1
|
Cheng Y, Guo Q, Cheng Y, Wang D, Sun L, Liang T, Wang J, Wu H, Peng Z, Zhang G. Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway. Stem Cells Transl Med 2025; 14:szae079. [PMID: 39589222 PMCID: PMC11878778 DOI: 10.1093/stcltm/szae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Qiuyan Guo
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yulei Cheng
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
| | - Dejun Wang
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Tian Liang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Han Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zhibin Peng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
2
|
Mesas C, Moreno J, Doello K, Peña M, López-Romero JM, Prados J, Melguizo C. Cannabidiol effects in stem cells: A systematic review. Biofactors 2025; 51:e2148. [PMID: 39653426 DOI: 10.1002/biof.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse. Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs. Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article). Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro. Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Service of Medical Oncology, Hospital Virgen de las Nieves, Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
4
|
Ibrahim A, Gupton M, Schroeder F. Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox. Cureus 2024; 16:e68487. [PMID: 39364457 PMCID: PMC11447103 DOI: 10.7759/cureus.68487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Regenerative medicine leverages the body's inherent regenerative capabilities to repair damaged tissues and address organ dysfunction. In orthopedics, this approach includes a variety of treatments collectively known as orthoregeneration, encompassing modalities such as prolotherapy, extracorporeal shockwave therapy, pulsed electromagnetic field therapy, therapeutic ultrasound, and photobiomodulation therapy, and orthobiologics like platelet-rich plasma and cell-based therapies. These minimally invasive techniques are becoming prominent due to their potential for fewer complications in orthopedic surgery. As regenerative medicine continues to advance, surgeons must stay informed about these developments. This paper highlights the current state of regenerative medicine in orthopedics and advocates for further clinical research to validate and expand these treatments to enhance patient outcomes.
Collapse
Affiliation(s)
- Ayah Ibrahim
- Orthopedic Surgery, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Marco Gupton
- Orthopedic Surgery, Mountainview Regional Medical Center, Las Cruces, USA
| | - Frederick Schroeder
- Orthopedic Surgery, Burrell College of Osteopathic Medicine, Las Cruces, USA
| |
Collapse
|
5
|
Xie Q, Zhang H, Wang M, Yan K, Hu F, Xu M. A model about regulation on three division modes of stem cell. J Theor Biol 2024; 581:111746. [PMID: 38280545 DOI: 10.1016/j.jtbi.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
We construct a multi-stage cell lineage model for cell division, apoptosis and movement. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the stem cell divisions (including self-renewal, asymmetrical cell division (ACD) and differentiation). The densities of cells and molecules are described by coupled reaction-diffusion partial differential equations, and the plane wavefront propagation speeds can be obtained analytically and verified numerically. It is found that with ACD the population and propagation of stem cells can be promoted but the negative regulation on self-renewal and differentiation will work slowly. Regulatory inhibition on differentiation will inversely increase stem cells but not affect the population and wave propagation of the cell lineage. While negative regulation on self-renewal and ACD will decrease the population of stem cells and slow down the propagation, and even drive stem cells to extinction. Moreover we find that inhibition on self-renewal has a strength advantage while inhibition on ACD has a range advantage to kill stem cells. Possible relations to model cancer development and therapy are also discussed.
Collapse
Affiliation(s)
- Qingxin Xie
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Han Zhang
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Maoxiang Wang
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kexun Yan
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fenglan Hu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meng Xu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Greulich P, MacArthur BD, Parigini C, Sánchez-García RJ. Universal principles of lineage architecture and stem cell identity in renewing tissues. Development 2021; 148:269055. [PMID: 34100065 DOI: 10.1242/dev.194399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/01/2021] [Indexed: 01/20/2023]
Abstract
Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular 'states' and cell 'types', based on the topology of admissible cell state trajectories. We show that a self-renewing cell type - if defined as suggested by this framework - must reside at the top of any homeostatic renewing lineage hierarchy, and only there. This architecture arises as a natural consequence of homeostasis, and indeed is the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of 'stemness' is entirely determined by the cell environment, in accordance with the notion that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic characteristics. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Philip Greulich
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Ben D MacArthur
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK.,The Alan Turing Institute, London, NW1 2DB, UK
| | - Cristina Parigini
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Rubén J Sánchez-García
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
7
|
Hähnel M. Blurring nature at its boundaries. Vague phenomena in current stem cell debate. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2017; 20:373-381. [PMID: 28176166 DOI: 10.1007/s11019-017-9755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper illuminates the explanatory role of vagueness und species membership against the background of scientific developments in recent stem cell research. With the help of the Neo-Aristotelian concept of "life form naturalism" ontologically vague entities such as stem cells, all above induced pluripotent stem cells (iPS), could be described as necessary constituents for the correct sorting and naming of natural processes and its bearers. Furthermore this specific assessment allows drawing some important ontological and ethical consequences.
Collapse
Affiliation(s)
- Martin Hähnel
- Chair of Bioethics, Catholic University Eichstaett-Ingolstadt, Eichstaett, Germany.
| |
Collapse
|
8
|
Trubiani O, Orsini G, Caputi S, Piatelli A. Adult Mesenchymal Stem Cells in Dental Research: A New Approach for Tissue Engineering. Int J Immunopathol Pharmacol 2016; 19:451-60. [PMID: 17026831 DOI: 10.1177/039463200601900301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many adult tissues contain a population of stem cells that have the ability to regenerate after trauma, disease or aging. Recently, there has been great interest in mesenchymal stem cells and their roles in maintaining the physiological structure of tissues. The studies on stem cells are thought to be very important and, in fact, it has been shown that this cell population can be expanded ex vivo to regenerate tissues not only of the mesenchymal lineage, such as intervertebral disc cartilage, bone and tooth-associated tissues, but also other types of tissues. Several studies have focused on the identification of odontogenic progenitors from oral tissues, and it has been shown that the mesenchymal stem cells obtained from periodontal ligament and dental pulp could have similar morphological and phenotypical features of the bone marrow mesenchymal cells. In fact a population of homogeneous human mesenchymal stem cells derived from periodontal ligament and dental pulp, and proliferating in culture with a well-spread morphology, can be recovered and characterized. Since these cells are considered as candidates for regenerative medicine, the knowledge of the cell differentiation mechanisms is imperative for the development of predictable techniques in implant dentistry, oral surgery and maxillo-facial reconstruction. Thus, future research efforts might be focused on the potential use of this cell population in tissue engineering. Further studies will be carried out to elucidate the molecular mechanisms involved in their maintenance and differentiation in vitro and in vivo.
Collapse
Affiliation(s)
- O Trubiani
- Department of Stomatology and Oral Science, Ce.SI. Foundation G. d'Annunzio, Chieti, Italy
| | | | | | | |
Collapse
|
9
|
Fayazi M, Salehnia M, Ziaei S. Characteristics of Human Endometrial Stem Cells in Tissue and Isolated Cultured Cells: An Immunohistochemical Aspect. IRANIAN BIOMEDICAL JOURNAL 2015; 20:109-16. [PMID: 26568058 PMCID: PMC4726891 DOI: 10.7508/ibj.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The aim of this study was to investigate the percentage of the stem cells population in human endometrial tissue sections and cultured cells at fourth passage. Methods: Human endometrial specimens were divided into two parts, one part for morphological studies and the other part for in vitro culture. Full thickness of human normal endometrial sections and cultured endometrial cells at fourth passage were analyzed via immunohistochemistry for CD146 and some stemness markers such as Oct4, Nanog, Sox2, and Klf4 and the expression of typical mesenchymal stem cell markers CD90, CD105. Results: 11.88±1.29% of human endometrial cells within tissue sections expressed CD146 marker vs. 28±2.3% of cultured cells, CD90 and CD105 were expressed by functionalis stroma (85±2.4 and 89±3.2%) than basalis stroma (16±1.4 and 17±1.9%), respectively (P<0.05). Oct4 and Nanog-expressing cells comprise 1.43±0.08 and 0.54±0.01% of endometrial stromal cells in endometrial sections vs. 12±3.1% and 8±2.9% of cultured cells, respectively. They reside near the glands in the basal layer of endometrium. Sox2 and Klf4 were not commonly expressed in tissue samples and cultured cells. CD9 and EpCAM were expressed by epithelial cells of the endometrium, rather than by stroma or perivascular cells. Conclusion: The human endometrial stem cells and pluripotency markers may be localized more in basalis layer of endometrium. The immunostaining observations of endometrial cells at fourth passage were correlated with the immunohistochemistry data.
Collapse
Affiliation(s)
- Mehri Fayazi
- Dept. of Anatomy, Tarbiat Modares University, Tehran, Iran
| | | | - Saeideh Ziaei
- 2Dept. of Midwifery, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Abstract
Basic science and experimental research on stem cells has increased exponentially in the last decade. Our present knowledge about stem cell biology is better than ever before. This new paradigm shift in research has been reflected in the field of orthopaedic surgery. Various experimental models have suggested a potential application of stem cells for different orthopaedic conditions, and early clinical results of stem cell use have been encouraging. These cells can be easily isolated, processed and made available for clinical use. From healing of bone defects caused by trauma, tumor or infection to cartilage defects, nerve, tendon and ligament healing, stem cell use has the potential to revolutionize orthopaedic practice. The purpose of this article is to orient a general orthopaedic surgeon towards the current use and clinical applications of stem cell based therapy in orthopaedics and to provide a complete overview of the clinical advances in this field.
Collapse
Affiliation(s)
- H H Maniar
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - A A Tawari
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - M Suk
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| | - D S Horwitz
- Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, USA
| |
Collapse
|
11
|
Abstract
Endometriosis is a complex gynecologic condition affecting 6-10% of reproductive aged women and is a major cause of chronic pain and infertility. Mechanisms of disease pathogenesis are poorly understood. Considerable evidence supports the existence of a stem cell population in the endometrium which provides a physiologic source of regenerative endometrial cells, and multiple lines of evidence now support a key role for stem cells in the pathogenesis of endometriosis. In addition, new blood vessel formation is critical for the establishment and maintenance of endometriotic implants, a process in which endothelial progenitor cells may play an integral role. These new insights into disease pathogenesis present exciting opportunities to develop targeted and more effective therapeutic options in the management of this common and challenging disease.
Collapse
Affiliation(s)
- Amy S Dhesi
- Rutgers, New Jersey Medical School, Department of Obstetrics, Gynecology & Women's Health, Newark, NJ, USA
| | | |
Collapse
|
12
|
Krikun G, Taylor HS. Endometrial Stem Cells as Potential Cures for Human Diseases. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Rinkevich B. Cell cultures from marine invertebrates: new insights for capturing endless stemness. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:345-354. [PMID: 21213116 DOI: 10.1007/s10126-010-9354-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 05/28/2023]
Abstract
Despite several decades of extensive research efforts, there is yet no single permanent cell line available from marine invertebrates as these cells stop dividing in vitro within 24-72 h after their isolation, starting cellular quiescence. This ubiquitous quiescent state should be modified in a way that at least some of the quiescent cells will become pluripotent, so they will have the ability to divide and become immortal. Following the above need, this essay introduces the rationale that the discipline of marine invertebrates' cell culture should gain from applying of two research routes, relevant to mammalian systems but less explored in the marine arena. The first is the use of adult stem cells (ASC) from marine organisms. Many marine invertebrate taxa maintain large pools of ASC in adulthood. Ample evidence attests that these cells from sponges, cnidarians, flatworms, crustaceans, mollusks, echinoderms, and ascidians play important roles in maintenance, regeneration, and asexual cloning, actively proliferating in vivo, resembling the vertebrates' cancer stem cells features. The second route is to target resting somatic cell constituents, manipulating them in the same way as has recently been performed on mammalian induced pluripotent stem (iPS) cells. While "iPS cells" are the outcome of an experimental manipulation, ASC are natural and rather frequent in a number of marine invertebrates. Above two cell categories reveal that there are more than a few types of seeds (cells) waiting to be sowed in the right soil (in vitro environmental conditions) for acquiring stemness and immortality. This rationale carries the potential to revolutionize the discipline of marine invertebrate cell cultures. When cultured "correctly," ASC and "iPS cells" from marine invertebrates may stay in their primitive stage and proliferate without differentiating into cells lineages, harnessing the stem cell's inherent abilities of self-replication versus differentiated progenies, toward the development of immortal cell lines.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 31080, Israel.
| |
Collapse
|
14
|
Figueira PGM, Abrão MS, Krikun G, Taylor HS, Taylor H. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci 2011; 1221:10-7. [PMID: 21401624 DOI: 10.1111/j.1749-6632.2011.05969.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson's disease.
Collapse
|
15
|
Hogle LF. Characterizing human embryonic stem cells: biological and social markers of identity. Med Anthropol Q 2011; 24:433-50. [PMID: 21322405 DOI: 10.1111/j.1548-1387.2010.01117.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human embryonic stem cells are elusive, recalcitrant entities that resist characterization and standardization. Without agreements about what the cells are and how best to systematize cell culture and testing, data cannot be extracted meaningfully, the nascent field will be slow to stabilize, and significantly, there may be safety risks for patients. I discuss efforts to characterize cells definitively and standardize practices across uniquely derived lines, labs, and researchers. I argue that such efforts are made more complicated by layered identities imposed on them by classification conventions, interactions with researchers and laboratory environments, and inheritances from genetic ancestry. The need to understand and possibly capitalize on such distinct, cumulative identities is in tension with the desire to stabilize the field under conditions of political and scientific uncertainty. The article links STS work on standardization with anthropological perspectives on identity and material culture in science.
Collapse
Affiliation(s)
- Linda F Hogle
- Medical History and Bioethics, University of Wisconsin, Madison, USA
| |
Collapse
|
16
|
Sharma RI, Snedeker JG. Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 2010; 31:7695-704. [PMID: 20656345 DOI: 10.1016/j.biomaterials.2010.06.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 06/28/2010] [Indexed: 12/13/2022]
Abstract
Substrates with mechanical property gradients and various extracellular matrix ligand loadings were evaluated for their ability to direct bone marrow stromal cell differentiation along osteogenic and tenogenic lineages. After verifying reproducible mechanical compliance characteristics of commercial hydrogel gradient substrates, substrates were functionalized with whole length fibronectin or collagen, both of which are found in skeletal structures and are relevant to cell-matrix signalling. Bone marrow stromal cells were seeded onto the substrates in growth media and cultured first to examine cell attachment and morphology, indicating higher levels of attachment on collagen substrates after 1h, and increased spreading and organization trends after 24h. Differentiation studies showed an increase in osteoblast differentiation on fibronectin substrates while collagen substrates lacked osteogenic differentiation. Osteogenic differentiation decreased on substrates of lower stiffness and lower ligand density. Molecular investigations revealed an increase in relevant signalling molecules for osteoblasts that were consistent with differentiation studies, but detected the presence of tenoblast markers on collagen substrates within a narrow range of stiffness. Our results indicate that mechanovariant substrates do hold promise as a culture platform for directed differentiation to tendon and bone by altering gene level expression of relevant signalling molecules. This study aids in understanding the molecular mechanisms that drive differentiation from substrate based cues, and could aid the design of therapeutic biomaterials at the transition from tendon to bone.
Collapse
Affiliation(s)
- Ram I Sharma
- Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med 2010; 1:43-52. [PMID: 22096336 PMCID: PMC3217290 DOI: 10.4103/0976-9668.71674] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, there has been a tremendous increase in the understanding of stem cell biology. Stem cells have clonogenic and self-renewing capabilities, and under certain conditions, can differentiate into multiple lineages of mature cells. Recent studies have shown that adult stem cells can be isolated from a wide variety of tissues, including bone marrow, peripheral blood, muscle, and adipose tissue. The potential clinical applications lead to an extended interest in the use of stem cells in many medical disciplines. In this article, we present an overview of stem cells with special reference to cardiovascular and renal diseases treatments by stem cells.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
18
|
Taylor SE, Smith RKW, Clegg PD. Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? Equine Vet J 2010; 39:172-80. [PMID: 17378447 DOI: 10.2746/042516407x180868] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal in the therapeutic use of mesenchymal stem cells (MSCs) in musculoskeletal disease is to harness the regenerative nature of these cells focussing on their potential to grow new tissues and organs to replace damaged or diseased tissue. Laboratory isolation of MSCs is now well established and has recently been demonstrated for equine MSCs. Stem cell science has attracted considerable interest in both the scientific and clinical communities because of its potential to regenerate tissues. Research into the use of MSCs in tissue regeneration in general reflects human medical needs, however, the nature, prevalence and prognosis of superficial digital flexor tendonitis has put equine veterinary science at the forefront of tendon regeneration research. Much has been investigated and learnt but it must be appreciated that in spite of this, the field is still relatively young and both communities must prepare themselves for considerable time and effort to develop the technology into a highly efficient treatments. The promise of functional tissue engineering to replace old parts with new fully justifies the interest. At present, however, it is important to balance the understanding of our current limitations with a desire to progress the technology.
Collapse
Affiliation(s)
- S E Taylor
- Department of Veterinary Clinical Science, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE, UK
| | | | | |
Collapse
|
19
|
Gargett CE, Schwab KE, Zillwood RM, Nguyen HPT, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80:1136-45. [PMID: 19228591 PMCID: PMC2849811 DOI: 10.1095/biolreprod.108.075226] [Citation(s) in RCA: 360] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/13/2009] [Accepted: 02/02/2009] [Indexed: 01/14/2023] Open
Abstract
Human endometrium is a highly regenerative tissue undergoing more than 400 cycles of growth, differentiation, and shedding during a woman's reproductive years. Endometrial regeneration is likely mediated by adult stem/progenitor cells. This study investigated key stem cell properties of individual clonogenic epithelial and stromal cells obtained from human endometrium. Single-cell suspensions of endometrial epithelial or stromal cells were obtained from hysterectomy tissues from 15 women experiencing normal menstrual cycles, and were cultured at clonal density (10 cells/cm(2)) or limiting dilution. The adult stem cell properties-self-renewal, high proliferative potential, and differentiation of single epithelial and stromal cells-were assessed by harvesting individual colonies and undertaking serial clonal culture, serial passaging, and culture in differentiation-induction media, respectively. Lineage differentiation markers were examined by RT-PCR, immunocytochemistry, and flow cytometry. Rare single human endometrial EpCAM(+) epithelial cells and EpCAM(-) stromal cells demonstrated self-renewal by serially cloning >3 times and underwent >30 population doublings over 4 mo in culture. Clonally derived epithelial cells differentiated into cytokeratin(+) gland-like structures in three dimensional culture. Single stromal cells were multipotent, as their progeny differentiated into smooth muscle cells, adipocytes, chondrocytes, and osteoblasts. Stromal clones expressed mesenchymal stem cell (MSC) markers ITGB1 (CD29), CD44, NT5E (CD73), THY1 (CD90), ENG (CD105), PDGFRB (CD140B), MCAM (CD146) but not endothelial or hemopoietic markers PECAM1 (CD31), CD34, PTPRC (CD45). Adult human endometrium contains rare epithelial progenitors and MSCs, likely responsible for its immense regenerative capacity, which may also have critical roles in the development of endometriosis and endometrial cancer. Human endometrium may provide a readily available source of MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Caroline E Gargett
- Department of Obstetrics and Gynaecology and Centre for Women's Health Research, Monash Institute of Medical Research, Monash University, Victoria, Australia.
| | | | | | | | | |
Collapse
|
20
|
Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL. Cell lineages and the logic of proliferative control. PLoS Biol 2009; 7:e15. [PMID: 19166268 PMCID: PMC2628408 DOI: 10.1371/journal.pbio.1000015] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/06/2008] [Indexed: 12/03/2022] Open
Abstract
It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors ("chalones") may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives-what, precisely, is being controlled, and to what degree-and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE-the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue-fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules-such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator-may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Kimberly K Gokoffski
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Frederic Y. M Wan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
21
|
Cinquin O. Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line. J Pathol 2009; 217:186-98. [PMID: 19065622 PMCID: PMC2929242 DOI: 10.1002/path.2481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cells are expected to play a key role in the development and maintenance of organisms, and hold great therapeutic promises. However, a number of questions must be answered to achieve an understanding of stem cells and put them to use. Here I review some of these questions, and how they relate to the model system provided by the Caenorhabditis elegans germ line, which is exceptional in its thorough genetic characterization and experimental accessibility under in vivo conditions. A fundamental question is how to define a stem cell; different definitions can be adopted that capture different features of interest. In the C. elegans germ line, stem cells can be defined by cell lineage or by cell commitment ('commitment' must itself be carefully defined). These definitions are associated with two other important questions about stem cells: their functions (which must be addressed following a systems approach, based on an evolutionary perspective) and their regulation. I review possible functions and their evolutionary groundings, including genome maintenance and powerful regulation of cell proliferation and differentiation, and possible regulatory mechanisms, including asymmetrical division and control of transit amplification by a developmental timer. I draw parallels between Drosophila and C. elegans germline stem cells; such parallels raise intriguing questions about Drosophila stem cells. I conclude by showing that the C. elegans germ line bears similarities with a number of other stem cell systems, which underscores its relevance to the understanding of stem cells.
Collapse
Affiliation(s)
- Olivier Cinquin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|
22
|
Abstract
Stem cells have fascinated both biologists and clinicians for over a century. Here, we discuss the origin of the term "stem cell," which can be traced back to the late 19th century. The term stem cell originated in the context of two major embryological questions of that time: the continuity of the germ-plasm and the origin of the hematopoietic system. Theodor Boveri and Valentin Häcker used the term stem cell to describe cells committed to give rise to the germline. In parallel, Artur Pappenheim, Alexander Maximow, Ernst Neumann, and others used it to describe a proposed progenitor of the blood system. The original meanings of the term stem cell, rather than being historical relics, continue to capture important aspects of the biology of stem cells as we see them today.
Collapse
|
23
|
Benayahu D, Shefer G, Shur I. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues. Ann Anat 2008; 191:2-12. [PMID: 18926677 DOI: 10.1016/j.aanat.2008.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022]
Abstract
Utilizing adult stem cells for regenerative medicine of skeletal tissues requires the development of molecular and biochemical tools that will allow isolation of these cells and direction of their differentiation towards a desired lineage and tissue formation. Stem cell commitment and fate decision into specialized functional cells involve coordinated activation and silencing of lineage-specific genes. Transcription factors and chromatin-remodeling proteins are key players in the control process of lineage commitment and differentiation during embryogenesis and adulthood. Transcription factors act in cooperation with co-regulator proteins to generate tissue-specific responses that elicits the tissue specific gene expression. Consequently, one of the main challenges of today's research is to characterize molecular pathways that coordinate the lineage-specific differentiation. Epigenetic regulation includes chromatin remodeling that control structural changes of DNA required for the binding of transcription factors to promoter regions. Revealing the mechanisms of action of such factors will provide understanding of how transcription and chromatin regulatory factors function together to regulate stem cell lineage fate decision.
Collapse
Affiliation(s)
- Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
24
|
Hickey M, Salamonsen LA. Endometrial structural and inflammatory changes with exogenous progestogens. Trends Endocrinol Metab 2008; 19:167-74. [PMID: 18434186 DOI: 10.1016/j.tem.2008.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/11/2008] [Accepted: 02/20/2008] [Indexed: 01/06/2023]
Abstract
Safe and effective contraception is an international public health priority. The long-acting progestogen-only contraceptives are used by over 20 million women worldwide but their main drawback is abnormal uterine bleeding. Such bleeding arises owing to structural and inflammatory changes which compromise endometrial microvascular and epithelial integrity. The molecular and structural changes that lead to the vessel and surface epithelial fragility, and hence the side effect of abnormal uterine bleeding commonly seen with exogenous progestogen use, might be lessened by short-term treatments shown to shorten bleeding episodes.
Collapse
Affiliation(s)
- Martha Hickey
- School of Women's and Infants' Health, University of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | | |
Collapse
|
25
|
Abstract
Endometriosis is a common gynecological disorder that is defined by the presence of endometrial tissue outside the uterine cavity. This disease often results in extensive morbidity, including chronic pelvic pain and infertility. The pathogenesis of endometriosis is likely multifactorial, and extensive investigation has explored the role of genetics, environmental factors, and the immune system in predisposing patients to developing endometriosis. A series of recent publications have described the identification of endometrial stem/progenitor cells. Such cells have long been speculated to function in the cyclic regeneration of the endometrium during the menstrual cycle and in the pathogenesis of several gynecological disorders. This narrative review will (i) examine the evidence for endometrial stem cells, (ii) examine their potential role in the pathogenesis of endometriosis, and (iii) identify important unanswered questions with suggestions for future investigation.
Collapse
Affiliation(s)
- Isaac E. Sasson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
26
|
Mangel M, Bonsall MB. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability. PLoS One 2008; 3:e1591. [PMID: 18270578 PMCID: PMC2217616 DOI: 10.1371/journal.pone.0001591] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/16/2008] [Indexed: 12/21/2022] Open
Abstract
Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.
Collapse
Affiliation(s)
- Marc Mangel
- Center for Biomolecular Science and Engineering, Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, California, United States or America
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Lankenau DH. The Legacy of the Germ Line – Maintaining Sex and Life in Metazoans: Cognitive Roots of the Concept of Hierarchical Selection. RECOMBINATION AND MEIOSIS 2007. [DOI: 10.1007/7050_2007_030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Moon I, Javidi B. Three-dimensional identification of stem cells by computational holographic imaging. J R Soc Interface 2007; 4:305-13. [PMID: 17251147 PMCID: PMC2359842 DOI: 10.1098/rsif.2006.0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present an optical imaging system and mathematical algorithms for three-dimensional sensing and identification of stem cells. Data acquisition of stem cells is based on holographic microscopy in the Fresnel domain by illuminating the cells with a laser. In this technique, the holograms of stem cells are optically recorded with an image sensor array interfaced with a computer and three-dimensional images of the stem cells are reconstructed from the Gabor-filtered digital holograms. The Gabor wavelet transformation for feature extraction of the digital hologram is performed to improve the process of identification. The inverse Fresnel transformation of the Gabor-filtered digital hologram is performed to reconstruct the multi-scale three-dimensional images of the stem cells at different depths along the longitudinal direction. For recognition and classification of stem cells, a statistical approach using an empirical cumulative density function is introduced. The experiments indicate that the proposed system can be potentially useful for recognizing and classifying stem cells. To the best of our knowledge, this is the first report on using three-dimensional holographic microscopy for automated identification of stem cells.
Collapse
|
29
|
Shostak S. Evolution of death and Michael Rose's fantasy planet. Evol Dev 2007; 9:319-20. [PMID: 17651354 DOI: 10.1111/j.1525-142x.2007.00167.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stanley Shostak
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
30
|
Abstract
Only a small number of cells in adult tissues (the stem cells) possess the ability to self-renew at every cell division, while producing differentiating daughter cells to maintain tissue homeostasis for an organism's lifetime. The Drosophila ovary harbors three different types of stem cell populations (germline stem cell (GSC), somatic stem cell (SSC) and escort stem cell (ESC)) located in a simple anatomical structure known as germarium, rendering it one of the best model systems for studying stem cell biology due to reliable stem cell identification and available sophisticated genetic tools for manipulating gene functions. Particularly, the niche for the GSC is among the first and best studied ones, and studies on the GSC and its niche have made many unique contributions to a better understanding of relationships between stem cells and their niche. So far, both the GSC and the SSC have been shown to be regulated by extrinsic factors originating from their niche and intrinsic factors functioning within. Multiple signaling pathways are required for controlling GSC and SSC self-renewal and differentiation, which provide unique opportunities to investigate how multiple signals from the niche are interpreted in the stem cell. Since the Drosophila ovary contains three types of stem cells, it also provides outstanding opportunities to study how multiple stem cells in a given tissue work collaboratively to contribute to tissue function and maintenance. This review highlights recent major advances in studying Drosophila ovarian stem cells and also discusses future directions and challenges.
Collapse
Affiliation(s)
- Dániel Kirilly
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | | |
Collapse
|
31
|
Becker C, Jakse G. Stem cells for regeneration of urological structures. Eur Urol 2007; 51:1217-28. [PMID: 17254699 DOI: 10.1016/j.eururo.2007.01.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/05/2007] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This review focuses on advances in regenerative therapies using stem cells in urology. METHODS A detailed literature search was performed using the PubMed database of the National Center of Biotechnology Information. Publications of experimental investigations and clinical trials using stem cells in reconstructive urology have been summarized and critically reviewed. RESULTS Tissue engineering and autologous cell therapy techniques have been developed to generate prostheses for different urological tissues and organ systems. During the last decade, increasing numbers of studies have described stem cells in the context of therapeutic tools. The ability of adult and embryonic stem cells as well as progenitors to improve bladder wall architecture, improve renal tubule formation, or promote restoration of spermatogenesis or recovery of continence has been investigated in several animal models. Although results have been encouraging, only a myoblast-based therapy of incontinence has reached clinical trials. CONCLUSIONS Several populations of adult stem cells and progenitor cells have been studied as useful cellular sources in the treatment and reconstruction of urological organs. However, considerable basic research still needs to be performed to ensure the controlled differentiation and long-term fate of stem cells following transplantation.
Collapse
Affiliation(s)
- Christoph Becker
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | |
Collapse
|
32
|
Shefer G, Yablonka-Reuveni Z. Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 2007; 17:13-29. [PMID: 17341181 PMCID: PMC3276064 DOI: 10.1615/critreveukargeneexpr.v17.i1.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal muscle growth and repair is supported by satellite cells--myogenic progenitors positioned between the myofiber basal lamina and plasma membrane. In adult muscles, satellite cells are quiescent but become activated and contribute differentiated progeny when myofiber repair is needed. The development of cells expressing osteogenic and adipogenic genes alongside myoblasts in myofiber cultures raised the hypothesis that satellite cells possess mesenchymal plasticity. Clonal studies of myofiber-associated cells further suggest that satellite cell myogeneity and diversion into Mesenchymal Alternative Differentiation (MAD) occur in vitro by a stochastic mechanism. However, in vivo this potential may be executed only when myogenic signals are impaired and the muscle tissue is compromised. Such a mechanism may contribute to the increased adiposity of aging muscles. Alternatively, it is possible that mesenchymal interstitial cells (sometimes co-isolated with myofibers), rather than satellite cells, account for the nonmyogenic cells observed in myogenic cultures. Herein, we first elaborate on the myogenic potential of satellite cells. We then introduce definitions of adult stem-cell unipotency, multipotency, and plasticity, as well as elaborate on recent studies that established the status of satellite cells as myogenic stem cells. Last, we highlight evidence in favor of satellite cell plasticity and emerging hurdles restraining this hypothesis.
Collapse
Affiliation(s)
- Gabi Shefer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
33
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
34
|
Abstract
The mucosal lining (endometrium) of the human uterus undergoes cyclical processes of regeneration, differentiation and shedding as part of the menstrual cycle. Endometrial regeneration also follows parturition, almost complete resection and in post-menopausal women taking estrogen replacement therapy. In non-menstruating species, there are cycles of endometrial growth and apoptosis rather than physical shedding. The concept that endometrial stem/progenitor cells are responsible for the remarkable regenerative capacity of endometrium was proposed many years ago. However, attempts to isolate, characterize and locate endometrial stem cells have only been undertaken in the last few years as experimental approaches to identify adult stem/progenitor cells in other tissues have been developed. Adult stem cells are defined by their functional properties rather than by marker expression. Evidence for the existence of adult stem/progenitor cells in human and mouse endometrium is now emerging because functional stem cell assays are being applied to uterine cells and tissues. These fundamental studies on endometrial stem/progenitor cells will provide new insights into the pathophysiology of various gynaecological disorders associated with abnormal endometrial proliferation, including endometrial cancer, endometrial hyperplasia, endometriosis and adenomyosis.
Collapse
Affiliation(s)
- C E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|