1
|
Ma C, Zheng S, Yang S, Wu J, Sun X, Chen Y, Zhang P, Li Y, Wu L, Liang X, Fu Q, Li L, Zhu J, Jia X, Ye X, Xu Z, Chen R. OsCYCBL1 and OsHTR702 positively regulate rice tolerance to cold stress. Int J Biol Macromol 2025; 287:138642. [PMID: 39667477 DOI: 10.1016/j.ijbiomac.2024.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chaling wild rice (Oryza rufipogon Griff.) can survive winter due to its extreme cold tolerance, whereas cultivated rice (Oryza sativa L.) cannot. Here, we found that the expression level of OsCYCBL1 decreased relatively less at low temperatures in Chaling wild rice compared with cultivated rice. Transgenic assays of OsCYCBL1 in Nipponbare (Nip) showed that overexpression of OsCYCBL1 promoted cold tolerance. Transcriptome profiling, RT-qPCR analysis, and physiological parameters measurement indicated that overexpression of OsCYCBL1 maintained better DNA damage repair capacity, balanced the cell cycle, enhanced reactive oxygen species (ROS) homeostasis, and increased wax content, directly affecting the ICE-CBF-COR cascade. Moreover, OsHTR702, a gene that interacts with OsCYCBL1, also positively regulates rice cold tolerance by affecting the ICE-CBF-COR cascade and increasing ROS homeostasis at low temperatures. In addition, overexpression of OsCYCBL1 and OsHTR702 enabled rice to survive through winter. Taken together, the current results indicate that OsCYCBL1 and OsHTR702 are related to cold tolerance in rice, making them potential targets for enhancing crop resilience to cold stress.
Collapse
Affiliation(s)
- Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Shiwei Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China.
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Peng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yanting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China; Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Wu B, Fu M, Du J, Wang M, Zhang S, Li S, Chen J, Zha W, Li C, Liu K, Xu H, Wang H, Shi S, Wu Y, Li P, You A, Zhou L. Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage. RICE (NEW YORK, N.Y.) 2024; 17:72. [PMID: 39576378 PMCID: PMC11584825 DOI: 10.1186/s12284-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cold stress has a significantly negative effect on the growth, development, and yield of rice. However, the genetic basis for the differences in the cold tolerance of Xian/indica and Geng/japonica rice seedlings is still largely unknown. In this study, an RIL population was generated by crossing of the cold-tolerant japonica variety Nipponbare and the cold-sensitive indica variety WD16343 for BSA-seq analysis, and a major cold tolerance QTL qCTS11 was identified on chromosome 11. This locus was narrowed to the 584 kb region through fine mapping. Sequence alignment and expression analysis identified the cloned gene COLD11 and a novel cold-related gene OsCTS11. According to the reported functional variation of COLD11, Nipponbare (TCG + 3GCG)×2 presented more GCG repeats in the 1st exon than WD16343 (TCG + 3GCG), partially explaining the difference in cold tolerance between the parents. OsCTS11, encoding a stress enhanced protein based on phylogenetic analysis, was strongly induced by cold stress and located in the chloroplast and the nucleus. oscts11-mutant lines generated via CRISPR/Cas9 system improved the cold tolerance of rice seedlings. Our study not only reveals novel genetic loci associated with cold tolerance, but also provides potentially valuable gene resources for the cultivation of cold-tolerant rice.
Collapse
Affiliation(s)
- Bian Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Minghui Fu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Jinghua Du
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjing Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyue Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huiying Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Ruiz-Aguilar B, Torres-Serrallonga NB, Ortega-Amaro MA, Duque-Ortiz A, Ovando-Vázquez C, Jiménez-Bremont JF. Transcriptome Analysis Reveals Genes Responsive to Three Low-Temperature Treatments in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3127. [PMID: 39599336 PMCID: PMC11597575 DOI: 10.3390/plants13223127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the Arabidopsis thaliana transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0-4 °C, eight genes to 4-10 °C, and two genes to 0-10 °C. Using q-RTPCR, we analyzed selected genes at 24, 48, and 72 h under the three low temperatures. Our data revealed that genes, such as galactinol synthase 3 (Gols3, At1g09350), CIR1 (At5g37260), DnaJ (At1g71000), and At5g05220 (unknown function), exhibited the highest expressions at 0 °C and 4 °C throughout all time points. We also studied genes from the UDP-glycosyltransferase (UGT78) family, including At5g17030 (D3), At5g17040 (D4), At5g17050 (D2), and At1g30530 (D1), which showed increased expression at low temperatures compared to plantlets at 22 °C for 24 h. Gene ontology analysis revealed that DEGs highly enriched were found in biological processes such as "RNA secondary structure unwinding" and "rRNA processing" induced at the three low temperatures, whereas processes related to photosynthesis were repressed. Our findings indicated upregulation in the expression of four RNA helicases (RH13, RH48, RH32, and RH29), belonging to the "RNA secondary structure unwinding" category, mainly at 0 °C and 4 °C. This study provides valuable information on the molecular mechanisms that activate Arabidopsis thaliana in its early response to these three low temperatures.
Collapse
Affiliation(s)
- Bricia Ruiz-Aguilar
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - Natalia B. Torres-Serrallonga
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo 78600, Mexico
| | - Arianna Duque-Ortiz
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| | - Cesaré Ovando-Vázquez
- Laboratorio de Bioinformática e Inteligencia Artificial, CONAHCyT–Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, S.L.P. 78216, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico (N.B.T.-S.)
| |
Collapse
|
4
|
Wang Q, Wu J, Di G, Zhao Q, Gao C, Zhang D, Wang J, Shen Z, Han W. Identification of Cold Tolerance Transcriptional Regulatory Genes in Seedlings of Medicago sativa L. and Medicago falcata L. Int J Mol Sci 2024; 25:10345. [PMID: 39408674 PMCID: PMC11476818 DOI: 10.3390/ijms251910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alfalfa species Medicago sativa L. (MS) and Medicago falcata L. (MF), globally prominent perennial leguminous forages, hold substantial economic value. However, our comprehension of the molecular mechanisms governing their resistance to cold stress remains limited. To address this knowledge gap, we scrutinized and compared MS and MF cold-stress responses at the molecular level following 24 h and 120 h low-temperature exposure (4 °C). Our study revealed that MF had superior physiological resilience to cold stress compared with MS, and its morphology was healthier under cold stress, and its malondialdehyde content and superoxide dismutase activity increased, first, and then decreased, while the soluble sugar content continued to accumulate. Transcriptome analysis showed that after 120 h of exposure, there were different gene-expression patterns between MS and MF, including 1274 and 2983 genes that were continuously up-regulated, respectively, and a total of 923 genes were included, including star cold-resistant genes such as ICE1 and SIP1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed numerous inter-species differences in sustained cold-stress responses. Notably, MS-exclusive genes included a single transcription factor (TF) gene and several genes associated with a single DNA repair-related pathway, whereas MF-exclusive genes comprised nine TF genes and genes associated with 14 pathways. Both species exhibited high-level expression of genes encoding TFs belonging to AP2-EREBP, ARR-B, and bHLH TF families, indicating their potential roles in sustaining cold resistance in alfalfa-related species. These findings provide insights into the molecular mechanisms governing cold-stress responses in MS and MF, which could inform breeding programs aimed at enhancing cold-stress resistance in alfalfa cultivars.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Guili Di
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chao Gao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| |
Collapse
|
5
|
González-Espíndola LÁ, Pedroza-Sandoval A, Trejo-Calzada R, Jacobo-Salcedo MDR, García de los Santos G, Quezada-Rivera JJ. Relative Water Content, Chlorophyll Index, and Photosynthetic Pigments on Lotus corniculatus L. in Response to Water Deficit. PLANTS (BASEL, SWITZERLAND) 2024; 13:961. [PMID: 38611490 PMCID: PMC11013262 DOI: 10.3390/plants13070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to evaluate different L. corniculatus L. ecotypes under water-deficit conditions to identify changes in relative water content and photosynthetic pigments as indicators of physiological responses during different years' seasons. The experiment was conducted in a randomized block design with three replicates. Ten treatments were performed as a factorial of 2 × 5, where the first variation factor was the soil water content-no water deficit (NDW) with 100% field capacity (FC), and water deficit (DW) corresponding to 85.4% of the FC-and the second variation factor comprised four ecotypes and one variety of L. corniculatus. A significant effect was identified on the concentration of photosynthetic pigments, mainly total chlorophyll, with chlorophyll a in the 255301 ecotype with records of 187.8, 167.5, and 194.6 mg g-1 FW in WD, corresponding to an increase of 86.0%, 172.6%, and 16.6%, respectively, in relation the lower values obtained in the ecotype 202700 under NWD. In carotenoids, higher concentrations were observed in the 255301 and 202700 ecotypes and the Estanzuela Ganador variety under WD in most seasonal periods, except summer; a similar response was found in the 202700 ecotype and the Estanzuela Ganador variety during the winter season, also in WD. The results showed that the first two principal components accounted for 71.8% of the total variation, with PC1 representing chlorophyll a, chlorophyll b, and total chlorophyll, and PC2 representing carotenoids, temperature, relative chlorophyll index, and relative water content. The observations were grouped based on soil moisture content, with the optimal moisture group exhibiting higher chlorophyll and carotenoid concentrations. The findings suggest that soil moisture content significantly affects the performance of L. corniculatus ecotypes, and the plant shows seasonal variations in response to water-deficit conditions. This research contributes to understanding the physiological responses of L. corniculatus and its potential as a water-efficient forage crop for promoting sustainable agriculture and enhancing food security.
Collapse
Affiliation(s)
- Luis Ángel González-Espíndola
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Aurelio Pedroza-Sandoval
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Ricardo Trejo-Calzada
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - María del Rosario Jacobo-Salcedo
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Km 40 Carretera Gómez Palacio—Chihuahua, Bermejillo C.P. 35230, Durango, Mexico; (L.Á.G.-E.); (R.T.-C.); (M.d.R.J.-S.)
| | - Gabino García de los Santos
- Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera México-Texcoco, Montecillo C.P. 56230, Texcoco, Mexico;
| | - Jesús Josafath Quezada-Rivera
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fraccionamiento Filadelfia, Gómez Palacio, Durango C.P. 35010, Mexico;
| |
Collapse
|
6
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
7
|
Su Y, Liu L, Ma H, Yuan Y, Zhang D, Lu X. Metabolomic Analysis of the Effect of Freezing on Leaves of Malus sieversii (Ledeb.) M.Roem. Histoculture Seedlings. Int J Mol Sci 2023; 25:310. [PMID: 38203481 PMCID: PMC10778857 DOI: 10.3390/ijms25010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Malus sieversii (Ledeb.) M.Roem. is the ancestor of cultivated apples, and is an excellent germplasm resource with high resistance to cold. Artificial refrigerators were used to simulate the low temperature of -3 °C to treat Malus sieversii (Ledeb.) M.Roem. histoculture seedlings. Observations were performed to find the effects of freezing stress on the status of open or closed stomata, photosystems, and detection of metabolomic products in leaves of Malus sieversii (Ledeb.) M.Roem. histoculture seedlings. The percentage of closed stomata in the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings increased, the maximum fluorescence (Fm') excited by a strong light (saturating pulse) was weakened relative to the real-time fluorescence in its vicinity, and the quantum yield of unregulated energy dissipation was increased in PSII under freezing stress. The metabolites in the leaves of the Malus sieversii (Ledeb. M.Roem.) histoculture seedlings were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry using CK, T12h, T36 h, and HF24h. Results demonstrated that cold stress in the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings led to wilting, leaf stomatal closure, and photosystem damage. There were 1020 metabolites identified as lipids (10.2%), nucleotides and their derivatives (5.2%), phenolic acids (19.12%), flavonoids (24.51%), amino acids and their derivatives (7.75%), alkaloids (5.39%), terpenoids (8.24%), lignans (3.04%), organic acids (5.88%), and tannins (0.88%). There were 110 differential metabolites at CKvsT12h, 113 differential metabolites at CKvsT36h, 87 differential metabolites at T12hvsT36h, 128 differential metabolites at CKvsHF24h, 121 differential metabolites at T12hvsHF24h, and 152 differential metabolites at T36hvsHF24h. The differential metabolites in the leaves of the Malus sieversii (Ledeb.) M.Roem. seedlings grown under low-temperature stress mainly involved glycolysis, amino acid metabolism, lipid metabolism, pyrimidine metabolism, purine metabolism, and secondary metabolite metabolism. The Malus sieversii (Ledeb.) M.Roem. seedlings responded to the freezing stress by coordinating with each other through these metabolic pathways. The metabolic network of the leaves of the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings under low temperature stress was also proposed based on the above pathways to deepen understanding of the response of metabolites of Malus sieversii (Ledeb.) M.Roem. to low-temperature stress and to lay a theoretical foundation for the development and utilization of Malus sieversii (Ledeb.) M.Roem. cultivation resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College of Shihezi University, Shihezi 832003, China; (Y.S.); (L.L.); (H.M.); (Y.Y.); (D.Z.)
| |
Collapse
|
8
|
Brindisi LJ, Simon JE. Preharvest and postharvest techniques that optimize the shelf life of fresh basil ( Ocimum basilicum L.): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1237577. [PMID: 37745993 PMCID: PMC10514919 DOI: 10.3389/fpls.2023.1237577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Basil (Ocimum basilicum L.) is a popular specialty crop known for its use as a culinary herb and medicinal plant around the world. However, its profitability and availability are limited by a short postharvest shelf life due to poor handling, cold sensitivity and microbial contamination. Here, we comprehensively review the research on pre- and postharvest techniques that extend the shelf life of basil to serve as a practical tool for growers, distributors, retailers and scientists. Modifications to postharvest storage conditions, pre- and postharvest treatments, harvest time and preharvest production methods have been found to directly impact the quality of basil and its shelf life. The most effective strategies for extending the shelf life and improving the quality of basil are discussed and promising strategies that research and industry employ are identified.
Collapse
Affiliation(s)
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and the Center for Agricultural Food Ecosystems (RUCAFE), Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Huang X, Liang Y, Zhang R, Zhang B, Song X, Liu J, Lu M, Qin Z, Li D, Li S, Li Y. Genome-Wide Identification of the PP2C Gene Family and Analyses with Their Expression Profiling in Response to Cold Stress in Wild Sugarcane. PLANTS (BASEL, SWITZERLAND) 2023; 12:2418. [PMID: 37446979 DOI: 10.3390/plants12132418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Nanning 530021, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Manman Lu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Zhenqiang Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Dewei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Song Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| |
Collapse
|
10
|
Kour D, Yadav AN. First Report on Novel Psychrotrophic Phosphorus-Solubilizing Ochrobactrum thiophenivorans EU-KL94 from Keylong Region in Great Himalayas and Their Role in Plant Growth Promotion of Oats (Avena sativa L.). Curr Microbiol 2023; 80:227. [PMID: 37249717 DOI: 10.1007/s00284-023-03308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
Cold stress leads to the disruption of the cellular homeostasis in plants and generation of reactive oxygen species (ROS) and productivity losses. In the present study, 94 psychrotrophic phosphorus-solubilizing bacteria with multiple plant growth-promoting (PGP) capabilities were isolated from rhizosphere of wheat. The most efficient strain EU-KL94 showing highest amount of solubilized phosphorus and maximum number of PGP attributes was identified using 16S rRNA sequencing as Ochrobactrum thiophenivorans. Ochrobactrum thiophenivorans EU-KL94 along with recommended doses of the chemical fertilizers as controls were used for alleviation of cold stress in oats. The strain improved the root and shoot length, dry and fresh weight, proline, glycine betaine, chlorophyll content as well as the superoxide dismutase (SOD) and glutathione reductase (GR) activities of oats under cold stress conditions. Ochrobactrum thiophenivorans with all promising plant growth activities under cold stress could be used as an environmental friendly strategy for mitigation of low temperature stress. To the best of our knowledge, Ochrobactrum thiophenivorans has been reported for the first time as P-solubilizer and as bioinoculants in oats for cold stress mitigation.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Lab, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, 71800, Putra Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
11
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
12
|
Islam F, Khan MSS, Ahmed S, Abdullah M, Hannan F, Chen J. OsLPXC negatively regulates tolerance to cold stress via modulating oxidative stress, antioxidant defense and JA accumulation in rice. Free Radic Biol Med 2023; 199:2-16. [PMID: 36775108 DOI: 10.1016/j.freeradbiomed.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Exposure of crops to low temperature (LT) during emerging and reproductive stages influences their growth and development. In this study, we have isolated a cold induced, nucleus-localized lipid A gene from rice named OsLPXC, which encodes a protein of 321 amino acids. Knockout of OsLPXC resulted in enhance sensitivity to LT stress in rice, with increased accumulation of reactive oxygen species (ROS), malondialdehyde and electrolyte leakage, while expression and activities of antioxidant enzymes were significantly suppressed. The accumulation of chlorophyll content and net photosynthetic rate of knockout plants were also decreased compared with WT under LT stress. The functional analysis of differentially expressed genes (DEGs), showed that numerous genes associated with antioxidant defense, photosynthesis, cold signaling were solely expressed and downregulated in oslpxc plants compared with WT under LT. The accumulation of methyl jasmonate (MeJA) in leave and several DEGs related to the jasmonate biosynthesis pathway were significantly downregulated in OsLPXC knockout plants, which showed differential levels of MeJA regulation in WT and knockout plants in response to cold stress. These results indicated that OsLPXC positively regulates cold tolerance in rice via stabilizing the expression and activities of ROS scavenging enzymes, photosynthetic apparatus, cold signaling genes, and jasmonate biosynthesis.
Collapse
Affiliation(s)
- Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | | | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Abdullah
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
14
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
15
|
Kour D, Yadav AN. Alleviation of cold stress in wheat with psychrotrophic phosphorus solubilizing Acinetobacter rhizosphaerae EU-KL44. Braz J Microbiol 2023; 54:371-383. [PMID: 36740643 PMCID: PMC9944473 DOI: 10.1007/s42770-023-00913-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Low-temperature stress can seriously impair plant physiology. Chilling injury leads to a complex array of cellular dysfunctions, and symptoms include chlorosis, sterility, loss of vigor, wilting, and even death of the plants. Furthermore, phosphorus limitations additionally halt the growth of plants. Low-temperature adaptive plant growth-promoting microbes through various direct and indirect mechanisms help in the survival of plants under stress conditions. The present investigation deals with isolation of P-solubilizing psychrotrophic bacteria from diverse cultivars of wheat grown in the Keylong region of Himachal Pradesh. A total of 33 P-solubilizing bacterial isolates were obtained. P-solubilizers were screened for different plant growth-promoting (PGP) attributes of K and Zn solubilization, production of IAA, siderophores, and different hydrolytic enzymes. Among 33 P-solubilizers, 8 efficient strains exhibiting multiple PGP attributes were used as bioinoculants for wheat under low-temperature stress in different in vitro and in vivo experiments. The psychrotrophic bacterial isolates positively influenced the growth and physiological parameters as well as nutrient uptake and yield of wheat and efficiently alleviated low-temperature stress. The potential of low-temperature stress adaptive and PGP microbes can be utilized in agricultural sector for amelioration of low-temperature stress and plant growth promotion. The present study deals with the isolation of psychrotrophic P-solubilizers with multiple PGP attributes and their role in alleviation of cold stress in wheat.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
16
|
Wang Y, Wang HM, Zhou Y, Hu LH, Wan JM, Yang JH, Niu HB, Hong XP, Hu P, Chen LB, Hu P, Chen LB, 上海海洋大学水产种质资源发掘与利用教育部重点实验室, 上海 200120, 中国, 上海海洋大学水产动物遗传育种中心上海市协同创新中心, 上海 200120, 中国, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool Res 2023; 44:126-141. [PMID: 36419379 PMCID: PMC9841188 DOI: 10.24272/j.issn.2095-8137.2022.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hua-Min Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ling-Hong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Jing-Ming Wan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ji-Hui Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hong-Bo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Xiu-Ping Hong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Liang-Biao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China,E-mail:
| | | | | | | | | | | | | |
Collapse
|
17
|
Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232314926. [PMID: 36499255 PMCID: PMC9740226 DOI: 10.3390/ijms232314926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.
Collapse
|
18
|
Kong H, Xia W, Hou M, Ruan N, Li J, Zhu J. Cloning and function analysis of a Saussurea involucrata LEA4 gene. FRONTIERS IN PLANT SCIENCE 2022; 13:957133. [PMID: 35928707 PMCID: PMC9343949 DOI: 10.3389/fpls.2022.957133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Late embryogenesis abundant proteins (LEA) help adapt to adverse low-temperature environments. The Saussurea involucrate SiLEA4, which encodes a membrane protein, was significantly up-regulated in response to low temperature stress. Escherichia coli expressing SiLEA4 showed enhanced low-temperature tolerance, as evident from the significantly higher survival numbers and growth rates at low temperatures. Moreover, tomato strains expressing SiLEA4 had significantly greater freezing resistance, due to a significant increase in the antioxidase activities and proline content. Furthermore, they had higher yields due to higher water utilization and photosynthetic efficiency under the same water and fertilizer conditions. Thus, expressing SiLEA4 has multiple advantages: (1) mitigating chilling injury, (2) increasing yields, and (3) water-saving, which also indicates the great potential of the SiLEA4 for breeding applications.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Mengjuan Hou
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Nan Ruan
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
19
|
Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules 2022; 12:biom12070977. [PMID: 35883533 PMCID: PMC9312504 DOI: 10.3390/biom12070977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/11/2022] Open
Abstract
Quinoa, a cool-weather high-altitude crop, is susceptible to low-temperature stress throughout its reproductive phase. Herein, we performed broadly targeted metabolic profiling of quinoa seedlings to explore the metabolites’ dynamics in response to low-temperature stress and transcriptome analysis to determine the underlying genetic mechanisms. Two variants, namely, Dian Quinoa 2324 and Dian Quinoa 281, were exposed to temperatures of −2, 5, and 22 °C. A total of 794 metabolites were detected; 52,845 genes, including 6628 novel genes, were annotated using UPLC-MS/MS analysis and the Illumina HiSeq system. Combined with morphological indicators to resolve the mechanism underlying quinoa seedling response to low-temperature stress, the molecular mechanisms of quinoa changed considerably based on temperature exposure. Soluble sugars heavily accumulated in plants with cold damage and changes in regulatory networks under freeze damage, such as the upregulation of α-linolenic acid metabolism and a reduction in energy substrates, may explain the spatial patterns of biosynthesis and accumulation of these metabolites. Genes that are actively expressed during cold responses, as revealed by co-expression analyses, may be involved in the regulation thereof. These results provide insights into the metabolic factors in quinoa under low-temperature stress and provide a reference for the screening of quinoa varieties resistant to low temperature.
Collapse
|
20
|
Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, Shah AA, Agrawal A, Bhat B, Sofi PA, Masi A, Zargar SM. Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:888710. [PMID: 35720588 PMCID: PMC9204169 DOI: 10.3389/fpls.2022.888710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.
Collapse
Affiliation(s)
- Kaisar Ahmad Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Zaffar Bashir
- Deparment of Microbiology, University of Kashmir, Srinagar, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ankit Agrawal
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| |
Collapse
|
21
|
Ma X, Gai WX, Li Y, Yu YN, Ali M, Gong ZH. The CBL-interacting protein kinase CaCIPK13 positively regulates defence mechanisms against cold stress in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1655-1667. [PMID: 35137060 DOI: 10.1093/jxb/erab505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Cold stress is one of the main factors limiting growth and development in pepper. Calcineurin B-like proteins (CBLs) are specific calcium sensors with non-canonical EF-hands to capture calcium signals, and interact with CBL-interacting protein kinases (CIPKs) in the regulation of various stresses. In this study, we isolated a cold-induced CIPK gene from pepper named CaCIPK13, which encodes a protein of 487 amino acids. In silico analyses indicated that CaCIPK13 is a typical CIPK family member with a conserved NAF motif, which consists of the amino acids asparagine, alanine, and phenylalanine. The CaCIPK13 protein was located in the nucleus and plasma membrane. Knock down of CaCIPK13 resulted in enhanced sensitivity to cold stress in pepper, with increased malondialdehyde content, H2O2 accumulation, and electrolyte leakage, while the catalase, peroxidase, superoxide dismutase activities and anthocyanin content were decreased. The transcript level of cold and anthocyanin-related genes was substantially decreased in CaCIPK13-silenced pepper leaves relative to the empty vector control. On the contrary, overexpression of CaCIPK13 in tomato improved cold tolerance via increasing anthocyanin content and activities of reactive oxygen species scavenging enzymes. Furthermore, the interaction of CaCIPK13 with CaCBL1/6/7/8 was Ca2+-dependent. These results indicate that CaCIPK13 plays a positive role in cold tolerance mechanism via CBL-CIPK signalling.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, P. R. China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
22
|
Kimura Y, Ohkubo T, Shimizu K, Magata Y, Park EY, Hara M. Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment. Colloids Surf B Biointerfaces 2021; 211:112286. [PMID: 34929484 DOI: 10.1016/j.colsurfb.2021.112286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Dehydrin is an intrinsically disordered protein involved in the cold tolerance of plants. Although dehydrins have been thought to protect biomembranes under cold conditions, the underlying protective mechanism has not been confirmed. Here we report that Arabidopsis dehydrin AtHIRD11 inhibited the aggregation of phospholipid liposomes after freezing and thawing. AtHIRD11 showed significantly greater cryoaggregation-prevention activity than cryoprotective agents such as trehalose, proline, and polyethylene glycols. Amino acid sequence segmentation analysis indicated that the K-segment of AtHIRD11 inhibited the cryoaggregation of phosphatidylcholine (PC) liposomes but other segments did not. This showed that K-segments conserved in all dehydrins were likely to be the cryoprotective sites of dehydrins. Amino acid replacement for a typical K-segment (TypK for short) sequence demonstrated that both hydrophobic and charged amino acids were required for the cryoaggregation-prevention activity of PC liposomes. The amino acid shuffling of TypK remarkably reduced cryoprotective activity. Although TypK did not bind to PC liposomes in solution, the addition of liposomes reduced its disordered content under crowded conditions. Together, these results suggested that dehydrins protected biomembranes via conserved K-segments whose sequences were optimized for cryoprotective activities.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Ohkubo
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kosuke Shimizu
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
23
|
Jeffrey C, Trethowan R, Kaiser B. Chickpea tolerance to temperature stress: Status and opportunity for improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153555. [PMID: 34739858 DOI: 10.1016/j.jplph.2021.153555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chickpea is a globally important commercial crop and a key source of protein for vegetarian populations. Though chickpea was domesticated at least 3000 years ago, research into abiotic stress tolerance has been limited compared to cereal crops such as wheat. This review investigates the impacts of heat stress on chickpea, focusing on reproductive development. The fertilisation process is particularly sensitive to environmental stress, such as drought and heat that can reduce yields by up to 70%. Current research has largely focused on breeding cultivars that reach maturity faster to avoid stress rather than true thermotolerance and little is known of the impact of heat on cellular processes. This review suggests that there is ample variation within the chickpea gene pool for selective breeding to achieve improved abiotic stress tolerance. Rates of genetic progress will improve once key QTL are identified and the link between thermotolerance and pollen viability confirmed. Other benefits may arise from better understanding of heat shock proteins and molecular chaperones and their role in the protection of reproductive processes.
Collapse
Affiliation(s)
- Cara Jeffrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| | - Richard Trethowan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia.
| | - Brent Kaiser
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Hassanein RA, Hussein OS, Abdelkader AF, Farag IA, Hassan YE, Ibrahim M. Metabolic activities and molecular investigations of the ameliorative impact of some growth biostimulators on chilling-stressed coriander (Coriandrum sativum L.) plant. BMC PLANT BIOLOGY 2021; 21:361. [PMID: 34364372 PMCID: PMC8349021 DOI: 10.1186/s12870-021-03021-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Priming of seed prior chilling is regarded as one of the methods to promote seeds germination, whole plant growth, and yield components. The application of biostimulants was reported as beneficial for protecting many plants from biotic or abiotic stresses. Their value was as important to be involved in improving the growth parameters of plants. Also, they were practiced in the regulation of various metabolic pathways to enhance acclimation and tolerance in coriander against chilling stress. To our knowledge, little is deciphered about the molecular mechanisms underpinning the ameliorative impact of biostimulants in the context of understanding the link and overlap between improved morphological characters, induced metabolic processes, and upregulated gene expression. In this study, the ameliorative effect(s) of potassium silicate, HA, and gamma radiation on acclimation of coriander to tolerate chilling stress was evaluated by integrating the data of growth, yield, physiological and molecular aspects. RESULTS Plant growth, yield components, and metabolic activities were generally diminished in chilling-stressed coriander plants. On the other hand, levels of ABA and soluble sugars were increased. Alleviation treatment by humic acid, followed by silicate and gamma irradiation, has notably promoted plant growth parameters and yield components in chilling-stressed coriander plants. This improvement was concomitant with a significant increase in phytohormones, photosynthetic pigments, carbohydrate contents, antioxidants defense system, and induction of large subunit of RuBisCO enzyme production. The assembly of Toc complex subunits was maintained, and even their expression was stimulated (especially Toc75 and Toc 34) upon alleviation of the chilling stress by applied biostimulators. Collectively, humic acid was the best the element to alleviate the adverse effects of chilling stress on growth and productivity of coriander. CONCLUSIONS It could be suggested that the inducing effect of the pretreatments on hormonal balance triggered an increase in IAA + GA3/ABA hormonal ratio. This ratio could be linked and engaged with the protection of cellular metabolic activities from chilling injury against the whole plant life cycle. Therefore, it was speculated that seed priming in humic acid is a powerful technique that can benefit the chilled along with non-chilled plants and sustain the economic importance of coriander plant productivity.
Collapse
Affiliation(s)
- Raifa A Hassanein
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11355, Egypt
| | - Omaima S Hussein
- Department of Natural Products, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Cairo, Nasr City, Egypt
| | - Amal F Abdelkader
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11355, Egypt
| | - Iman A Farag
- Department of Natural Products, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Cairo, Nasr City, Egypt
| | - Yousra E Hassan
- Department of Natural Products, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Cairo, Nasr City, Egypt
| | - Mohamed Ibrahim
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11355, Egypt.
| |
Collapse
|
25
|
Wang W, Du J, Chen L, Zeng Y, Tan X, Shi Q, Pan X, Wu Z, Zeng Y. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage. BMC Genomics 2021; 22:176. [PMID: 33706696 PMCID: PMC7952222 DOI: 10.1186/s12864-021-07458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.
Collapse
Affiliation(s)
- Wenxia Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liming Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueming Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaohua Pan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yanhua Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
26
|
Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants. Sci Rep 2021; 11:1438. [PMID: 33446898 PMCID: PMC7809347 DOI: 10.1038/s41598-021-81114-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Upon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electro- and magnetophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. Here we demonstrate that APs in a multicellular plant system produce measurable magnetic fields. Using atomic optically pumped magnetometers, biomagnetism associated with electrical activity in the carnivorous Venus flytrap, Dionaea muscipula, was recorded. Action potentials were induced by heat stimulation and detected both electrically and magnetically. Furthermore, the thermal properties of ion channels underlying the AP were studied. Beyond proof of principle, our findings pave the way to understanding the molecular basis of biomagnetism in living plants. In the future, magnetometry may be used to study long-distance electrical signaling in a variety of plant species, and to develop noninvasive diagnostics of plant stress and disease.
Collapse
|
27
|
Acceleration of Carbon Fixation in Chilling-Sensitive Banana under Mild and Moderate Chilling Stresses. Int J Mol Sci 2020; 21:ijms21239326. [PMID: 33297477 PMCID: PMC7730866 DOI: 10.3390/ijms21239326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/01/2022] Open
Abstract
Banana is one of the most important food and fruit crops in the world and its growth is ceasing at 10–17 °C. However, the mechanisms determining the tolerance of banana to mild (>15 °C) and moderate chilling (10–15 °C) are elusive. Furthermore, the biochemical controls over the photosynthesis in tropical plant species at low temperatures above 10 °C is not well understood. The purpose of this research was to reveal the response of chilling-sensitive banana to mild (16 °C) and moderate chilling stress (10 °C) at the molecular (transcripts, proteins) and physiological levels. The results showed different transcriptome responses between mild and moderate chilling stresses, especially in pathways of plant hormone signal transduction, ABC transporters, ubiquinone, and other terpenoid-quinone biosynthesis. Interestingly, functions related to carbon fixation were assigned preferentially to upregulated genes/proteins, while photosynthesis and photosynthesis-antenna proteins were downregulated at 10 °C, as revealed by both digital gene expression and proteomic analysis. These results were confirmed by qPCR and immunofluorescence labeling methods. Conclusion: Banana responded to the mild chilling stress dramatically at the molecular level. To compensate for the decreased photosynthesis efficiency caused by mild and moderate chilling stresses, banana accelerated its carbon fixation, mainly through upregulation of phosphoenolpyruvate carboxylases.
Collapse
|
28
|
Yang Y, Saand MA, Abdelaal WB, Zhang J, Wu Y, Li J, Fan H, Wang F. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics 2020; 220:103766. [DOI: 10.1016/j.jprot.2020.103766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
|
29
|
Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S, Yuan M. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Int J Mol Sci 2020; 21:ijms21041390. [PMID: 32092859 PMCID: PMC7073065 DOI: 10.3390/ijms21041390] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.
Collapse
Affiliation(s)
- Yuqing Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Qiaohong Han
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
- Correspondence:
| |
Collapse
|
30
|
Nadeem M, Pham TH, Thomas R, Galagedara L, Kavanagh V, Zhu X, Ali W, Cheema M. Potential role of root membrane phosphatidic acid in superior agronomic performance of silage-corn cultivated in cool climate cropping systems. PHYSIOLOGIA PLANTARUM 2019; 167:585-596. [PMID: 30548274 DOI: 10.1111/ppl.12902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The literature is replete with information describing the composition of the root lipidome in several plant species grown under various environmental conditions. However, it is unknown to what extent the root membrane lipidome vary between silage-corn genotypes, and how such variation could influence agronomic performances during field cultivation in cool climate. To address this issue, the root membrane lipidome and agronomic performance were assessed for five silage-corn genotypes (Fusion-RR, Yukon-R, A4177G3-RIB, DKC23-17RIB, DKC26-28RIB) cultivated under cool climatic conditions. Leaf area, plant height and biomass production were used as agronomic performance indicators. Varieties DKC26-28RIB and Yukon-R expressed significantly higher leaf area, plant height and biomass production compared to the other genotypes. A strong positive Spearman rank-order correlation (P = 0.001) was observed between biomass production and root phosphatidic acid (PA). The high correlation observed between PA and agronomic performance indicates PA could potentially be used as biomarker to assist in the selection of silage-corn genotypes with superior agronomic performance ideally suited for field cultivations in cool climatic conditions.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
- Department of Environmental Sciences, COMSATS University of Islamabad, Vehari, 61100, Pakistan
| | - Thu H Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Vanessa Kavanagh
- Agriculture Production and Research, Department of Fisheries and Land Resources, Pasadena, Newfoundland, Canada
| | - Xinbiao Zhu
- Natural Resources Canada, Canadian Forest Services, Atlantic Forestry Center, Corner Brook, Newfoundland, A2H 6P9, Canada
| | - Waqas Ali
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| |
Collapse
|
31
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
32
|
Nadeem M, Pham TH, Nieuwenhuis A, Ali W, Zaeem M, Ashiq W, Gillani SSM, Manful C, Adigun OA, Galagedara L, Cheema M, Thomas R. Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:278-289. [PMID: 31128698 DOI: 10.1016/j.plantsci.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Boreal soils tend to be podzols characterized by acidic pH, which can further limit forage crop growth and production. It is unclear, how forage soybeans adopt to produce forage with high nutritional quality when cultivated on podzols in boreal climate. To answer this question, we cultivated forage soybeans on agricultural podzols at 3 farm sites with varied soil pH (6.8, 6.0 or 5.1), and assessed the root membrane lipidome remodeling response to such climatic conditions. Contrary to our expectations, significantly lower biomass was observed at pH 6.8 compared to 6.0 and 5.1. However, surprisingly the plants produced similar forage quality at 6.8 and 5.1 pH. Three major lipid classes including phospholipids, glycolipids and phytosterols were observed in roots irrespective of soil pH. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and acylated glucosyl betasitosterol ester (AGlcSiE) accounted for 95% of the root lipidome, and expressed significant changes in response to cultivation across the three soil pH levels. These lipids were also observed to have strong correlations with forage production, and forage quality. Therefore, soybean genotypes with higher abilities to remodel PC, PE, PA, and AGlcSiE could be better suited for producing higher quality forage in acid podzolic soils characteristics of boreal ecosystems.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada; Department of Environmental Sciences, COMSATS University of Islamabad, Vehari 61100, Pakistan.
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Ashley Nieuwenhuis
- Agriculture Production and Research, Department of Fisheries and Land Resources, Pasadena, Newfoundland, Canada
| | - Waqas Ali
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gillani
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Charles Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Oludoyin Adeseun Adigun
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| |
Collapse
|
33
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
34
|
Zhou Q, Luo D, Chai X, Wu Y, Wang Y, Nan Z, Yang Q, Liu W, Liu Z. Multiple Regulatory Networks Are Activated during Cold Stress in Medicago sativa L. Int J Mol Sci 2018; 19:ijms19103169. [PMID: 30326607 PMCID: PMC6214131 DOI: 10.3390/ijms19103169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.
Collapse
Affiliation(s)
- Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xutian Chai
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
35
|
Wang L, Nick P. Cold sensing in grapevine-Which signals are upstream of the microtubular "thermometer". PLANT, CELL & ENVIRONMENT 2017; 40:2844-2857. [PMID: 28898434 DOI: 10.1111/pce.13066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 05/09/2023]
Abstract
Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold-induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time-course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G-protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals.
Collapse
Affiliation(s)
- Lixin Wang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
36
|
Jończyk M, Sobkowiak A, Trzcinska-Danielewicz J, Skoneczny M, Solecka D, Fronk J, Sowiński P. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm. PLANT MOLECULAR BIOLOGY 2017; 95:279-302. [PMID: 28828699 DOI: 10.1007/s11103-017-0651-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/06/2017] [Indexed: 05/27/2023]
Abstract
In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.
Collapse
Affiliation(s)
- M Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - A Sobkowiak
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - M Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warszawa, Poland
| | - D Solecka
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - P Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland.
| |
Collapse
|
37
|
Changes in protein abundance and activity involved in freezing tolerance acquisition in winter barley (Hordeum vulgare L.). J Proteomics 2017; 169:58-72. [PMID: 28847648 DOI: 10.1016/j.jprot.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
The changes in protein abundance induced by cold hardening were analysed by 2 DE in ten doubled haploid (DH) lines of winter barley, highly differentiated with respect to freezing tolerance level. Among 45 differential proteins identified by MALDI-TOF/TOF, the majority was classified as related to photosynthesis, carbohydrate metabolism, oxidation-reduction reactions and stress response. Among the detected proteins, higher abundance of RuBisCO large and small subunits, RuBisCO activase, two Oxygen-evolving enhancer proteins, Ferredoxin-NADP reductase, Cytochrome P450-dependent fatty acid hydroxylase and 14-3-3 protein was associated with higher freezing tolerance level. Lower relative level of hypothetical ATP synthase beta subunit, uncharacterized mitochondrial protein AtMg00810 and ribosomal RNA small subunit methyltransferase G also seems to be important. The results of proteomic studies were complemented by the evaluation of photosynthetic apparatus acclimation, showing distinctive differences between the studied genotypes in the number of active PSII reaction centres (RC/CSm). Additionally, the analysis of antioxidative enzyme activities suggests the importance of H2O2 as a signalling molecule possibly involved in the initiation of cold-induced plant acclimation. However, in DH lines with high freezing tolerance, H2O2 generation during cold hardening treatment was accompanied by more stable activity of catalase, H2O2-decomposing enzyme. SIGNIFICANCE In the study, the changes in protein abundance induced by cold hardening treatment were analysed by two-dimensional gel electrophoresis in ten doubled haploid (DH) lines of winter barley. Harnessing DH technology resulted in distinctive widening of genetic variation with respect to freezing tolerance level. Both the cold-hardening effect on the protein pattern in an individual winter barley DH line as well as the variation among the selected DH lines were investigated, which resulted in the identification of 45 differentiated proteins classified as involved in 14 metabolic pathways and cellular processes. Among them, eight proteins: (1) the precursor of RuBisCO large subunit, (2) RuBisCO small subunit (partial), (3) RuBisCO activase small isoform, (4) the precursor of Oxygen-evolving enhancer protein 1-like (predicted protein), (5) Oxygen-evolving enhancer protein 2, (6) the leaf isozyme of Ferredoxin-NADP reductase, (7) hypothetical protein M569_12509 Cytochrome P450-dependent fatty acid hydroxylase-like and (8) hypothetical protein BRADI_1g11290 (14-3-3 protein A-like) were accumulated to a higher level in leaves of cold-hardened seedlings of freezing tolerant winter barley DH lines in comparison with susceptible ones. Three others: (9) hypothetical protein BRADI_5g05668 F1 ATP synthase beta subunit-like, (10) predicted protein uncharacterized mitochondrial protein AtMg00810-like and (11) BnaA02g08010D Ribosomal RNA small subunit methyltransferase G-like were detected at lower level in freezing tolerant seedlings in comparison with susceptible genotypes. The last two were for the first time linked to cold acclimation. The results of complementary analyses indicate that PSII activity and stability of antioxidative enzymes under low temperature are also very important for freezing tolerance acquisition.
Collapse
|
38
|
Zhang N, Zhang L, Zhao L, Ren Y, Cui D, Chen J, Wang Y, Yu P, Chen F. iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat. Sci Rep 2017; 7:7524. [PMID: 28790462 PMCID: PMC5548720 DOI: 10.1038/s41598-017-08069-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
By comparing the differentially accumulated proteins from the derivatives (UC 1110 × PI 610750) in the F10 recombinant inbred line population which differed in cold-tolerance, altogether 223 proteins with significantly altered abundance were identified. The comparison of 10 cold-sensitive descendant lines with 10 cold-tolerant descendant lines identified 140 proteins that showed decreased protein abundance, such as the components of the photosynthesis apparatus and cell-wall metabolism. The identified proteins were classified into the following main groups: protein metabolism, stress/defense, carbohydrate metabolism, lipid metabolism, sulfur metabolism, nitrogen metabolism, RNA metabolism, energy production, cell-wall metabolism, membrane and transportation, and signal transduction. Results of quantitative real-time PCR of 20 differentially accumulated proteins indicated that the transcriptional expression patterns of 10 genes were consistent with their protein expression models. Virus-induced gene silencing of Hsp90, BBI, and REP14 genes indicated that virus-silenced plants subjected to cold stress had more severe drooping and wilting, an increased rate of relative electrolyte leakage, and reduced relative water content compared to viral control plants. Furthermore, ultrastructural changes of virus-silenced plants were destroyed more severely than those of viral control plants. These results indicate that Hsp90, BBI, and REP14 potentially play vital roles in conferring cold tolerance in bread wheat.
Collapse
Affiliation(s)
- Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingran Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianhui Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyan Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengbo Yu
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
39
|
Zhang RX, Qin LJ, Zhao DG. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes' Activities. Genes (Basel) 2017; 8:E179. [PMID: 28726715 PMCID: PMC5541312 DOI: 10.3390/genes8070179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/16/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l-myo-inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice (Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP. Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha, while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis-acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis-acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), when compared to wild type (WT) tobacco plants under normal and cold stress conditions.
Collapse
Affiliation(s)
- Rong-Xiang Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- College of Chemistry and Life Science, Guizhou Education University, Guiyang 550018, China.
| | - Li-Jun Qin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - De-Gang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- Guizhou Academy of Agricultural Sciences, Guiyang 550025, China.
| |
Collapse
|
40
|
Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M. Global Gene Expression Analysis Reveals Crosstalk between Response Mechanisms to Cold and Drought Stresses in Cassava Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1259. [PMID: 28769962 PMCID: PMC5513928 DOI: 10.3389/fpls.2017.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/04/2017] [Indexed: 05/21/2023]
Abstract
Abiotic stress negatively impacts cassava (Manihot esculenta) growth and yield. Several molecular mechanisms of plant response to cold and drought have been identified and described in the literature, however, little is known about the crosstalk of the responses of cassava to these two stresses. To elucidate this question, transcriptome analysis of cassava seedlings under cold or PEG-simulated drought stress treatment was performed. Our results showed that 6103 and 7462 transcripts were significantly regulated by cold and drought stress, respectively. Gene Ontology annotation revealed that the abscisic and jasmonic acid signaling pathways shared between the two stresses responses. We further identified 2434 common differentially expressed genes (DEGs), including 1130 up-regulated and 841 down-regulated DEGs by the two stresses. These co-induced or co-suppressed genes are grouped as stress signal perception and transduction, transcription factors (TFs), metabolism as well as transport facilitation according to the function annotation. Furthermore, a large proportion of well characterized protein kinases, TF families and ubiquitin proteasome system related genes, such as RLKs, MAPKs, AP2/ERFBPs, WRKYs, MYBs, E2 enzymes and E3 ligases, including three complexes of interacting proteins were shown as key points of crosstalk between cold and drought stress signaling transduction pathways in a hierarchical manner. Our research provides valuable information and new insights for genetically improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Mengbin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wenbin Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Ming Peng,
| |
Collapse
|
41
|
Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:73-81. [PMID: 27149034 DOI: 10.1016/j.plaphy.2016.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 05/20/2023]
Abstract
Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites.
Collapse
Affiliation(s)
- Moses Kwame Aidoo
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands Ben-Gurion University of the Negev, Sede Boqer, Israel
| | | | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Naftali Lazarovitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands Ben-Gurion University of the Negev, Sede Boqer, Israel.
| |
Collapse
|
42
|
Bertrand A, Bipfubusa M, Castonguay Y, Rocher S, Szopinska-Morawska A, Papadopoulos Y, Renaut J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC PLANT BIOLOGY 2016; 16:65. [PMID: 26965047 PMCID: PMC4787020 DOI: 10.1186/s12870-016-0751-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Improvement of freezing tolerance of red clover (Trifolium pratense L.) would increase its persistence under cold climate. In this study, we assessed the freezing tolerance and compared the proteome composition of non-acclimated and cold-acclimated plants of two initial cultivars of red clover: Endure (E-TF0) and Christie (C-TF0) and of populations issued from these cultivars after three (TF3) and four (TF4) cycles of phenotypic recurrent selection for superior freezing tolerance. Through this approach, we wanted to identify proteins that are associated with the improvement of freezing tolerance in red clover. RESULTS Freezing tolerance expressed as the lethal temperature for 50 % of the plants (LT50) increased markedly from approximately -2 to -16 °C following cold acclimation. Recurrent selection allowed a significant 2 to 3 °C increase of the LT50 after four cycles of recurrent selection. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to study variations in protein abundance. Principal component analysis based on 2D-DIGE revealed that the largest variability in the protein data set was attributable to the cold acclimation treatment and that the two genetic backgrounds had differential protein composition in the acclimated state only. Vegetative storage proteins (VSP), which are essential nitrogen reserves for plant regrowth, and dehydrins were among the most striking changes in proteome composition of cold acclimated crowns of red clovers. A subset of proteins varied in abundance in response to selection including a dehydrin that increased in abundance in TF3 and TF4 populations as compared to TF0 in the Endure background. CONCLUSION Recurrent selection performed indoor is an effective approach to improve the freezing tolerance of red clover. Significant improvement of freezing tolerance by recurrent selection was associated with differential accumulation of a small number of cold-regulated proteins that may play an important role in the determination of the level of freezing tolerance.
Collapse
Affiliation(s)
| | | | | | - Solen Rocher
- />Agriculture and Agri-Food Canada, Québec City, Canada
| | | | | | - Jenny Renaut
- />Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
43
|
Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana. Gene 2016; 576:520-7. [DOI: 10.1016/j.gene.2015.10.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022]
|
44
|
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome Response Mediated by Cold Stress in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2016; 7:374. [PMID: 27066029 PMCID: PMC4811897 DOI: 10.3389/fpls.2016.00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 05/18/2023]
Abstract
Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.
Collapse
|
45
|
Khraiwesh B, Qudeimat E, Thimma M, Chaiboonchoe A, Jijakli K, Alzahmi A, Arnoux M, Salehi-Ashtiani K. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Sci Rep 2015; 5:17434. [PMID: 26615914 PMCID: PMC4663497 DOI: 10.1038/srep17434] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
Changes in the environment, such as those caused by climate change, can exert stress
on plant growth, diversity and ultimately global food security. Thus, focused
efforts to fully understand plant response to stress are urgently needed in order to
develop strategies to cope with the effects of climate change. Because
Physcomitrella patens holds a key evolutionary position bridging the gap
between green algae and higher plants, and because it exhibits a well-developed
stress tolerance, it is an excellent model for such exploration. Here, we have used
Physcomitrella patens to study genome-wide responses to abiotic stress
through transcriptomic analysis by a high-throughput sequencing platform. We report
a comprehensive analysis of transcriptome dynamics, defining profiles of elicited
gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA),
cold, drought, and salt treatments. We identified more than 20,000 genes expressed
under each aforementioned stress treatments, of which 9,668 display differential
expression in response to stress. The comparison of Physcomitrella patens
stress regulated genes with unicellular algae, vascular and flowering plants
revealed genomic delineation concomitant with the evolutionary movement to land,
including a general gene family complexity and loss of genes associated with
different functional groups.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Enas Qudeimat
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Manjula Thimma
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Amphun Chaiboonchoe
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Kenan Jijakli
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Amnah Alzahmi
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
46
|
Nouri MZ, Moumeni A, Komatsu S. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants. Int J Mol Sci 2015; 16:20392-416. [PMID: 26343644 PMCID: PMC4613210 DOI: 10.3390/ijms160920392] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 01/05/2023] Open
Abstract
Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), Amol 46191-91951, Iran.
| | - Ali Moumeni
- Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), Amol 46191-91951, Iran.
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
47
|
Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R. Isolation of salt stress-related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. ScientificWorldJournal 2014; 2014:620959. [PMID: 25383373 PMCID: PMC4212599 DOI: 10.1155/2014/620959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022] Open
Abstract
The halotolerant fungus Aspergillus glaucus CCHA was isolated from the surface of wild vegetation around a saltern with the salinity range being 0-31%. Here, a full-length cDNA library of A. glaucus under salt stress was constructed to identify genes related to salt tolerance, and one hundred clones were randomly selected for sequencing and bioinformatics analysis. Among these, 82 putative sequences were functionally annotated as being involved in signal transduction, osmolyte synthesis and transport, or regulation of transcription. Subsequently, the cDNA library was transformed into E. coli cells to screen for putative salt stress-related clones. Five putative positive clones were obtained from E. coli cells grown on LB agar containing 1 M NaCl, on which they showed rapid growth compared to the empty vector control line. Analysis of transgenic Arabidopsis thaliana lines overexpressing CCHA-2142 demonstrated that the gene conferred increased salt tolerance to plants as well by protecting the cellular membranes, suppressing the inhibition of chlorophyll biosynthesis. These results highlight the utility of this A. glaucus cDNA library as a tool for isolating and characterizing genes related to salt tolerance. Furthermore, the identified genes can be used for the study of the underlying biology of halotolerance.
Collapse
Affiliation(s)
- Jie Fang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Lihua Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| |
Collapse
|
48
|
Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y. Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip. PLoS One 2014; 9:e106069. [PMID: 25167163 PMCID: PMC4148347 DOI: 10.1371/journal.pone.0106069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Genome wide transcription analysis in response to stresses is important to provide a basis of effective engineering strategies to improve stress tolerance in crop plants. We assembled a Brassica rapa oligomeric microarray (Br135K microarray) using sequence information from 41,173 unigenes and analyzed the transcription profiles of two contrasting doubled haploid (DH) lines, Chiifu and Kenshin, under cold-treatments. The two DH lines showed great differences in electrolyte leakage below −4°C, but similar patterns from 4°C to −2°C. Cold-treatments induced 885 and 858 genes in Chiifu and Kenshin, respectively. Overall, 134, and 56 genes showed an intrinsic difference in expression in Chiifu and Kenshin, respectively. Among 5,349 genes that showed no hit found (NHF) in public databases, 61 and 24 were specifically expressed in Chiifu and Kenshin, respectively. Many transcription factor genes (TFs) also showed various characteristics of expression. BrMYB12, BrMYBL2, BrbHLHs, BrbHLH038, a C2H2, a WRKY, BrDREB19 and a integrase-type TF were induced in a Chiifu-specific fashion, while a bHLH (Bra001826/AT3G21330), bHLH, cycling Dof factor and two Dof type TFs were Kenshin specific. Similar to previous studies, a large number of genes were differently induced or regulated among the two genotypes, but many genes, including NHFs, were specifically or intrinsically expressed with genotype specificity. Expression patterns of known-cold responsive genes in plants resulted in discrepancy to membrane leakage in the two DH lines, indicating that timing of gene expression is more important to conferring freezing tolerance rather than expression levels. Otherwise, the tolerance will be related to the levels of transcripts before cold-treatment or regulated by other mechanisms. Overall, these results indicate common signaling pathways and various transcriptional regulatory mechanisms are working together during cold-treatment of B. rapa. Our newly developed Br135K oligomeric microarray will be useful for transcriptome profiling, and will deliver valuable insight into cold stresses in B. rapa.
Collapse
Affiliation(s)
- Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Xiangshu Dong
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | | | - Sang Sook Lee
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeon-Ki Kim
- GreenGene Biotech Inc., Genomics and Genetics Institute, Yongin, Republic of Korea
| | - Yong-Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
- * E-mail: (ISN); (YH)
| | - Yoonkang Hur
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (ISN); (YH)
| |
Collapse
|
49
|
Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 2014; 41:3897-905. [PMID: 24535272 DOI: 10.1007/s11033-014-3257-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/08/2014] [Indexed: 01/19/2023]
Abstract
To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4-6 °C) and subsequent treatment for 12 h at -2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.
Collapse
Affiliation(s)
- Javad Gharechahi
- Chemical Injures Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | | | | | | |
Collapse
|
50
|
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:6. [PMID: 24478786 PMCID: PMC3900766 DOI: 10.3389/fpls.2014.00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| | - Jian Xu
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| |
Collapse
|