1
|
Monsalve DM, Acosta-Ampudia Y, Acosta NG, Celis-Andrade M, Şahin A, Yilmaz AM, Shoenfeld Y, Ramírez-Santana C. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J Transl Autoimmun 2025; 10:100280. [PMID: 40071133 PMCID: PMC11894324 DOI: 10.1016/j.jtauto.2025.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
NETosis, the process through which neutrophils release neutrophil extracellular traps (NETs), has emerged as a crucial mechanism in host defense and the pathogenesis of autoimmune responses. During the SARS-CoV-2 pandemic, this process received significant attention due to the central role of neutrophil recruitment and activation in infection control. However, elevated neutrophil levels and dysregulated NET formation have been linked to coagulopathy and endothelial damage, correlating with disease severity and poor prognosis in COVID-19. Moreover, it is known that SARS-CoV-2 can induce persistent low-grade systemic inflammation, known as long COVID, although the underlying causes remain unclear. It has been increasingly acknowledged that excessive NETosis and NET generation contribute to further pathophysiological abnormalities following SARS-CoV-2 infection. This review provides an updated overview of the role of NETosis in autoimmune diseases, but also the relationship between COVID-19 and long COVID with autoimmunity (e.g., latent and overt autoimmunity, molecular mimicry, epitope spreading) and NETosis (e.g., immune responses, NET markers). Finally, we discuss potential therapeutic strategies targeting dysregulated NETosis to mitigate the severe complications of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Guerrero Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mariana Celis-Andrade
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ali Şahin
- Selcuk University, Faculty of Medicine, Konya, Turkiye
| | - Ahsen Morva Yilmaz
- TUBITAK Marmara Research Center (TUBITAK-MAM), Life Sciences, Medical Biotechnology Unit, Kocaeli, Turkiye
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzelia, Israel
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
2
|
Carrillo-Vázquez DA, Balderas-Miranda JT, Rivera RIA, Pérez-Fragoso A, Alcalá-Carmona B, Nuñez-Aguirre M, Vargas-Castro AS, Absalón-Aguilar A, Lira-Luna J, Mejía-Domínguez NR, Juárez-Vega G, Anda KSD, Torres-Ruiz J, Gómez-Martín D. Characterization of anti-neutrophil extracellular traps (NET) antibodies according to systemic lupus erythematosus clinical phenotypes. Immunol Res 2025; 73:79. [PMID: 40343598 DOI: 10.1007/s12026-025-09636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Anti-neutrophil extracellular traps (NETs) antibodies have been observed in patients with lupus nephritis and may contribute to the pathogenic role of NETs in patients with systemic lupus erythematosus (SLE). However, the prevalence of anti-NETs antibodies and their relationship with clinical features of patients with SLE have not been thoroughly studied, which is the aim of this study. Eighty-seven patients who fulfilled the 2019 EULAR/ACR Classification criteria for SLE were included. Plasmatic neutrophil elastase-DNA complexes as NETs remnants and the IgG anti-NETs antibodies were quantified by ELISA in the same sample. Thirty-one (35.6%) patients had positive anti-NETs antibodies. Patients with anti-NETs antibodies were younger at the time of recruitment (28.7 years (23.8-33.2) vs. 35.58 (27.88-45.77), p = 0.003) and had more prominent serological disease activity, with a higher prevalence of positive anti-double stranded (ds)-DNA antibodies (29 (93.5%) vs. 41 (73.2%), p = 0.022), higher titers (148.2 mg/dL vs. 35.6 mg/dL, p = 0.015), and lower levels of C3 and C4 (58 (37-85.5) vs. 77 (54-127), p = 0.017) and C4 (8 (8-12.5) vs. 20 (9-27), p < 0.001). From all clinical manifestations present at the time of recruitment, serositis showed a trend towards anti-NETs positivity (p 0.06). The global SLEDAI-2 K score was higher in the patient's IgG anti-NETs antibodies positive (13 (6.5-18) vs. 6 (4-15), p = 0.042). Anti-NETs antibodies were positively correlated with the systemic lupus erythematosus disease activity index (SLEDAI-2 K) score as well as with the titers of anti-dsDNA antibodies. IgG anti-NET antibodies were found in one-third of SLE patients. This is the first description of the association between IgG anti-NET and clinical features of SLE. Their characterization might allow us to address their role as potential novel biomarkers.
Collapse
Affiliation(s)
- Daniel Alberto Carrillo-Vázquez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Tiaré Balderas-Miranda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosa Icela Arvizu Rivera
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Beatriz Alcalá-Carmona
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miroslava Nuñez-Aguirre
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ana Sofía Vargas-Castro
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Abdiel Absalón-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jaquelin Lira-Luna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a La Investigación, Coordinación de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a La Investigación, Coordinación de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karina Santana-de Anda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
- Red de Apoyo a La Investigación, Coordinación de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Java A, Sparks MA, Kavanagh D. Post-transplant Thrombotic Microangiopathy. J Am Soc Nephrol 2025; 36:940-951. [PMID: 39888686 PMCID: PMC12059091 DOI: 10.1681/asn.0000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/28/2025] [Indexed: 02/02/2025] Open
Abstract
Thrombotic microangiopathy (TMA) is a challenging and serious complication of kidney transplantation that significantly affects graft and patient survival, occurring in 0.8%-15% of transplant recipients. TMA is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and organ injury due to endothelial damage and microthrombi formation in small vessels. However, clinical features can range from a renal-limited form, diagnosed only on a kidney biopsy, to full-blown systemic manifestations, which include neurologic, gastrointestinal, and cardiovascular injury. TMA can arise because of genetic or acquired defects such as in complement-mediated TMA or can occur in the context of other conditions like infections, autoimmune diseases, or immunosuppressive drugs, where complement activation may also play a role. Recurrent TMA after kidney transplant is almost always complement-mediated, although complement overactivation may also play a role in de novo post-transplant TMAs associated with ischemia-reperfusion injury, immunosuppressive drugs, antibody-mediated rejection, viral infections, and relapse of autoimmune diseases, such as antiphospholipid antibody syndrome. Differentiating between a complement-mediated process and one triggered by other factors is often challenging but critical to minimize allograft damage because the former is nonresponsive to supportive therapy, needs long-term anticomplement therapy, and has a high risk of recurrence. Given the central role of complement and effect of genetic defects on the risk of recurrence in many forms of post-transplant TMA, genetic testing for complement disorders is key for proper diagnosis and management. Given that complement activation may also play a role in a subset of TMAs associated with other conditions, prompt recognition and timely initiation of anticomplement therapy is equally important. In addition, TMA associated with noncomplement genes, often part of a broader syndromic process with distinct clinical features, has also been described. Early identification and treatment are essential to prevent graft failure and other severe complications. This review explores the pathophysiologic mechanisms underlying various post-transplant TMAs.
Collapse
Affiliation(s)
- Anuja Java
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham VA Health Care System, Durham, North Carolina
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Wang C, Li A, Zhang C, Yang Z, Yang X, Qi W, Liu T, Zhang M, Wang X. Neutrophil extracellular traps aggravate placental injury in OAPS by facilitating activation of BNIP3 mediated mitophagy. Free Radic Biol Med 2025; 235:109-123. [PMID: 40286883 DOI: 10.1016/j.freeradbiomed.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Obstetric antiphospholipid syndrome (OAPS) is an autoimmune disease mediated by antiphospholipid antibodies (aPL), characterized by miscarriage, pre-mature birth caused by pre-eclampsia, intrauterine growth restriction, and other pregnancy complications. Neutrophil extracellular traps (NETs) consist of chromatin scaffolds coated with histones, proteases, granules, and cytosolic proteins. Here, we have observed increased levels of NETs in both human OAPS placental tissues and animal models, accompanied by apoptosis increases. In vitro, NETs induce a decrease in trophoblasts proliferation and an increase in apoptosis. In addition, NETs induce oxidative stress and mitochondrial reactive oxygen species (mtROS) production, upregulation of fission-associated mitochondrial proteins coupled with reduced fusion-associated protein levels. It also led to a rise in BNIP3 and autophagy-related protein expressions, along with an increase in autophagosomal numbers. Moreover, mtROS scavenging or knockdown strategies targeting BNIP3 effectively attenuated mitophagic activation alongside trophoblast apoptosis induction. Furthermore, upregulation of BNIP3 expression was evident in placentas from both APS murine models and human OAPS cases. These results suggest that aPL-induced NETs trigger BNIP3-mediated mitophagy, elevate ROS production, induce apoptosis in trophoblasts, and thereby exacerbate placental damage, with implications for our understanding of the pathogenesis of OAPS and devising novel treatment strategies.
Collapse
Affiliation(s)
- Chunying Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Anna Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Cancan Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Zexin Yang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Xuan Yang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Weiyi Qi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tengwei Liu
- Department of Obstetrics, Shandong Second Provincial General Hospital, Jinan, 250000, China
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
5
|
Nguyen KH, Wasielewski ML, Yalavarthi S, Qu X, Knight JS, Takayama S. A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells 2025; 14:615. [PMID: 40277940 PMCID: PMC12025948 DOI: 10.3390/cells14080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are not only promising biomarkers of disease, but also potential therapeutic targets. Overproduction or the improper clearance of NETs has been linked to disease severity. In vitro NET degradation assays can reveal mechanisms and degradation efficiency differences in diseased serum samples. There is a need for more convenient assays to increase the speed of NET degradation studies. This paper describes a simplified, lower variability mimetic assay with DNA-histone structures, referred to as surface webs, that performs functionally similarly to traditional NET degradation assays with increased scalability, ease of use, shorter preparation time, and lowered costs. The surface webs are created and dehydrated in a 96-well microplate that is shelf-stable, transportable, and viable for 30 days of storage at room temperature. The surface webs, compared to NETs, have similar shapes and distribution but lower intraplate variability while degrading with healthy serum and DNase I within the same timeframe. The assay can identify patient serum with reduced degradation capabilities. This assay opens new opportunities for NET-targeted drug discovery and studies on the role of NETs as modulators of disease.
Collapse
Affiliation(s)
- Katherine H. Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Midori L. Wasielewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA;
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Talwar S, Harker JA, Openshaw PJM, Thwaites RS. Autoimmunity in long COVID. J Allergy Clin Immunol 2025; 155:1082-1094. [PMID: 39956285 DOI: 10.1016/j.jaci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Long COVID (also termed postacute sequelae of SARS-CoV-2, or PASC) affects up to 10% of people recovering from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis is hampered by diffuse symptomatology, lack of biomarkers, incomplete understanding of pathogenesis, and lack of validated treatments. In terms of pathogenesis, hypothesized causes include virus persistence, the legacy of endotheliitis and thrombosis, low-grade tissue-based inflammation and/or scarring, perturbation of the host virome/microbiome, or triggering of autoimmunity. Several studies show preexisting and/or de novo production of autoantibodies after infection with SARS-CoV-2, but the persistence of these antibodies and their role in causing long COVID is debated. Here, we review the mechanisms through which autoimmune responses can arise during and after viral infection, focusing on the evidence for B-cell dysregulation and autoantibody production in acute and long COVID.
Collapse
Affiliation(s)
- Shubha Talwar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James A Harker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Kajana X, Caridi G, Bruschi M, Spinelli S, Lugani F, Ghiggeri GM, La Porta E, Mortari G, Verrina EE, Angeletti A, Bigatti C. The Crosstalk Between NETs and the Complement Cascade: An Overview in Nephrological Autoimmune Disease. Int J Mol Sci 2025; 26:2789. [PMID: 40141431 PMCID: PMC11943363 DOI: 10.3390/ijms26062789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The complement cascade and Neutrophil Extracellular Traps (NETs) represent fundamental tools in protecting the host from foreign pathogens. Complement components and relative fragments, classically assigned to the innate immunity, represent a key link with the humoral immune response. NETs are a crucial component of the innate immune response, consisting of chromatin release from activated neutrophils. These web-like structures facilitate pathogen entrapment and elimination through proteolytic degradation and antimicrobial effectors. Previous findings suggested complement components and NETs have a significant role in the pathogenesis of several diseases characterized by inflammation, such as autoimmune and infectious diseases. However, the crosstalk between NETs and the complement cascade has only recently been investigated, and several aspects still need to be fully clarified. Recent evidence seems to suggest a bidirectional link between the complement cascade and NETosis. We here present the interaction between complement components and NETs in specific autoimmune diseases that mostly affect the kidney, such as systemic lupus erythematosus, Antineutrophilic Cytoplasmic Antibody (ANCA)-associated vasculitis and antiphospholipid syndrome. The mechanisms reported here may represent specific targets for the development of possible therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, 16145 Genoa, Italy; (X.K.); (G.C.); (M.B.); (S.S.); (F.L.); (G.M.G.); (E.L.P.); (G.M.); (E.E.V.); (C.B.)
| | | |
Collapse
|
8
|
Zalghout S, Martinod K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J Thromb Haemost 2025; 23:760-778. [PMID: 39667687 DOI: 10.1016/j.jtha.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Sepsis, a life-threatening condition characterized by systemic inflammation and multiorgan dysfunction, is closely associated with the excessive formation of neutrophil extracellular traps (NETs) and the release of cell-free DNA. Both play a central role in sepsis progression, acting as major contributors to immunothrombosis and associated complications. Endogenous DNases play a pivotal role in degrading NETs and cell-free DNA, yet their activity is often dysregulated during thrombotic disease. Although exogenous DNase1 administration has shown potential in reducing NET burden and mitigating the detrimental effects of immunothrombosis, its therapeutic efficacy upon intravenous administration remains uncertain. The development of engineered DNase formulations and combination therapies may further enhance its therapeutic effectiveness by modifying its pharmacodynamic properties and avoiding the adverse effects associated with NET degradation, respectively. Although NETs are well-established targets of DNase1, it remains uncertain whether the positive effects of DNase1 on immunothrombosis are exclusively related to it's targeting of NETs or if other components contributing to immunothrombosis are also affected. This review examines the endogenous regulation of NETs in circulation and the therapeutic potential of DNases in immunothrombosis, underscoring the necessity for further investigation to optimize their clinical application.
Collapse
Affiliation(s)
- Sara Zalghout
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
9
|
Bitsadze V, Khizroeva J, Lazarchuk A, Salnikova P, Yagubova F, Tretyakova M, Grigoreva K, Gashimova N, Tsibizova V, Karpova A, Mostovoi A, Kapanadze D, Voskresenskaya O, Akinshina S, Di Renzo GC, Gris JC, Elalamy I, Makatsariya A. Pediatric antiphospholipid syndrome: is it the same as an adult? J Matern Fetal Neonatal Med 2024; 37:2390637. [PMID: 39155241 DOI: 10.1080/14767058.2024.2390637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
IMPORTANCE Antiphospholipid syndrome in neonates and children is a rare, but in some cases life-threatening condition with arterial and/or venous thrombosis and/or non-thrombotic neurological, skin, ophthalmological and other manifestations. OBSERVATIONS This review highlights the available information about the features of pediatric APS, including the rare catastrophic form, the differences between pediatric and adult APS, and the role of genetic thrombophilia in APS manifestation. CONCLUSIONS AND RELEVANCE The clinical manifestations and treatment options for APS in children may differ from those in adults, and prescribing therapy can be challenging due to the unique clinical and morphological characteristics of the pediatric patient. Pediatric APS may be a predictor of the development of certain autoimmune diseases and classic manifestations of APS in adulthood, therefore, a revision of the existing criteria for the diagnosis and treatment of APS in children is necessary.
Collapse
Affiliation(s)
- Viсtoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Arina Lazarchuk
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Polina Salnikova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fidan Yagubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria Tretyakova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Valentina Tsibizova
- The PREIS School (International and European School of Perinatal, Neonatal and Reproductive Medicine), Firenze, Italy
| | - Anna Karpova
- Moscow Healthcare Department, Vorokhobov City Clinical Hospital № 67, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Health Ministry of Russian Federation, Moscow, Russia
- Health Ministry of Russian Federation, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Aleksei Mostovoi
- Moscow Healthcare Department, Vorokhobov City Clinical Hospital № 67, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Health Ministry of Russian Federation, Moscow, Russia
- Health Ministry of Russian Federation, Yaroslavl State Medical University, Yaroslavl, Russia
| | | | - Olga Voskresenskaya
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana Akinshina
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Gian Carlo Di Renzo
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- The PREIS School (International and European School of Perinatal, Neonatal and Reproductive Medicine), Firenze, Italy
| | - Jean-Christophe Gris
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Faculty of Pharmaceutical and Biological Sciences, Montpellier University, Montpellier, France
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department Hematology and Thrombosis Center, Medicine Sorbonne University, Paris, France
- Hospital Tenon, Paris, France
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children's Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
Venturelli V, Maranini B, Tohidi-Esfahani I, Isenberg DA, Cohen H, Efthymiou M. Can complement activation be the missing link in antiphospholipid syndrome? Rheumatology (Oxford) 2024; 63:3243-3254. [PMID: 38483257 PMCID: PMC11637425 DOI: 10.1093/rheumatology/keae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 12/14/2024] Open
Abstract
APS is an autoimmune disorder with life-threatening complications that, despite therapeutic advantages, remains associated with thrombotic recurrences and treatment failure. The role of complement activation in APS pathogenesis is increasingly recognized, specifically in obstetric APS. However, its exact role in thrombotic APS and on the severity of the disease is not yet fully elucidated. Further mechanistic studies are needed to delineate the role of complement activation in the various APS clinical manifestations with aim to identify novel markers of disease severity, together with clinical trials to evaluate the efficacy of complement inhibition in APS. This could ultimately improve risk stratification in APS, patient-tailored targeted therapy with complement inhibition identified as an adjunctive treatment. This article reviews current findings and challenges about complement activation in APS, discusses the potential role of platelet-mediated complement activation in this setting and provides an overview of clinical implications and current therapeutics.
Collapse
Affiliation(s)
- Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Beatrice Maranini
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David A Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| | - Hannah Cohen
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria Efthymiou
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Tzang BS, Chin HY, Tzang CC, Chuang PH, Chen DY, Hsu TC. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int J Mol Sci 2024; 25:9917. [PMID: 39337405 PMCID: PMC11432092 DOI: 10.3390/ijms25189917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) formation, namely NETosis, is implicated in antiphospholipid syndrome (APS)-related thrombosis in various autoimmune disorders such as systemic lupus erythematosus (SLE) and APS. Human parvovirus B19 (B19V) infection is closely associated with SLE and APS and causes various clinical manifestations such as blood disorders, joint pain, fever, pregnancy complications, and thrombosis. Additionally, B19V may trigger the production of autoantibodies, including those against nuclear and phospholipid components. Thus, exploring the connection between B19V, NETosis, and thrombosis is highly relevant. An in vitro NETosis model using differentiated HL-60 neutrophil-like cells (dHL-60) was employed to investigate the effect of B19V-VP1u IgG on NETs formation. A venous stenosis mouse model was used to test how B19V-VP1u IgG-mediated NETs affect thrombosis in vivo. The NETosis was observed in the dHL-60 cells treated with rabbit anti-B19V-VP1u IgG and was inhibited in the presence of either 8-Br-cAMP or CGS216800 but not GSK484. Significantly elevated reactive oxygen species (ROS), myeloperoxidase (MPO), and citrullinated histone (Cit-H3) levels were detected in the dHL60 treated with phorbol myristate acetate (PMA), human aPLs IgG and rabbit anti-B19V-VP1u IgG, respectively. Accordingly, a significantly larger thrombus was observed in a venous stenosis-induced thrombosis mouse model treated with PMA, human aPLs IgG, rabbit anti-B19V-VP1u IgG, and human anti-B19V-VP1u IgG, respectively, along with significantly increased amounts of Cit-H3-, MPO- and CRAMP-positive infiltrated neutrophils in the thrombin sections. This research highlights that anti-B19V-VP1u antibodies may enhance the formation of NETosis and thrombosis and implies that managing and treating B19V infection could lower the risk of thrombosis.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Meroni PL, Borghi MO, Raschi E, Grossi C, Lonati PA, Bodio C, Da Via A, Curreli D, Cecchini G. TO SHOw how we have been ENgaged in the APS FiELD (What we learned on APS collaborating with Professor Yehuda Shoenfeld). Autoimmun Rev 2024; 23:103613. [PMID: 39216616 DOI: 10.1016/j.autrev.2024.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The present review reports the history of our scientific collaboration with Professor Shoenfeld's group. The collaboration started at the end of the 80s and was mainly focused on studies on the pathogenetic mechanisms of the anti-phospholipid syndrome (APS). Following the initial collaborative studies on antibodies against endothelium in systemic autoimmune vasculitis, we were able to use a similar strategy in APS. This line of research has resulted in the characterization of beta 2 glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) as mechanisms capable of mediating an endothelial perturbation crucial for the pathogenesis of APS. Thanks to these studies, the collaboration has led to the characterization of the membrane receptors for β2GPI and the cellular signaling resulting from antibody binding. This mechanism has also been shown to mediate the aPL effect on other cell types involved in APS pathogenesis. Finally, the exchange of information made it possible to replicate and extend the setting of animal models of the syndrome, which proved to be valuable tools for understanding the pathogenesis of the syndrome. It has been a long story recently refueled by common studies on the similarity of pro-inflammatory and pro-coagulant endotheliopathy in APS and in COVID-19.
Collapse
Affiliation(s)
- Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Elena Raschi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Grossi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paola Adele Lonati
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Caterina Bodio
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Arianna Da Via
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Daniele Curreli
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Germana Cecchini
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
13
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
14
|
Rysenga CE, May-Zhang L, Zahavi M, Knight JS, Ali RA. Taxifolin inhibits NETosis through activation of Nrf2 and provides protective effects in models of lupus and antiphospholipid syndrome. Rheumatology (Oxford) 2024; 63:2006-2015. [PMID: 37815837 DOI: 10.1093/rheumatology/kead547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVES Taxifolin (dihydroquercetin) is a bioactive plant flavonoid that exhibits anti-inflammatory and anti-oxidative properties. We hypothesized that taxifolin might be an effective dietary supplement to ameliorate symptoms arising from thrombo-inflammatory diseases such as lupus and APS. METHODS We used in vitro assays and a mouse model to determine mechanisms by which taxifolin inhibits neutrophil extracellular trap (NET) formation (i.e. NETosis) and venous thrombosis in lupus and APS. RESULTS At doses ranging from 0.1 to 1 µg/ml, taxifolin inhibited NETosis from control neutrophils stimulated with autoantibodies isolated from lupus and APS patients, and its suppressive effects were mitigated by blocking the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Furthermore, taxifolin at a dose as low as 20 mg/kg/day reduced in vivo NETosis in thrombo-inflammatory mouse models of lupus and APS while also significantly attenuating autoantibody formation, inflammatory cytokine production and large-vein thrombosis. CONCLUSION Our study is the first to demonstrate the protective effects of taxifolin in the context of lupus and APS. Importantly, our study also suggests a therapeutic potential to neutralize neutrophil hyperactivity and NETosis that could have relevance to a variety of thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Christine E Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Miela Zahavi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Quoc QL, Cao TBT, Seo S, An BS, Hwang DY, Choi Y, Park HS. Association Between Cytokeratin 19-Specific IgG and Neutrophil Activation in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:353-371. [PMID: 39155736 PMCID: PMC11331195 DOI: 10.4168/aair.2024.16.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Patients with non-eosinophilic asthma (NEA) are less responsive to anti-inflammatory drugs and suffer from frequent asthma exacerbations. The pathogenic mechanism of NEA is not fully understood; however, the roles of monocytes and autoimmune mechanisms targeting airway epithelial cell (AEC) antigens have been proposed. METHODS The effects of monocyte extracellular traps (MoETs) on cytokeratin 19 (CK19) production in AECs, as well as the impact of CK19-specific immunoglobulin (Ig) G on neutrophil and monocyte activation, were investigated both in vivo and in vitro. Sixty asthmatic patients and 15 healthy controls (HCs) were enrolled, and the levels of serum immune complexes containing CK19-specific IgG and neutrophil extracellular trap (NET)-specific IgG were measured using enzyme-linked immunoassay. RESULTS MoETs induced CK19 and CK19-specific IgG production. Furthermore, the levels of serum CK19-specific IgG were significantly higher in the NEA group than in the eosinophilic asthma group. Among patients with NEA, asthmatics with high levels of CK19-specific IgG had higher levels of myeloperoxidase and NET-specific IgG than those with low levels of CK19-specific IgG (P = 0.020 and P = 0.017; respectively). Moreover, the immune complexes from asthmatics with high CK19-specific IgG enhanced NET formation and reactive oxygen species production (neutrophil activation), which were suppressed by N-acetylcysteine and anti-CD16 antibody treatment. CONCLUSIONS These findings suggest that circulating CK19 and CK19-specific IgG may contribute to NET formation, leading to airway inflammation and steroid resistance in NEA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
16
|
Knight JS, Erkan D. Rethinking antiphospholipid syndrome to guide future management and research. Nat Rev Rheumatol 2024; 20:377-388. [PMID: 38702511 DOI: 10.1038/s41584-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/06/2024]
Abstract
Antiphospholipid syndrome (APS) consists of thrombotic, non-thrombotic and obstetric clinical manifestations developing in individuals with persistent antiphospholipid antibodies (aPL). Although researchers have made progress in characterizing different clinical phenotypes of aPL-positive people, the current approach to clinical management is still mostly based on a 'one size fits all' strategy, which is derived from the results of a limited number of prospective, controlled studies. With the 2023 publication of the ACR-EULAR APS classification criteria, it is now possible to rethink APS, to lay the groundwork for subphenotyping through novel pathophysiology-informed approaches, and to set a future APS research agenda guided by unmet needs in clinical management.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Lambert M, Brodovitch A, Mège JL, Bertin D, Bardin N. Biological markers of high risk of thrombotic recurrence in patients with antiphospholipid syndrome: A literature review. Autoimmun Rev 2024; 23:103585. [PMID: 39094811 DOI: 10.1016/j.autrev.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This review aims to identify biological markers associated with the risk of recurrence of thrombotic and/or obstetric events in patients with antiphospholipid syndrome (APS). METHODS A comprehensive review of literature was conducted to evaluate established and potential novel biological markers associated with thrombosis in APS. To this end, a PubMed literature search was conducted for the last twenty years using the following keywords or their combinations: thrombotic risk, recurrence of thrombosis, risk stratification, severity, predictive value. RESULTS Previous studies showed that multiple aPL positivity correlates with an increased risk of thrombosis in APS. Moreover, the analysis of N-glycosylation of antiphospholipid antibodies (aPL) revealed that low levels of IgG sialylation, fucosylation or galactosylation increases the pro-inflammatory activity of aPL, predisposing to thrombosis. In addition, quantification of neutrophil extracellular traps (NETs) and antibodies directed against NETs (anti-NETs) in serum demonstrates promising prognostic utility in assessing APS severity. Oxidative stress plays a role in the pathogenicity of APS and paraoxonase 1 (PON1) activity emerges as a promising biomarker of thrombotic risk in APS. Furthermore, identification of novel antigenic targets involved in the pathophysiology of APS, such as lysobisphosphatidic acid (LBPA), had led to the discovery of unconventional aPL, antibodies directed against the LBPA (aLBPA), whose clinical value could make it possible to identify APS patients at high risk of thrombotic recurrence. CONCLUSION The immunological profile of aPL, N-glycosylation of aPL, quantification of NETs and anti-NETs, analysis of biomarkers of oxidative stress and the discovery of aLBPA offer potential prognostic tools for risk stratification in APS patients.
Collapse
Affiliation(s)
- Mathilde Lambert
- Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Alexandre Brodovitch
- Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jean-Louis Mège
- Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Daniel Bertin
- Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nathalie Bardin
- Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France; Aix Marseille University, INSERM, C2VN Marseille, France.
| |
Collapse
|
18
|
Bernardi M, Spadafora L, Andaloro S, Piscitelli A, Fornaci G, Intonti C, Fratta AE, Hsu CE, Kaziròd-Wolski K, Metsovitis T, Biondi-Zoccai G, Sabouret P, Marzetti E, Cacciatore S. Management of Cardiovascular Complications in Antiphospholipid Syndrome: A Narrative Review with a Focus on Older Adults. J Clin Med 2024; 13:3064. [PMID: 38892776 PMCID: PMC11173304 DOI: 10.3390/jcm13113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Antiphospholipid syndrome (APS), also known as Hughes syndrome, is an acquired autoimmune and procoagulant condition that predisposes individuals to recurrent thrombotic events and obstetric complications. Central is the role of three types of antiphospholipid antibodies that target phospholipid-binding proteins: lupus anticoagulant (LAC), anti-β2-glycoprotein I (β2-GPI-Ab), and anti-cardiolipin (aCL). Together with clinical data, these antibodies are the diagnostic standard. However, the diagnosis of APS in older adults may be challenging and, in the diagnostic workup of thromboembolic complications, it is an underestimated etiology. The therapeutic management of APS requires distinguishing two groups with differential risks of thromboembolic complications. The standard therapy is based on low-dose aspirin in the low-risk group and vitamin K antagonists in the high-risk group. The value of direct oral anticoagulants is currently controversial. The potential role of monoclonal antibodies is investigated. For example, rituximab is currently recommended in catastrophic antiphospholipid antibody syndrome. Research is ongoing on other monoclonal antibodies, such as daratumumab and obinutuzumab. This narrative review illustrates the pathophysiological mechanisms of APS, with a particular emphasis on cardiovascular complications and their impact in older adults. This article also highlights advancements in the diagnosis, risk stratification, and management of APS.
Collapse
Affiliation(s)
- Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (L.S.); (G.F.); (C.I.)
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (L.S.); (G.F.); (C.I.)
| | - Silvia Andaloro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Alessandra Piscitelli
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (A.P.); (A.E.F.); (C.-E.H.); (T.M.)
| | - Giovanni Fornaci
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (L.S.); (G.F.); (C.I.)
| | - Chiara Intonti
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (L.S.); (G.F.); (C.I.)
| | - Alberto Emanuele Fratta
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (A.P.); (A.E.F.); (C.-E.H.); (T.M.)
| | - Chieh-En Hsu
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (A.P.); (A.E.F.); (C.-E.H.); (T.M.)
| | - Karol Kaziròd-Wolski
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Al. IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Theodora Metsovitis
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (A.P.); (A.E.F.); (C.-E.H.); (T.M.)
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via XXIV Maggio 7, 04100 Latina, Italy;
- Cardiology Unit, Santa Maria Goretti Hospital, Via L. Scaravelli, 04100 Latina, Italy
| | - Pierre Sabouret
- Heart Institute, Pitié-Salpétrière Hospital, Sorbonne University, 47-83 Bd. de l’Hôpital, 75013 Paris, France;
- National College of French Cardiologists, 13 Niepce, 75014 Paris, France
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics, and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Stefano Cacciatore
- Department of Geriatrics, Orthopedics, and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| |
Collapse
|
19
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
20
|
Kuo YM, Kang CM, Lai ZY, Huang TY, Tzeng SJ, Hsu CC, Chen SY, Hsieh SC, Chia JS, Jung CJ, Hsueh PR. Temporal changes in biomarkers of neutrophil extracellular traps and NET-promoting autoantibodies following adenovirus-vectored, mRNA, and recombinant protein COVID-19 vaccination. J Med Virol 2024; 96:e29556. [PMID: 38511554 DOI: 10.1002/jmv.29556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.
Collapse
Affiliation(s)
- Yu-Min Kuo
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Min Kang
- Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yun Lai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Huang
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shey-Ying Chen
- Department of Emergency Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department of Dentistry, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
de Laat B, Gehlen R, de Groot PG. Viewpoint: The value of non-criteria antiphospholipid antibodies. Rheumatology (Oxford) 2024; 63:SI64-SI71. [PMID: 38320588 DOI: 10.1093/rheumatology/kead632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 02/08/2024] Open
Abstract
In 2006, at a meeting in Sydney, Australia, consensus was reached by an international group of specialists to establish a number of serological criteria that identify patients with a history of thrombosis or pregnancy complications as having antiphospholipid syndrome (APS). These criteria were originally formulated for research purposes and to compare clinical trials in different centres. However, these same criteria are now generally used and accepted for the diagnosis and treatment of patients. The practice of using these criteria for direct patient care requires that these criteria are based on sound scientific evidence. Indeed, for all the autoantibodies that are officially included in the serological criteria, it has been shown that they induce thrombosis and fetal loss when infused into mice. There are also a number of additional autoantibodies that have been identified in these patients but for these antibodies there was not enough evidence to meet the official APS criteria in 2006. Seventeen years have now passed since the consensus meeting, therefore, this review examines whether additional studies performed with these 'non-criteria' autoantibodies have provided sufficient results to suggest the inclusion of these autoantibodies in the official serological criteria of APS.
Collapse
Affiliation(s)
- Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| | - Rachel Gehlen
- Synapse Research Institute, Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Raschi E, Borghi MO, Tedesco F, Meroni PL. Antiphospholipid syndrome pathogenesis in 2023: an update of new mechanisms or just a reconsideration of the old ones? Rheumatology (Oxford) 2024; 63:SI4-SI13. [PMID: 38320591 DOI: 10.1093/rheumatology/kead603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Antibodies against phospholipid (aPL)-binding proteins, in particular, beta 2 glycoprotein I (β2GPI), are diagnostic/classification and pathogenic antibodies in antiphospholipid syndrome (APS). β2GPI-aPL recognize their target on endothelium and trigger a pro-thrombotic phenotype which is amplified by circulating monocytes, platelets and neutrophils. Complement activation is required as supported by the lack of aPL-mediated effects in animal models when the complement cascade is blocked. The final result is a localized clot. A strong generalized inflammatory response is associated with catastrophic APS, the clinical variant characterized by systemic thrombotic microangiopathy. A two-hit hypothesis was suggested to explain why persistent aPL are associated with acute events only when a second hit allows antibody/complement binding by modulating β2GPI tissue presentation. β2GPI/β2GPI-aPL are also responsible for obstetric APS, being the molecule physiologically present in placental/decidual tissues. Additional mechanisms mediated by aPL with different characteristics have been reported, but their diagnostic/prognostic value is still a matter of research.
Collapse
Affiliation(s)
- Elena Raschi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
23
|
Tohidi-Esfahani I, Mittal P, Isenberg D, Cohen H, Efthymiou M. Platelets and Thrombotic Antiphospholipid Syndrome. J Clin Med 2024; 13:741. [PMID: 38337435 PMCID: PMC10856779 DOI: 10.3390/jcm13030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Antiphospholipid antibody syndrome (APS) is an autoimmune disorder characterised by thrombosis and the presence of antiphospholipid antibodies (aPL): lupus anticoagulant and/or IgG/IgM anti-β2-glycoprotein I and anticardiolipin antibodies. APS carries significant morbidity for a relatively young patient population from recurrent thrombosis in any vascular bed (arterial, venous, or microvascular), often despite current standard of care, which is anticoagulation with vitamin K antagonists (VKA). Platelets have established roles in thrombosis at any site, and platelet hyperreactivity is clearly demonstrated in the pathophysiology of APS. Together with excess thrombin generation, platelet activation and aggregation are the common end result of all the pathophysiological pathways leading to thrombosis in APS. However, antiplatelet therapies play little role in APS, reserved as a possible option of low dose aspirin in addition to VKA in arterial or refractory thrombosis. This review outlines the current evidence and mechanisms for excessive platelet activation in APS, how it plays a central role in APS-related thrombosis, what evidence for antiplatelets is available in clinical outcomes studies, and potential future avenues to define how to target platelet hyperreactivity better with minimal impact on haemostasis.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Prabal Mittal
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Hannah Cohen
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - Maria Efthymiou
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| |
Collapse
|
24
|
Kubota T. An Emerging Role for Anti-DNA Antibodies in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:16499. [PMID: 38003689 PMCID: PMC10671047 DOI: 10.3390/ijms242216499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Anti-DNA antibodies are hallmark autoantibodies produced in systemic lupus erythematosus (SLE), but their pathogenetic role is not fully understood. Accumulating evidence suggests that some anti-DNA antibodies enter different types of live cells and affect the pathophysiology of SLE by stimulating or impairing these cells. Circulating neutrophils in SLE are activated by a type I interferon or other stimuli and are primed to release neutrophil extracellular traps (NETs) on additional stimulation. Anti-DNA antibodies are also involved in this process and may induce NET release. Thereafter, they bind and protect extracellular DNA in the NETs from digestion by nucleases, resulting in increased NET immunogenicity. This review discusses the pathogenetic role of anti-DNA antibodies in SLE, mainly focusing on recent progress in the two research fields concerning antibody penetration into live cells and NETosis.
Collapse
Affiliation(s)
- Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Tsuchiura 300-0051, Ibaraki, Japan
| |
Collapse
|
25
|
Kmeťová K, Lonina E, Yalavarthi S, Levine JS, Hoy CK, Sarosh C, Gockman K, Morris AE, Tambralli A, Madison JA, Zuo Y, Subang R, Rauch J, Knight JS. Interaction of the antiphospholipid syndrome autoantigen beta-2 glycoprotein I with DNA and neutrophil extracellular traps. Clin Immunol 2023; 255:109714. [PMID: 37527733 PMCID: PMC11200149 DOI: 10.1016/j.clim.2023.109714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Beta-2 glycoprotein I (β2GPI) is a phospholipid-binding plasma protein and prominent autoantigen in antiphospholipid syndrome (APS). Here, we tested the hypothesis that β2GPI might bind to not only phospholipids, but also cell-free DNA and neutrophil extracellular traps (NETs). We report that β2GPI interacts with cell-free DNA from different species, as well as NETs, in a dose-dependent manner, retarding their migration in an agarose-gel electrophoretic mobility shift assay. We confirm the direct binding interaction of β2GPI with DNA and NETs by ELISA. We also demonstrate that β2GPI colocalizes with NET strands by immunofluorescence microscopy. Finally, we provide evidence that β2GPI-DNA complexes can be detected in the plasma of APS patients, where they positively correlate with an established biomarker of NET remnants. Taken together, our findings indicate that β2GPI interacts with DNA and NETs, and suggest that this interaction may play a role as a perpetuator and/or instigator of autoimmunity in APS.
Collapse
Affiliation(s)
- Katarína Kmeťová
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Elena Lonina
- Division of Rheumatology, Department of Medicine, McGill University, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jerrold S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Claire K Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra E Morris
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Subang
- Division of Rheumatology, Department of Medicine, McGill University, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, McGill University, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
28
|
Xourgia E, Tektonidou MG. Antiphospholipid syndrome nephropathy: Current knowledge and unanswered questions. Clin Immunol 2023; 255:109735. [PMID: 37572950 DOI: 10.1016/j.clim.2023.109735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The definition of acute and chronic antiphospholipid syndrome (APS) nephropathy was recently updated using a multiphase methodology in the context of the development of the new APS classification criteria. Currently, there is no consensus for the treatment of APS nephropathy, which mainly relies on the general recommendations for the management of APS. Based on evidence from experimental studies and a few clinical studies and case series, targeted treatments such as B-cell depletion, anti-B-cell activating factor antibody, complement inhibition, mammalian target of rapamycin inhibition, and neutrophil extracellular traps or interferon targeting may show promise for the treatment of microvascular manifestations in APS, including APS nephropathy. Validation of the new APS nephropathy definition and/or efforts for improvement in proposed terminology, along with the assessment of the safety and efficacy of potential targeted treatments in randomized controlled trials, are major future research directions. In this review, we summarize the current knowledge of APS nephropathy and discuss unanswered questions.
Collapse
Affiliation(s)
- Eleni Xourgia
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
| |
Collapse
|
29
|
Pappa M, Ntouros PA, Papanikolaou C, Sfikakis PP, Souliotis VL, Tektonidou MG. Augmented oxidative stress, accumulation of DNA damage and impaired DNA repair mechanisms in thrombotic primary antiphospholipid syndrome. Clin Immunol 2023; 254:109693. [PMID: 37454866 DOI: 10.1016/j.clim.2023.109693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disorder with complex pathogenesis. Studies have shown that oxidative stress may contribute to APS pathophysiology. In peripheral blood mononuclear cells (PBMCs) from thrombotic Primary APS (thrPAPS) patients and age/sex-matched healthy controls (HC), as well as a control group of asymptomatic antiphospholipid antibody (aPL) positive individuals without APS (aPL+/non-APS), we examined oxidative stress, abasic (apurinic/apyrimidinic) sites, and DNA damage response (DDR)-associated parameters, including endogenous DNA damage (single- and double-strand breaks) and DNA repair mechanisms, namely nucleotide excision repair (NER) and double-strand breaks repair (DSB/R). We found that thrPAPS patients exhibited significantly higher levels of endogenous DNA damage, increased oxidative stress and abasic sites, as well as lower NER and DSB/R capacities versus HC (all P < 0.001) and versus aPL+/non-APS subjects (all P < 0.05). Our findings demonstrate that oxidative stress and decreased DNA repair mechanisms contribute to the accumulation of endogenous DNA damage in PBMCs from thrPAPS patients and, if further validated, may be exploited as therapeutic targets and potential biomarkers.
Collapse
Affiliation(s)
- Maria Pappa
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
30
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
31
|
Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, Hoy CK, Yalavarthi S, de Andrade D, Tektonidou MG, Sciascia S, Pengo V, Ruiz-Irastorza G, Michael Belmont H, Gerosa M, Fortin PR, de Jesus GR, Ware Branch D, Andreoli L, Rodriguez-Almaraz E, Petri M, Cervera R, Willis R, Karp DR, Li QZ, Cohen H, Bertolaccini ML, Erkan. D, Knight JS. Anti-Neutrophil Extracellular Trap Antibodies in Antiphospholipid Antibody-Positive Patients: Results From the Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking Clinical Database and Repository. Arthritis Rheumatol 2023; 75:1407-1414. [PMID: 36862141 PMCID: PMC10758259 DOI: 10.1002/art.42489] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE This study aimed to elucidate the presence, antigen specificities, and potential clinical associations of anti-neutrophil extracellular trap (anti-NET) antibodies in a multinational cohort of antiphospholipid (aPL) antibody-positive patients who did not have lupus. METHODS Anti-NET IgG/IgM levels were measured in serum samples from 389 aPL-positive patients; 308 patients met the classification criteria for antiphospholipid syndrome. Multivariate logistic regression with best variable model selection was used to determine clinical associations. For a subset of the patients (n = 214), we profiled autoantibodies using an autoantigen microarray platform. RESULTS We found elevated levels of anti-NET IgG and/or IgM in 45% of the aPL-positive patients. High anti-NET antibody levels are associated with more circulating myeloperoxidase (MPO)-DNA complexes, which are a biomarker of NETs. When considering clinical manifestations, positive anti-NET IgG was associated with lesions affecting the white matter of the brain, even after adjusting for demographic variables and aPL profiles. Anti-NET IgM tracked with complement consumption after controlling for aPL profiles; furthermore, patient serum samples containing high levels of anti-NET IgM efficiently deposited complement C3d on NETs. As determined by autoantigen microarray, positive testing for anti-NET IgG was significantly associated with several autoantibodies, including those recognizing citrullinated histones, heparan sulfate proteoglycan, laminin, MPO-DNA complexes, and nucleosomes. Anti-NET IgM positivity was associated with autoantibodies targeting single-stranded DNA, double-stranded DNA, and proliferating cell nuclear antigen. CONCLUSION These data reveal high levels of anti-NET antibodies in 45% of aPL-positive patients, where they potentially activate the complement cascade. While anti-NET IgM may especially recognize DNA in NETs, anti-NET IgG species appear to be more likely to target NET-associated protein antigens.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherwin Navaz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alex Tsodikov
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katarina Kmetova
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Lyndsay Kluge
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amala Ambati
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | - D. Ware Branch
- University of Utah and Intermountain Healthcare, Salt Lake City, UT, USA
| | | | | | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ricard Cervera
- Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain
| | - Rohan Willis
- University of Texas Medical Branch, Galveston, TX, USA
| | - David R. Karp
- Division of Rheumatic Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah Cohen
- Haemostasis Research Unit, Department of Haematology, University College London, London, UK
| | | | - Doruk Erkan.
- Barbara Volcker Center for Women and Rheumatic Disease, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Nasonov EL, Reshetnyak TM, Solovyev SK, Popkova TV. [Systemic lupus erythematosus and antiphospholipid syndrome: past, present, future]. TERAPEVT ARKH 2023; 95:365-374. [PMID: 38158987 DOI: 10.26442/00403660.2023.05.202246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 01/03/2024]
Abstract
Immune-inflammatory (autoimmune and autoinflammatory) rheumatic diseases are widespread severe chronic inflammatory diseases and also "models" for studying the fundamental mechanisms of pathogenesis and approach to pharmacotherapy of other diseases associated with autoimmunity and/or autoinflammation. Uncontrolled inflammation leading to hypercoagulation forms the basis of "thromboinflammation", which is considered a universal pathogenetic mechanism of organ involvement in immune-inflammatory rheumatic diseases, as well as in COVID-19 and atherosclerotic vascular lesions (atherothrombosis). Thrombo-inflammatory mechanisms play a crucial role in systemic lupus erythematosus and antiphospholipid syndrome. Russian rheumatology, under the leadership of academician Valentina Alexandrovna Nasonova, greatly contributed to the research of these disorders. This article addresses the current view about the overlapping pathogenetic mechanisms of thrombosis in systemic lupus erythematosus and antiphospholipid syndrome, the relevance of these studies during the COVID-19 pandemic, and the prospects for antithrombotic and anti-inflammatory therapy.
Collapse
Affiliation(s)
- E L Nasonov
- Nasonova Research Institute of Rheumatology
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
33
|
Bahar Keleşoğlu Dinçer A, Erkan D. The ABCs of antiphospholipid syndrome. Arch Rheumatol 2023; 38:163-173. [PMID: 37680521 PMCID: PMC10481699 DOI: 10.46497/archrheumatol.2023.41875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 09/09/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a thromboinflammatory syndrome characterized by thrombotic, microvascular, obstetric, or non-thrombotic events in the setting of persistent antiphospholipid antibodies (aPL), namely anticardiolipin antibody (aCL), anti-β2 glycoprotein-I antibody (aβ2GPI), and lupus anticoagulant (LA). The diagnosis of APS requires careful assessment of the aPL profile, the clinical phenotype, and additional risk factors. The standard management of aPL-related thrombosis is anticoagulation, which is not effective for microvascular and non-thrombotic events. In parallel to our improved understanding of aPL-related mechanisms, the role of immunosuppression has been increasingly investigated. In this review, we summarize the basic concepts and future perspectives in APS.
Collapse
Affiliation(s)
- Ayşe Bahar Keleşoğlu Dinçer
- Division of Rheumatology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Türkiye
- Hospital for Special Surgery, New York, NY, USA
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery, and Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
34
|
Abstract
Acute thrombosis and thrombocytopenia pose challenges to the clinician. Thrombocytopenia is naturally viewed as a risk factor for bleeding, and an association with acute thrombosis appears paradoxical. It presents typically as a medical emergency and requires treatment to be started before having confirmatory results. This review supports the attending clinician to recognise and manage conditions that are part of the thrombotic thrombocytopenic syndrome through four illustrative clinical cases. Common themes linking the underlying pathology and treatment are explored to highlight the continued relevance of this rare, but often devastating, presentation.
Collapse
Affiliation(s)
| | - Cheng-Hock Toh
- University of Liverpool, Liverpool, UK, and consultant in haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
35
|
Abstract
Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease propelled by circulating autoantibodies that recognize cell surface phospholipids and phospholipid binding proteins. The result is an increased risk of thrombotic events, pregnancy morbidity, and various other autoimmune and inflammatory complications. Although antiphospholipid syndrome was first recognized in patients with lupus, the stand alone presentation of antiphospholipid syndrome is at least equally common. Overall, the diagnosis appears to affect at least one in 2000 people. Studies of antiphospholipid syndrome pathogenesis have long focused on logical candidates such as coagulation factors, endothelial cells, and platelets. Recent work has shed light on additional potential therapeutic targets within the innate immune system, including the complement system and neutrophil extracellular traps. Vitamin K antagonists remain the mainstay of treatment for most patients with thrombotic antiphospholipid syndrome and, based on current data, appear superior to the more targeted direct oral anticoagulants. The potential role of immunomodulatory treatments in antiphospholipid syndrome management is receiving increased attention. As for many systemic autoimmune diseases, the most important future direction is to more precisely identify mechanistic drivers of disease heterogeneity in pursuit of unlocking personalized and proactive treatments for patients.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - D Ware Branch
- James R. and Jo Scott Research Chair, Department of Obstetrics and Gynecology, University of Utah Health and Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Thomas L Ortel
- Division of Hematology, Departments of Medicine and Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Wasielewski ML, Nguyen K, Yalavarthi S, Ekbote P, Weerappuli PD, Knight JS, Takayama S. Visualization of Nuclease- and Serum-Mediated Chromatin Degradation with DNA-Histone Mesostructures. Int J Mol Sci 2023; 24:3222. [PMID: 36834634 PMCID: PMC9959986 DOI: 10.3390/ijms24043222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
This study analyzed the nuclease- and serum-driven degradation of millimeter-scale, circular DNA-histone mesostructures (DHMs). DHMs are bioengineered chromatin meshes of defined DNA and histone compositions designed as minimal mimetics of physiological extracellular chromatin structures, such as neutrophil extracellular traps (NETs). Taking advantage of the defined circular shape of the DHMs, an automated time-lapse imaging and image analysis method was developed and used to track DHM degradation and shape changes over time. DHMs were degraded well by 10 U/mL concentrations of deoxyribonuclease I (DNase I) but not by the same level of micrococcal nuclease (MNase), whereas NETs were degraded well by both nucleases. These comparative observations suggest that DHMs have a less accessible chromatin structure compared to NETs. DHMs were degraded by normal human serum, although at a slower rate than NETs. Interestingly, time-lapse images of DHMs revealed qualitative differences in the serum-mediated degradation process compared to that mediated by DNase I. Importantly, despite their reduced susceptibility to degradation and compositional simplicity, the DHMs mimicked NETs in being degraded to a greater extent by normal donor serum compared to serum from a lupus patient with high disease activity. These methods and insights are envisioned to guide the future development and expanded use of DHMs, beyond the previously reported antibacterial and immunostimulatory analyses, to extracellular chromatin-related pathophysiological and diagnostic studies.
Collapse
Affiliation(s)
- Midori L. Wasielewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pallavi Ekbote
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
37
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
38
|
Grossi C, Capitani N, Benagiano M, Baldari CT, Della Bella C, Macor P, Tedesco F, Borghi MO, Maugeri N, D’Elios MM, Meroni PL. Beta 2 glycoprotein I and neutrophil extracellular traps: Potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Front Immunol 2023; 13:1076167. [PMID: 36700193 PMCID: PMC9868732 DOI: 10.3389/fimmu.2022.1076167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (β2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against β2GPI, both peripheral and tissue CD4+ β2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that β2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated β2GPI on NETs, and its ability to stimulate CD4+β2GPI-specific T cells. The aim of this review is to elucidate the role of β2GPI in the cross-talk between the innate and adaptive immunity in APS.
Collapse
Affiliation(s)
- Claudia Grossi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Nagaja Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Macor
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Division of Immunology, Transplantation & Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Institute, Milan, Italy
| | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| | - Pier Luigi Meroni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| |
Collapse
|
39
|
Targeting thromboinflammation in antiphospholipid syndrome. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2022; 21:744-757. [PMID: 36696191 DOI: 10.1016/j.jtha.2022.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.
Collapse
|
40
|
Burmeister A, Vidal-y-Sy S, Liu X, Mess C, Wang Y, Konwar S, Tschongov T, Häffner K, Huck V, Schneider SW, Gorzelanny C. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front Immunol 2022; 13:1078891. [PMID: 36591269 PMCID: PMC9800590 DOI: 10.3389/fimmu.2022.1078891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive. Methods In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system. Results We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release. Discussion In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.
Collapse
Affiliation(s)
- Antonia Burmeister
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaobo Liu
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Swagata Konwar
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Todor Tschongov
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karsten Häffner
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Huck
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Christian Gorzelanny, ; Stefan W. Schneider,
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Christian Gorzelanny, ; Stefan W. Schneider,
| |
Collapse
|
41
|
Capecchi M, Abbattista M, Ciavarella A, Uhr M, Novembrino C, Martinelli I. Anticoagulant Therapy in Patients with Antiphospholipid Syndrome. J Clin Med 2022; 11:jcm11236984. [PMID: 36498557 PMCID: PMC9741036 DOI: 10.3390/jcm11236984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by the persistent positivity of antiphospholipid antibodies (aPLA) together with thrombosis or obstetrical complications. Despite their recognized predominant role, aPLA are not sufficient to induce the development of thrombosis and a second hit has been proposed to be necessary. The mainstay of treatment of APS is anticoagulant therapy. However, its optimal intensity in different presentations of the disease remains undefined. Moreover, decision on which patients with aPLA would benefit from an antithrombotic prophylaxis and its optimal intensity are challenging because of the lack of stratification tools for the risk of thrombosis. Finally, decision on the optimal type of anticoagulant drug is also complex because the central pathway responsible for the development of thrombosis is so far unknown and should be carried out on an individual basis after a careful evaluation of the clinical and laboratory features of the patient. This review addresses the epidemiology, physiopathology, diagnosis and management of thrombosis and obstetrical complications in APS, with a special focus on the role of direct oral anticoagulants.
Collapse
Affiliation(s)
- Marco Capecchi
- Division of Hematology, Clinica Moncucco, 6900 Lugano, Switzerland
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Abbattista
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Ciavarella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Uhr
- Division of Hematology, Clinica Moncucco, 6900 Lugano, Switzerland
- Department of Hematology, Synlab-Suisse, 6900 Lugano, Switzerland
| | - Cristina Novembrino
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ida Martinelli
- Division of Hematology, Clinica Moncucco, 6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-960-80-81
| |
Collapse
|
42
|
Kocivnik N, Velnar T. A Review Pertaining to SARS-CoV-2 and Autoimmune Diseases: What Is the Connection? Life (Basel) 2022; 12:1918. [PMID: 36431053 PMCID: PMC9698792 DOI: 10.3390/life12111918] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is known that infection with SARS-CoV-2 can lead to various autoimmune and autoinflammatory diseases. There are few reports in the literature on the association between SARS-CoV-2 and autoimmune diseases, and the number of reports has been increasing since 2020. Autoimmune diseases and SARS-CoV-2 infections are intertwined in several ways. Both conditions lead to immune-mediated tissue damage, the immune response is accompanied by the increased secretion of inflammatory cytokines and both conditions can be treated using immunomodulatory drugs. Patients with certain autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, cardiac sarcoidosis, idiopathic pulmonary fibrosis, autoimmune hepatitis, multiple sclerosis and others, are more susceptible to SARS-CoV-2 infection, either because of the active autoimmune disease or because of the medications used to treat it. Conversely, SARS-CoV-2 infection can also cause certain autoimmune diseases. In this paper, we describe the development of autoimmune diseases after COVID-19 and the recovery from COVID-19 in people with autoimmune diseases.
Collapse
Affiliation(s)
- Nina Kocivnik
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
44
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
45
|
Li JC, Zou XM, Yang SF, Jin JQ, Zhu L, Li CJ, Yang H, Zhang AG, Zhao TQ, Chen CY. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J Gastroenterol 2022; 28:3132-3149. [PMID: 36051331 PMCID: PMC9331535 DOI: 10.3748/wjg.v28.i26.3132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of venous thromboembolism (VTE) is associated with high mortality among gastric cancer (GC) patients. Neutrophil extracellular traps (NETs) have been reported to correlate with the prothrombotic state in some diseases, but are rarely reported in GC patients.
AIM To investigate the effect of NETs on the development of cancer-associated thrombosis in GC patients.
METHODS The levels of NETs in blood and tissue samples of patients were analyzed by ELISA, flow cytometry, and immunofluorescence staining. NET generation and hypercoagulation of platelets and endothelial cells (ECs) in vitro were observed by immunofluorescence staining. NET procoagulant activity (PCA) was determined by fibrin formation and thrombin–antithrombin complex (TAT) assays. Thrombosis in vivo was measured in a murine model induced by flow stenosis in the inferior vena cava (IVC).
RESULTS NETs were likely to form in blood and tissue samples of GC patients compared with healthy individuals. In vitro studies showed that GC cells and their conditioned medium, but not gastric mucosal epithelial cells, stimulated NET release from neutrophils. In addition, NETs induced a hypercoagulable state of platelets by upregulating the expression of phosphatidylserine and P-selectin on the cells. Furthermore, NETs stimulated the adhesion of normal platelets on glass surfaces. Similarly, NETs triggered the conversion of ECs to hypercoagulable phenotypes by downregulating the expression of their intercellular tight junctions but upregulating that of tissue factor. Treatment of normal platelets or ECs with NETs augmented the level of plasma fibrin formation and the TAT complex. In the models of IVC stenosis, tumor-bearing mice showed a stronger ability to form thrombi, and NETs abundantly accumulated in the thrombi of tumor-bearing mice compared with control mice. Notably, the combination of deoxyribonuclease I, activated protein C, and sivelestat markedly abolished the PCA of NETs.
CONCLUSION GC-induced NETs strongly increased the risk of VTE development both in vitro and in vivo. NETs are potential therapeutic targets in the prevention and treatment of VTE in GC patients.
Collapse
Affiliation(s)
- Jia-Cheng Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiao-Ming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shi-Feng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Qi Jin
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chang-Jian Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - An-Ge Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Tian-Qi Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chong-Yan Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
46
|
Liu ML, Lyu X, Werth VP. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J 2022; 289:3954-3966. [PMID: 34042290 PMCID: PMC9107956 DOI: 10.1111/febs.16036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Neutrophils are the most abundant circulating white blood cells and one of the major cell types of the innate immune system. Neutrophil extracellular traps (NETs) are a result of the extracellular release of nuclear chromatin from the ruptured nuclear envelope and plasma membrane. The externalized chromatin is an ancient defense weapon for animals to entrap and kill microorganisms in the extracellular milieu, thus protecting animals ranging from lower invertebrates to higher vertebrates. Although the externalized chromatin has the advantage of acting as anti-infective to protect against infections, extracellular chromatin might be problematic in higher vertebrate animals as they have an adaptive immune system that can trigger further immune or autoimmune responses. NETs and their associated nuclear and/or cytoplasmic components may induce sterile inflammation, immune, and autoimmune responses, leading to various human diseases. Though important in human pathophysiology, the cellular and molecular mechanisms of NET formation (also called NETosis) are not well understood. Given that nuclear chromatin forms the backbone of NETs, the nucleus is the root of the nuclear DNA extracellular traps. Thus, nuclear chromatin decondensation, along with the rupture of nuclear envelope and plasma membrane, is required for nuclear chromatin extracellular release and NET formation. So far, most of the literature focuses on certain signaling pathways, which are involved in NET formation but without explanation of cellular events and morphological changes described above. Here, we have summarized emerging evidence and discuss new mechanistic understanding, with our perspectives, in NET formation in neutrophils.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Lyu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
47
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
48
|
Fingerhut L, Yücel L, Strutzberg-Minder K, von Köckritz-Blickwede M, Ohnesorge B, de Buhr N. Ex Vivo and In Vitro Analysis Identify a Detrimental Impact of Neutrophil Extracellular Traps on Eye Structures in Equine Recurrent Uveitis. Front Immunol 2022; 13:830871. [PMID: 35251020 PMCID: PMC8896353 DOI: 10.3389/fimmu.2022.830871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a common ocular disease of horses and described as a model for human autoimmune uveitis. This immune-mediated, inflammatory condition progressively destroys the eye, ultimately leading to blindness. Genetic and autoimmune factors, next to infections with Leptospira, are discussed as key factors in the pathogenesis. Furthermore, a release of neutrophil extracellular traps (NETs) by activated neutrophils is involved. NETs are composed of decondensed chromatin and proteins that can immobilize invading pathogens. However, if NETs accumulate, they can contribute to detrimental autoimmune processes. Thus, we aimed to investigate the impact of NETs in ERU patients. Therefore, we quantified several NET-markers (cell-free DNA, nucleosomes, citrullinated histone H3, histone-myeloperoxidase complexes, interleukin-17, equine cathelicidin 1 and DNase I activity) and NET-autoantibodies in sera and vitreous body fluids (VBF) of ERU-diseased horses and correlated the data with the disease status (signalment, ERU scores and Leptospira infection status). NET markers were detected to varying degrees in VBF of diseased horses, and partially correlated to disease severity and the presence of Leptospira spp. Cell-free DNA and nucleosomes as NET markers correlate with ERU severity in total and VBF scores, despite the presence of active DNases. Additionally, a significant correlation between fundus affection in the eye and NET autoantibodies was detectable. Therefore, we further investigated the influence of VBF samples from equine patients and isolated NETs on the blood-retina barrier in a cell culture model. VBF of diseased horses significantly induced cytotoxicity in retinal pigment epithelial cells. Moreover, partially digested NETs also resulted in cytotoxic effects. In the presence of lipopolysaccharide (LPS), the main component of the leptospiral surface, both undigested and completely digested NETs were cytotoxic. Correlations between the ERU-scores and Leptospira were also calculated. Detection of leptospiral DNA, and antibody titers of the serovar Grippotyphosa correlated with disease severity. In addition, a correlation between Leptospira and several NET markers was observed in VBF. Altogether, our findings suggest a positive correlation between NET markers with disease severity and involvement of Leptospira in the VBF of ERU-diseased horses, as well as a cytotoxic effect of NETs in eyes.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leyla Yücel
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
49
|
Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol 2022; 44:347-362. [PMID: 35122116 PMCID: PMC8816310 DOI: 10.1007/s00281-022-00916-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia propelled by circulating antiphospholipid antibodies that herald vascular thrombosis and obstetrical complications. Antiphospholipid antibodies recognize phospholipids and phospholipid-binding proteins and are not only markers of disease but also key drivers of APS pathophysiology. Thrombotic events in APS can be attributed to various conspirators including activated endothelial cells, platelets, and myeloid-lineage cells, as well as derangements in coagulation and fibrinolytic systems. Furthermore, recent work has especially highlighted the role of neutrophil extracellular traps (NETs) and the complement system in APS thrombosis. Beyond acute thrombosis, patients with APS can also develop an occlusive vasculopathy, a long-term consequence of APS characterized by cell proliferation and infiltration that progressively expands the intima and leads to organ damage. This review will highlight known pathogenic factors in APS and will also briefly discuss similarities between APS and the thrombophilic coagulopathy of COVID-19.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
50
|
Low disease activity of microscopic polyangiitis in patients with anti-myosin light chain 6 antibody that disrupts actin rearrangement necessary for neutrophil extracellular trap formation. Arthritis Res Ther 2022; 24:274. [PMID: 36527167 PMCID: PMC9756472 DOI: 10.1186/s13075-022-02974-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are critically involved in microscopic polyangiitis (MPA) pathogenesis, and some patients with MPA possess anti-NET antibody (ANETA). Anti-myosin light chain 6 (MYL6) antibody is an ANETA that affects NETs. This study aimed to determine the significance of anti-MYL6 antibody in MPA. METHODS The influence of anti-MYL6 antibody on NET formation and actin rearrangement necessary for NET formation was assessed by fluorescent staining. An enzyme-linked immunosorbent assay was established to detect serum anti-MYL6 antibody, and the prevalence of this antibody in MPA was determined. Furthermore, the disease activity and response to remission-induction therapy of MPA were compared between anti-MYL6 antibody-positive and anti-MYL6 antibody-negative MPA patients. RESULTS Anti-MYL6 antibody disrupted G-actin polymerization into F-actin, suppressing phorbol 12-myristate 13-acetate-induced NET formation. Serum anti-MYL6 antibody was detected in 7 of 59 patients with MPA. The Birmingham vasculitis activity score (BVAS) of anti-MYL6 antibody-positive MPA patients was significantly lower than anti-MYL6 antibody-negative MPA patients. Among the nine BVAS evaluation items, the cutaneous, cardiovascular, and nervous system scores of anti-MYL6 antibody-positive MPA patients were significantly lower than anti-MYL6 antibody-negative MPA patients, although other items, including the renal and chest scores, were equivalent between the two groups. The proportion of patients with remission 6 months after initiation of remission-induction therapy in anti-MYL6 antibody-positive MPA patients was significantly higher than in anti-MYL6 antibody-negative MPA patients. CONCLUSIONS Collective findings suggested that anti-MYL6 antibody disrupted actin rearrangement necessary for NET formation and could reduce the disease activity of MPA.
Collapse
|