1
|
Alaei E, Hashemi F, Farahani N, Tahmasebi S, Nabavi N, Daneshi S, Mahmoodieh B, Rahimzadeh P, Taheriazam A, Hashemi M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol Res Pract 2025; 269:155946. [PMID: 40174279 DOI: 10.1016/j.prp.2025.155946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Breast cancer therapy can be improved by the application of multifunctional peptides and they have unique features, such as high specificity, minimized toxicity, and the capability to influence diverse processes. The role of peptides in breas cancer therapy is highlighted in the present review, examining their functions as therapeutic agents, diagnostic tools, and drug delivery application. Therapeutic peptides have displayed the ability to regulate key pathways in breast tumor, including HER2, VEGF, and EGFR, providing ideal alternatives to the conventional chemotherapy with reduced adverse effects. Additionally, peptide-based vaccines and immune-modulating peptides have demonstrated the capacity in enhancing anti-cancer immunity. The incorporation of peptides into nanoparticles has improved the delivery of drugs and genes, enhanced anti-cancer efficacy while minimizing side impacts. The progresses in the peptide engineering, including stapled peptides, peptide-drug conjugates, and cell-penetrating peptides, have remarkably increased their therapeutic efficacy and stability, elevating their applications in breast cancer therapy. Peptides can be developed using bioinformatics and high-throughput screening technologies to optimize pharmacokinetics and bioavailability. Despite their promise, peptides demonstrate challenges such as enzymatic degradation, limited stability, and high production costs. These obstacles can be addressed through strategies such as peptide cyclization, the employement of non-natural amino acids, and nanoparticle encapsulation. This review explores these recent advancements and strategies, providing ideal insights into the clinical potential of peptides in breast tumor therapy.
Collapse
Affiliation(s)
- Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Kim K. Hybrid Systems of Gels and Nanoparticles for Cancer Therapy: Advances in Multifunctional Therapeutic Platforms. Gels 2025; 11:170. [PMID: 40136875 PMCID: PMC11941994 DOI: 10.3390/gels11030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer is a global health concern. Various therapeutic approaches, including chemotherapy, photodynamic therapy, and immunotherapy, have been developed for cancer treatment. Silica nanoparticles, quantum dots, and metal-organic framework (MOF)-based nanomedicines have gained interest in cancer therapy because of their selective accumulation in tumors via the enhanced permeability and retention (EPR) effect. However, bare nanoparticles face challenges including poor biocompatibility, low stability, limited drug-loading capacity, and rapid clearance by the reticuloendothelial system (RES). Gels with unique three-dimensional network structures formed through various interactions such as covalent and hydrogen bonds are emerging as promising materials for addressing these challenges. Gel hybridization enhances biocompatibility, facilitates controlled drug release, and confers cancer-targeting abilities to nanoparticles. This review discusses gel-nanoparticle hybrid systems for cancer treatment developed in the past five years and analyzes the roles of gels in these systems.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
4
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
5
|
Jha R, Kinna A, Hotblack A, Bughda R, Bulek A, Gannon I, Ilca T, Allen C, Lamb K, Dolor A, Scott I, Parekh F, Sillibourne J, Cordoba S, Onuoha S, Thomas S, Ferrari M, Pule M. Designer Small-Molecule Control System Based on Minocycline-Induced Disruption of Protein-Protein Interaction. ACS Chem Biol 2024; 19:308-324. [PMID: 38243811 PMCID: PMC10877577 DOI: 10.1021/acschembio.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.
Collapse
Affiliation(s)
- Ram Jha
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Alastair Hotblack
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Anna Bulek
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | - Tudor Ilca
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | - Ian Scott
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | | | | | | | - Martin Pule
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| |
Collapse
|
6
|
Azizi M, Shahgolzari M, Fathi-Karkan S, Ghasemi M, Samadian H. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1872. [PMID: 36450366 DOI: 10.1002/wnan.1872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
Cancer therapy requires sophisticated treatment strategies to obtain the highest success. Nanotechnology is enabling, revolutionizing, and multidisciplinary concepts to improve conventional cancer treatment modalities. Nanomaterials have a central role in this scenario, explaining why various nanomaterials are currently being developed for cancer therapy. Viral nanoparticles (VNPs) have shown promising performance in cancer therapy due to their unique features. VNPs possess morphological homogeneity, ease of functionalization, biocompatibility, biodegradability, water solubility, and high absorption efficiency that are beneficial for cancer therapy applications. In the current review paper, we highlight state-of-the-art properties and potentials of plant viruses, strategies for multifunctional plant VNPs formulations, potential applications and challenges in VNPs-based cancer therapy, and finally practical solutions to bring potential cancer therapy one step closer to real applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Choi W, Shin WR, Kim YH, Min J. Inducing a Proinflammatory Response with Bioengineered Yeast Vacuoles with TLR2-Binding Peptides (Vac T2BP) as a Drug Carrier for Daunorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41258-41270. [PMID: 37615983 DOI: 10.1021/acsami.3c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immune adjuvants have roles in immune activation for cancer therapy, and adjuvants derived from microbes have been applied. In this study, we propose the use of bioengineered vacuoles, derived from recombinant yeast with acute myeloid leukemia (AML) specificity and having a TLR-2-binding peptide (VacT2BP) on their surface, to induce a proinflammatory response as a dual-function nanomaterial for daunorubicin (DNR) delivery. Our results demonstrate that nanosized, isolated VacT2BP induced HL-60 cell-specific DNR delivery and apoptosis. Furthermore, we observed the selective release of high-mobility group box 1 from apoptotic HL-60 cells by DNR@VacT2BP. We concluded that DNR@VacT2BP exhibited target selectivity, and the indiscriminate occurrence of damage-associated molecular patterns (DAMPs) was inhibited by the VacT2BP carrier. The therapeutic efficacy of DNR@VacT2BP was confirmed in AML xenograft mice, with about 82% tumor growth inhibition. Following drug delivery, apoptotic cells and DAMPs with residual VacT2BP (apopDNR@VacT2BP) upregulated the proinflammatory immune response of macrophages. In addition, apopDNR@VacT2BP enhanced phagocytosis activity. Macrophages stimulated by apopDNR@VacT2BP suppressed cancer proliferation by about 40%. In summary, our results suggest that dual-functional vacuoles with a target-specific peptide can be a potential strategy for selective drug delivery and construction of an immune environment to fight cancer, thereby improving prognosis.
Collapse
Affiliation(s)
- Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| |
Collapse
|
8
|
Sohora M, Sović I, Spahić Z, Kontrec D, Jurin M. Photochemistry of phthalimidoadamantane dipeptides: effect of amino acid side chain on photocyclization. Photochem Photobiol Sci 2023; 22:2071-2080. [PMID: 37148465 DOI: 10.1007/s43630-023-00430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
A series of dipeptides 1 was synthesized that at the N-site contained 3-(N-phthalimidoadamantane-1-carboxylic acid and at the C-site different aliphatic or aromatic L- or D-amino acids. The photochemical reaction of dipeptides 1 under acetone-sensitized conditions gave simple decarboxylation products 6, and decarboxylation-induced cyclization products 7, as well as some secondary products 8 and 9 formed by elimination of H2O or ring enlargement, respectively. Molecules 9 undergo secondary photoinduced H-abstractions by the phthalimide chromophore, delivering more complex polycycles 11. The photodecarboxylation-induced cyclization to 7 was observed only with phenylalanine (Phe), proline (Pro), leucine (Leu) and isoleucine (Ile). Contrary to dipeptides with Phe, the cyclization takes place with almost complete racemization at the amino acid chiral center, but diastereoselectively giving only one pair of enantiomers. The conducted investigation is important as it provides the breath and the scope of dipeptide cyclizations activated by phthalimides.
Collapse
Affiliation(s)
- Margareta Sohora
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia.
| | - Irena Sović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Zlatan Spahić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Faculty of Science, University of Zagreb, Horvatovac 102 A, 10000, Zagreb, Croatia
| | - Darko Kontrec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Mladenka Jurin
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Çalışkan E, Kaplan A, Şekerci G, Çapan İ, Tekin S, Erkan S, Koran K, Sandal S, Görgülü AO. Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine-based tripeptides. J Biochem Mol Toxicol 2023; 37:e23388. [PMID: 37243846 DOI: 10.1002/jbt.23388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Peptides are one of the leading groups of compounds that have been the subject of a great deal of biological research and still continue to attract researchers' attention. In this study, a series of tripeptides based on tyrosine amino acids were synthesized by the triazine method. The cytotoxicity properties of all compounds against human cancer cell lines (MCF-7), ovarian (A2780), prostate (PC-3), and colon cancer cell lines (Caco-2) were determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay method, and % cell viability and logIC50 values of the compounds were calculated. Significant decreases in cell viability were observed in all cells (p < 0.05). The comet assay method was used to understand that the compounds that showed a significant decrease in cell viability had this effect through DNA damage. Most of the compounds exhibited cytotoxicity by DNA damage mechanism. Besides, their interactions between investigated molecule groups with PDB ID: 3VHE, 3C0R, 2ZCL, and 2HQ6 target proteins corresponding to cancer cell lines, respectively, were investigated by docking studies. Finally, molecules with high biological activity against biological receptors were determined by ADME analysis.
Collapse
Affiliation(s)
- Eray Çalışkan
- Department of Chemistry, Faculty of Science and Arts, Bingol University, Bingöl, Türkiye
| | - Alpaslan Kaplan
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - İrfan Çapan
- Department of Material and Material Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Suat Tekin
- Physiology Department, Inonu University, Malatya, Türkiye
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Türkiye
| | - Kenan Koran
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - Ahmet O Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| |
Collapse
|
11
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
12
|
Bakhshinejad B, Sadeghizadeh M. Identification of a novel colon adenocarcinoma cell targeting peptide using phage display library biopanning. Biotechnol Appl Biochem 2022; 69:2753-2765. [PMID: 35103339 DOI: 10.1002/bab.2320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/19/2021] [Indexed: 12/27/2022]
Abstract
Phage display is well recognized as a promising high-throughput screening tool for the discovery of novel cancer-targeting peptides. Here, we screened a phage display library of 7-mer random peptides through in vitro biopanning to isolate peptide ligands binding to SW480 human colon adenocarcinoma cells. Three rounds of negative and positive selection caused a remarkable enrichment of colon cancer cell-binding phage clones with a significant enhancement of phage recovery efficiency (about 157-fold). A number of phage clones were picked out from the eluted phages of last selection round and sequenced. According to the results of cell binding assay and phage cell-based ELISA, one of the isolated peptides denoted as CCBP1 (with the sequence HAMRAQP) was indicated to have the highest binding efficiency, selectivity, and specificity toward colon cancer cells with no significant binding to control cells. Peptide competitive inhibition assay revealed that binding of the phage-displayed CCBP1 is competitively inhibited by the same free peptide, suggesting that CCBP1 specific binding to the target cell is independent of the phage context. Taken together, our findings provide support for the notion that CCBP1 binds specifically to colon cancer cells and might be a potential lead candidate for targeted delivery of imaging agents or therapeutic genes/drugs to colon tumors.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
14
|
Iwanov I, Rossi A, Montesi M, Doytchinova I, Sargsyan A, Momekov G, Panseri S, Naydenova E. Peptide-based targeted cancer therapeutics: design, synthesis and biological evaluation. Eur J Pharm Sci 2022; 176:106249. [PMID: 35779821 DOI: 10.1016/j.ejps.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Cancer is the leading cause for human mortality together with cardiovascular diseases. Abl (Abelson) tyrosine kinases play a fundamental role in transducing various signals that control proliferation, survival, migration and invasion in several cancers such as Chronic Myeloid Leukemia (CML), breast cancer and brain cancer. For these reasons Abl tyrosine kinases are considered important biological targets in drug discovery. In this study a series of lysine-based oligopeptides with expected Abl inhibitory activity were designed resembling the binding of FDA-approved drugs (i.e. of Imatinib and Nilotinib), synthesized, purified by High Performance Liquid Chromatography (HPLC), analyzed by mass spectrometry (MS) and biologically tested in vitro in CML (AR-230 and K-562), breast cancers (MDA-MB 231 and MDA-MB 468) and glioblastoma cell lines (U87 and U118). The solid-phase peptide synthesis (SPPS) by Fmoc (9-fluorenylmethoxycarbonyl) chemistry was used to synthesize target compounds. AutoDock Vina was applied for simulation binding to Abl. The biological activities were measured evaluating cytotoxic effect, induction of apoptosis and inhibition of cancer cells migration. The new peptides exhibited different concentration-dependent antiproliferative effect against the tumor cell lines after 72 h treatment. The most promising results were obtained with the U87 glioblastoma cell line where a significant reduction of the migration ability was detected with one compound (H-Lys1-Lys2-Lys3-NH2).
Collapse
Affiliation(s)
- Iwan Iwanov
- University of Chemical Technology and Metallurgy, 8 Blvd. Kliment Ohridski, 1756, Sofia, Bulgaria
| | - Arianna Rossi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, via Granarolo 64, Faenza (RA), Italy; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Piazza Pugliatti 1, Messina (ME), Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, via Granarolo 64, Faenza (RA), Italy
| | | | - Armen Sargsyan
- Scientific and Production Center "Armbiotechnology" NAS RA, 14 Gyurjyan str., Yerevan, 0056, Armenia
| | - Georgi Momekov
- Medical University of Sofia, 2 Dunav st., Sofia, 1000, Bulgaria
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, via Granarolo 64, Faenza (RA), Italy.
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, 8 Blvd. Kliment Ohridski, 1756, Sofia, Bulgaria.
| |
Collapse
|
15
|
Habibullah MM, Mohan S, Syed NK, Makeen HA, Jamal QMS, Alothaid H, Bantun F, Alhazmi A, Hakamy A, Kaabi YA, Samlan G, Lohani M, Thangavel N, Al-Kasim MA. Human Growth Hormone Fragment 176–191 Peptide Enhances the Toxicity of Doxorubicin-Loaded Chitosan Nanoparticles Against MCF-7 Breast Cancer Cells. Drug Des Devel Ther 2022; 16:1963-1974. [PMID: 35783198 PMCID: PMC9249349 DOI: 10.2147/dddt.s367586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Numerous drugs with potent toxicity against cancer cells are available for treating malignancies, but therapeutic efficacies are limited due to their inefficient tumor targeting and deleterious effects on non-cancerous tissue. Therefore, two improvements are mandatory for improved chemotherapy 1) novel delivery techniques that can target cancer cells to deliver anticancer drugs and 2) methods to specifically enhance drug efficacy within tumors. The loading of inert drug carriers with anticancer agents and peptides which are able to bind (target) tumor-related proteins to enhance tumor drug accumulation and local cytotoxicity is a most promising approach. Objective To evaluate the anticancer efficacy of Chitosan nanoparticles loaded with human growth hormone hGH fragment 176–191 peptide plus the clinical chemotherapeutic doxorubicin in comparison with Chitosan loaded with doxorubicin alone. Methods Two sets of in silico experiments were performed using molecular docking simulations to determine the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin 1) the binding affinities of hGH fragment 176–191 peptide to the breast cancer receptors, 2) the effects of hGH fragment 176–191 peptide binding on doxorubicin binding to these same receptors. Further, the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin was validated using viability assay in Human MCF-7 breast cancer cells. Results In silico analysis suggested that addition of the hGH fragment to doxorubicin-loaded Chitosan nanoparticles can enhance doxorubicin binding to multiple breast cancer protein targets, while photon correlation spectroscopy revealed that the synthesized dual-loaded Chitosan nanoparticles possess clinically favorable particle size, polydispersity index, as well as zeta potential. Conclusion These dual-loaded Chitosan nanoparticles demonstrated greater anti-proliferative activity against a breast cancer cell line (MCF-7) than doxorubicin-loaded Chitosan. This dual-loading strategy may enhance the anticancer potency of doxorubicin and reduce the clinical side effects associated with non-target tissue exposure.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Correspondence: Mahmoud M Habibullah, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Al Maarefah Road, Jazan, Saudi Arabia, Tel +966 556644205, Email
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Nabeel Kashan Syed
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Alhazmi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ali Hakamy
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Yahia A Kaabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ghalia Samlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohtashim Lohani
- Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohamed Ahmed Al-Kasim
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
16
|
Dunshee LC, McDonough R, Price C, Kiick KL. Retention of peptide-based vesicles in murine knee joints after intra-articular injection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zhu D, Fang C, Yang Z, Ren Y, Yang F, Zheng S, Jiang M, Miao X, Liu D, Chen B, Yao X, Chen Y. Tubulin-binding peptide RR-171 derived from human umbilical cord serum displays antitumor activity against hepatocellular carcinoma via inducing apoptosis and activating the NF-kappa B pathway. Cell Prolif 2022; 55:e13241. [PMID: 35504605 PMCID: PMC9136518 DOI: 10.1111/cpr.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Hepatocellular carcinoma (HCC) still presents a high incidence of malignant tumours with poor prognosis. There is an urgent need for new therapeutic agents with high specificity, low toxicity and favourable solubility for the clinical treatment of HCC. Materials and Methods The bioactivity of human umbilical cord serum was investigated by proteomics biotechnology and a primitive peptide with certain biological activity was identified. The antitumour effect of RR‐171 was detected by cell viability assay in vitro, and determined by subcutaneous xenograft models assay and miniPDX assay in vivo. Pull‐down experiments were conducted to identify the potential targeting proteins of RR‐171. Immunofluorescence assay and tubulin polymerization assay were conducted to explore the relationship between RR‐171 and α‐tubulin. Fluorescence imaging in xenograft models was used to explore the biodistribution of RR‐171 in vivo. A phosphospecific protein microarray was performed to uncover the underlying signalling pathway by which RR‐171 induces tumour cell death. Results The results indicated that RR‐171 could be effective in the treatment of HCC in vivo and in vitro. RR‐171 could aggregate significantly in solid tumours and had no obvious systemic toxicity in vivo. RR‐171 could interact with α‐tubulin and activate the NF‐Kappa B pathway in HCC cells. Conclusions Taken together, RR‐171 exhibited significant antitumour activity against HCC in vivo and in vitro and could potentially be used in the clinical application of HCC.
Collapse
Affiliation(s)
- Donglie Zhu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hand and Foot Surgery, The Air Force Hospital of Northern Theater of People's Liberation Army of China, Shenyang, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanjie Ren
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Shi Zheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangxia Miao
- Department of General Practice, Xianyang Central Hospital, Xianyang, China
| | - Duoduo Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Decker S, Taschauer A, Geppl E, Pirhofer V, Schauer M, Pöschl S, Kopp F, Richter L, Ecker GF, Sami H, Ogris M. Structure-based peptide ligand design for improved epidermal growth factor receptor targeted gene delivery. Eur J Pharm Biopharm 2022; 176:211-221. [DOI: 10.1016/j.ejpb.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
|
19
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
20
|
Hashemi-Moghaddam H, Ebrahimi M, Johari B, Madanchi H. Targeted delivery of paclitaxel by NL2 peptide-functionalized on core-shell LaVO4: Eu3@ poly (levodopa) luminescent nanoparticles. J Biomed Mater Res B Appl Biomater 2021; 109:1578-1587. [PMID: 33608947 DOI: 10.1002/jbm.b.34816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 11/10/2022]
Abstract
Targeted drug delivery enhances drug efficiency and selectivity without affecting normal cells. Luminescent nanoparticles can be used for tumor imaging as well as selective tumor targeting for drug delivery. In this research, LaVO4 :Eu3+ was synthesized, the luminescent nanocrystal was coated by surface polymerization of levodopa in the presence of Paclitaxel (PTX), and then NL2 peptide was coupled on the surface of polymer-coated luminescent nanoparticles. Next, the capability of the modified drug was examined by in vitro and in vivo experiments. MTT assay on SK-BR-3 cell line (as breast cancer cells) and fluorescent microscopy results indicate that this modification decreases significantly drug toxicity and increases its selectivity. In addition, in vivo experiments confirm more capability of the NL2-functionalized nanocomposite for reducing tumor size, drug distribution in the body, and more aggregation of PTX in tumor tissue. Overall, it is concluded that tumor imaging is possible using luminescent LaVO4 :Eu3+ core and NL2 peptide increases significantly the specificity of PTX in combination with a functionalized luminescent polymeric carrier.
Collapse
Affiliation(s)
| | - Mansore Ebrahimi
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev 2021; 176:113891. [PMID: 34324887 DOI: 10.1016/j.addr.2021.113891] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9) is a potent technology for gene-editing. Owing to its high specificity and efficiency, CRISPR/Cas9 is extensity used for human diseases treatment, especially for cancer, which involves multiple genetic alterations. Different concepts of cancer treatment by CRISPR/Cas9 are established. However, significant challenges remain for its clinical applications. The greatest challenge for CRISPR/Cas9 therapy is how to safely and efficiently deliver it to target sites in vivo. Nanotechnology has greatly contributed to cancer drug delivery. Here, we present the action mechanisms of CRISPR/Cas9, its application in cancer therapy and especially focus on the nanotechnology-based delivery of CRISPR/Cas9 for cancer gene editing and immunotherapy to pave the way for its clinical translation. We detail the difficult barriers for CRISIR/Cas9 delivery in vivo and discuss the relative solutions for encapsulation, target delivery, controlled release, cellular internalization, and endosomal escape.
Collapse
Affiliation(s)
- Xiaoyu Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Yonghui Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Oliver Koivisto
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| |
Collapse
|
22
|
Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:701504. [PMID: 34277592 PMCID: PMC8281044 DOI: 10.3389/fbioe.2021.701504] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Receptor-targeting peptides have been extensively pursued for improving binding specificity and effective accumulation of drugs at the site of interest, and have remained challenging for extensive research efforts relating to chemotherapy in cancer treatments. By chemically linking a ligand of interest to drug-loaded nanocarriers, active targeting systems could be constructed. Peptide-functionalized nanostructures have been extensively pursued for biomedical applications, including drug delivery, biological imaging, liquid biopsy, and targeted therapies, and widely recognized as candidates of novel therapeutics due to their high specificity, well biocompatibility, and easy availability. We will endeavor to review a variety of strategies that have been demonstrated for improving receptor-specificity of the drug-loaded nanoscale structures using peptide ligands targeting tumor-related receptors. The effort could illustrate that the synergism of nano-sized structures with receptor-targeting peptides could lead to enrichment of biofunctions of nanostructures.
Collapse
Affiliation(s)
- Mingpeng Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
24
|
Ozkose UU, Gulyuz S, Parlak Khalily M, Ozcubukcu S, Bozkir A, Tasdelen MA, Alpturk O, Yilmaz O. The synthesis of peptide‐conjugated poly(2‐ethyl‐2‐oxazoline)‐
b
‐poly(L‐lactide) (
PEtOx‐
b
‐PLA
) polymeric systems through the combination of controlled polymerization techniques and click reactions. J Appl Polym Sci 2021. [DOI: 10.1002/app.50286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Umut Ugur Ozkose
- Materials Institute Marmara Research Center Kocaeli Turkey
- Department of Chemistry, Faculty of Science and Letters Istanbul Technical University Istanbul Turkey
- Department of Chemistry, Faculty of Science and Letters Piri Reis University Istanbul Turkey
| | - Sevgi Gulyuz
- Materials Institute Marmara Research Center Kocaeli Turkey
- Department of Chemistry, Faculty of Science and Letters Istanbul Technical University Istanbul Turkey
| | - Melek Parlak Khalily
- Department of Chemistry, Faculty of Science and Letters Yozgat Bozok University Yozgat Turkey
| | - Salih Ozcubukcu
- Department of Chemistry, Faculty of Science Middle East Technical University Ankara Turkey
| | - Asuman Bozkir
- Department of Pharmaceutical Technology, Faculty of Pharmacy Ankara University Ankara Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering, Faculty of Engineering Yalova University Yalova Turkey
| | - Onur Alpturk
- Department of Chemistry, Faculty of Science and Letters Istanbul Technical University Istanbul Turkey
| | - Ozgur Yilmaz
- Materials Institute Marmara Research Center Kocaeli Turkey
| |
Collapse
|
25
|
Tafreshi NK, Kil H, Pandya DN, Tichacek CJ, Doligalski ML, Budzevich MM, Delva NC, Langsen ML, Vallas JA, Boulware DC, Engelman RW, Gage KL, Moros EG, Wadas TJ, McLaughlin ML, Morse DL. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol Transl Sci 2021; 4:953-965. [PMID: 33860213 DOI: 10.1021/acsptsci.1c00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/30/2022]
Abstract
Lipophilicity is explored in the biodistribution (BD), pharmacokinetics (PK), radiation dosimetry (RD), and toxicity of an internally administered targeted alpha-particle therapy (TAT) under development for the treatment of metastatic melanoma. The TAT conjugate is comprised of the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), conjugated to melanocortin receptor 1 specific peptidic ligand (MC1RL) using a linker moiety and chelation of the 225Ac radiometal. A set of conjugates were prepared with a range of lipophilicities (log D 7.4 values) by varying the chemical properties of the linker. Reported are the observations that higher log D 7.4 values are associated with decreased kidney uptake, decreased absorbed radiation dose, and decreased kidney toxicity of the TAT, and the inverse is observed for lower log D 7.4 values. Animals administered TATs with lower lipophilicities exhibited acute nephropathy and death, whereas animals administered the highest activity TATs with higher lipophilicities lived for the duration of the 7 month study and exhibited chronic progressive nephropathy. Changes in TAT lipophilicity were not associated with changes in liver uptake, dose, or toxicity. Significant observations include that lipophilicity correlates with kidney BD, the kidney-to-liver BD ratio, and weight loss and that blood urea nitrogen (BUN) levels correlated with kidney uptake. Furthermore, BUN was identified as having higher sensitivity and specificity of detection of kidney pathology, and the liver enzyme alkaline phosphatase (ALKP) had high sensitivity and specificity for detection of liver damage associated with the TAT. These findings suggest that tuning radiopharmaceutical lipophilicity can effectively modulate the level of kidney uptake to reduce morbidity and improve both safety and efficacy.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - HyunJoo Kil
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506, United States.,Modulation Therapeutics, Inc., Morgantown, West Virginia 26506, United States
| | - Darpan N Pandya
- Department of Radiology, University of Iowa Health Care, Iowa City, Iowa 52242, United States
| | - Christopher J Tichacek
- Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States
| | - Michael L Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Mikalai M Budzevich
- Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Nella C Delva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Michael L Langsen
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - John A Vallas
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - David C Boulware
- Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Robert W Engelman
- Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Kenneth L Gage
- Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Eduardo G Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States.,Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Thaddeus J Wadas
- Department of Radiology, University of Iowa Health Care, Iowa City, Iowa 52242, United States
| | - Mark L McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506, United States.,Modulation Therapeutics, Inc., Morgantown, West Virginia 26506, United States
| | - David L Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States.,Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
26
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:229-251. [PMID: 34250454 PMCID: PMC8267604 DOI: 10.1021/acsabm.0c01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymeric biomaterials have been used in a variety of applications, like cargo delivery and tissue scaffolding, because they are easily synthesized and can be adapted to many systems. However, there is still a need to further enhance and improve their functions to progress their use in the biomedical field. A promising solution is to modify the polymer surfaces with peptides that can increase biocompatibility, cellular interactions, and receptor targeting. In recent years, peptide modifications have been used to overcome many challenges to polymer biomaterial development. This review discusses recent progress in developing peptide-modified polymers for therapeutic applications including cell-specific targeting and tissue engineering. Furthermore, we will explore some of the most frequently studied base components of these biomaterials.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - José Manuel Condor Capcha
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
28
|
Abbaszadeh F, Leylabadlo HE, Alinezhad F, Feizi H, Mobed A, Baghbanijavid S, Baghi HB. Bacteriophages: cancer diagnosis, treatment, and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:23-34. [DOI: 10.1007/s40005-020-00503-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
|
29
|
Hsueh PY, Ju Y, Vega A, Edman MC, MacKay JA, Hamm-Alvarez SF. A Multivalent ICAM-1 Binding Nanoparticle which Inhibits ICAM-1 and LFA-1 Interaction Represents a New Tool for the Investigation of Autoimmune-Mediated Dry Eye. Int J Mol Sci 2020; 21:ijms21082758. [PMID: 32326657 PMCID: PMC7216292 DOI: 10.3390/ijms21082758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
The autoimmune disorder, Sjögren’s syndrome (SS), is characterized by lymphocytic infiltration and loss of function of exocrine glands such as the lacrimal gland (LG) and salivary gland. SS-associated changes in the LG are associated with the development of autoimmune-mediated dry eye disease. We have previously reported the accumulation of intercellular adhesion molecule 1 (ICAM-1) in the LG of Non-Obese Diabetic (NOD) mice, a murine model of autoimmune-mediated dry eye in SS, in both LG acinar cells and infiltrating lymphocytes. ICAM-1 initiates T-cell activation and can trigger T-cell migration through binding to lymphocyte function-associated 1 antigen (LFA). To modulate this interaction, this study introduces a new tool, a multivalent biopolymeric nanoparticle assembled from a diblock elastin-like polypeptide (ELP) using the S48I48 (SI) ELP scaffold fused with a mouse ICAM-1 targeting peptide to form IBP-SI. IBP-SI forms a multivalent, monodisperse nanoparticle with a radius of 21.9 nm. Unlike the parent SI, IBP-SI binds mouse ICAM-1 and is internalized by endocytosis into transfected HeLa cells before it accumulates in lysosomes. In vitro assays measuring lymphocyte adhesion to Tumor Necrosis Factor TNF-α-treated bEnd.3 cells, which express high levels of ICAM-1, show that adhesion is inhibited by IBP-SI but not by SI, with IC50 values of 62.7 μM and 81.2 μM, respectively, in two different assay formats. IBP-SI, but not SI, also blocked T-cell proliferation in a mixed lymphocyte reaction by 74% relative to proliferation in an untreated mixed cell reaction. These data suggest that a biopolymeric nanoparticle with affinity for ICAM-1 can disrupt ICAM-1 and LFA interactions in vitro and may have further utility as an in vivo tool or potential therapeutic.
Collapse
Affiliation(s)
- Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Adrianna Vega
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (J.A.M.); (S.F.H.-A.)
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence: (J.A.M.); (S.F.H.-A.)
| |
Collapse
|
30
|
Sun Z, Bao J, Zhangsun M, Dong S, Zhangsun D, Luo S. αO-Conotoxin GeXIVA Inhibits the Growth of Breast Cancer Cells via Interaction with α9 Nicotine Acetylcholine Receptors. Mar Drugs 2020; 18:md18040195. [PMID: 32272701 PMCID: PMC7231225 DOI: 10.3390/md18040195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The α9-containing nicotinic acetylcholine receptor (nAChR) is increasingly emerging as a new tumor target owing to its high expression specificity in breast cancer. αO-Conotoxin GeXIVA is a potent antagonist of α9α10 nAChR. Nevertheless, the anti-tumor effect of GeXIVA on breast cancer cells remains unclear. Cell Counting Kit-8 assay was used to study the cell viability of breast cancer MDA-MD-157 cells and human normal breast epithelial cells, which were exposed to different doses of GeXIVA. Flow cytometry was adopted to detect the cell cycle arrest and apoptosis of GeXIVA in breast cancer cells. Migration ability was analyzed by wound healing assay. Western blot (WB), quantitative real-time PCR (QRT-PCR) and flow cytometry were used to determine expression of α9-nAChR. Stable MDA-MB-157 breast cancer cell line, with the α9-nAChR subunit knocked out (KO), was established using the CRISPR/Cas9 technique. GeXIVA was able to significantly inhibit the proliferation and promote apoptosis of breast cancer MDA-MB-157 cells. Furthermore, the proliferation of breast cancer MDA-MB-157 cells was inhibited by GeXIVA, which caused cell cycle arrest through downregulating α9-nAChR. GeXIVA could suppress MDA-MB-157 cell migration as well. This demonstrates that GeXIVA induced a downregulation of α9-nAChR expression, and the growth of MDA-MB-157 α9-nAChR KO cell line was inhibited as well, due to α9-nAChR deletion. GeXIVA inhibits the growth of breast cancer cell MDA-MB-157 cells in vitro and may occur in a mechanism abolishing α9-nAChR.
Collapse
Affiliation(s)
- Zhihua Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
| | - Manqi Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
| | - Dongting Zhangsun
- Medical School, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
- Correspondence: (D.Z.); (S.L.)
| | - Sulan Luo
- Medical School, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.S.); (J.B.); (M.Z.); (S.D.)
- Correspondence: (D.Z.); (S.L.)
| |
Collapse
|
31
|
Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020; 21:1222-1233. [DOI: 10.1021/acs.biomac.9b01681] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Radhika Raveendran
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Ben Kent
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
32
|
Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Alipour M, Baneshi M, Hosseinkhani S, Mahmoudi R, Jabari Arabzadeh A, Akrami M, Mehrzad J, Bardania H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J Biomed Mater Res A 2019; 108:839-850. [PMID: 31854488 DOI: 10.1002/jbm.a.36862] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Arginine-glycine-aspartic acid (RGD) peptide family is known as the most prominent ligand for extracellular domain of integrin receptors. Specific expression of these receptors in various tissue of human body and tight association of their expression profile with various pathophysiological conditions made these receptors a suitable targeting candidate for several disease diagnosis and treatment as well as regeneration of various organs. For these reasons, various forms of RGD-based integrins ligands have been greatly used in biomedical studies. Here, we summarized the last decade application progress of RGD for cancer theranostics, control of inflammation, thrombosis inhibition and critically discussed the effect of RGD peptides structure and sequence on the efficacy of gene/drug delivery systems in preclinical studies. Furthermore, we will show recent advances in application of RGD functionalized biomaterials for various tissue regenerations including cornea repair, artificial neovascularization and bone tissue regeneration. Finally, we analyzed clinically translatability of RGD peptides, considering examples of integrin ligands in clinical trials. In conclusion, prospects on using RGD peptide for precise drug delivery and biomaterial engineering are well discussed.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Yazd University, Yazd, Iran
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia, Canada
| | - Saman Hosseinkhani
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabari Arabzadeh
- Department of Radiopharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
34
|
Yuan X, Peng S, Lin W, Wang J, Zhang L. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. J Colloid Interface Sci 2019; 555:82-93. [DOI: 10.1016/j.jcis.2019.07.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
|
35
|
Pooja D, Gunukula A, Gupta N, Adams DJ, Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol 2019; 114:105567. [DOI: 10.1016/j.biocel.2019.105567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
36
|
Fotoohi-Ardakani G, Kheirollahi M, Zarei Jaliani H, Noorian M, Ansariniyia H. Targeting MCF-7 Cell Line by Listeriolysin O Pore Forming Toxin Fusion with AHNP Targeted Peptide. Adv Biomed Res 2019; 8:33. [PMID: 31259162 PMCID: PMC6543864 DOI: 10.4103/abr.abr_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Tumor-targeting peptides are attracting subjects in cancer therapy. These peptides, which are widely studied, deliver therapeutic agents to the specific sites of tumors. In this study, we produced a new form of recombinant listeriolysin O (LLO) with genetically fused Anti-HER2/neu peptide (AHNP) sequence adding to its C-terminal end. The aim of the study was to engineer this pore-forming toxin to make it much more specific to tumor cells. Materials and Method and Results Two forms of the toxin (with and without peptide) were subcloned into a bacterial expression plasmid. Subcloning was performed using a polymerase chain reaction (PCR) product as a megaprimer in a quick-change PCR to introduce the whole insert gene into the expression plasmid. After expression of two recombinant forms of LLO in BL21 DE3 cells, purification was performed using Ni-NTA affinity column. MDA-MB-231 and MCF-7 cell lines (as negative and positive controls, respectively) were treated with both LLO toxins to evaluate their cytotoxicity and specificity. The IC50 of LLO on MDA-MB-231 and MCF-7 cells was 21 and 5 ng/ml, respectively. In addition, IC50 for the fusion AHNP-LLO toxin was 140 and 60 ng/ml, respectively. It was found that the cytotoxicity of the new engineered AHNP-LLO toxin has decreased by about 9x compared to the wild-type toxin and the specificity of the AHNP-LLO toxin has been also reduced. Conclusions Results show that the C-terminal of the LLO should not be modified and it seems that N-terminal of the toxin should be preferred for engineering and adding peptide modules.
Collapse
Affiliation(s)
- Gholamreza Fotoohi-Ardakani
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
| | - Mohadese Noorian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Hossein Ansariniyia
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| |
Collapse
|
37
|
Immobilized Peptide on the Surface of Poly l-DOPA/Silica for Targeted Delivery of 5-Fluorouracil to Breast Tumor. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09834-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Hossein-Nejad-Ariani H, Althagafi E, Kaur K. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells. Sci Rep 2019; 9:2723. [PMID: 30804365 PMCID: PMC6389950 DOI: 10.1038/s41598-019-38574-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
The efficacy of chemotherapy for cancer treatment can be increased by targeted drug delivery to the cancer cells. This is particularly important for triple negative breast cancer (TNBC) for which chemotherapy is a major form of treatment. Here we designed and screened a library of 30 peptides starting with a previously reported epidermal growth factor receptor (EGFR) targeting peptide GE11 (YHWYGYTPQNVI). A direct peptide array-whole cell binding assay, where the peptides are conjugated to a cellulose membrane, was used to identify four peptides with enhanced binding to TNBC cells. Next, the four peptides were synthesized as FITC-labelled soluble peptides to study their direct uptake by TNBC cells using flow cytometry. The results showed that peptide analogue 22 had several fold higher uptake by the TNBC cells compared to the lead peptide GE11. The specific uptake of the peptide analogue 22 was confirmed by competition experiment using pure EGF protein. Further, peptide 22 showed dose dependent uptake by the TNBC MDA-MB-231 cells (105) with uptake saturating at around 2 μM peptide concentration. Thus, peptide 22 is a promising EGFR specific TNBC cell binding peptide that can be conjugated directly to a chemotherapeutic drug or to nanoparticles for targeted drug delivery to enhance the efficacy of chemotherapy for TNBC treatment.
Collapse
Affiliation(s)
- Hanieh Hossein-Nejad-Ariani
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Emad Althagafi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA.
| |
Collapse
|
39
|
Li J, Zhao S, Yang G, Liu R, Xiao W, Disano P, Lam KS, Pan T. Combinatorial Peptide Microarray Synthesis Based on Microfluidic Impact Printing. ACS COMBINATORIAL SCIENCE 2019; 21:6-10. [PMID: 30521316 PMCID: PMC6335607 DOI: 10.1021/acscombsci.8b00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
In this Research
Article, a novel inkjet printing technique, micro
impact printing (MI printing), is applied for the first time to combinatorial
peptide microarray synthesis on amine functionalized microdisc arrays
through standard Fmoc chemistry. MI printing shows great advantages
in combinatorial peptide microarray synthesis compared with other
printing techniques, including (1) a disposable cartridge; (2) a small
spot size (80 μm) increases array density; (3) minimal loading
volume (0.6 μL) and dead volume (<0.1 μL), reduce chemical
waste; and (4) multiplexibility of 5 channels/cartridge and capacity
of multiple cartridges. Using this synthesis platform, a tetrapeptide
library with 625 permutations was constructed and then applied for
the screening of ligands targeting α4β1 integrin on Jurkat cells.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Biomedical Engineering, University of California, Davis, California 95616-5270, United States
| | - Siwei Zhao
- Department of Biomedical Engineering, Tufts University, Boston, Massachusetts 02155, United States
| | - Gaomai Yang
- Department of Biomedical Engineering, University of California, Davis, California 95616-5270, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95817, United States
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95817, United States
| | - Paolo Disano
- Department of Biomedical Engineering, University of California, Davis, California 95616-5270, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95817, United States
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
40
|
Hamdan F, Bigdeli Z, Asghari SM, Sadremomtaz A, Balalaie S. Synthesis of Modified RGD-Based Peptides and Their in vitro Activity. ChemMedChem 2019; 14:282-288. [PMID: 30506622 DOI: 10.1002/cmdc.201800704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/07/2022]
Abstract
Arg-Gly-Asp (RGD) peptides represent the most outstanding recognition motif involved in cell adhesion that binds to the αv β3 integrin, which has been targeted for cancer therapy. Various RGD-containing peptides and peptidomimetics have been designed and synthesized to selectively inhibit this integrin. In this study, the synthesis of RGD-based peptides through the incorporation of the short bioactive peptide Phe-Ala-Lys-Leu-Phe (FAKLF) at the C and N termini of RGD has been achieved by using a solid-phase peptide synthesis approach. The peptides were purified by means of preparative RP-HPLC and their structures were confirmed through HRMS (ESI). The MTT assay revealed that the RGD and FAKLF peptides inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, with IC50 values of 3000 and 500 ng mL-1 , respectively. Interestingly, a drastic improvement was observed in the antiproliferative activity of the combined structures of the FAKLFRGD and RGDFAKLF peptides, leading to IC50 values of 200 and 136.7 ng mL-1 , respectively. Meanwhile, based on apoptosis results, the potential of peptides to induce apoptosis, in accordance with their antiproliferative activity, indicated that the RGD and FAKLF peptides, and the peptides synthesized based on their combinations induced cell apoptosis in a dose-dependent manner followed by inhibition of the proliferation of endothelial cells. Moreover, the incorporation of d-leucine increased the induction of apoptosis by these peptides.
Collapse
Affiliation(s)
- Fatima Hamdan
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Zahra Bigdeli
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Afsaneh Sadremomtaz
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Sohora M, Vazdar M, Sović I, Mlinarić-Majerski K, Basarić N. Photocyclization of Tetra- and Pentapeptides Containing Adamantylphthalimide and Phenylalanines: Reaction Efficiency and Diastereoselectivity. J Org Chem 2018; 83:14905-14922. [PMID: 30460849 DOI: 10.1021/acs.joc.8b01785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A series of tetrapeptides and pentapeptides was synthesized bearing a phthalimide chromophore at the N-terminus. The C-terminus of the peptides was strategically substituted with an amino acid, Phe, Phe(OMe), or Phe(OMe)2 characterized by different oxidation potentials. The photochemical reactivity of the peptides was investigated by preparative irradiation and isolation of photoproducts, as well as with laser flash photolysis. Upon photoexcitation, the peptides undergo photoinduced electron transfer (PET) and decarboxylation, followed by diastereoselective cyclization with the retention of configuration for tetrapeptides or inversion of configuration for pentapeptides. Molecular dynamics (MD) simulations and NOE experiments enabled assignment of the stereochemistry of the cyclic peptides. MD simulations of the linear peptides disclosed conformational reasons for the observed diastereoselectivity, being due to the peptide backbone spatial orientation imposed by the Phe amino acids. The photochemical efficiency for the decarboxylation and cyclization is not dependent on the peptide length, but it depends on the oxidation potential of the amino acid at the C-terminus. The results described herein are particularly important for the rational design of efficient photochemical reactions for the preparation of cyclic peptides with the desired selectivity.
Collapse
Affiliation(s)
- Margareta Sohora
- Department of Organic Chemistry and Biochemistry , Rud̵er Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Mario Vazdar
- Department of Organic Chemistry and Biochemistry , Rud̵er Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Irena Sović
- Department of Organic Chemistry and Biochemistry , Rud̵er Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry , Rud̵er Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry , Rud̵er Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| |
Collapse
|
42
|
Freeman H, Srinivasan S, Das D, Stayton PS, Convertine AJ. Fully synthetic macromolecular prodrug chemotherapeutics with EGFR targeting and controlled camptothecin release kinetics. Polym Chem 2018; 9:5224-5233. [PMID: 36660314 PMCID: PMC9847574 DOI: 10.1039/c8py01047a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we developed a fully polymerizable, peptide-targeted, camptothecin polymeric prodrug system. Two prodrug monomers were synthesized via esterification of campothecin (20Cam) and 10-hydroxycamptothecin (10Cam) with mono-2-(methacryloyloxy)ethyl succinate (SMA) resulting in polymerizable forms of the aliphatic ester- and aromatic ester-linked drugs respectively. These monomers were then incorporated into zwitterionic polymers via RAFT copolymerization of the prodrug monomers with a tert-butyl ester protected carboxy betaine monomer. Subsequent deprotection of the tert-butyl residues with TFA yielded carboxy betaine methacrylate (CBM) scaffolds with controlled prodrug incorporation. Reverse phase HPLC was then employed to establish drug release kinetics in human serum at 37 oC for the resultant polymeric prodrugs. Copolymers containing 10Cam residues linked via aromatic esters showed faster hydrolysis rates with 59 % drug released at 7 days, while copolymers with Cam residues linked via aliphatic esters showed only 28 % drug release over the same time period. These differences in drug release kinetics were then shown to correlate with large differences in cytotoxic activity in SKOV3 ovarian cancer cell cultures. At 72 hours, the IC50s of aromatic- and aliphatic- ester linked prodrugs were 56 nM and 4776 nM, respectively. An EGFR-targeting peptide sequence, GE11, was then directly incorporated into the polymeric prodrugs via RAFT copolymerization of the polymeric prodrugs with a peptide macronomer. The GE11-targeted polymeric prodrugs showed enhanced targeting and cytotoxic activity in SKOV3 cell cultures relative to untargeted polymers containing the negative control sequence HW12. Following pulse-chase treatment (15 min, 37 °C), the 72 hour IC50 of GE11 targeted prodrug was determined to be 1597 nM, in contrast to 3399 nM for the non-targeted control.
Collapse
Affiliation(s)
- Hanna Freeman
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Selvi Srinivasan
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Debobrato Das
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Patrick S Stayton
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Anthony J Convertine
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla MO, 65401, USA
| |
Collapse
|
43
|
Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. NANO RESEARCH 2018; 11:4999-5016. [PMID: 31772723 PMCID: PMC6879063 DOI: 10.1007/s12274-018-2083-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
Collapse
Affiliation(s)
- Danielle M Valcourt
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jenna Harris
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rachel S Riley
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan Dang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jianxin Wang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- 4701 Ogletown Stanton Road, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
44
|
Molecular targeting of breast and colon cancer cells by PAR1 mediated apoptosis through a novel pro-apoptotic peptide. Apoptosis 2018; 23:679-694. [DOI: 10.1007/s10495-018-1485-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
You Y, Xu Z, Chen Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv 2018; 25:448-460. [PMID: 29405790 PMCID: PMC6058718 DOI: 10.1080/10717544.2018.1435746] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
HER2-positive breast cancer correlates with more aggressive tumor growth, a poorer prognosis and reduced overall survival. Currently, trastuzumab (Herceptin), which is an anti-HER2 antibody, is one of the key drugs. There is evidence indicating that conjugation of trastuzumab with chemotherapy drugs, such as doxorubicin (DOX), for multiple targets could be more effective. However, incomplete penetration into tumors has been noted for those conjugates. Compared to an antibody, peptides may represent an attractive alternative. For HER2, a similar potency has been observed for a 12-amino-acid anti-HER2 peptide mimetic YCDGFYACYMDV-NH2 (AHNP, disulfide-bridged) and full-length trastuzumab. Thus, a peptide, GPLGLAGDDYCDGFYACYMDV-NH2, which consists of AHNP and an MMP-2 cleavable linker GPLGLAGDD, was first designed, followed by conjugation with DOX via a glycine residue at the N-terminus to form a novel DOX-peptide conjugate MAHNP-DOX. Using HER2-positive human breast cancer cells BT474 and SKBR3 as in vitro model systems and nude mice with BT474 xenografts as an in vivo model, this conjugate was comprehensively characterized, and its efficacy was evaluated and compared with that of free DOX. As a result, MAHNP-DOX demonstrated a much lower in vitro IC50, and its in vivo extent of inhibition in mice was more evident. During this process, enzymatic cleavage of MAHNP-DOX is critical for its activation and cellular uptake. In addition, a synergistic response was observed after the combination of DOX and AHNP. This effect was probably due to the involvement of AHNP in the PI3K–AKT signaling pathway, which can be largely activated by DOX and leads to anti-apoptotic signals.
Collapse
Affiliation(s)
- Yiwen You
- a School of Pharmacy, Nanjing Medical University , Nanjing , China
| | - Zhiyuan Xu
- a School of Pharmacy, Nanjing Medical University , Nanjing , China
| | - Yun Chen
- a School of Pharmacy, Nanjing Medical University , Nanjing , China.,b State Key Laboratory of Reproductive Medicine , Nanjing , China
| |
Collapse
|
46
|
Mei D, Zhao L, Chen B, Zhang X, Wang X, Yu Z, Ni X, Zhang Q. α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to α7-nAChR overexpressed non-small cell lung cancer. Drug Deliv 2018; 25:493-503. [PMID: 29426250 PMCID: PMC6058686 DOI: 10.1080/10717544.2018.1436097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A micelle system modified with α-Conotoxin ImI (ImI), a potently antagonist for alpha7 nicotinic acetylcholine receptor (α7-nAChR) previously utilized for targeting breast cancer, was constructed. Its targeting efficiency and cytotoxicity against non-small cell lung cancer (NSCLC) highly expressing α7-nAChR was investigated. A549, a non-small cell lung cancer cell line, was selected as the cell model. The cellular uptake study showed that the optimal modification ratio of ImI on micelle surface was 5% and ImI-modification increased intracellular delivery efficiency to A549 cells via receptor-mediated endocytosis. Intracellular Ca2+ transient assay demonstrated that ImI modification led to enhanced molecular interaction between nanocarriers and A549 cells. The in vivo near-infrared fluorescence imaging further revealed that ImI-modified micelles could facilitate the drug accumulation in tumor sites compared with non-modified micelles via α7-nAChR mediation. Moreover, docetaxel (DTX) was loaded in ImI-modified nanomedicines to evaluate its in vitro cytotoxicity. As a result, DTX-loaded ImI-PMs exhibited greater anti-proliferation effect on A549 cells compared with non-modified micelles. Generally, our study proved that ImI-modified micelles had targeting ability to NSCLC in addition to breast cancer and it may provide a promising strategy to deliver drugs to NSCLC overexpressing α7-nAChR.
Collapse
Affiliation(s)
- Dong Mei
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Libo Zhao
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Binlong Chen
- b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , PR China
| | - Xiaoyan Zhang
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Xiaoling Wang
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Zhiying Yu
- c Department of Pharmacy , Peking University People's Hospital , Beijing , PR China
| | - Xin Ni
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Qiang Zhang
- b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , PR China
| |
Collapse
|
47
|
Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv Healthc Mater 2018; 7:e1800066. [PMID: 29719137 PMCID: PMC6105507 DOI: 10.1002/adhm.201800066] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Indexed: 02/05/2023]
Abstract
The completion of surgical resection is a key prognostic factor in brain tumor treatment. This requires surgeons to identify residual tumors in theater as well as to margin the proximity of the tumor to adjacent normal tissue. Subjective assessments, such as texture palpation or visual tissue differences, are commonly used by oncology surgeons during resection to differentiate cancer lesions from normal tissue, which can potentially result in either an incomplete tumor resection, or accidental removal of normal tissue. Moreover, malignant brain tumors are even more difficult to distinguish from normal brain tissue, and resecting noncancerous tissue may create neurological defects after surgery. To optimize the resection margin in brain tumors, a variety of intraoperative guidance techniques are developed, such as neuronavigation, magnetic resonance imaging, ultrasound, Raman spectroscopy, and optical fluorescence imaging. When combined with appropriate contrast agents, optical fluorescence imaging can provide the neurosurgeon real-time image guidance to improve resection completeness and to decrease surgical complications.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
48
|
Guan SS, Wu CT, Chiu CY, Luo TY, Wu JY, Liao TZ, Liu SH. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo. J Transl Med 2018; 16:168. [PMID: 29921305 PMCID: PMC6009821 DOI: 10.1186/s12967-018-1550-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor 2 (HER2) involved proliferation, angiogenesis, and reduced apoptosis in gastric cancer (GC), which is a common target for tumor therapy. HER2 is usually overexpressed in more than 15% GC patients, developing a reliable diagnostic tool for tumor HER2 detection is important. In this study, we attend to use polyethylene glycol (PEG) linked anti-HER2/neu peptide (AHNP-PEG) as a nuclear imaging agent probe for HER2 detection in GC xenograft animal model. METHODS The HER2 expression of human sera and tissues were detected in GC patients and normal subjects. GC cell lines NCI-N87 (high HER2 levels) and MKN45 (low HER2 levels) were treated with AHNP-PEG to assess the cell viability and HER2 binding ability. The NCI-N87 was treated with AHNP-PEG to observe the level and phosphorylation of HER2. The MKN45 and NCI-N87-induced xenograft mice were intravenous injection with fluorescence labeled AHNP-PEG for detecting in vivo fluorescence imaging properties and biodistribution. The AHNP-PEG was conjugated with diethylenetriaminopentaacetic acid (DTPA) for indium-111 labeling (111In-DTPA-AHNP-PEG). The stability of was assessed in vitro. The imaging properties and biodistribution of 111In-DTPA-AHNP-PEG were observed in NCI-N87-induced xenograft mice. RESULTS The serum HER2 (sHER2) levels in GC patients were significantly higher than the normal subjects. The sHER2 levels were correlated with the tumor HER2 levels in different stages of GC patients. The AHNP-PEG inhibited the cell growth and down-regulated HER2 phosphorylation in HER2-overexpressed human GC cells (NCI-N87) via specific HER2 interaction of cell surface. In addition, the GC tumor tissues from HER2-postive xenograft mice presented higher HER2 fluorescence imaging as compared to HER2-negative group. The HER2 levels in the tumor tissues were also higher than other organs in NCI-N87-induced xenograft mice. Finally, we further observed that the 111In-DTPA-AHNP-PEG was significantly enhanced in tumor tissues of NCI-N87-induced xenograft mice compared to control. CONCLUSIONS These findings suggest that the sHER2 measurement may be as a potential tool for detecting HER2 expressions in GC patients. The radioisotope-labeled AHNP-PEG may be useful to apply in GC patients for HER2 nuclear medicine imaging.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jeng-Yih Wu
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
49
|
Li W, Zheng H, Xu J, Cao S, Xu X, Xiao P. Imaging c-Met expression using 18F-labeled binding peptide in human cancer xenografts. PLoS One 2018; 13:e0199024. [PMID: 29894497 PMCID: PMC5997322 DOI: 10.1371/journal.pone.0199024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives c-Met is a receptor tyrosine kinase shown inappropriate expression and actively involved in progression and metastasis in most types of human cancer. Development of c-Met-targeted imaging and therapeutic agents would be extremely useful. Previous studies reported that c-Met-binding peptide (Met-pep1, YLFSVHWPPLKA) specifically targets c-Met receptor. Here, we evaluated 18F-labeled Met-pep1 for PET imaging of c-Met positive tumor in human head and neck squamous cell carcinoma (HNSCC) xenografted mice. Methods c-Met-binding peptide, Met-pep1, was synthesized and labeled with 4-nitrophenyl [18F]-2-fluoropropionate ([18F]-NPFP) ([18F]FP-Met-pep1). The cell uptake, internalization and efflux of [18F]FP-Met-pep1 were assessed in UM-SCC-22B cells. In vivo pharmacokinetics, blocking and biodistribution of the radiotracers were investigated in tumor-bearing nude mice by microPET imaging. Results The radiolabeling yield for [18F]FP-Met-pep1 was over 55% with 97% purity. [18F]FP-Met-pep1 showed high tumor uptake in UM-SCC-22B tumor-bearing mice with clear visualization. The specificity of the imaging tracer was confirmed by significantly decreased tumor uptake after co-administration of unlabeled Met-pep1 peptides. Prominent uptake and rapid excretion of [18F]FP-Met-pep1 was also observed in the kidney, suggesting this tracer is mainly excreted through the renal-urinary routes. Ex vivo biodistribution showed similar results that were consistent with microPET imaging data. Conclusions These results suggest that 18F-labeled c-Met peptide may potentially be used for imaging c-Met positive HNSCC cancer in vivo and for c-Met-targeted cancer therapy.
Collapse
Affiliation(s)
- Weihua Li
- Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail: (WHL); (PX)
| | - Hongqun Zheng
- Department of Surgical Oncology and Hepatobiliary Surgery, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shaodong Cao
- Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuan Xu
- Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
- * E-mail: (WHL); (PX)
| |
Collapse
|
50
|
Peng X, Chen S, Xu C, Zheng B, Ke M, Huang J. Synthesis, Spectroscopic and Fibroblast Activation Protein (FAP)‐Responsive Properties of Phthalocyanine‐Doxorubicin Conjugates. ChemistrySelect 2018. [DOI: 10.1002/slct.201800062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiao‐Hui Peng
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| | - Shao‐Fang Chen
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| | - Cai‐Hong Xu
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| | - Bi‐Yuan Zheng
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| | - Mei‐Rong Ke
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| | - Jian‐Dong Huang
- College of ChemistryState Key Laboratory of Photocatalysis on Energy and EnvironmentFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyFuzhou University Fuzhou 350116 China
| |
Collapse
|