1
|
Ruciński J, Kurowska-Rucińska E, Myślińska D, Grembecka B, Piekarczyk N, Necel A, Kosznik-Kwaśnicka K, Majkutewicz I. Galactooligosaccharides Attenuate Behavioural, Haematological and Immunological Abnormalities and Influence Gut Microbiota in Rats with Amygdala Hyperactivation Induced by Electrical Stimulation. Int J Mol Sci 2025; 26:4353. [PMID: 40362590 PMCID: PMC12073049 DOI: 10.3390/ijms26094353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
The amygdala, especially its central nucleus (CeA), is one of the key brain structures regulating fear, anxiety and stress responses and is also involved in gut microbiota signal processing. Amygdala hyperactivity, as well as microbiota alterations, plays an important role in the pathophysiology of anxiety disorders, depression or post-traumatic stress disorder (PTSD). The present study determines whether 3 weeks of galactooligosaccharide (GOS) supplementation alleviates behavioural, haematological, immunological and gut microbiota disturbances induced by long-term electrical stimulation of the CeA in rats (Stim). The unsupplemented Stim group showed locomotor hyperactivity and higher anxiety (measured with an actometer and the elevated plus maze, respectively), as well as a decrease in white blood cells (WBCs), lymphocytes (LYMs), red blood cells (RBCs) and platelets (PLTs); an elevation of TNFα; a reduction in IL-10 concentration in plasma; and microbiota alterations as compared to the control (Sham) group. GOS supplementation alleviated all these Stim-induced adverse effects or even normalised them to the sham group level. The effect of GOS was comparable to citalopram and even more effective in WBC and PLT normalisation and IL-10 induction. The obtained results indicate the high therapeutic potential of GOS in anxiety and stress-related disorders. GOS supplementation may support conventional therapy or the prevention of PTSD, depression and anxiety disorders.
Collapse
Affiliation(s)
- Jan Ruciński
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| | - Ewelina Kurowska-Rucińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| | - Natalia Piekarczyk
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| | - Agnieszka Necel
- Division of Medical Microbiology, Department of Microbiology, Faculty of Medicine, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a St., 80-210 Gdańsk, Poland; (A.N.); (K.K.-K.)
| | - Katarzyna Kosznik-Kwaśnicka
- Division of Medical Microbiology, Department of Microbiology, Faculty of Medicine, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a St., 80-210 Gdańsk, Poland; (A.N.); (K.K.-K.)
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59 St., 80-308 Gdańsk, Poland; (J.R.); (E.K.-R.); (D.M.); (B.G.); (N.P.)
| |
Collapse
|
2
|
Amlashi FI, Besharat S, Jahanshahi M, Shirzad-Aski H, Torshizi FN. Colitis can reduce the cingulate cortex neuronal density in rats. BMC Gastroenterol 2025; 25:171. [PMID: 40082771 PMCID: PMC11907912 DOI: 10.1186/s12876-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND AIM Hyperalgesia and hypersensitivity in patients with Inflammatory Bowel Disease (IBD) can be related to central nervous system (CNS) changes, particularly in the pain pathways. The objective of this study was to examine the neuronal density of the cingulate cortex area (CC) and amygdala in an animal model of colitis. MATERIALS AND METHODS In this experiment, 13 male Wistar rats were subjected to study. Colitis was induced in the rats by transrectally administering 1 cc of acetic acid 3% under sedation with xylazine 10% (5 mg/kg). After 14 days of colitis, the rats were euthanized under high doses of anesthesia with ketamine (50 mg/kg), xylazine (10 mg/kg), and diazepam (2.5 mg/kg). Their brains were then removed surgically. Six-micrometer-thick brain slices were stained with cresyl violet, and the neuronal density of the amygdala, area 1 of the cingulate cortex area (CC1), and area 2 of the cingulate cortex area (CC2) was assessed via microscopic imaging. RESULTS The mean ± standard deviation (SD) of the neuronal density in CC1 was significantly decreased in rats with colitis compared to the control group in both the right CC1 (43.53 ± 9.63 vs. 62.7 ± 11.89; p-value ˂ 0.001), and left CC1 (41.19 ± 9.05 and 63.1 ± 7.44; p-value ˂ 0.001). Additionally, the neuronal density of CC2 in the colitis group was found to be significantly lower than that of the controls in both the right CC2 (57.8 ± 13.23 vs. 87.95 ± 8.76; p-value ˂ 0.001), and left CC2 (55.42 ± 11.3 vs. 98 ± 8.99; p-value ˂ 0.001). Furthermore, the amygdala had a lower neuronal density in both hemispheres in rats with colitis in comparison to the controls bilaterally: right hemisphere (24.51 ± 5.49 and 36.3 ± 7.44; p-value = 0.360), and left hemisphere (24.52 ± 5.53 VS. 35.25 ± 5.6; P-value = 0.869). CONCLUSION This study showed that colitis can reduce the neuronal density within cortical areas and amygdala of both hemispheres. Considering the cingulate cortex's role in suppressing pain perception, any harm inflicted upon this region of the brain can has the ability to impact the cognitive and sensory aspects of pain.
Collapse
Affiliation(s)
- Fazel Isapanah Amlashi
- Golestan Research Center of Gastroenterology and Hepatology, GolestanUniversity of Medical Sciences, Gorgan, Iran
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, GolestanUniversity of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, 49178-67439, Iran.
| | - Fatemeh Nassaj Torshizi
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Oppenheimer M, Tao J, Moidunny S, Roy S. Anxiety-like behavior during protracted morphine withdrawal is driven by gut microbial dysbiosis and attenuated with probiotic treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.633224. [PMID: 39975140 PMCID: PMC11838364 DOI: 10.1101/2025.01.29.633224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of anxiety during protracted opioid withdrawal heightens the risk of relapse into the cycle of addiction. Understanding the mechanisms driving anxiety during opioid withdrawal could facilitate the development of therapeutics to prevent negative affect and promote continued abstinence. Our lab has previously established the gut microbiome as a driver of various side effects of opioid use, including analgesic tolerance and somatic withdrawal symptoms. We therefore hypothesized that the gut microbiome contributes to the development of anxiety-like behavior during protracted opioid withdrawal. In this study, we first established a mouse model of protracted morphine withdrawal, characterized by anxiety-like behavior and gut microbial dysbiosis. Next, we used fecal microbiota transplantation (FMT) to show that gut dysbiosis alone is sufficient to induce anxiety-like behavior. We further demonstrate that probiotic therapy during morphine withdrawal attenuates the onset of anxiety-like behavior, highlighting its therapeutic potential. Lastly, we examined transcriptional changes in the amygdala of morphine-withdrawn mice treated with probiotics to explore mechanisms by which the gut-brain axis mediates anxiety-like behavior. Our results support the use of probiotics as a promising therapeutic strategy to prevent gut dysbiosis and associated anxiety during opioid withdrawal, with potential implications for improving treatment outcomes in opioid recovery programs.
Collapse
|
4
|
Schneider E, Schmidt R, Cryan JF, Hilbert A. A Role for the Microbiota-Gut-Brain Axis in Avoidant/Restrictive Food Intake Disorder: A New Conceptual Model. Int J Eat Disord 2024; 57:2321-2328. [PMID: 39542726 PMCID: PMC11629072 DOI: 10.1002/eat.24326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Avoidant/restrictive food intake disorder (ARFID) is an eating disorder characterized by a severely restrictive diet leading to significant physical and/or psychosocial sequelae. Largely owing to the phenotypic heterogeneity, the underlying pathophysiological mechanisms are relatively unknown. Recently, the communication between microorganisms within the gastrointestinal tract and the brain-the so-called microbiota-gut-brain axis-has been implicated in the pathophysiology of eating disorders. This Spotlight review sought to investigate and conceptualize the possible ways that the microbiota-gut-brain axis is involved in ARFID to drive future research in this area. METHOD By relating core symptoms of ARFID to gut microbiota and its signaling pathways to the brain, we evaluated how the gut microbiota is potentially involved in the pathophysiology of ARFID. RESULTS We hypothesized that the restricted type and amount of food intake characteristic of ARFID diminishes gut microbial diversity, including beneficial bacteria and their metabolites capable of signaling to the brain, to modulate biopsychological pathways relevant to ARFID: homeostatic signaling, food reward, interoception, sensory sensitivity, disgust, perseveration, fear-based learning, and mood. Candidate signaling mechanisms include microbial-induced effects on inflammation, cortisol, and neurotransmitters such as dopamine and serotonin. DISCUSSION Through reviewing the extant evidence, we conceptualized a new theoretical framework of ARFID with an emphasis on microbiota-gut-brain axis signaling to inform future research. Although more research is necessary to evaluate this theoretical model, the tentative evidence suggests that therapeutics specifically targeting the gut microbiota for the treatment of ARFID symptomatology warrants more investigation.
Collapse
Affiliation(s)
| | - Ricarda Schmidt
- Department of Psychosomatic Medicine and Psychotherapy, Research Unit Behavioral Medicine, Integrated Research and Treatment Center AdiposityDiseasesUniversity of Leipzig Medical CenterLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ), partner Site Leipzig/DresdenLeipzigGermany
| | - John F. Cryan
- APC Microbiome Ireland, University College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Anja Hilbert
- Department of Psychosomatic Medicine and Psychotherapy, Research Unit Behavioral Medicine, Integrated Research and Treatment Center AdiposityDiseasesUniversity of Leipzig Medical CenterLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ), partner Site Leipzig/DresdenLeipzigGermany
| |
Collapse
|
5
|
Harel M, Amiaz R, Raizman R, Leibovici A, Golan Y, Mesika D, Bodini R, Tsarfaty G, Weiser M, Livny A. Distinct homotopic functional connectivity patterns of the amygdalar sub-regions as biomarkers in major depressive disorder. J Affect Disord 2024; 365:285-292. [PMID: 39134155 DOI: 10.1016/j.jad.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) affects multiple functional neural networks. Neuroimaging studies using resting-state functional connectivity (FC) have focused on the amygdala but did not assess changes in connectivity between the left and right amygdala. The current study aimed to examine the inter-hemispheric functional connectivity (homotopic FC, HoFC) between different amygdalar sub-regions in patients with MDD compared to healthy controls, and to examine whether amygdalar sub-regions' HoFC also predicts response to Serotonin Selective Reuptake Inhibitors (SSRIs). METHOD Sixty-seven patients with MDD and 64 matched healthy controls were recruited. An MRI scan focusing on resting state fMRI and clinical and cognitive evaluations were performed. An atlas seed-based approach was used to identify the lateral and medial sub-regions of the amygdala. HoFC of these sub-regions was compared between groups and correlated with severity of depression, and emotional processing performance. Baseline HoFC levels were used to predict response to SSRIs after 2 months of treatment. RESULTS Patients with MDD demonstrated decreased inter-hemispheric FC in the medial (F3,120 = 4.11, p = 0.008, η2 = 0.096) but not in the lateral (F3,119 = 0.29, p = 0.82, η2 = 0.008) amygdala compared with healthy controls. The inter-hemispheric FC of the medial sub-region correlated with symptoms severity (r = -0.33, p < 0.001) and emotional processing performance (r = 0.38, p < 0.001). Moreover, it predicted treatment response to SSRIs 65.4 % of the cases. LIMITATIONS The current study did not address FC changes in MDD biotypes. In addition, structural connectivity was not examined. CONCLUSIONS Using a unique perspective of the amygdalar distinct areas elucidated differential inter-hemispheric FC patterns in MDD patients, emphasizing the role of interhemispheric communication in depression.
Collapse
Affiliation(s)
- Maayan Harel
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Revital Amiaz
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Leibovici
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Golan
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - David Mesika
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Raffaella Bodini
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark Weiser
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Imaging, Faculty of Medical & Health Sciences, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Shen CL, Santos JM, Elmassry MM, Bhakta V, Driver Z, Ji G, Yakhnitsa V, Kiritoshi T, Lovett J, Hamood AN, Sang S, Neugebauer V. Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:502. [PMID: 38790607 PMCID: PMC11118883 DOI: 10.3390/antiox13050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut-brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Viren Bhakta
- Department of Biology, Texas Tech University, Lubbock, TX 79401, USA
| | - Zarek Driver
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79401, USA
| | - Guangchen Ji
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Vadim Yakhnitsa
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Takaki Kiritoshi
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| | - Jacob Lovett
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.)
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, NC 28081, USA;
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (G.J.); (V.Y.); (T.K.)
| |
Collapse
|
8
|
Ritz NL, Draper LA, Bastiaanssen TFS, Turkington CJR, Peterson VL, van de Wouw M, Vlckova K, Fülling C, Guzzetta KE, Burokas A, Harris H, Dalmasso M, Crispie F, Cotter PD, Shkoporov AN, Moloney GM, Dinan TG, Hill C, Cryan JF. The gut virome is associated with stress-induced changes in behaviour and immune responses in mice. Nat Microbiol 2024; 9:359-376. [PMID: 38316929 PMCID: PMC10847049 DOI: 10.1038/s41564-023-01564-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Christopher J R Turkington
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Klara Vlckova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aurelijus Burokas
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Hugh Harris
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000, Caen, France
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Corke, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
10
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Butler MJ, Sengupta S, Muscat SM, Amici SA, Biltz RG, Deems NP, Dravid P, Mackey-Alfonso S, Ijaz H, Bettes MN, Godbout JP, Kapoor A, Guerau-de-Arellano M, Barrientos RM. CD8 + T cells contribute to diet-induced memory deficits in aged male rats. Brain Behav Immun 2023; 109:235-250. [PMID: 36764399 PMCID: PMC10124165 DOI: 10.1016/j.bbi.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
We have previously shown that short-term (3-day) high fat diet (HFD) consumption induces a neuroinflammatory response and subsequent impairment of long-term memory in aged, but not young adult, male rats. However, the immune cell phenotypes driving this proinflammatory response are not well understood. Previously, we showed that microglia isolated from young and aged rats fed a HFD express similar levels of priming and proinflammatory transcripts, suggesting that additional factors may drive the exaggerated neuroinflammatory response selectively observed in aged HFD-fed rats. It is established that T cells infiltrate both the young and especially the aged central nervous system (CNS) and contribute to immune surveillance of the parenchyma. Thus, we investigated the modulating role of short-term HFD on T cell presence in the CNS in aged rats using bulk RNA sequencing and flow cytometry. RNA sequencing results indicate that aging and HFD altered the expression of genes and signaling pathways associated with T cell signaling, immune cell trafficking, and neuroinflammation. Moreover, flow cytometry data showed that aging alone increased CD4+ and CD8+ T cell presence in the brain and that CD8+, but not CD4+, T cells were further increased in aged rats fed a HFD. Based on these data, we selectively depleted circulating CD8+ T cells via an intravenous injection of an anti-CD8 antibody in aged rats prior to 3 days of HFD to infer the functional role these cells may be playing in long-term memory and neuroinflammation. Results indicate that peripheral depletion of CD8+ T cells lowered hippocampal cytokine levels and prevented the HFD-induced i) increase in brain CD8+ T cells, ii) memory impairment, and iii) alterations in pre- and post-synaptic structures in the hippocampus and amygdala. Together, these data indicate a substantial role for CD8+ T cells in mediating diet-induced memory impairments in aged male rats.
Collapse
Affiliation(s)
- Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| | - Shouvonik Sengupta
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Rebecca G Biltz
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Piyush Dravid
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Haanya Ijaz
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Amit Kapoor
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Harvey AR. Injury, illness, and emotion: A review of the motivational continuum from trauma through recovery from an ecological perspective. Brain Behav Immun Health 2023; 27:100586. [PMID: 36655055 PMCID: PMC9841046 DOI: 10.1016/j.bbih.2022.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Image 1.
Collapse
|
13
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
15
|
An Altered Skin and Gut Microbiota Are Involved in the Modulation of Itch in Atopic Dermatitis. Cells 2022; 11:cells11233930. [PMID: 36497188 PMCID: PMC9736894 DOI: 10.3390/cells11233930] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Skin and gut microbiota play an important role in the pathogenesis of atopic dermatitis (AD). An alteration of the microbiota diversity modulates the development and course of AD, e.g., decreased microbiome diversity correlates with disease severity, particularly in lesional skin of AD. Itch is a hallmark of AD with unsatisfying treatment until now. Recent evidence suggests a possible role of microbiota in altering itch in AD through gut-skin-brain interactions. The microbial metabolites, proinflammatory cytokines, and impaired immune response lead to a modulation of histamine-independent itch, disruption of epidermal barrier, and central sensitization of itch mechanisms. The positive impact of probiotics in alleviating itch in AD supports this hypothesis, which may lead to novel strategies for managing itchy skin in AD patients. This review summarizes the emerging findings on the correlation between an altered microbiota and gut-skin-brain axis in AD, especially in modulating itchy skin.
Collapse
|
16
|
Feng Y, Hang L, Zhou Y, Jiang FR, Yuan JY. Gut microbiota plays a role in irritable bowel syndrome by regulating 5-HT metabolism. Shijie Huaren Xiaohua Zazhi 2022; 30:941-949. [DOI: 10.11569/wcjd.v30.i21.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. Brain-gut-microbiota axis dysfunction is an important pathogenic factor for IBS, in which neurotransmitters and gut microbes play key roles. The gastrointestinal tract contains large amounts of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter that has been strongly linked to IBS-related symptoms. More than 90% of serotonin is synthesized in the gut by enterochromaffin cells (ECs), and certain intestinal flora can affect the occurrence and development of IBS by regulating 5-HT and its metabolism. In this review, we will discuss the role of gut microbiota in IBS by regulating 5-HT.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
17
|
The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022; 14:nu14163293. [PMID: 36014798 PMCID: PMC9413457 DOI: 10.3390/nu14163293] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut–brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently, it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
Collapse
|
18
|
Shen CL, Wang R, Yakhnitsa V, Santos JM, Watson C, Kiritoshi T, Ji G, Hamood AN, Neugebauer V. Gingerol-Enriched Ginger Supplementation Mitigates Neuropathic Pain via Mitigating Intestinal Permeability and Neuroinflammation: Gut-Brain Connection. Front Pharmacol 2022; 13:912609. [PMID: 35873544 PMCID: PMC9305072 DOI: 10.3389/fphar.2022.912609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Emerging evidence suggests an important role of the gut-brain axis in the development of neuropathic pain (NP). We investigated the effects of gingerol-enriched ginger (GEG) on pain behaviors, as well as mRNA expressions of inflammation via tight junction proteins in GI tissues (colon) and brain tissues (amygdala, both left and right) in animals with NP. Methods: Seventeen male rats were randomly divided into three groups: Sham, spinal nerve ligation (SNL, pain model), and SNL+0.375% GEG (wt/wt in diet) for 4 weeks. Mechanosensitivity was assessed by von Frey filament tests and hindpaw compression tests. Emotional responsiveness was measured from evoked audible and ultrasonic vocalizations. Ongoing spontaneous pain was measured in rodent grimace tests. Intestinal permeability was assessed by the lactulose/D-mannitol ratio in urine. The mRNA expression levels of neuroinflammation (NF-κB, TNF-α) in the colon and amygdala (right and left) were determined by qRT-PCR. Data was analyzed statistically. Results: Compared to the sham group, the SNL group had significantly greater mechanosensitivity (von Frey and compression tests), emotional responsiveness (audible and ultrasonic vocalizations to innocuous and noxious mechanical stimuli), and spontaneous pain (rodent grimace tests). GEG supplementation significantly reduced mechanosensitivity, emotional responses, and spontaneous pain measures in SNL rats. GEG supplementation also tended to decrease SNL-induced intestinal permeability markers. The SNL group had increased mRNA expression of NF-κB and TNF-α in the right amygdala and colon; GEG supplementation mitigated these changes in SNL-treated rats. Conclusion: This study suggests GEG supplementation palliated a variety of pain spectrum behaviors in a preclinical NP animal model. GEG also decreased SNL-induced intestinal permeability and neuroinflammation, which may explain the behavioral effects of GEG.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Lubbock, TX, United States
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- *Correspondence: Chwan-Li Shen,
| | - Rui Wang
- Department of Pathology, Lubbock, TX, United States
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | | | - Carina Watson
- Department of Medical Education, Lubbock, TX, United States
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
19
|
Bai J, Withycombe J, Eldridge RC. Metabolic Pathways Associated With Psychoneurological Symptoms in Children With Cancer Receiving Chemotherapy. Biol Res Nurs 2022; 24:281-293. [PMID: 35285272 PMCID: PMC9343884 DOI: 10.1177/10998004211069619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
CONTEXT Children with cancer undergoing chemotherapy experience a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, and depressive symptoms. Metabolomics is promising to differentiate metabolic pathways associated with the PNS cluster. OBJECTIVES Identify metabolic pathways associated with the PNS cluster in children with cancer before and after chemotherapy. METHODS Pain, fatigue, anxiety, and depressive symptoms were assessed using the Pediatric PROMIS scales. T-scores were computed and divided dichotomously by a cutoff point of 50; the PNS cluster was a sum of the four symptoms ranging from 0 (all T-scores <50) to 4 (all T-scores ≥50). Serum metabolites were processed using liquid chromatography mass-spectrometry untargeted metabolomics approach. Linear regression models examined metabolites associated with the PNS cluster. Metabolic pathway enrichment analysis was performed. RESULTS Participant demographics (n = 40) were 55% female, 60% white, 62.5% aged 13-19 years, and 62.5% diagnoses of Hodgkin's lymphoma and B-cell acute lymphocytic leukemia. Among 9276 unique metabolic features, 454 were associated with pain, 281 with fatigue, 596 with anxiety, 551 with depressive symptoms, and 300 with the PNS cluster across one chemotherapy cycle. Fatty acids pathways were associated with pain: de novo fatty acid biosynthesis (p < .001), fatty acid metabolism (p = .001), fatty acid activation (p = .004), and omega-3 fatty acid metabolism (p = .009). Tryptophan amino acid pathway was associated with fatigue (p < .001), anxiety (p = .015), and the PNS cluster (p = .037). Carnitine shuttle was associated with the PNS cluster (p = .015). CONCLUSION Fatty acids and amino acids pathways were associated with PNS in children undergoing chemotherapy. These findings require further investigation in a larger sample.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
De Benedittis G. Hypnobiome: A New, Potential Frontier of Hypnotherapy in the Treatment of Irritable Bowel Syndrome-A Narrative Review of the Literature. Int J Clin Exp Hypn 2022; 70:286-299. [PMID: 35792903 DOI: 10.1080/00207144.2022.2094269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that the gut-brain axis may play a key role in health and disease via a bidirectional communication network involving neural and immunoendocrine pathways. This complex interplay deeply influences both gut microbiota and brain behavior. Pathobiome or gut dysbiosis is relevant for the pathogenesis of functional gastrointestinal disorders, such as IBS, chronic pain syndromes, and neurological and mental disorders. As a consequence, targeting the gut microbiota is emerging as a novel, effective therapeutic perspective. Among many treatment options, psychological interventions, including hypnosis, have been used to target the so-called psychobiome and its hypnotic analogue, i.e., hypnobiome, referring to their potential efficacy to modulate the mind-gut axis in IBS patients. A narrative review of the recent literature is provided and circumstantial evidence suggests that hypnobiome may represent a new promising frontier of hypnotherapy.
Collapse
|
21
|
Dalile B, La Torre D, Kalc P, Zoppas F, Roye C, Loret C, Lamothe L, Bergonzelli G, Courtin CM, Vervliet B, Oudenhove LV, Verbeke K. Extruded Wheat Bran Consumption Increases Serum Short-Chain Fatty Acids but Does Not Modulate Psychobiological Functions in Healthy Men: A Randomized, Placebo-Controlled Trial. Front Nutr 2022; 9:896154. [PMID: 35694161 PMCID: PMC9178292 DOI: 10.3389/fnut.2022.896154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023] Open
Abstract
Background Incorporation of wheat bran (WB) into food products increases intake of dietary fiber, which has been associated with improved mood and cognition and a lower risk for psychiatric disorders such as depression, with short-chain fatty acids (SCFAs) as candidate mediators of these effects. Modifying WB using extrusion cooking increases SCFA production in vitro relative to unmodified WB. Objective The aim of this study was to evaluate the effects of extruded WB on psychobiological functioning and the mediating role of SCFAs. Methods In a randomized, triple-blind, placebo-controlled trial, 69 healthy male participants consumed 55 g of breakfast cereal containing either extruded WB or placebo daily for 28 days. At pre- and post-intervention visits, the cortisol response to experimentally induced stress was measured as a primary outcome. In addition, serum SCFAs and brain-derived neurotrophic factors were quantified as potential mediators. Secondary psychobiological outcomes included subjective stress responses, responses to experimentally induced fear, cortisol awakening response, heart rate variability, and retrospective subjective mood ratings. Intestinal permeability, fecal SCFAs, and stool consistency were measured as secondary biological outcomes. Results Extruded WB increased serum acetate and butyrate (p < 0.05). None of the primary or secondary outcomes were affected by the intervention. Participants who consumed a placebo exhibited an increase in the percentage of fecal dry weight but did not report increased constipation. Despite these statistically significant effects, these changes were small in magnitude. Conclusions Extruded WB consumption increased serum short-chain fatty acids but did not modulate psychobiological functions in healthy men. Effective modulation of psychobiological functions may require greater increases in SCFAs than those achieved following extruded WB consumption. Rather than attempting to induce health benefits with a single fiber-rich food, combinations of different fibers, particularly highly fermentable ones, might be needed to further increase SCFA production and uptake in the systemic circulation to observe an effect on psychobiological processes.
Collapse
Affiliation(s)
- Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Polona Kalc
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Zoppas
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Chiara Roye
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Chrystel Loret
- Nestlé Product Technology Centre, Coffee Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Lisa Lamothe
- Nestlé Institute of Materials Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gabriela Bergonzelli
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory of Biological Psychology, Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- *Correspondence: Kristin Verbeke
| |
Collapse
|
22
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Sumich A, Heym N, Lenzoni S, Hunter K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Barandouzi ZA, Lee J, Del Carmen Rosas M, Chen J, Henderson WA, Starkweather AR, Cong XS. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci Rep 2022; 12:1648. [PMID: 35102266 PMCID: PMC8803858 DOI: 10.1038/s41598-022-05756-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
Evidence highlights the comorbidity between emotional distress and irritable bowel syndrome (IBS) through the gut-brain axis. However, the underlying mechanism is largely unknown. Thus, the present study aimed to evaluate the associations among neurotransmitter levels and the gut microbiome profiles in persons with IBS and emotional distress. In this nested case-controlled study, emotional symptoms, including anxiety and depressive symptoms, were evaluated in 40 persons with IBS and 20 healthy controls (HC). Plasma neurotransmitters levels (serotonin and norepinephrine) and the gut microbiome profile of the collected fecal samples were examined. Emotional distress and microbiome profile were significantly different between IBS and HC groups. Lower but not significant neurotransmitters' levels (serotonin and norepinephrine) were observed in the IBS group compared to the HC. A negative correlation was found between norepinephrine levels and alpha diversity (Shannon and Simpson indices) in the IBS group. Moreover, serotonin levels were positively associated with the abundance of Proteobacteria, and norepinephrine were positively correlated with Bacteroidetes, but negatively associated with Firmicutes phylum. The present study demonstrated alteration in the gut microbiome between persons with IBS and emotional distress compared to HC. The correlations between plasma neurotransmitters and the gut microbiome suggest that the gut microbiome may impact the regulation of neurotransmitters.
Collapse
Affiliation(s)
- Zahra A Barandouzi
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA
- School of Nursing, Emory University, 1520 Clifton Rd, Atlanta, GA, 30322, USA
| | - Joochul Lee
- Department of Statistics, University of Connecticut, 215 Glenbrook Road, U-4120, Storrs, CT, 06269-4120, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA, 19104, USA
| | - Maria Del Carmen Rosas
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA
| | - Jie Chen
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA
- School of Nursing, University of Maryland, 655 W Lombard St, Baltimore, MD, 21201, USA
| | - Wendy A Henderson
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA
| | - Angela R Starkweather
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA
| | - Xiaomei S Cong
- School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA.
- Biobehavioral Research Laboratory, School of Nursing, University of Connecticut, 231 Glenbrook Road, Unit 4026, Storrs, CT, 06269-4026, USA.
| |
Collapse
|
25
|
Anavkar A, Patel N, Ali A, Rajan W, Alim H. Gut Microbes: Influencers of Human Brain. MICROBIOME-GUT-BRAIN AXIS 2022:3-27. [DOI: 10.1007/978-981-16-1626-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
27
|
Harvey AR. Integrated neuroimmune processing of threat, injury, and illness: An ecological framework mapping social alienation onto lifetime health vulnerability. Brain Behav Immun Health 2021; 18:100349. [PMID: 34723222 PMCID: PMC8531850 DOI: 10.1016/j.bbih.2021.100349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Social alienation is a pre-eminent ecological threat for humans. In clinical and social care settings its impact is acknowledged in conditions as diverse as severe mood disturbance, chronic pain, and metabolic non-communicable diseases. An integrated psychoneuroimmune perspective shows how threat, injury, healing, and recovery follow through as a continuous process, but accepted cultural and clinical paradigms separating mental from physical illness provide little common ground on which to analyse and apply this continuum in practice. By reviewing the ecological relationships between emotional threat, tissue dyshomeostasis and injury, infection, pain, and mood this article explores not only how primeval somatic responses underpin the evolutionary foundations of depression and somatisation, but also links them to escalating physical non-communicable disease through archived socioeconomic adversity (allostatic load). Social alienation (in the absence of trauma) may prime and activate this ancient repertoire in which sensitised responses lay the foundation for persistent maladaptive states of aversive sensory misinterpretation, behavioural avoidance, anhedonia, and neuroinflammation presenting as widespread non-nociceptive pain, non-pain somatisation, and severe depression. The ecological perspective illuminates perverse clinical presentations, shows how some approaches to care may facilitate self-reinforcement in maladaptive syndromes, and offers pointers for inclusive rehabilitative clinical and social care.
Collapse
Affiliation(s)
- Andrew R. Harvey
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Rustia AJ, Paterson JS, Best G, Sokoya EM. Microbial disruption in the gut promotes cerebral endothelial dysfunction. Physiol Rep 2021; 9:e15100. [PMID: 34755466 PMCID: PMC8578899 DOI: 10.14814/phy2.15100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebrovascular disease is a group of conditions characterized by disorders of the cerebral vessels. Endothelial dysfunction renders the vasculature at risk of impaired blood flow and increases the potential of developing cerebrovascular disease. The gut microbiota has been recently identified as a possible risk factor of cerebrovascular disease. However, a direct link between gut microbiota and cerebral vascular function has not been established. Therefore, the aim of this study was to determine the effect of gut bacterial disruption on cerebral endothelial function. Male inbred Sprague-Dawley rats were randomly assigned to receive either drinking water with (n = 4) or without (n = 4) a cocktail of nonabsorbable broad-spectrum antibiotics (streptomycin, neomycin, bacitracin, and polymyxin B). Three weeks of antibiotic treatment resulted in a significant reduction in bacterial load and shifts within the bacterial sub-populations as assessed using flow cytometry. Using pressure myography, we found that spontaneous tone significantly increased and L-NAME-induced vasoconstriction was significantly blunted in middle cerebral arteries (MCAs) harvested from antibiotic-treated rats. ATP-mediated dilations were significantly blunted in MCAs from antibiotic-treated rats compared to their control counterparts. Immunoblotting revealed that the eNOS-P/total eNOS ratio was significantly reduced in cerebral artery lysates from antibiotic-treated rats compared to controls. Our findings suggest that disruption of the gut microbiota leads to cerebral endothelial dysfunction through reduction of eNOS activity. This study highlights the potential of the microbiota as a target to reverse endothelial dysfunction and a preventative approach to reducing risk of stroke and aneurysms.
Collapse
Affiliation(s)
- April J. Rustia
- Chronic Disease Research LaboratoryFlinders Health and Medical InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - James S. Paterson
- Microbial Systems LaboratoryCollege of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Giles Best
- Flow Cytometry FacilityFlinders Health and Medical Research InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Elke M. Sokoya
- Chronic Disease Research LaboratoryFlinders Health and Medical InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
30
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
31
|
Carlson AL, Xia K, Azcarate-Peril MA, Rosin SP, Fine JP, Mu W, Zopp JB, Kimmel MC, Styner MA, Thompson AL, Propper CB, Knickmeyer RC. Infant gut microbiome composition is associated with non-social fear behavior in a pilot study. Nat Commun 2021; 12:3294. [PMID: 34078892 PMCID: PMC8172562 DOI: 10.1038/s41467-021-23281-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Experimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown. In this pilot study of 34 infants, we find that 1-year gut microbiome composition (Weighted Unifrac; lower abundance of Bacteroides, increased abundance of Veillonella, Dialister, and Clostridiales) is significantly associated with increased fear behavior during a non-social fear paradigm. Infants with increased richness and reduced evenness of the 1-month microbiome also display increased non-social fear. This study indicates associations of the human infant gut microbiome with fear behavior and possible relationships with fear-related brain structures on the basis of a small cohort. As such, it represents an important step in understanding the role of the gut microbiome in the development of human fear behaviors, but requires further validation with a larger number of participants.
Collapse
Affiliation(s)
- Alexander L Carlson
- Frank Porter Graham Child Development Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel P Rosin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Jason P Fine
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Wancen Mu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Jared B Zopp
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Mary C Kimmel
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Cathi B Propper
- Frank Porter Graham Child Development Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- C-RAIND Fellow and Co-Director, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
32
|
Kim HS, Hashimoto T, Fischer K, Bernigaud C, Chosidow O, Yosipovitch G. Scabies itch: an update on neuroimmune interactions and novel targets. J Eur Acad Dermatol Venereol 2021; 35:1765-1776. [PMID: 33960033 DOI: 10.1111/jdv.17334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Frequently described as 'the worst itch' one can ever experience scabies itch is the hallmark of Sarcoptes scabiei mite infestation. Notably, the itchiness often persists for weeks despite scabicides therapy. The mechanism of scabies itch is not yet fully understood, and effective treatment modalities are still missing which can severely affect the quality of life. The aim of this review is to provide an overview of the scope of itch in scabies and highlight candidate mechanisms underlying this itch. We herein discuss scabies itch, with a focus on the nature, candidate underlying mechanisms and treatment options. We also synthesize this information with current understanding of the mechanisms contributing to non-histaminergic itch in other conditions. Itch is a major problem in scabies and can lead to grave consequences. We provide the latest insights on host-mite interaction, secondary microbial infection and neural sensitization with special emphasis on keratinocytes and mast cells to better understand the mechanism of itch in scabies. Also, the most relevant current modalities remaining under investigation that possess promising perspectives for scabies itch (i.e. protease-activated receptor-2 (PAR-2) inhibitor, Mas-related G protein-coupled receptor X2 (MRGPRX2) antagonist) are discussed. Greater understanding of these diverse mechanisms may provide a rational basis for the development of improved and targeted approaches to control itch in individuals with scabies.
Collapse
Affiliation(s)
- H S Kim
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - T Hashimoto
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - K Fischer
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - C Bernigaud
- Faculté de Santé de Créteil et Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France.,Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - O Chosidow
- Faculté de Santé de Créteil et Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France.,Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - G Yosipovitch
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
33
|
Geary CG, Wilk VC, Barton KL, Jefferson PO, Binder T, Bhutani V, Baker CL, Fernando-Peiris AJ, Mousley AL, Rozental SFA, Thompson HM, Touchon JC, Esteban DJ, Bergstrom HC. Sex differences in gut microbiota modulation of aversive conditioning, open field activity, and basolateral amygdala dendritic spine density. J Neurosci Res 2021; 99:1780-1801. [PMID: 33951219 DOI: 10.1002/jnr.24848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Gut microbiota influence numerous aspects of host biology, including brain structure and function. Growing evidence implicates gut microbiota in aversive conditioning and anxiety-related behaviors, but research has focused almost exclusively on males. To investigate whether effects of gut dysbiosis on aversive learning and memory differ by sex, adult female and male C57BL/6N mice were orally administered a moderate dose of nonabsorbable antimicrobial medications (ATMs: neomycin, bacitracin, and pimaricin) or a control over 10 days. Changes in gut microbiome composition were analyzed by 16S rRNA sequencing. Open field behavior, cued aversive learning, context recall, and cued recall were assessed. Following behavioral testing, the morphology of basolateral amygdala (BLA) principal neuron dendrites and spines was characterized. Results revealed that ATMs induced gut dysbiosis in both sexes, with stronger effects in females. ATMs also exerted sex-specific effects on behavior and neuroanatomy. Males were more susceptible than females to microbial modulation of locomotor activity and anxiety-like behavior. Females were more susceptible than males to ATM-induced impairments in aversive learning and cued recall. Context recall remained intact, as did dendritic structure of BLA principal neurons. However, ATMs exerted a sex-specific effect on spine density. A second experiment was conducted to isolate the effects of gut perturbation to cued recall. Extinction was also examined. Results revealed no effect of ATMs on cued recall or extinction, suggesting that gut dysbiosis preferentially impacts aversive learning. These data shed new light on how gut microbiota interact with sex to influence aversive conditioning, open field behavior, and BLA dendritic spine architecture.
Collapse
Affiliation(s)
- Caroline Grace Geary
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | | | - Katherine Louise Barton
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - Parvaneh Ottavia Jefferson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - Tea Binder
- Department of Biology, Vassar College, Poughkeepsie, NY, USA
| | - Vasvi Bhutani
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - Claire Luisa Baker
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | | | - Alexa Lee Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | | | - Hannah Mae Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | | | | | - Hadley Creighton Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
34
|
Glover ME, Cohen JL, Singer JR, Sabbagh MN, Rainville JR, Hyland MT, Morrow CD, Weaver CT, Hodes GE, Kerman IA, Clinton SM. Examining the Role of Microbiota in Emotional Behavior: Antibiotic Treatment Exacerbates Anxiety in High Anxiety-Prone Male Rats. Neuroscience 2021; 459:179-197. [PMID: 33540050 PMCID: PMC7965353 DOI: 10.1016/j.neuroscience.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Intestinal microbiota are essential for healthy gastrointestinal function and also broadly influence brain function and behavior, in part, through changes in immune function. Gastrointestinal disorders are highly comorbid with psychiatric disorders, although biological mechanisms linking these disorders are poorly understood. The present study utilized rats bred for distinct emotional behavior phenotypes to examine relationships between emotionality, the microbiome, and immune markers. Prior work showed that Low Novelty Responder (LR) rats exhibit high levels of anxiety- and depression-related behaviors as well as myriad neurobiological differences compared to High Novelty Responders (HRs). Here, we hypothesized that the divergent HR/LR phenotypes are accompanied by changes in fecal microbiome composition. We used next-generation sequencing to assess the HR/LR microbiomes and then treated adult HR/LR males with an antibiotic cocktail to test whether it altered behavior. Given known connections between the microbiome and immune system, we also analyzed circulating cytokines and metabolic factors to determine relationships between peripheral immune markers, gut microbiome components, and behavioral measures. There were no baseline HR/LR microbiome differences, and antibiotic treatment disrupted the microbiome in both HR and LR rats. Antibiotic treatment exacerbated aspects of HR/LR behavior, increasing LRs' already high levels of anxiety-like behavior while reducing passive stress coping in both strains. Our results highlight the importance of an individual's phenotype to their response to antibiotics, contributing to the understanding of the complex interplay between gut microbes, immune function, and an individual's emotional phenotype.
Collapse
Affiliation(s)
- M E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - J L Cohen
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - J R Singer
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA
| | - M N Sabbagh
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J R Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M T Hyland
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C D Morrow
- Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - C T Weaver
- Department of Pathology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - G E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| | - S M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
35
|
A biological framework for emotional dysregulation in alcohol misuse: from gut to brain. Mol Psychiatry 2021; 26:1098-1118. [PMID: 33288871 DOI: 10.1038/s41380-020-00970-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) has been associated with impairments in social and emotional cognition that play a crucial role in the development and maintenance of addiction. Repeated alcohol intoxications trigger inflammatory processes and sensitise the immune system. In addition, emerging data point to perturbations in the gut microbiome as a key regulator of the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators of one another. At the same time, accumulating evidence implicates the gut microbiome in shaping emotional and social cognition, suggesting the possibility of a common underlying loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-immuno-affective framework of how emotional dysregulation and alcohol-related microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- from binge drinking to addiction. In addition, we emphasise adolescence as a sensitive period for the confluence of alcohol harmful effects and emotional dysregulation in the developing gut-brain axis.
Collapse
|
36
|
Lach G, Fülling C, Bastiaanssen TFS, Fouhy F, Donovan ANO, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF. Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period. Transl Psychiatry 2020; 10:382. [PMID: 33159036 PMCID: PMC7648059 DOI: 10.1038/s41398-020-01073-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.
Collapse
Affiliation(s)
- Gilliard Lach
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.4305.20000 0004 1936 7988Present Address: University of Edinburgh, Edinburgh, Scotland UK
| | - Christine Fülling
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Fouhy
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Aoife N. O’ Donovan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland ,grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Timothy G. Dinan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F. Cryan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|
38
|
Zhao M, Wang W, Jiang Z, Zhu Z, Liu D, Pan F. Long-Term Effect of Post-traumatic Stress in Adolescence on Dendrite Development and H3K9me2/BDNF Expression in Male Rat Hippocampus and Prefrontal Cortex. Front Cell Dev Biol 2020; 8:682. [PMID: 32850808 PMCID: PMC7412801 DOI: 10.3389/fcell.2020.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 01/10/2023] Open
Abstract
Exposure to a harsh environment in early life increases in the risk of post-traumatic stress disorder (PTSD) of an individual. Brain derived neurotrophic factor (BDNF) plays an important role in neurodevelopment in developmental stages. Both chronic and traumatic stresses induce a decrease in the level of BDNF and reduce neural plasticity, which is linked to the pathogenesis of PTSD. Also, studies have shown that stress alters the epigenetic marker H3K9me2, which can bind to the promoter region of the Bdnf gene and reduce BDNF protein level. However, the long-term effects of traumatic stress during adolescence on H3K9me2, BDNF expression and dendrite development are not well-known. The present study established a model of PTSD in adolescent rats using an inescapable foot shock (IFS) procedure. Anxiety-like behaviors, social interaction behavior and memory function were assessed by the open field test, elevated plus maze test, three-chamber sociability test and Morris water maze test. In addition, neuronal development and H3K9me2/BDNF expression in hippocampus (HIP) and prefrontal cortex (PFC) were evaluated by Golgi staining, western blotting, qRT-PCR analysis and CHIP-qPCR analysis. Additionally, the Unc0642, a small molecule inhibitor of histone methyltransferase (EHMT2) was used for intervention. The results showed that the IFS procedure induced the PTSD-like behaviors in rats, resulted in fewer dendrite branches and shorter dendrite length in CA1 of HIP and PFC, increased H3K9me2 level and decreased BDNF expression in HIP and PFC. Also, although all the changes can persist to adulthood, Unc0642 administration relieved most of alterations. Our study suggests that traumatic stress in adolescence leads to immediate and long-term mental disorders, neuronal morphological changes, lower BDNF level and increased H3K9me2 level in the HIP and PFC, indicating that H3K9me2/BDNF dysfunction plays a key role in pathogenesis of PTSD.
Collapse
Affiliation(s)
- Mingyue Zhao
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Wang
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhijun Jiang
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zemeng Zhu
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dexiang Liu
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fang Pan
- Department of Medical Psychology and Medical Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Mehrabadi S, Sadr SS. Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer's Disease Model of Rats. IRANIAN BIOMEDICAL JOURNAL 2020; 24:220-8. [PMID: 32306720 PMCID: PMC7275815 DOI: 10.29252/ibj.24.4.220] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Background The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stress and inflammation in an AD model of rats. Methods In this study, 50 rats were allocated to five groups, namely control, sham, and AD groups with Aβ1-40 intra-hippocampal injection, as well as AD + rivastigmine and AD + probiotics groups with Aβ1-40 intra-hippocampal injection and 2 ml (1010 CFU) of probiotics (Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium infantis) orally once a day for 10 weeks. MWM was used to assess memory and learning. To detect Aβ plaque, Congo red staining was used. Oxidative stress was monitored by measuring the MDA level and SOD activity, and to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA method was employed.. Results Spatial memory improved significantly in treatment group as measured by MWM. Probiotics administration reduced Aβ plaques in AD rats. MDA decreased and SOD increased in the treatment group. Besides, probiotics reduced IL-1β and TNF-α as inflammation markers in the AD model of rats. Conclusion Our data revealed that probiotics are helpful in attenuating inflammation and oxidative stress in AD.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Fülling C, Lach G, Bastiaanssen TFS, Fouhy F, O'Donovan AN, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav Immun 2020; 87:666-678. [PMID: 32119901 DOI: 10.1016/j.bbi.2020.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescence is a critical developmental period that is characterised by growth spurts and specific neurobiological, neuroimmune and behavioural changes. In tandem the gut microbiota, which is a key player in the regulation of health and disease, is shaped during this time period. Diet is one of the most important regulators of microbiota composition. Thus, we hypothesised that dietary disturbances of the microbiota during this critical time window result in long-lasting changes in immunity, brain and behaviour. C57BL/6 male mice were exposed to either high fat diet or cafeteria diet during the adolescent period from postnatal day 28 to 49 and were tested for anxiety-related and social behaviour in adulthood. Our results show long-lasting effects of dietary interventions during the adolescent period on microbiota composition and the expression of genes related to neuroinflammation or neurotransmission. Interestingly, changes in myelination-related gene expression in the prefrontal cortex following high fat diet exposure were also observed. However, these effects did not translate into overt behavioural changes in adulthood. Taken together, these data highlight the importance of diet-microbiota interactions during the adolescent period in shaping specific outputs of the microbiota-gut-brain axis in later life.
Collapse
Affiliation(s)
| | - Gilliard Lach
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland
| | - Aoife N O'Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
41
|
Clarke G. The gut microbiome and depression: finding a way through troubled waters where the river meets the sea. Expert Rev Gastroenterol Hepatol 2020; 14:301-304. [PMID: 32271629 DOI: 10.1080/17474124.2020.1754796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork , Cork, Ireland.,APC Microbiome Ireland, University College Cork , Cork, Ireland.,INFANT Research Centre, University College Cork , Cork, Ireland
| |
Collapse
|
42
|
Anderson G, Maes M. Gut Dysbiosis Dysregulates Central and Systemic Homeostasis via Suboptimal Mitochondrial Function: Assessment, Treatment and Classification Implications. Curr Top Med Chem 2020; 20:524-539. [DOI: 10.2174/1568026620666200131094445] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
:
The gut and mitochondria have emerged as two important hubs at the cutting edge of research
across a diverse array of medical conditions, including most psychiatric conditions. This article highlights
the interaction of the gut and mitochondria over the course of development, with an emphasis on
the consequences for transdiagnostic processes across psychiatry, but with relevance to wider medical
conditions. As well as raised levels of circulating lipopolysaccharide (LPS) arising from increased gut
permeability, the loss of the short-chain fatty acid, butyrate, is an important mediator of how gut dysbiosis
modulates mitochondrial function. Reactive cells, central glia and systemic immune cells are also
modulated by the gut, in part via impacts on mitochondrial function in these cells. Gut-driven alterations
in the activity of reactive cells over the course of development are proposed to be an important determinant
of the transdiagnostic influence of glia and the immune system. Stress, including prenatal stress,
also acts via the gut. The suppression of butyrate, coupled to raised LPS, drives oxidative and nitrosative
stress signalling that culminates in the activation of acidic sphingomyelinase-induced ceramide. Raised
ceramide levels negatively regulate mitochondrial function, both directly and via its negative impact on
daytime, arousal-promoting orexin and night-time sleep-promoting pineal gland-derived melatonin.
Both orexin and melatonin positively regulate mitochondria oxidative phosphorylation. Consequently,
gut-mediated increases in ceramide have impacts on the circadian rhythm and the circadian regulation of
mitochondrial function. Butyrate, orexin and melatonin can positively regulate mitochondria via the disinhibition
of the pyruvate dehydrogenase complex, leading to increased conversion of pyruvate to acetyl-
CoA. Acetyl-CoA is a necessary co-substrate for the initiation of the melatonergic pathway in mitochondria
and therefore the beneficial effects of mitochondria melatonin synthesis on mitochondrial function.
This has a number of treatment implications across psychiatric and wider medical conditions, including
the utilization of sodium butyrate and melatonin.
:
Overall, gut dysbiosis and increased gut permeability have significant impacts on central and systemic
homeostasis via the regulation of mitochondrial function, especially in central glia and systemic immune
cells.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
43
|
The Skin Microbiota and Itch: Is There a Link? J Clin Med 2020; 9:jcm9041190. [PMID: 32331207 PMCID: PMC7230651 DOI: 10.3390/jcm9041190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Itch is an unpleasant sensation that emanates primarily from the skin. The chemical mediators that drive neuronal activity originate from a complex interaction between keratinocytes, inflammatory cells, nerve endings and the skin microbiota, relaying itch signals to the brain. Stress also exacerbates itch via the skin–brain axis. Recently, the microbiota has surfaced as a major player to regulate this axis, notably during stress settings aroused by actual or perceived homeostatic challenge. The routes of communication between the microbiota and brain are slowly being unraveled and involve neurochemicals (i.e., acetylcholine, histamine, catecholamines, corticotropin) that originate from the microbiota itself. By focusing on itch biology and by referring to the more established field of pain research, this review examines the possible means by which the skin microbiota contributes to itch.
Collapse
|
44
|
The gut microbiome in neurological disorders. Lancet Neurol 2020; 19:179-194. [PMID: 31753762 DOI: 10.1016/s1474-4422(19)30356-4] [Citation(s) in RCA: 761] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
|
45
|
Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science 2019; 366:366/6465/eaar2016. [DOI: 10.1126/science.aar2016] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sociability can facilitate mutually beneficial outcomes such as division of labor, cooperative care, and increased immunity, but sociability can also promote negative outcomes, including aggression and coercion. Accumulating evidence suggests that symbiotic microorganisms, specifically the microbiota that reside within the gastrointestinal system, may influence neurodevelopment and programming of social behaviors across diverse animal species. This relationship between host and microbes hints that host-microbiota interactions may have influenced the evolution of social behaviors. Indeed, the gastrointestinal microbiota is used by certain species as a means to facilitate communication among conspecifics. Further understanding of how microbiota influence the brain in nature may be helpful for elucidating the causal mechanisms underlying sociability and for generating new therapeutic strategies for social disorders in humans, such as autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA
| | - John L. Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2692] [Impact Index Per Article: 448.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Kelly JR, Keane VO, Cryan JF, Clarke G, Dinan TG. Mood and Microbes: Gut to Brain Communication in Depression. Gastroenterol Clin North Am 2019; 48:389-405. [PMID: 31383278 DOI: 10.1016/j.gtc.2019.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The gut microbiota, acting via the gut-brain axis, modulates key neurobiological systems that are dysregulated in stress-related disorders. Preclinical studies show that the gut microbiota exerts an influence over neuroimmune and neuroendocrine signaling pathways, in addition to epigenetic modification, neurogenesis, and neurotransmission. In humans, preliminary evidence suggests that the gut microbiota profile is altered in depression. The full impact of microbiota-based treatments, at different neurodevelopmental time points, has yet to be fully explored. The integration of the gut microbiota, as a mediator, in the complex trajectory of depression, may enhance the possibility of personalized precision psychiatry.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin and Tallaght Hospital, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin 24, Ireland
| | - Veronica O' Keane
- Department of Psychiatry, Trinity College Dublin and Tallaght Hospital, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin 24, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2,33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, Biosciences Institute, University College Cork, College Road, Cork, Ireland.
| |
Collapse
|
48
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
49
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
50
|
Abstract
AbstractOur analysis of microbiota-gut-brain (MGB) research took MGB to task for some of its methods, concepts, and interpretations. Commentators then raised numerous issues about the neuroscientific and microbiome aspects of MGB and how it can be understood as a field. We respond by addressing the dimensionality (scope and depth) and causal focus of MGB.
Collapse
|