1
|
Ebihara S, Owada Y, Ono M. FGF7 as an essential mediator for the onset of ankylosing enthesitis related to psoriatic dermatitis. Life Sci Alliance 2025; 8:e202403073. [PMID: 39919800 PMCID: PMC11806258 DOI: 10.26508/lsa.202403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
IL-17A plays an important role in the pathology of psoriasis and psoriatic arthritis (PsA). However, the pathogenic association between the skin and joint manifestations in PsA is not completely understood. In this study, we initially observed that IL-17A and FGF7 induced endochondral ossification in the mouse entheseal histoculture. Importantly, the responses of endochondral ossification by IL-17A stimulation were strongly inhibited by the treatment of a blocking antibody to FGF receptor 2IIIb, which is the receptor of FGF7, suggesting that FGF7 acts as a downstream factor of IL-17A in the endochondral ossification in the culture. Next, using the animal PsA model, the administration of an anti-FGF receptor 2IIIb antibody resulted in significant suppression of ankylosing enthesitis but not dermatitis. Collectively, our findings indicate that augmented IL-17A in PsA dermatitis induces the elevation of FGF7 levels in joint enthesis and results in a non-redundant role of FGF7 signaling in the development of ankylosing enthesitis in PsA.
Collapse
Affiliation(s)
- Shin Ebihara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Laboratory, National Hospital Organization Mito Medical Center, Ibaraki-machi, Japan
| |
Collapse
|
2
|
McDonnell E, Orr SE, Barter MJ, Rux D, Brumwell A, Wrobel N, Murphy L, Overman LM, Sorial AK, Young DA, Soul J, Rice SJ. The methylomic landscape of human articular cartilage development contains epigenetic signatures of osteoarthritis risk. Am J Hum Genet 2024; 111:2756-2772. [PMID: 39579763 PMCID: PMC11639090 DOI: 10.1016/j.ajhg.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
Increasing evidence is emerging to link age-associated complex musculoskeletal diseases, including osteoarthritis (OA), to developmental factors. Multiple studies have shown a functional role for DNA methylation in the genetic mechanisms of OA risk using articular cartilage samples taken from aged individuals, yet knowledge of temporal changes to the methylome during human cartilage development is limited. We quantified DNA methylation at ∼700,000 individual CpGs across the epigenome of developing human chondrocytes in 72 samples ranging from 7 to 21 post-conception weeks. We identified significant changes in 3% of all CpGs and >8,200 developmental differentially methylated regions. We further identified 24 loci at which OA genetic variants colocalize with methylation quantitative trait loci. Through integrating developmental and mature human chondrocyte datasets, we find evidence for functional effects exerted solely in development or throughout the life course. This will have profound impacts on future approaches to translating genetic pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool, UK
| | - Sarah E Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Matthew J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Danielle Rux
- Orthopedic Surgery, UConn Health, Farmington, CT, USA
| | - Abby Brumwell
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Lynne M Overman
- Human Developmental Biology Resource, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Antony K Sorial
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Zhai G, Huang J. Genetics of osteoarthritis. Best Pract Res Clin Rheumatol 2024; 38:101972. [PMID: 38971692 DOI: 10.1016/j.berh.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis with well recognized multifactorial nature. While several environmental factors such as older age, obesity and previous joint injury are strongly associated with its development, a genetic influence on OA has been recognized for over 80 years. Identification of genes associated with OA has received considerable attention over the last two decades, aided by the rapidly evolving genotyping and sequencing technologies. More than 300 genomic loci have been identified to be associated with OA at different joints. These findings are likely to help our better understanding of the pathogenesis of OA and lead to important therapeutic and diagnostic advances in this most common disabling rheumatic disorder. This article will review the data that support the role of genetic factors in common idiopathic OA.
Collapse
Affiliation(s)
- Guangju Zhai
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada.
| | - Jingyi Huang
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| |
Collapse
|
4
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
5
|
Arruda AL, Katsoula G, Chen S, Reimann E, Kreitmaier P, Zeggini E. The Genetics and Functional Genomics of Osteoarthritis. Annu Rev Genomics Hum Genet 2024; 25:239-257. [PMID: 39190913 DOI: 10.1146/annurev-genom-010423-095636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Georgia Katsoula
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
| | - Ene Reimann
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Kreitmaier
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
6
|
McDonnell E, Orr SE, Barter MJ, Rux D, Brumwell A, Wrobel N, Murphy L, Overmann LM, Sorial AK, Young DA, Soul J, Rice SJ. Epigenetic mechanisms of osteoarthritis risk in human skeletal development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.05.24306832. [PMID: 38766055 PMCID: PMC11100852 DOI: 10.1101/2024.05.05.24306832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The epigenome, including the methylation of cytosine bases at CG dinucleotides, is intrinsically linked to transcriptional regulation. The tight regulation of gene expression during skeletal development is essential, with ~1/500 individuals born with skeletal abnormalities. Furthermore, increasing evidence is emerging to link age-associated complex genetic musculoskeletal diseases, including osteoarthritis (OA), to developmental factors including joint shape. Multiple studies have shown a functional role for DNA methylation in the genetic mechanisms of OA risk using articular cartilage samples taken from aged patients. Despite this, our knowledge of temporal changes to the methylome during human cartilage development has been limited. We quantified DNA methylation at ~700,000 individual CpGs across the epigenome of developing human articular cartilage in 72 samples ranging from 7-21 post-conception weeks, a time period that includes cavitation of the developing knee joint. We identified significant changes in 8% of all CpGs, and >9400 developmental differentially methylated regions (dDMRs). The largest hypermethylated dDMRs mapped to transcriptional regulators of early skeletal patterning including MEIS1 and IRX1. Conversely, the largest hypomethylated dDMRs mapped to genes encoding extracellular matrix proteins including SPON2 and TNXB and were enriched in chondrocyte enhancers. Significant correlations were identified between the expression of these genes and methylation within the hypomethylated dDMRs. We further identified 811 CpGs at which significant dimorphism was present between the male and female samples, with the majority (68%) being hypermethylated in female samples. Following imputation, we captured the genotype of these samples at >5 million variants and performed epigenome-wide methylation quantitative trait locus (mQTL) analysis. Colocalization analysis identified 26 loci at which genetic variants exhibited shared impacts upon methylation and OA genetic risk. This included loci which have been previously reported to harbour OA-mQTLs (including GDF5 and ALDH1A2), yet the majority (73%) were novel (including those mapping to CHST3, FGF1 and TEAD1). To our knowledge, this is the first extensive study of DNA methylation across human articular cartilage development. We identify considerable methylomic plasticity within the development of knee cartilage and report active epigenomic mediators of OA risk operating in prenatal joint tissues.
Collapse
Affiliation(s)
- Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, United Kingdom
| | - Sarah E Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Matthew J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Danielle Rux
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Abby Brumwell
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynne M Overmann
- Human Developmental Biology Resource, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Antony K Sorial
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Chun JM, Kim JS, Kim C. Integrated Analysis of DNA Methylation and Gene Expression Profiles in a Rat Model of Osteoarthritis. Int J Mol Sci 2024; 25:594. [PMID: 38203768 PMCID: PMC10778961 DOI: 10.3390/ijms25010594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is common and affected by several factors, such as age, weight, sex, and genetics. The pathogenesis of OA remains unclear. Therefore, using a rat model of monosodium iodoacetate (MIA)-induced OA, we examined genomic-wide DNA methylation using methyl-seq and characterized the transcriptome using RNA-seq in the articular cartilage tissue from a negative control (NC) and MIA-induced rats. We identified 170 genes (100 hypomethylated and upregulated genes and 70 hypermethylated and downregulated genes) regulated by DNA methylation in OA. DNA methylation-regulated genes were enriched in functions related to focal adhesion, extracellular matrix (ECM)-receptor interaction and the PI3K-Akt and Hippo signaling pathways. Functions related to extracellular matrix organization, extracellular matrix proteoglycans, and collagen formation were involved in OA. A molecular and protein-protein network was constructed using methylated expression-correlated genes. Erk1/2 was a downstream target of OA-induced changes in DNA methylation and RNA expression. We found that the integrin subunit alpha 2 (ITGA2) gene is important in focal adhesion, alpha6-beta4 integrin signaling, and the inflammatory response pathway in OA. Overall, gene expression changes because DNA methylation influences OA pathogenesis. ITGA2, whose gene expression changes are regulated by DNA methylation during OA onset, is a candidate gene. Our findings provide insights into the epigenetic targets of OA processes in rats.
Collapse
Affiliation(s)
- Jin Mi Chun
- Digital Health Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea;
| | - Joong-Sun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chul Kim
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
8
|
Wu Y, Gong Y, Zhang Y, Li S, Wang C, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Wang X, Ning Y, Zhao H. Comparative Analysis of Gut Microbiota from Rats Induced by Se Deficiency and T-2 Toxin. Nutrients 2023; 15:5027. [PMID: 38140286 PMCID: PMC10745411 DOI: 10.3390/nu15245027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to analyze the differences in gut microbiota between selenium deficiency and T-2 toxin intervention rats. Knee joint and fecal samples of rats were collected. The pathological characteristics of knee cartilage were observed by safranin O/fast green staining. DNA was extracted from fecal samples for PCR amplification, and 16S rDNA sequencing was performed to compare the gut microbiota of rats. At the phylum level, Firmicutes (81.39% vs. 77.06%) and Bacteroidetes (11.11% vs. 14.85%) were dominant in the Se-deficient (SD) group and T-2 exposure (T-2) groups. At the genus level, the relative abundance of Ruminococcus_1 (12.62%) and Ruminococcaceae_UCG-005 (10.31%) in the SD group were higher. In the T-2 group, the relative abundance of Lactobacillus (11.71%) and Ruminococcaceae_UCG-005 (9.26%) were higher. At the species level, the high-quality bacteria in the SD group was Ruminococcus_1_unclassified, and Ruminococcaceae_UCG-005_unclassified in the T-2 group. Lactobacillus_sp__L_YJ and Lactobacillus_crispatus were the most significant biomarkers in the T-2 group. This study analyzed the different compositions of gut microbiota in rats induced by selenium deficiency and T-2 toxin, and revealed the changes in gut microbiota, so as to provide a certain basis for promoting the study of the pathogenesis of Kashin-Beck disease (KBD).
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Yi Gong
- MED-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Chaowei Wang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yuequan Yuan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xi Lv
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi’an Jiaotong University, No.157 Xi Wu Road, Xi’an 710004, China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an 710001, China
| |
Collapse
|
9
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Lafont JE, Moustaghfir S, Durand AL, Mallein-Gerin F. The epigenetic players and the chromatin marks involved in the articular cartilage during osteoarthritis. Front Physiol 2023; 14:1070241. [PMID: 36733912 PMCID: PMC9887161 DOI: 10.3389/fphys.2023.1070241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Epigenetics defines the modifications of the genome that do not involve a change in the nucleotide sequence of DNA. These modifications constitute a mechanism of gene regulation poorly explored in the context of cartilage physiology. They are now intensively studied by the scientific community working on articular cartilage and its related pathology such as osteoarthritis. Indeed, epigenetic regulations can control the expression of crucial gene in the chondrocytes, the only resident cells of cartilage. Some epigenetic changes are considered as a possible cause of the abnormal gene expression and the subsequent alteration of the chondrocyte phenotype (hypertrophy, proliferation, senescence…) as observed in osteoarthritic cartilage. Osteoarthritis is a joint pathology, which results in impaired extracellular matrix homeostasis and leads ultimately to the progressive destruction of cartilage. To date, there is no pharmacological treatment and the exact causes have yet to be defined. Given that the epigenetic modifying enzymes can be controlled by pharmacological inhibitors, it is thus crucial to describe the epigenetic marks that enable the normal expression of extracellular matrix encoding genes, and those associated with the abnormal gene expression such as degradative enzyme or inflammatory cytokines encoding genes. In this review, only the DNA methylation and histone modifications will be detailed with regard to normal and osteoarthritic cartilage. Although frequently referred as epigenetic mechanisms, the regulatory mechanisms involving microRNAs will not be discussed. Altogether, this review will show how this nascent field influences our understanding of the pathogenesis of OA in terms of diagnosis and how controlling the epigenetic marks can help defining epigenetic therapies.
Collapse
|
11
|
Dunn CM, Sturdy C, Velasco C, Schlupp L, Prinz E, Izda V, Arbeeva L, Golightly YM, Nelson AE, Jeffries MA. Peripheral Blood DNA Methylation-Based Machine Learning Models for Prediction of Knee Osteoarthritis Progression: Biologic Specimens and Data From the Osteoarthritis Initiative and Johnston County Osteoarthritis Project. Arthritis Rheumatol 2023; 75:28-40. [PMID: 36411273 PMCID: PMC9797424 DOI: 10.1002/art.42316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The lack of accurate biomarkers to predict knee osteoarthritis (OA) progression is a key unmet need in OA clinical research. The objective of this study was to develop baseline peripheral blood epigenetic biomarker models to predict knee OA progression. METHODS Genome-wide buffy coat DNA methylation patterns from 554 individuals from the Osteoarthritis Biomarkers Consortium (OABC) were determined using Illumina Infinium MethylationEPIC 850K arrays. Data were divided into model development and validation sets, and machine learning models were trained to classify future OA progression by knee pain, radiographic imaging, knee pain plus radiographic imaging, and any progression (pain, radiographic, or both). Parsimonious models using the top 13 CpG sites most frequently selected during development were tested on independent samples from participants in the Johnston County Osteoarthritis (JoCo OA) Project (n = 128) and a previously published Osteoarthritis Initiative (OAI) data set (n = 55). RESULTS Full models accurately classified future radiographic-only progression (mean ± SEM accuracy 87 ± 0.8%, area under the curve [AUC] 0.94 ± 0.004), pain-only progression (accuracy 89 ± 0.9%, AUC 0.97 ± 0.004), pain plus radiographic progression (accuracy 72 ± 0.7%, AUC 0.79 ± 0.006), and any progression (accuracy 78 ± 0.4%, AUC 0.86 ± 0.004). Pain-only and radiographic-only progressors were not distinguishable (mean ± SEM accuracy 58 ± 1%, AUC 0.62 ± 0.001). Parsimonious models showed similar performance and accurately classified future radiographic progressors in the OABC cohort and in both validation cohorts (mean ± SEM accuracy 80 ± 0.3%, AUC 0.88 ± 0.003 [using JoCo OA Project data], accuracy 80 ± 0.8%, AUC 0.89 ± 0.002 [using previous OAI data]). CONCLUSION Our data suggest that pain and structural progression share similar early systemic immune epigenotypes. Further studies should focus on evaluating the pathophysiologic consequences of differential DNA methylation and peripheral blood cell epigenotypes in individuals with knee OA.
Collapse
Affiliation(s)
- Christopher M. Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Velasco
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| | | | - Liubov Arbeeva
- University of North Carolina at Chapel Hill, Thurston Arthritis Research Center, Chapel Hill, NC
| | - Yvonne M. Golightly
- University of North Carolina at Chapel Hill, Thurston Arthritis Research Center, Chapel Hill, NC
- University of Nebraska Medical Center, College of Allied Health Professions, Omaha, NE
| | - Amanda E. Nelson
- University of North Carolina at Chapel Hill, Thurston Arthritis Research Center, Chapel Hill, NC
| | - Matlock A. Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK
| |
Collapse
|
12
|
Izda V, Dunn CM, Prinz E, Schlupp L, Nguyen E, Sturdy C, Jeffries MA. A Pilot Analysis of Genome-Wide DNA Methylation Patterns in Mouse Cartilage Reveals Overlapping Epigenetic Signatures of Aging and Osteoarthritis. ACR Open Rheumatol 2022; 4:1004-1012. [PMID: 36253145 PMCID: PMC9746664 DOI: 10.1002/acr2.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Cartilage epigenetic changes are strongly associated with human osteoarthritis (OA). However, the influence of individual environmental OA risk factors on these epigenetic patterns has not been determined; herein we characterize cartilage DNA methylation patterns associated with aging and OA in a mouse model. METHODS Murine knee cartilage DNA was extracted from healthy young (16-week, n = 6), old (82-week, n = 6), and young 4-week post-destabilization of the medial meniscus (DMM) OA (n = 6) C57BL6/J mice. Genome-wide DNA methylation patterns were determined via Illumina BeadChip. Gene set enrichment analysis was performed by Ingenuity Pathway Analysis. The top seven most differentially methylated positions (DMPs) were confirmed by pyrosequencing in an independent animal set. Results were compared to previously published human OA methylation data. RESULTS Aging was associated with 20,940 DMPs, whereas OA was associated with 761 DMPs. Merging these two conditions revealed 279 shared DMPs. All demonstrated similar directionality and magnitude of change (Δβ 1.0% ± 0.2%, mean methylation change ± SEM). Shared DMPs were enriched in OA-associated pathways, including RhoA signaling (P = 1.57 × 10-4 ), protein kinase A signaling (P = 3.38 × 10-4 ), and NFAT signaling (P = 6.14 × 10-4 ). Upstream regulators, including TET3 (P = 6.15 × 10-4 ), immunoglobulin (P = 6.14 × 10-4 ), and TLR7 (P = 7.53 × 10-4 ), were also enriched. Pyrosequencing confirmed six of the seven top DMPs in an independent cohort. CONCLUSION Aging and early OA following DMM surgery induce similar DNA methylation changes within a murine OA model, suggesting that aging may induce pro-OA epigenetic "poising" within articular cartilage. Future research should focus on confirming and expanding these findings to other environmental OA risk factors, including obesity, as well as determining late OA changes in mice.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, and Icahn School of Medicine at Mt. SinaiNew York
| | - Christopher M. Dunn
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and University of Oklahoma Health Sciences CenterOklahoma City
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma CityOklahoma
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma CityOklahoma
| | - Emily Nguyen
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma CityOklahoma
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma CityOklahoma
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and University of Oklahoma Health Sciences CenterOklahoma City
| |
Collapse
|
13
|
Montesino-Goicolea S, Meng L, Rani A, Huo Z, Foster TC, Fillingim RB, Cruz-Almeida Y. Enrichment of genomic pathways based on differential DNA methylation profiles associated with knee osteoarthritis pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100107. [PMID: 36531611 PMCID: PMC9755025 DOI: 10.1016/j.ynpai.2022.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Our study aimed to identify differentially methylated regions (i.e., genomic region where multiple adjacent CpG sites show differential methylation) and their enriched genomic pathways associated with knee osteoarthritis pain (KOA). We recruited cognitively healthy middle to older aged (age 45-85) adults with (n = 182) and without (n = 31) self-reported KOA pain. We also extracted DNA from peripheral blood that was analyzed using MethylationEPIC arrays. The R package minfi (Aryee et al., 2014) was used to perform methylation data preprocessing and quality control. To investigate biological pathways impacted by differential methylation, we performed pathway enrichment analysis using Ingenuity Pathway Analysis (IPA) to identify canonical pathways and upstream regulators. Annotated genes within ± 5 kb of the putative differentially methylated regions (DMRs, p < 0.05) were subjected to the IPA analysis. There was no significant difference in age, sex, study site between no pain and pain group (p > 0.05). Non-Hispanic black individuals were overrepresented in the pain group (p = 0.003). At raw p < 0.05 cutoff, we identified a total of 19,710 CpG probes, including 13,951 hypermethylated CpG probes, for which DNA methylation level was higher in the groups with highest pain grades. We also identified 5,759 hypomethylated CpG probes for which DNA methylation level was lower in the pain groups with higher pain grades. IPA revealed that pain-related DMRs were enriched across multiple pathways and upstream regulators. The top 10 canonical pathways were linked to cellular signaling processes related to immune responses (i.e., antigen presentation, PD-1, PD-L1 cancer immunotherapy, B cell development, IL-4 signaling, Th1 and Th2 activation pathway, and phagosome maturation). Moreover, in terms of upstream regulators, NDUFAF3 was the most significant (p = 8.6E-04) upstream regulator. Our findings support previous preliminary work suggesting the importance of epigenetic regulation of the immune system in knee pain and the need for future work to understand the epigenetic contributions to chronic pain.
Collapse
Affiliation(s)
- Soamy Montesino-Goicolea
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging & Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Lingsong Meng
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas C. Foster
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B. Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging & Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
- Corresponding author at: PO Box 103628, 1329 SW 16th Street, Ste 5180 (zip 32608), Gainesville, FL 32610, USA. https://price.ctsi.ufl.edu/about-the-center/staff/yenisel-cruz-almeida/
| |
Collapse
|
14
|
Ibelli AMG, Peixoto JDO, Zanella R, Gouveia JJDS, Cantão ME, Coutinho LL, Marchesi JAP, Pizzol MSD, Marcelino DEP, Ledur MC. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front Physiol 2022; 13:941134. [PMID: 36003650 PMCID: PMC9393217 DOI: 10.3389/fphys.2022.941134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP. 13,487 genes were expressed in the chicken femoral head transcriptome of normal and FHS-affected broilers. From those, 34 were differentially expressed (DE; FDR ≤0.05) between groups, where all of them were downregulated in FHS-affected broilers. The main BP were enriched in receptor signaling pathways, ossification, bone mineralization and formation, skeletal morphogenesis, and vascularization. RNA-Seq datasets comparison of normal and FHS-affected broilers with 21, 35 and 42 days of age has shown three shared DE genes (FBN2, C1QTNF8, and XYLT1) in GP among ages. Twelve genes were exclusively DE at 21 days, where 10 have already been characterized (SHISA3, FNDC1, ANGPTL7, LEPR, ENSGALG00000049529, OXTR, ENSGALG00000045154, COL16A1, RASD2, BOC, GDF10, and THSD7B). Twelve SNPs were associated with FHS (p < 0.0001). Out of those, 5 were novel and 7 were existing variants located in 7 genes (RARS, TFPI2, TTI1, MAP4K3, LINK54, and AREL1). We have shown that genes related to chondrogenesis and bone differentiation were downregulated in the GP of FHS-affected young broilers. Therefore, these findings evince that candidate genes pointed out in our study are probably related to the onset of FHS in broilers.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de SP, Piracicaba, Brazil
| | | | | | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade do Estado de SC, UDESC-Oeste, Chapecó, Brazil
- *Correspondence: Mônica Corrêa Ledur,
| |
Collapse
|
15
|
Cai Z, Long T, Zhao Y, Lin R, Wang Y. Epigenetic Regulation in Knee Osteoarthritis. Front Genet 2022; 13:942982. [PMID: 35873487 PMCID: PMC9304589 DOI: 10.3389/fgene.2022.942982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complicated disease with both hereditary and environmental causes. Despite an increase in reports of possible OA risk loci, it has become clear that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by environmental influences and result in transcriptional alterations, may have a role in OA pathogenesis. The majority of recent research on the epigenetics of OA has been focused on DNA methylation, histone modification, and non-coding RNAs. However, this study will explore epigenetic regulation in OA at the present stage. How genetics, environmental variables, and epigenetics interact will be researched, shedding light for future studies. Their possible interaction and control processes open up new avenues for the development of innovative osteoarthritis treatment and diagnostic techniques.
Collapse
Affiliation(s)
| | - Teng Long
- *Correspondence: Teng Long, ; You Wang,
| | | | | | - You Wang
- *Correspondence: Teng Long, ; You Wang,
| |
Collapse
|
16
|
Li J, Yang X, Chu Q, Xie L, Ding Y, Xu X, Timko MP, Fan L. Multi-omics molecular biomarkers and database of osteoarthritis. Database (Oxford) 2022; 2022:6631109. [PMID: 35788653 PMCID: PMC9254640 DOI: 10.1093/database/baac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/05/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis in the adult population and is a leading cause of disability. OA-related genetic loci may play an important role in clinical diagnosis and disease progression. With the rapid development of diverse technologies and omics methods, many OA-related public data sets have been accumulated. Here, we retrieved a diverse set of omics experimental results from 159 publications, including genome-wide association study, differentially expressed genes and differential methylation regions, and 2405 classified OA-related gene markers. Meanwhile, based on recent single-cell RNA-seq data from different joints, 5459 cell-type gene markers of joints were collected. The information has been integrated into an online database named OAomics and molecular biomarkers (OAOB). The database (http://ibi.zju.edu.cn/oaobdb/) provides a web server for OA marker genes, omics features and so on. To our knowledge, this is the first database of molecular biomarkers for OA.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Xiaotian Yang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjuan Xie
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuwen Ding
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoxu Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael P Timko
- Department of Biology, University of Virginia, and Department of Public Health Sciences, UVA School of Medicine, Charlottesville, VA 22904, USA
| | - Longjiang Fan
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
18
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100208. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called 'wear and tear'. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis 2021; 12:1015. [PMID: 34711812 PMCID: PMC8553765 DOI: 10.1038/s41419-021-04322-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.
Collapse
|
20
|
Singh P, Wang M, Mukherjee P, Lessard SG, Pannellini T, Carballo CB, Rodeo SA, Goldring MB, Otero M. Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Sci Rep 2021; 11:21107. [PMID: 34702854 PMCID: PMC8548547 DOI: 10.1038/s41598-021-00269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.
Collapse
Affiliation(s)
- Purva Singh
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Mengying Wang
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | | | - Samantha G Lessard
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Tania Pannellini
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Camila B Carballo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mary B Goldring
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Miguel Otero
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA. .,Weill Cornell Medicine, New York, NY, 10021, USA. .,Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, HSS Research Institute, Room 603, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Housman G, Quillen EE, Stone AC. An evolutionary perspective of DNA methylation patterns in skeletal tissues using a baboon model of osteoarthritis. J Orthop Res 2021; 39:2260-2269. [PMID: 33325553 PMCID: PMC8206284 DOI: 10.1002/jor.24957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Epigenetic factors, such as DNA methylation, play an influential role in the development of the degenerative joint disease osteoarthritis (OA). These molecular mechanisms have been heavily studied in humans, and although OA affects several other animals in addition to humans, few efforts have taken an evolutionary perspective. This study explores the evolution of OA epigenetics by assessing the relationship between DNA methylation variation and knee OA development in baboons (Papio spp.) and by comparing these findings to human OA epigenetic associations. Genome-wide DNA methylation patterns were identified in bone and cartilage of the right distal femora from 56 pedigreed, adult baboons (28 with and 28 without knee OA) using the Illumina Infinium MethylationEPIC BeadChip. Several significantly differentially methylated positions (DMPs) and regions were found between tissue types. Substantial OA-related differential methylation was also identified in cartilage, but not in bone, suggesting that cartilage epigenetics may be more influential in OA than bone epigenetics. Additionally, some genes containing OA-related DMPs overlap with and display methylation patterns similar to those previously identified in human OA, revealing a mixture of evolutionarily conserved and divergent OA-related methylation patterns in primates. Overall, these findings reinforce the current etiological perspectives of OA and enhance our evolutionary understanding of epigenetic mechanisms associated with OA. This study further establishes baboons as a valuable nonhuman primate model of OA, and continued investigations in baboons will help to disentangle the molecular mechanisms contributing to OA and their evolutionary histories.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,Corresponding author: Genevieve Housman, Section of Genetic Medicine, University of Chicago, 920 East 58th Street, CLSC 317, Chicago, IL 60637, USA. Phone: 574-206-6564. Fax: 773-834-8470.
| | - Ellen E. Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
23
|
Singh P, Lessard SG, Mukherjee P, Rourke B, Otero M. Changes in DNA methylation accompany changes in gene expression during chondrocyte hypertrophic differentiation in vitro. Ann N Y Acad Sci 2020; 1490:42-56. [PMID: 32978775 DOI: 10.1111/nyas.14494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
During osteoarthritis (OA), articular chondrocytes undergo phenotypic changes that resemble developmental patterns characteristic of growth plate chondrocytes. These phenotypic alterations lead to a hypertrophy-like phenotype characterized by altered production of extracellular matrix constituents and increased collagenase activity, which, in turn, results in cartilage destruction in OA disease. Recent studies have shown that the phenotypic instability and dysregulated gene expression in OA are associated with changes in DNA methylation patterns. Subsequent efforts have aimed to identify changes in DNA methylation with functional impact in OA disease, to potentially uncover therapeutic targets. Here, we paired an in vitro 3D/pellet culture system that mimics chondrocyte hypertrophy with RNA sequencing (RNA-Seq) and enhanced reduced representation of bisulfite sequencing (ERRBS) to identify transcriptomic and epigenomic changes in murine primary articular chondrocytes undergoing hypertrophy-like differentiation. We identified hypertrophy-associated changes in DNA methylation patterns in vitro. Integration of RNA-Seq and ERRBS datasets identified associations between changes in methylation and gene expression. Our integrative analyses showed that hypertrophic differentiation of articular chondrocytes is accompanied by transcriptomic and epigenomic changes in vitro. We believe that our integrative approaches have the potential to uncover new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Purva Singh
- Research, Hospital for Special Surgery, HSS Research Institute, New York, New York
| | - Samantha G Lessard
- Research, Hospital for Special Surgery, HSS Research Institute, New York, New York
| | - Piali Mukherjee
- Epigenomics Core Facility, Weill Cornell Medicine, New York, New York
| | - Brennan Rourke
- Research, Hospital for Special Surgery, HSS Research Institute, New York, New York
| | - Miguel Otero
- Research, Hospital for Special Surgery, HSS Research Institute, New York, New York
| |
Collapse
|
24
|
Li P, Ning Y, Wang W, Guo X, Poulet B, Wang X, Wen Y, Han J, Hao J, Liang X, Liu L, Du Y, Cheng B, Cheng S, Zhang L, Ma M, Qi X, Liang C, Wu C, Wang S, Zhao H, Zhao G, Goldring MB, Zhang F, Xu P. The integrative analysis of DNA methylation and mRNA expression profiles confirmed the role of selenocompound metabolism pathway in Kashin-Beck disease. Cell Cycle 2020; 19:2351-2366. [PMID: 32816579 DOI: 10.1080/15384101.2020.1807665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Kashin-Beck disease (KBD) is an endemic chronic osteochondropathy. The etiology of KBD remains unknown. In this study, we conducted an integrative analysis of genome-wide DNA methylation and mRNA expression profiles between KBD and normal controls to identify novel candidate genes and pathways for KBD. Articular cartilage samples from 17 grade III KBD patients and 17 healthy controls were used in this study. DNA methylation profiling of knee cartilage and mRNA expression profile data were obtained from our previous studies. InCroMAP was performed to integrative analysis of genome-wide DNA methylation profiles and mRNA expression profiles. Gene ontology (GO) enrichment analysis was conducted by online DAVID 6.7. The quantitative real-time polymerase chain reaction (qPCR), Western blot, immunohistochemistry (IHC), and lentiviral vector transfection were used to validate one of the identified pathways. We identified 298 common genes (such as COL4A1, HOXA13, TNFAIP6 and TGFBI), 36 GO terms (including collagen function, skeletal system development, growth factor), and 32 KEGG pathways associated with KBD (including Selenocompound metabolism pathway, PI3K-Akt signaling pathway, and TGF-beta signaling pathway). Our results suggest the dysfunction of many genes and pathways implicated in the pathogenesis of KBD, most importantly, both the integrative analysis and in vitro study in KBD cartilage highlighted the importance of selenocompound metabolism pathway in the pathogenesis of KBD for the first time.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Weizhuo Wang
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Blandine Poulet
- Institute of Ageing and Chronic Diseases, University of Liverpool , Liverpool, UK
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Jing Han
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Jingcan Hao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Hongmou Zhao
- Department of Joint Surgery, The Red Cross Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Guanghui Zhao
- Department of Joint Surgery, The Red Cross Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Mary B Goldring
- Hospital for Special Surgery, Weill College of Medicine of Cornell University , New York, NY, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University , Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, The Red Cross Hospital of Xi'an Jiaotong University , Xi'an, China
| |
Collapse
|
25
|
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep 2020; 10:13477. [PMID: 32778777 PMCID: PMC7418027 DOI: 10.1038/s41598-020-68302-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
Collapse
|
26
|
Łęgosz P, Sarzyńska S, Pulik Ł, Kotrych D, Małdyk P. The complexity of molecular processes in osteoarthritis of the knee joint. Open Med (Wars) 2020; 15:366-375. [PMID: 33335997 PMCID: PMC7711860 DOI: 10.1515/med-2020-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a common medical problem leading to chronic pain and physical disability among the world's population. Analyzing the molecular background of the degenerative arthritis creates the potential for developing novel targeted methods of treatment. Fifty samples of meniscus, anterior cruciate ligaments (ACLs) and articular surfaces were collected from patients who underwent total knee arthroplasty in 2016. Enzyme-linked immunosorbent assay was used to assess the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF), transforming growth factor-β1 and LUMINEX for MMP-1, MMP-2, MMP-3, MMP-9 and MMP-13. The collected data were correlated with the severity of radiological OA, demographic data and clinical scales. Strong positive correlations in the concentration of metalloproteinases and proinflammatory cytokines, TNF-α (MMP-2 and MMP-13) and IL-6 (MMP-13), were identified. MMP-13 had a positive correlation with the concentration of MMP-1, MMP-2 and MMP-9. Negative correlation coefficient exists between clinical conditions measured with the Western Ontario and McMaster Universities Osteoarthritis Index scale and the level of TNF-α and MMP-1. The TNF-α concentration was lower in the cartilage of the articular surface among patients who took non-steroidal anti-inflammatory drugs periodically. The decrease in MMP-2 in the cartilage of the articular surface corresponded with the severity of radiological OA on the Kellgren-Lawrence scale. Current treatment methods for OA do not stop disease progression. Identifying signaling pathways and molecular particles engaged in OA and their correlations with the patient's clinical condition brings new therapeutic possibilities.
Collapse
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopaedics and Traumatology,
1st Faculty of Medicine, Medical
University of Warsaw, Warsaw, Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology,
1st Faculty of Medicine, Medical
University of Warsaw, Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology,
1st Faculty of Medicine, Medical
University of Warsaw, Warsaw, Poland
| | - Daniel Kotrych
- Department of Orthopaedics, Traumatology and
Orthopaedic Oncology, Pomeranian Medical University in
Szczecin, Szczecin, Poland
| | - Paweł Małdyk
- Department of Orthopaedics and Traumatology,
1st Faculty of Medicine, Medical
University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Smeriglio P, Grandi FC, Davala S, Masarapu V, Indelli PF, Goodman SB, Bhutani N. Inhibition of TET1 prevents the development of osteoarthritis and reveals the 5hmC landscape that orchestrates pathogenesis. Sci Transl Med 2020; 12:12/539/eaax2332. [DOI: 10.1126/scitranslmed.aax2332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the joint, which results in pain, loss of mobility, and, eventually, joint replacement. Currently, no disease-modifying drugs exist, partly because of the multiple levels at which cartilage homeostasis is disrupted. Recent studies have highlighted the importance of epigenetic dysregulation in OA, sparking interest in the epigenetic modulation for this disease. In our previous work, we characterized a fivefold increase in cytosine hydroxymethylation (5hmC), an oxidized derivative of cytosine methylation (5mC) associated with gene activation, accumulating at OA-associated genes. To test the role of 5hmC in OA, here, we used a mouse model of surgically induced OA and found that OA onset was accompanied by a gain of ~40,000 differentially hydroxymethylated sites before the notable histological appearance of disease. We demonstrated that ten-eleven-translocation enzyme 1 (TET1) mediates the 5hmC deposition because 98% of sites enriched for 5hmC in OA were lost in Tet1−/− mice. Loss of TET1-mediated 5hmC protected the Tet1−/− mice from OA development, including degeneration of the cartilage surface and osteophyte formation, by directly preventing the activation of multiple OA pathways. Loss of TET1 in human OA chondrocytes reduced the expression of the matrix metalloproteinases MMP3 and MMP13 and multiple inflammatory cytokines. Intra-articular injections of a dioxygenases inhibitor, 2-hydroxyglutarate, on mice after surgical induction of OA stalled disease progression. Treatment of human OA chondrocytes with the same inhibitor also phenocopied TET1 loss. Collectively, these data demonstrate that TET1-mediated 5hmC deposition regulates multiple OA pathways and can be modulated for therapeutic intervention.
Collapse
Affiliation(s)
- Piera Smeriglio
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fiorella C. Grandi
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Venkata Masarapu
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pier Francesco Indelli
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Housman G, Quillen EE, Stone AC. Intraspecific and interspecific investigations of skeletal DNA methylation and femur morphology in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:34-49. [PMID: 32170728 DOI: 10.1002/ajpa.24041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Epigenetic mechanisms influence the development and maintenance of complex phenotypes and may also contribute to the evolution of species-specific phenotypes. With respect to skeletal traits, little is known about the gene regulation underlying these hard tissues or how tissue-specific patterns are associated with bone morphology or vary among species. To begin exploring these topics, this study evaluates one epigenetic mechanism, DNA methylation, in skeletal tissues from five nonhuman primate species which display anatomical and locomotor differences representative of their phylogenetic groups. MATERIALS AND METHODS First, we test whether intraspecific variation in skeletal DNA methylation is associated with intraspecific variation in femur morphology. Second, we identify interspecific differences in DNA methylation and assess whether these lineage-specific patterns may have contributed to species-specific morphologies. Specifically, we use the Illumina Infinium MethylationEPIC BeadChip to identify DNA methylation patterns in femur trabecular bone from baboons (n = 28), macaques (n = 10), vervets (n = 10), chimpanzees (n = 4), and marmosets (n = 6). RESULTS Significant differentially methylated positions (DMPs) were associated with a subset of morphological variants, but these likely have small biological effects and may be confounded by other variables associated with morphological variation. Conversely, several species-specific DMPs were identified, and these are found in genes enriched for functions associated with complex skeletal traits. DISCUSSION Overall, these findings reveal that while intraspecific epigenetic variation is not readily associated with skeletal morphology differences, some interspecific epigenetic differences in skeletal tissues exist and may contribute to evolutionarily distinct phenotypes. This work forms a foundation for future explorations of gene regulation and skeletal trait evolution in primates.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Ellen E Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
29
|
Ye C, Hou W, Chen M, Lu J, Chen E, Tang L, Hang K, Ding Q, Li Y, Zhang W, He R. IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss. Cell Prolif 2019; 53:e12752. [PMID: 31889368 PMCID: PMC7046308 DOI: 10.1111/cpr.12752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis. METHODS We used both in vitro and in vivo studies to investigate the effects of IGFBP7 on RANKL-induced osteoclastogenesis and osteoporosis, together with the underlying molecular mechanisms of these processes. RESULTS We show that IGFBP7 inhibited receptor activation of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis, F-actin ring formation and bone resorption, which was confirmed by using recombinant IGFBP7 protein, lentivirus and siRNA. The NF-κB signalling pathway was inhibited during this process. Moreover, in a mouse ovariectomy-induced osteoporosis model, IGFBP7 treatment attenuated osteoporotic bone loss by inhibiting osteoclast activity. CONCLUSIONS Taken together, these findings show that IGFBP7 suppressed osteoclastogenesis in vitro and in vivo and suggest that IGFBP7 is a negative regulator of osteoclastogenesis and plays a protective role in osteoporosis. These novel insights into IGFBP7 may facilitate the development of potential treatment strategies for oestrogen deficiency-induced osteoporosis and other osteoclast-related disorders.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Qianhai Ding
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yan Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
M Dunn C, Nevitt MC, Lynch JA, Jeffries MA. A pilot study of peripheral blood DNA methylation models as predictors of knee osteoarthritis radiographic progression: data from the Osteoarthritis Initiative (OAI). Sci Rep 2019; 9:16880. [PMID: 31727952 PMCID: PMC6856188 DOI: 10.1038/s41598-019-53298-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Knee osteoarthritis (OA) is a leading cause of chronic disability worldwide, but no diagnostic or prognostic biomarkers are available. Increasing evidence supports epigenetic dysregulation as a contributor to OA pathogenesis. In this pilot study, we investigated epigenetic patterns in peripheral blood mononuclear cells (PBMCs) as models to predict future radiographic progression in OA patients enrolled in the longitudinal Osteoarthritis Initiative (OAI) study. PBMC DNA was analyzed from baseline OAI visits in 58 future radiographic progressors (joint space narrowing at 24 months, sustained at 48 months) compared to 58 non-progressors. DNA methylation was quantified via Illumina microarrays and beta- and M-values were used to generate linear classification models. Data were randomly split into a 60% development and 40% validation subsets, models developed and tested, and cross-validated in a total of 40 cycles. M-value based models outperformed beta-value based models (ROC-AUC 0.81 ± 0.01 vs. 0.73 ± 0.02, mean ± SEM, comparison p = 0.002), with a mean classification accuracy of 73 ± 1% (mean ± SEM) for M- and 69 ± 1% for beta-based models. Adjusting for covariates did not significantly alter model performance. Our findings suggest that PBMC DNA methylation-based models may be useful as biomarkers of OA progression and warrant additional evaluation in larger patient cohorts.
Collapse
Affiliation(s)
- Christopher M Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA
| | | | - John A Lynch
- University of California San Francisco, San Francisco, CA, USA
| | - Matlock A Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA.
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA.
| |
Collapse
|
31
|
Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5:e001037. [PMID: 31673418 PMCID: PMC6803002 DOI: 10.1136/rmdopen-2019-001037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
DNA of gut microbiota can be found in synovium of osteoarthritis and rheumatoid arthritis. This finding could result from the translocation of still alive bacteria from gut to joints through blood, since the diversified dormant microbiota of healthy human blood can be transiently resuscitated in vitro. The recent finding of gut microbiome in human cartilage, which differed between osteoarthritis and controls, suggests that a similar trafficking of dead or alive bacteria from gut microbiota physiologically occurs between gut and epiphysial bone marrow. Subchondral microbiota could enhance cartilage healing and transform components of deep cartilage matrix in metabolites with immunosuppressive properties. The differences of microbiome observed between hip and knee cartilage, either in osteoarthritis or controls, might be the counterpart of subtle differences in chondrocyte metabolism, themselves in line with differences in DNA methylation according to joints. Although bacteria theoretically cannot reach chondrocytes from the surface of intact cartilage, some bacteria enter the vascular channels of the epiphysial growth cartilage in young animals, whereas others can infect chondrocytes in vitro. In osteoarthritis, the early osteochondral plate angiogenesis may further enhance the ability of microbiota to locate close to the deeper layers of cartilage, and this might lead to focal dysbiosis, low-grade inflammation, cartilage degradation, epigenetic changes in chondrocytes and worsening of osteoarthritis. More studies on cartilage across different ethnic groups, weights, and according to age, are needed, to confirm the silent presence of gut microbiota close to human cartilage and better understand its physiologic and pathogenic significance.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Jérémie Sellam
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| | - Yves Maugars
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Francis Berenbaum
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| |
Collapse
|
32
|
Housman G, Havill LM, Quillen EE, Comuzzie AG, Stone AC. Assessment of DNA Methylation Patterns in the Bone and Cartilage of a Nonhuman Primate Model of Osteoarthritis. Cartilage 2019; 10:335-345. [PMID: 29457464 PMCID: PMC6585300 DOI: 10.1177/1947603518759173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) affects humans and several other animals. Thus, the mechanisms underlying this disorder, such as specific skeletal tissue DNA methylation patterns, may be evolutionary conserved. However, associations between methylation and OA have not been readily studied in nonhuman animals. Baboons serve as important models of disease and develop OA at rates similar to those in humans. Therefore, this study investigated the associations between methylation and OA in baboons to advance the evolutionary understanding of OA. DESIGN Trabecular bone and cartilage was collected from the medial condyles of adult female baboon femora, 5 with and 5 without knee OA. The Infinium HumanMethylation450 BeadChip (450K array) was used to identify DNA methylation patterns in these tissues. RESULTS Approximately 44% of the 450K array probes reliably align to the baboon genome, contain a CpG site of interest, and maintain a wide distribution throughout the genome. Of the 2 filtering methods tested, both identified significantly differentially methylated positions (DMPs) between healthy and OA individuals in cartilage tissues, and some of these patterns overlap with those previously identified in humans. Conversely, no DMPs were found between tissue types or between disease states in bone tissues. CONCLUSIONS Overall, the 450K array can be used to measure genome-wide DNA methylation in baboon tissues and identify significant associations with complex traits. The results of this study indicate that some DNA methylation patterns associated with OA are evolutionarily conserved, while others are not. This warrants further investigation in a larger and more phylogenetically diverse sample set.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social
Change, Arizona State University, Tempe, AZ, USA,Center for Evolution and Medicine,
Arizona State University, Tempe, AZ, USA,Genevieve Housman, Section of Genetic
Medicine, University of Chicago, 920 East 58th Street, CLSC 317, Chicago, IL
60637, USA.
| | - Lorena M. Havill
- Southwest National Primate Research
Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ellen E. Quillen
- Department of Genetics, Texas Biomedical
Research Institute, San Antonio, TX, USA
| | - Anthony G. Comuzzie
- Department of Genetics, Texas Biomedical
Research Institute, San Antonio, TX, USA
| | - Anne C. Stone
- School of Human Evolution and Social
Change, Arizona State University, Tempe, AZ, USA,Center for Evolution and Medicine,
Arizona State University, Tempe, AZ, USA
| |
Collapse
|
33
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Transcriptomic Profile of Chondrocytes in Osteoarthritic Knee Using Next-Generation Sequencing and Bioinformatics. J Clin Med 2018; 7:E535. [PMID: 30544699 PMCID: PMC6306862 DOI: 10.3390/jcm7120535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
The phenotypic change of chondrocytes and the interplay between cartilage and subchondral bone in osteoarthritis (OA) has received much attention. Structural changes with nerve ingrowth and vascular penetration within OA cartilage may contribute to arthritic joint pain. The aim of this study was to identify differentially expressed genes and potential miRNA regulations in OA knee chondrocytes through next-generation sequencing and bioinformatics analysis. Results suggested the involvement of SMAD family member 3 (SMAD3) and Wnt family member 5A (WNT5A) in the growth of blood vessels and cell aggregation, representing features of cartilage damage in OA. Additionally, 26 dysregulated genes with potential miRNA⁻mRNA interactions were identified in OA knee chondrocytes. Myristoylated alanine rich protein kinase C substrate (MARCKS), epiregulin (EREG), leucine rich repeat containing 15 (LRRC15), and phosphodiesterase 3A (PDE3A) expression patterns were similar among related OA cartilage, subchondral bone and synovial tissue arrays in Gene Expression Omnibus database. The Ingenuity Pathway Analysis identified MARCKS to be associated with the outgrowth of neurite, and novel miRNA regulations were proposed to play critical roles in the pathogenesis of the altered OA knee joint microenvironment. The current findings suggest new perspectives in studying novel genes potentially contributing to arthritic joint pain in knee OA, which may assist in finding new targets for OA treatment.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms modify gene activity in a stable manner without altering DNA sequence. They participate in the adaptation to the environment, as well as in the pathogenesis of common complex disorders. We provide an overview of the role of epigenetic mechanisms in bone biology and pathology. RECENT FINDINGS Extensive evidence supports the involvement of epigenetic mechanisms (DNA methylation, post-translational modifications of histone tails, and non-coding RNAs) in the differentiation of bone cells and mechanotransduction. A variety of epigenetic abnormalities have been described in patients with osteoporosis, osteoarthritis, and skeletal cancers, but their actual pathogenetic roles are still unclear. A few drugs targeting epigenetic marks have been approved for neoplastic disorders, and many more are being actively investigated. Advances in the field of epigenetics underscore the complex interactions between genetic and environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to explain the mechanisms by which prenatal and post-natal external factors, from nutrition to psychological stress, impact our body and influence the risk of later disease.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | | | - Laura López-Delgado
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain.
| |
Collapse
|
35
|
Sun H, Zhao X, Zhang C, Zhang Z, Lun J, Liao W, Zhang Z. MiR-455-3p inhibits the degenerate process of chondrogenic differentiation through modification of DNA methylation. Cell Death Dis 2018; 9:537. [PMID: 29748607 PMCID: PMC5945650 DOI: 10.1038/s41419-018-0565-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
The aim of this work was to determine whether miR-455-3p regulates DNA methylation during chondrogenic differentiation of hMSCs. The expression of miR-455-3p and de novo methyltransferase DNMT3A was assessed in micromass culture of hBMSCs, which induced chondrogenic differentiation in vitro, and in E16.5 mice in vivo. A luciferase reporter assay was used to confirm whether miR-455-3p directly targets DNMT3A by interaction with the 3′-UTR. Using an Illumina Infinium Methylation EPIC microarray, genome-wide DNA methylation of hBMSCs with or without overexpressed miR-455-3p was examined for 28 days during induced chondrogenic differentiation. Here, we showed that miR-455-3p was more expressed during the middle stage of hBMSC chondrogenic differentiation, and less expressed in the late stage. DNMT3A was less expressed in the middle stage and more expressed in the late stage, and was also more expressed in the palms of miR-455-3p deletion mice compared to those of wild-type mice. The luciferase reporter assay demonstrated that miR-455-3p directly targets DNMT3A 3′-UTR. miR-455-3p overexpression inhibits the degenerate process during chondrogenic differentiation, while deletion of miR-455-3p in mice accelerated cartilage degeneration. Genome-wide DNA methylation analysis showed miR-455-3p overexpression regulates DNA methylation of cartilage-specific genes. GO analysis revealed PI3K-Akt signaling pathway was most hypomethylated. Our data show that miR-455-3p can regulate hMSC chondrogenic differentiation by affecting DNA methylation. Overexpression of miR-455-3p and DNA methylation inhibitors can thus potentially be utilized to optimize chondrogenic differentiation.
Collapse
Affiliation(s)
- Hao Sun
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Xiaoyi Zhao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Ziji Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Jiayong Lun
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. Detection of genetic variants between different Polish Landrace and Puławska pigs by means of RNA-seq analysis. Anim Genet 2018; 49:215-225. [PMID: 29635698 DOI: 10.1111/age.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Variant calling analysis based on RNA sequencing data provides information about gene variants. RNA-seq is cheaper and faster than is DNA sequencing. However, it requires individual hard filters during data processing due to post-transcriptional modifications such as splicing and RNA editing. In the present study, RNA-seq transcriptome data on two Polish pig breeds (Puławska, PUL, n = 8, and Polish Landrace, PL, n = 8) were included. The pig breeds are significantly different with regard to meat qualities such as texture, water exudation, growth traits and fat content in carcasses. A total of 2451 significant mutations were identified by a chi square tests, and functional analysis was carried out using Panther, KEGG and Kobas. Interesting missense gene variants and mutations located in regulatory regions were found in a few genes related to fatty acid metabolism and lipid storage such as ACSL5, ALDH3A2, FADS1, SCD, PLA2G12A and ATGL. A validation of mutational influences on pig traits was performed for ALDH3A2, ATGL, PLA2G12A and MYOM1 variants using association analysis including 215 pigs of the PL and PUL breeds. The ALDH3A2ENSSSCT00000019636.2:c.470T>C polymorphism was found to affect the weight of the ham and loin eye area. In turn, an ENSSSCT00000004091.2:c.2836G>A MYOM1 mutation, which could be implicated in myofibrillar network organisation, had an effect on meatiness and loin texture parameters. The study aimed to estimate the usefulness of RNA-seq results for a purpose other than differentially expressed gene analysis. The analysis performed indicated interesting gene variants that could be used in the future as markers during selection.
Collapse
Affiliation(s)
- K Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - K Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - K Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - M Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Epigenomics has emerged as a key player in our rapidly evolving understanding of osteoarthritis. Historical studies implicated epigenetic alterations, particularly DNA methylation, in OA pathogenesis; however, recent technological advances have resulted in numerous epigenome-wide studies examining in detail epigenetic modifications in OA. The purpose of this article is to introduce basic concepts in epigenetics and their recent applications to the study of osteoarthritis development and progression. RECENT FINDINGS Epigenetics describes three major phenomena: DNA modification via methylation, histone sidechain modifications, and short noncoding RNA sequences which work in concert to regulate gene transcription in a heritable fashion. Cartilage has been the most widely studied tissue in OA, and differential methylation of genes involved in inflammation, cell cycle, TGFβ, and HOX genes have been confirmed several times. Bone studies suggest similar findings, and the intriguing possibility of epigenetic changes in subchondral bone during many OA processes. Multiple studies have demonstrated the involvement of certain noncoding RNAs, particularly miR-140, in OA development via modulation of key catabolic factors. Although much work has been done, much is still unknown. Future epigenomic studies will no doubt continue to widen our understanding of extraarticular tissues and OA pathogenesis, and studies in animal models may offer glimpses into epigenome alterations in the earliest stages of OA.
Collapse
|
38
|
Zhang W, Chen E, Chen M, Ye C, Qi Y, Ding Q, Li H, Xue D, Gao X, Pan Z. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway. FASEB J 2018; 32:2280-2291. [PMID: 29242275 DOI: 10.1096/fj.201700998rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7), a low-affinity IGF binder, may play an important role in bone metabolism. However, its function in osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we investigated its effects on osteogenic differentiation. Overexpression of IGFBP7 enhanced the expression of osteo-specific genes and proteins, and IGFBP7 knockdown decreased osteogenesis-specific markers. More mineral deposits and higher alkaline phosphatase activity were observed after the up-regulation of IGFBP7. Moreover, β-catenin levels were up-regulated by the overexpression of IGFBP7 or the addition of extracellular IGFBP7 protein and were reduced by the depletion of IGFBP7. The increase in osteogenic differentiation due to the overexpression of IGFBP7 was partially decreased by specific Wnt/β-catenin signaling inhibitors. Using a rat tibial osteotomy model, a sheet of IGFBP7-overexpressing BMSCs improved bone healing, as demonstrated by imaging, biomechanical, and histologic analyses. Taken together, these findings indicate that IGFBP7 regulates the osteogenic differentiation of BMSCs partly via the Wnt/β-catenin signaling pathway.-Zhang, W., Chen, E., Chen, M., Ye, C., Qi, Y., Ding, Q., Li, H., Xue, D., Gao, X., Pan, Z. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Qianhai Ding
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Hang Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Bone remodeling is a diverse field of study with many direct clinical applications; past studies have implicated epigenetic alterations as key factors of both normal bone tissue development and function and diseases of pathologic bone remodeling. The purpose of this article is to review the most important recent advances that link epigenetic changes to the bone remodeling field. RECENT FINDINGS Epigenetics describes three major phenomena: DNA modification via methylation, histone side chain modifications, and short non-coding RNA sequences which work in concert to regulate gene transcription in a heritable fashion. Recent findings include the role of DNA methylation changes of Wnt, RANK/RANKL, and other key signaling pathways, epigenetic regulation of osteoblast and osteoclast differentiation, and others. Although much work has been done, much is still unknown. Future epigenome-wide studies should focus on extending the tissue coverage, integrating multiple epigenetic analyses with transcriptome data, and working to uncover epigenetic changes linked with early events in aberrant bone remodeling.
Collapse
Affiliation(s)
- Ali Husain
- Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matlock A Jeffries
- Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th St., Laboratory MC400, Oklahoma City, OK, USA.
| |
Collapse
|
40
|
Lian WS, Wu RW, Lee MS, Chen YS, Sun YC, Wu SL, Ke HJ, Ko JY, Wang FS. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4. J Mol Med (Berl) 2017; 95:1327-1340. [PMID: 28884332 DOI: 10.1007/s00109-017-1583-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/21/2017] [Accepted: 08/20/2017] [Indexed: 01/06/2023]
Abstract
Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, β-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3'-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA. KEY MESSAGES Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4. The SMSCs showed high proliferation and osteogenic and chondrogenic potencies. miR-29a regulated osteogenesis of the SMSCs through modulation of HDAC4 and Wnt3a. A high osteogenic potency of the SMSCs existed in mice overexpressing miR-29a in bone. Aberrant osteogenesis in SMSCs provides a new insight to subchondral damage in OA.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ren-Wen Wu
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shing-Long Wu
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan. .,Core Laboratory for Phenomics and Diagnostics, Department of Pediatrics, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
41
|
Lu J, Ji ML, Zhang XJ, Shi PL, Wu H, Wang C, Im HJ. MicroRNA-218-5p as a Potential Target for the Treatment of Human Osteoarthritis. Mol Ther 2017; 25:2676-2688. [PMID: 28919376 DOI: 10.1016/j.ymthe.2017.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence suggests that dysregulated microRNAs (miRNAs) play a pivotal role in osteoarthritis (OA), but the role of specific miRNAs remains unclear. Accordingly, we identified OA-associated miRNAs and functional validation of results. Here, we demonstrate that miR-218-5p is significantly upregulated in moderate and severe OA and correlates with scores on a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-218-5p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28/I2 cells, PIK3C2A mRNA was identified as a target of miR-218-5p. Downregulation of miR-218-5p dramatically promoted expression of PIK3C2A and its downstream target proteins, such as Akt, mTOR, S6, and 4EBP1. More importantly, OA mice exposed to a miR-218-5p inhibitor were protected from cartilage degradation and had reduced proteoglycan loss and reduced loss of articular chondrocyte cellularity compared with control mice. miR-218-5p is a novel inducer of cartilage destruction via modulation of PI3K/Akt/mTOR signaling. Inhibition of endogenous miR-218-5p expression/activity appears to be an attractive approach to OA treatment.
Collapse
Affiliation(s)
- Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Ming-Liang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xue-Jun Zhang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pei-Liang Shi
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Hao Wu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chen Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hee-Jeong Im
- Jesse Brown Veterans Affairs Medical Center at Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
42
|
Angiolilli C, Baeten DL, Radstake TR, Reedquist KA. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 2017; 9:447-461. [DOI: 10.2217/epi-2016-0136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the idea that aberrancies in epigenetic processes contribute to the onset and progression of human immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Epigenetic regulators of histone tail modifications play a role in chromatin accessibility and transcriptional responses to inflammatory stimuli. Among these, histone deacetylases (HDACs) regulate the acetylation status of histones and nonhistone proteins, essential for immune responses. Broad-spectrum HDAC inhibitors are well-known anti-inflammatory agents and reduce disease severity in animal models of arthritis; however, selective HDAC inhibitors remain poorly studied. In this review, we describe emerging findings regarding the aberrant acetyl code in RA and other rheumatic disorders which may help identify not only novel diagnostic and prognostic clinical biomarkers for RA, but also new targets for epigenetic pharmacological applications.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R Radstake
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kris A Reedquist
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
43
|
The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology 2017; 18:549-559. [PMID: 28352958 PMCID: PMC5514215 DOI: 10.1007/s10522-017-9695-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
In this review, we summarize current knowledge regarding the epigenetics of age-related diseases, focusing on those studies that have described DNA methylation landscape in cardio-vascular diseases, musculoskeletal function and frailty. We stress the importance of adopting the conceptual framework of “geroscience”, which starts from the observation that advanced age is the major risk factor for several of these pathologies and aims at identifying the mechanistic links between aging and age-related diseases. DNA methylation undergoes a profound remodeling during aging, which includes global hypomethylation of the genome, hypermethylation at specific loci and an increase in inter-individual variation and in stochastic changes of DNA methylation values. These epigenetic modifications can be an important contributor to the development of age-related diseases, but our understanding on the complex relationship between the epigenetic signatures of aging and age-related disease is still poor. The most relevant results in this field come from the use of the so called “epigenetics clocks” in cohorts of subjects affected by age-related diseases. We report these studies in final section of this review.
Collapse
|
44
|
Hasei J, Teramura T, Takehara T, Onodera Y, Horii T, Olmer M, Hatada I, Fukuda K, Ozaki T, Lotz MK, Asahara H. TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes. Sci Rep 2017; 7:42990. [PMID: 28220902 PMCID: PMC5318945 DOI: 10.1038/srep42990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
The objective was to investigate the levels of TWIST1 in normal and OA cartilage and examine its role in regulating gene expression in chondrocytes. Human cartilage tissues and chondrocytes were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee arthroplasty. TWIST1 expression was increased in human OA knee cartilage compared to normal knee cartilage. TWIST1 induced matrix metalloproteinase 3 (MMP3) expression without direct binding to MMP3 promoter and increased the 5-hydroxymethylcytosine (5hmC) level at the MMP3 promoter. The effect of TWIST1 on expression of TET family (TET1, 2 and 3) was measured in stable TWIST1 transfected TC28 cells, and TET1 expression was up-regulated. TWIST1 dependent upregulation of Mmp3 expression was suppressed in Tet triple KO fibroblast derived from mouse ES cells. Increased TWIST1 expression is a feature of OA-affected cartilage. We identified a novel mechanism of catabolic reaction where TWIST1 up-regulates MMP3 expression by enriching 5hmC levels at the MMP3 promoter via TET1 induction. These findings implicate TWIST1 as an important factor regulating OA related gene expression. Clarifying epigenetic mechanisms of 5hmC induced by TWIST1 is a critical molecule to understanding OA pathogenesis.
Collapse
Affiliation(s)
- Joe Hasei
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takeshi Teramura
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Merissa Olmer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Faculty of Medicine, Osaka, Japan
- Department of Rehabilitation Medicine, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Toshifumi Ozaki
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hiroshi Asahara
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Blaney Davidson EN, van Caam APM, van der Kraan PM. Osteoarthritis year in review 2016: biology. Osteoarthritis Cartilage 2017; 25:175-180. [PMID: 28100421 DOI: 10.1016/j.joca.2016.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
This review highlights a selection of literature in the area of osteoarthritis biology published between the 2015 and 2016 Osteoarthritis Research Society International (OARSI) World Congress. Highlights were selected from a pubmed search covering cartilage, bone, inflammation and pain. A personal selection was made based, amongst other things, on topics presented during the 2015 conference. This covers circadian rhythm, TGF-β signaling, autophagy, SIRT6, exercise, lubricin, TLR's, pain and NGF. Furthermore, in this review we have made an effort to connect these seemingly distant topics into one scheme of connections between them, revealing a theoretical big picture underneath.
Collapse
|
46
|
del Real A, Pérez-Campo FM, Fernández AF, Sañudo C, Ibarbia CG, Pérez-Núñez MI, Criekinge WV, Braspenning M, Alonso MA, Fraga MF, Riancho JA. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics 2017; 12:113-122. [PMID: 27982725 PMCID: PMC5330439 DOI: 10.1080/15592294.2016.1271854] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022] Open
Abstract
Insufficient activity of the bone-forming osteoblasts leads to low bone mass and predisposes to fragility fractures. The functional capacity of human mesenchymal stem cells (hMSCs), the precursors of osteoblasts, may be compromised in elderly individuals, in relation with the epigenetic changes associated with aging. However, the role of hMSCs in the pathogenesis of osteoporosis is still unclear. Therefore, we aimed to characterize the genome-wide methylation and gene expression signatures and the differentiation capacity of hMSCs from patients with hip fractures. We obtained hMSCs from the femoral heads of women undergoing hip replacement due to hip fractures and controls with hip osteoarthritis. DNA methylation was explored with the Infinium 450K bead array. Transcriptome analysis was done by RNA sequencing. The genomic analyses revealed that most differentially methylated loci were situated in genomic regions with enhancer activity, distant from gene bodies and promoters. These regions were associated with differentially expressed genes enriched in pathways related to hMSC growth and osteoblast differentiation. hMSCs from patients with fractures showed enhanced proliferation and upregulation of the osteogenic drivers RUNX2/OSX. Also, they showed some signs of accelerated methylation aging. When cultured in osteogenic medium, hMSCs from patients with fractures showed an impaired differentiation capacity, with reduced alkaline phosphatase activity and poor accumulation of a mineralized matrix. Our results point to 2 areas of potential interest for discovering new therapeutic targets for low bone mass disorders and bone regeneration: the mechanisms stimulating MSCs proliferation after fracture and those impairing their terminal differentiation.
Collapse
Affiliation(s)
- Alvaro del Real
- Department of Medicine and Psychiatry, University of Cantabria, and Service of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, Santander, Spain
| | - Flor M. Pérez-Campo
- Department of Medicine and Psychiatry, University of Cantabria, and Service of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, Santander, Spain
| | - Agustín F. Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Oviedo, Spain
| | - Carolina Sañudo
- Department of Medicine and Psychiatry, University of Cantabria, and Service of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, Santander, Spain
| | - Carmen G. Ibarbia
- Department of Medicine and Psychiatry, University of Cantabria, and Service of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, Santander, Spain
| | - María I. Pérez-Núñez
- Service of Traumatology and Orthopedic Surgery, Hospital U.M. Valdecilla, University of Cantabria, Santander, Spain
| | - Wim Van Criekinge
- Mathematical Modelling, Statistics and Bio-informatics, Faculty Bioscience Engineering, University Ghent, Gent, Belgium
| | | | - María A. Alonso
- Service of Traumatology and Orthopedic Surgery, Hospital U.M. Valdecilla, University of Cantabria, Santander, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Oviedo, Spain
| | - Jose A. Riancho
- Department of Medicine and Psychiatry, University of Cantabria, and Service of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
47
|
|
48
|
Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, Lee MTM. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis. Sci Rep 2016; 6:34460. [PMID: 27686527 PMCID: PMC5043275 DOI: 10.1038/srep34460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone.
Collapse
Affiliation(s)
- Yanfei Zhang
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | - Naoshi Fukui
- Clinical Research Center, National Hospital Organization Sagamihara Hospital, Kanagawa, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo, Japan
| | - Mitsunori Yahata
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Laboratory for Pharmacogenomics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yozo Katsuragawa
- Department of Orthopaedic Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshiyuki Tashiro
- Department of Orthopaedic Surgery, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Ming Ta Michael Lee
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
49
|
How to interpret epigenetic association studies: a guide for clinicians. BONEKEY REPORTS 2016; 5:797. [PMID: 27195108 DOI: 10.1038/bonekey.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 01/23/2023]
Abstract
Epigenetic mechanisms are able to alter gene expression, without altering DNA sequence, in a stable manner through cell divisions. They include, among others, the methylation of DNA cytosines and microRNAs and allow the cells to adapt to changing environmental conditions. In recent years, epigenetic association studies are providing new insights into the pathogenesis of complex disorders including prevalent skeletal disorders. Unlike the genome, the epigenome is cell and tissue specific and may change with age and a number of acquired factors. This poses particular difficulties for the design and interpretation of epigenetic studies, particularly those exploring the association of genome-wide epigenetic marks with disease phenotypes. In this report, we propose a framework to help in the critical appraisal of epigenetic association studies. In line with previous suggestions, we focus on the questions critical to appraise the validity of the study, to interpret the results and to assess the generalizability and relevance of the information.
Collapse
|