammation, with no direct role in inflammasome-mediated disease.
Collapse
Affiliation(s)
- Matthew D McGeough
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012; 36:464-76. [PMID: 22361007 DOI: 10.1016/j.immuni.2012.02.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 12/21/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
Abstract
Cytosolic pathogen- and damage-associated molecular patterns are sensed by pattern recognition receptors, including members of the nucleotide-binding domain and leucine-rich repeat-containing gene family (NLR), which cause inflammasome assembly and caspase-1 activation to promote maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and induction of pyroptosis. However, the contribution of most of the NLRs to innate immunity, host defense, and inflammasome activation and their specific agonists are still unknown. Here we describe identification and characterization of an NLRP7 inflammasome in human macrophages, which is induced in response to microbial acylated lipopeptides. Activation of NLRP7 promoted ASC-dependent caspase-1 activation, IL-1β and IL-18 maturation, and restriction of intracellular bacterial replication, but not caspase-1-independent secretion of the proinflammatory cytokines IL-6 and tumor necrosis factor-α. Our study therefore increases our currently limited understanding of NLR activation, inflammasome assembly, and maturation of IL-1β and IL-18 in human macrophages.
Collapse
|
38
|
Abstract
Gout is an ancient disease that still plagues us. Its pathogenic culprit, uric acid crystal deposition in tissues, is a strong inflammatory stimulant. In recent years, the mechanisms through which uric acid crystals promote inflammation have been a subject of increasing interest among rheumatologists and immunologists. Uric acid has been identified as an endogenous adjuvant that drives immune responses in the absence of microbial stimulation. Because uric acid is a ubiquitous metabolite that is produced in high quantities upon cellular injury, the ramifications of its effects may be considerable in health and in disease. Uric acid crystals also have been shown to trigger interleukin-1β-mediated inflammation via activation of the NOD-like receptor protein (NLRP)3 inflammasome, a multimolecular complex whose activation appears to be central to many pathological inflammatory conditions. In this article, we review the possible mechanisms of uric acid-mediated inflammation and offer some historical perspectives on what has been learned about the complex effects of a relatively simple substance.
Collapse
Affiliation(s)
- Faranak Ghaemi-Oskouie
- Department of Microbiology and Infectious Disease and Immunology Research Group, University of Calgary, 4A18 HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Yan Shi
- Department of Microbiology and Infectious Disease and Immunology Research Group, University of Calgary, 4A18 HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|