1
|
Ilchenko O, Pilhun Y, Kutsyk A, Slobodianiuk D, Goksel Y, Dumont E, Vaut L, Mazzoni C, Morelli L, Boisen S, Stergiou K, Aulin Y, Rindzevicius T, Andersen TE, Lassen M, Mundhada H, Jendresen CB, Philipsen PA, Hædersdal M, Boisen A. Optics miniaturization strategy for demanding Raman spectroscopy applications. Nat Commun 2024; 15:3049. [PMID: 38589380 PMCID: PMC11001912 DOI: 10.1038/s41467-024-47044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark.
- Lightnovo ApS, Birkerød, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs. Lyngby, Denmark
| | - Denys Slobodianiuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Magnetism, Kyiv, Ukraine
| | - Yaman Goksel
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Elodie Dumont
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lukas Vaut
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Chiara Mazzoni
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lidia Morelli
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | | | | | | | - Tomas Rindzevicius
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Anja Boisen
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Dzurendova S, Olsen PM, Byrtusová D, Tafintseva V, Shapaval V, Horn SJ, Kohler A, Szotkowski M, Marova I, Zimmermann B. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb Cell Fact 2023; 22:261. [PMID: 38110983 PMCID: PMC10729511 DOI: 10.1186/s12934-023-02268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line. Bioprocess optimization and monitoring will greatly benefit from advanced spectroscopy-based sensors that enable real-time monitoring and control. Here, Fourier transform (FT) Raman spectroscopy measurement via flow cell in a recirculatory loop, in combination with predictive data modeling, was assessed as a fast, low-cost, and highly sensitive process analytical technology (PAT) system for online monitoring of critical process parameters. To show the general applicability of the method, submerged fermentation was monitored using two different oleaginous and carotenogenic microorganisms grown on two different carbon substrates: glucose fermentation by yeast Rhodotorula toruloides and glycerol fermentation by marine thraustochytrid Schizochytrium sp. Additionally, the online FT-Raman spectroscopy approach was compared with two at-line spectroscopic methods, namely FT-Raman and FT-infrared spectroscopies in high throughput screening (HTS) setups. RESULTS The system can provide real-time concentration data on carbon substrate (glucose and glycerol) utilization, and production of biomass, carotenoid pigments, and lipids (triglycerides and free fatty acids). Robust multivariate regression models were developed and showed high level of correlation between the online FT-Raman spectral data and reference measurements, with coefficients of determination (R2) in the 0.94-0.99 and 0.89-0.99 range for all concentration parameters of Rhodotorula and Schizochytrium fermentation, respectively. The online FT-Raman spectroscopy approach was superior to the at-line methods since the obtained information was more comprehensive, timely and provided more precise concentration profiles. CONCLUSIONS The FT-Raman spectroscopy system with a flow measurement cell in a recirculatory loop, in combination with prediction models, can simultaneously provide real-time concentration data on carbon substrate utilization, and production of biomass, carotenoid pigments, and lipids. This data enables monitoring of dynamic behaviour of oleaginous and carotenogenic microorganisms, and thus can provide critical process parameters for process optimization and control. Overall, this study demonstrated the feasibility of using FT-Raman spectroscopy for online monitoring of fermentation processes.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Pernille Margrethe Olsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Martin Szotkowski
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno, 61200, Czech Republic
| | - Ivana Marova
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno, 61200, Czech Republic
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
3
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
4
|
Sá M, Ferrer-Ledo N, Gao F, Bertinetto CG, Jansen J, Crespo JG, Wijffels RH, Barbosa M, Galinha CF. Perspectives of fluorescence spectroscopy for online monitoring in microalgae industry. Microb Biotechnol 2022; 15:1824-1838. [PMID: 35175653 PMCID: PMC9151345 DOI: 10.1111/1751-7915.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022] Open
Abstract
Microalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real-time process control of a microalgae production factory still require further development. In this mini-review, non-destructive tools for online monitoring of cellular agriculture applications are described. Still, the focus is on the use of fluorescence spectroscopy to monitor several parameters (cell concentration, pigments, and lipids) in the microalgae industry. The development presented makes it the most promising solution for monitoring up-and downstream processes, different biological parameters simultaneously, and different microalgae species. The improvements needed for industrial application of this technology are also discussed.
Collapse
Affiliation(s)
- Marta Sá
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands.,Stichting imec Nederland - OnePlanet Research Center, Wageningen, 6708WH, The Netherlands
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Carlo G Bertinetto
- Institute for Molecules and Materials (Analytical Chemistry), Radboud University, Nijmegen, The Netherlands
| | - Jeroen Jansen
- Institute for Molecules and Materials (Analytical Chemistry), Radboud University, Nijmegen, The Netherlands
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Caparica, 2829-516, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, N-8049, Norway
| | - Maria Barbosa
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Claudia F Galinha
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Caparica, 2829-516, Portugal
| |
Collapse
|
5
|
Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya EV, Rodnenkov OV, Martynyuk TV, Maksimov GV, Alwasel S, Tomo T, Allakhverdiev SI. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022; 11:cells11030386. [PMID: 35159196 PMCID: PMC8834270 DOI: 10.3390/cells11030386] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.
Collapse
Affiliation(s)
- Elvin S. Allakhverdiev
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
| | - Venera V. Khabatova
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Bekzhan D. Kossalbayev
- Geology and Oil-gas Business Institute Named after K. Turyssov, Satbayev University, Satpaeva, 22, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050038, Kazakhstan
| | - Elena V. Zadneprovskaya
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Oleg V. Rodnenkov
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Tamila V. Martynyuk
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Georgy V. Maksimov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
- Department of Physical Materials Science, Technological University “MISiS”, Leninskiy Prospekt 4, Office 626, 119049 Moscow, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan;
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Dzurendová S, Shapaval V, Tafintseva V, Kohler A, Byrtusová D, Szotkowski M, Márová I, Zimmermann B. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int J Mol Sci 2021; 22:6710. [PMID: 34201486 PMCID: PMC8269384 DOI: 10.3390/ijms22136710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83-0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.
Collapse
Affiliation(s)
- Simona Dzurendová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| |
Collapse
|
7
|
Metcalfe GD, Smith TW, Hippler M. On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques. Anal Bioanal Chem 2020; 412:7307-7319. [PMID: 32794006 PMCID: PMC7497492 DOI: 10.1007/s00216-020-02865-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/01/2022]
Abstract
We introduce an experimental setup allowing continuous monitoring of bacterial fermentation processes by simultaneous optical density (OD) measurements, long-path FTIR headspace monitoring of CO2, acetaldehyde and ethanol, and liquid Raman spectroscopy of acetate, formate, and phosphate anions, without sampling. We discuss which spectral features are best suited for detection, and how to obtain partial pressures and concentrations by integrations and least squares fitting of spectral features. Noise equivalent detection limits are about 2.6 mM for acetate and 3.6 mM for formate at 5 min integration time, improving to 0.75 mM for acetate and 1.0 mM for formate at 1 h integration. The analytical range extends to at least 1 M with a standard deviation of percentage error of about 8%. The measurement of the anions of the phosphate buffer allows the spectroscopic, in situ determination of the pH of the bacterial suspension via a modified Henderson-Hasselbalch equation in the 6-8 pH range with an accuracy better than 0.1. The 4 m White cell FTIR measurements provide noise equivalent detection limits of 0.21 μbar for acetaldehyde and 0.26 μbar for ethanol in the gas phase, corresponding to 3.2 μM acetaldehyde and 22 μM ethanol in solution, using Henry's law. The analytical dynamic range exceeds 1 mbar ethanol corresponding to 85 mM in solution. As an application example, the mixed acid fermentation of Escherichia coli is studied. The production of CO2, ethanol, acetaldehyde, acids such as formate and acetate, and the changes in pH are discussed in the context of the mixed acid fermentation pathways. Formate decomposition into CO2 and H2 is found to be governed by a zeroth-order kinetic rate law, showing that adding exogenous formate to a bioreactor with E. coli is expected to have no beneficial effect on the rate of formate decomposition and biohydrogen production.
Collapse
Affiliation(s)
- George D Metcalfe
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Thomas W Smith
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
- Water and Environmental Engineering Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
8
|
Abstract
Free fatty acid (FFA) is one of the most critical parameters for evaluating the quality of olive oil. In this paper, we present a simple and rapid Raman spectroscopy method for analyzing free fatty acid in olive oil. First, FFA degradation of carotenoids in olive oil is confirmed by analyzing the relative intensity of characteristic vibrational modes and introducing an intensity decrease factor. Second, it is demonstrated that the relative intensity ratio of the two characteristic vibrational modes at 1525 cm−1 and 1655 cm−1 presents a good and rapid analysis of FFA content in olive oil; the relative intensity ratio decreases linearly with FFA content. In addition, resonance Raman scattering of carotenoid is discussed, showing that a green laser should be utilized to study FFA in olive oil.
Collapse
|
9
|
Morelli L, Centorbi FA, Ilchenko O, Jendresen CB, Demarchi D, Nielsen AT, Zór K, Boisen A. Simultaneous quantification of multiple bacterial metabolites using surface-enhanced Raman scattering. Analyst 2019; 144:1600-1607. [DOI: 10.1039/c8an02128g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We combine liquid–liquid extraction, SERS detection and partial least squares analysis for simultaneous quantification of bacterial metabolites in E. coli supernatant.
Collapse
Affiliation(s)
- Lidia Morelli
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| | | | - Oleksii Ilchenko
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| | | | - Danilo Demarchi
- Department of Electronics and Telecommunications
- 10129 Torino
- Italy
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Kinga Zór
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| | - Anja Boisen
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| |
Collapse
|
10
|
Influence of Incident Wavelength and Detector Material Selection on Fluorescence in the Application of Raman Spectroscopy to a Fungal Fermentation Process. Bioengineering (Basel) 2018; 5:bioengineering5040079. [PMID: 30257530 PMCID: PMC6315725 DOI: 10.3390/bioengineering5040079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 11/22/2022] Open
Abstract
Raman spectroscopy is a novel tool used in the on-line monitoring and control of bioprocesses, offering both quantitative and qualitative determination of key process variables through spectroscopic analysis. However, the wide-spread application of Raman spectroscopy analysers to industrial fermentation processes has been hindered by problems related to the high background fluorescence signal associated with the analysis of biological samples. To address this issue, we investigated the influence of fluorescence on the spectra collected from two Raman spectroscopic devices with different wavelengths and detectors in the analysis of the critical process parameters (CPPs) and critical quality attributes (CQAs) of a fungal fermentation process. The spectra collected using a Raman analyser with the shorter wavelength (903 nm) and a charged coupled device detector (CCD) was corrupted by high fluorescence and was therefore unusable in the prediction of these CPPs and CQAs. In contrast, the spectra collected using a Raman analyser with the longer wavelength (993 nm) and an indium gallium arsenide (InGaAs) detector was only moderately affected by fluorescence and enabled the generation of accurate estimates of the fermentation’s critical variables. This novel work is the first direct comparison of two different Raman spectroscopy probes on the same process highlighting the significant detrimental effect caused by high fluorescence on spectra recorded throughout fermentation runs. Furthermore, this paper demonstrates the importance of correctly selecting both the incident wavelength and detector material type of the Raman spectroscopy devices to ensure corrupting fluorescence is minimised during bioprocess monitoring applications.
Collapse
|
11
|
Farías-Álvarez L, Gschaedler-Mathis A, Sánchez-Ortiz A, Femat R, Cervantes-Martínez J, Arellano-Plaza M, Zamora-Pedraza C, Amillastre E, Ghommidh C, Herrera-López E. Xanthophyllomyces dendrorhous physiological stages determination using combined measurements from dielectric and Raman spectroscopies, a cell counter system and fluorescence flow cytometry. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Santos RM, Kessler JM, Salou P, Menezes JC, Peinado A. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool. Biotechnol Prog 2018; 34:659-670. [PMID: 29603907 DOI: 10.1002/btpr.2635] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/19/2018] [Indexed: 11/08/2022]
Abstract
Raman spectroscopy is a suitable monitoring technique for CHO cultivations. However, a thorough discussion of peaks, bands, and region assignments to key metabolites and culture attributes, and the interpretability of produced calibrations is scarce. That understanding is vital for the long-term predictive ability of monitoring models, and to facilitate lifecycle management that comply with regulatory guidelines. Several fed-batch lab-scale mAb mammalian cultivations were carried out, with in situ Raman spectroscopy used for process state estimation and attribute monitoring. The goal was to evaluate its use as a process analytical technology (PAT) tool to detect residual glucose and lactate levels, understand their dynamics and interconversion, and eventually estimate key performance culture and product quality attributes. Glucose and lactate models were optimized up to 0.31 g L-1 with 3 Latent Variables (LVs) and 0.19 g L-1 (2 LVs) accuracy, respectively. Glutamine and product titer models, were not specific and accurate enough, even though indirect calibrations were obtained with a RMSEP of 0.12 g L-1 (4 LVs) and 0.29 g L-1 (5 LVs), respectively. A critical discussion and details about the extensive work done in calibration development and optimization are provided. Namely, considering a risk-based selection of variability sources impacting sample spectra, executing designed experiments with spiked cultivations, and using advanced chemometric procedures for variable selection and model cross validation. A strategy is presented to evaluation Raman spectroscopy as a reliable PAT technology fit-for industrial use. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:659-670, 2018.
Collapse
Affiliation(s)
- Rafael M Santos
- Institute for Biotechnology and Biosciences, Dept. BioEngineering IST, University of Lisbon, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | | | - Patrick Salou
- Novartis AG, Biologics, Basel, Basel-Stadt, CH 4002, Switzerland
| | - Jose C Menezes
- Institute for Biotechnology and Biosciences, Dept. BioEngineering IST, University of Lisbon, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Antonio Peinado
- Novartis AG, MS&T, Klybeckstrasse 191, Basel, Basel-Stadt, CH 4002, Switzerland
| |
Collapse
|
13
|
Zhang P, Xiao Y, Li Z, Guo J, Lu L. Microalgae in Microwell Arrays Exhibit Differences with Those in Flasks: Evidence from Growth Rate, Cellular Carotenoid, and Oxygen Production. FRONTIERS IN PLANT SCIENCE 2018; 8:2251. [PMID: 29379513 PMCID: PMC5770892 DOI: 10.3389/fpls.2017.02251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are cultivated in macro-scale reactors traditionally and the relevant knowledge is based on bulk analysis. Whether the knowledge and laws are true for cells under micro-cultivation is still unknown. To better understand microalgal physiology, micro-cultivation of microalgae, and unicellular tracking and analysis of its response in vivo is necessary. In the study, cellular responses of Chlorella vulgaris to micro-cultivation is studied, with cells in flasks as a control. Five different microwell depths ranging from 10 to 200 μm with a fixed diameter of 100 μm, and four diameter levels from 30 to 200 μm with a fixed depth 60 μm were investigated. Unicellular dynamics showed that cell number differences among various types of microwells with different initial cell numbers decreased as cultivation processed. Besides, the specific growth rate of C. vulgaris on microwell arrays was much higher than that in flasks and so cells on microwell arrsys can be much sensitive to pollutants. Thus, the interesting characteristics may be used in cell sensor applications to enhance sensitivity. The specific growth rate of C. vulgaris on microwell arrays decreased gradually as the microwell diameter increased from 30 to 200 μm while presented a unimodal trend as depth decreased from 200 to 10 μm. Furthermore, we used Raman Spectroscopy and Non-invasive Micro-test Technique to analyze cellular responses in microwells for the first time to track the changes in vivo. Results indicated that unicellular carotenoid content increased as microwells became larger and shallower. The flow rate of oxygen rose gradually as the depth increased from 10 to 100 μm, but then decreased rapidly as the depth deepened to 200 μm. In fact, it is a combined result of cell physiology and density. In summary, cells in microwells with the diameter/depth ratio ~1 owned the highest specific growth rates and oxygen flow rates. Simulations also suggested that better mass transfer occurred in microwells with higher diameter-to-depth ratios.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Environmental Science and Engineering, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
- CAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yan Xiao
- CAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhe Li
- Department of Environmental Science and Engineering, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
- CAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Jinsong Guo
- Department of Environmental Science and Engineering, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| | - Lunhui Lu
- CAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
14
|
Bhatia H, Mehdizadeh H, Drapeau D, Yoon S. In-line monitoring of amino acids in mammalian cell cultures using raman spectroscopy and multivariate chemometrics models. Eng Life Sci 2018; 18:55-61. [PMID: 32624861 PMCID: PMC6999330 DOI: 10.1002/elsc.201700084] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
The application of PAT for in-line monitoring of biopharmaceutical manufacturing operations has a central role in developing more robust and consistent processes. Various spectroscopic techniques have been applied for collecting real-time data from cell culture processes. Among these, Raman spectroscopy has been shown to have advantages over other spectroscopic techniques, especially in aqueous culture solutions. Measurements of several process parameters such as glucose, lactate, glutamine, glutamate, ammonium, osmolality and VCD using Raman-based chemometrics models have been reported in literature. The application of Raman spectroscopy, coupled with calibration models for amino acid measurement in cell cultures, has been assessed. The developed models cover four amino acids important for cell growth and production: tyrosine, tryptophan, phenylalanine and methionine. The chemometrics models based on Raman spectroscopy data demonstrate the significant potential for the quantification of tyrosine, tryptophan and phenylalanine. The model for methionine would have to be further refined to improve quantification.
Collapse
Affiliation(s)
- Hemlata Bhatia
- Department of Biomedical Engineering and BiotechnologyUniversity of Massachusetts LowellLowellMA, USA
| | - Hamidreza Mehdizadeh
- Advanced Manufacturing TechnologyGlobal Technology ServicesPfizer Global SuppliesPfizer‐Inc.PeapackNJ, USA
| | | | - Seongkyu Yoon
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMA, USA
| |
Collapse
|
15
|
Podevin M, Fotidis IA, Angelidaki I. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives. Crit Rev Biotechnol 2017; 38:704-718. [DOI: 10.1080/07388551.2017.1398132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael Podevin
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis A. Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
André S, Lagresle S, Da Sliva A, Heimendinger P, Hannas Z, Calvosa É, Duponchel L. Developing global regression models for metabolite concentration prediction regardless of cell line. Biotechnol Bioeng 2017; 114:2550-2559. [PMID: 28667738 DOI: 10.1002/bit.26368] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/25/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023]
Abstract
Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvère André
- LASIR CNRS UMR 8516, Université de Lille, Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | - Ludovic Duponchel
- LASIR CNRS UMR 8516, Université de Lille, Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
17
|
Busse C, Biechele P, de Vries I, Reardon KF, Solle D, Scheper T. Sensors for disposable bioreactors. Eng Life Sci 2017; 17:940-952. [PMID: 32624843 DOI: 10.1002/elsc.201700049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Modern bioprocess monitoring demands sensors that provide on-line information about the process state. In particular, sensors for monitoring bioprocesses carried out in single-use bioreactors are needed because disposable systems are becoming increasingly important for biotechnological applications. Requirements for the sensors used in these single-use bioreactors are different than those used in classical reusable bioreactors. For example, long lifetime or resistance to steam and cleaning procedures are less crucial factors, while a requirement of sensors for disposable bioreactors is a cost that is reasonable on a per-use basis. Here, we present an overview of current and emerging sensors for single-use bioreactors, organized by the type of interface of the sensor systems to the bioreactor. A major focus is on non-invasive, in-situ sensors that are based on electromagnetic, semiconducting, optical, or ultrasonic measurements. In addition, new technologies like radio-frequency identification sensors or free-floating sensor spheres are presented. Notably, at this time there is no standard interface between single-use bioreactors and the sensors discussed here. In the future, manufacturers should address this shortcoming to promote single-use bioprocess monitoring and control.
Collapse
Affiliation(s)
- Christoph Busse
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Philipp Biechele
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Ingo de Vries
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering Colorado State University USA
| | - Dörte Solle
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Leibniz University Hannover Germany
| |
Collapse
|
18
|
Zhang P, Li Z, Lu L, Xiao Y, Liu J, Guo J, Fang F. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:30-38. [PMID: 28319796 DOI: 10.1016/j.saa.2017.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Stressful conditions can stimulate the accumulation of carotenoids in some microalgae. To obtain more knowledge of the stress response, we studied the effects of different N concentrations on unicellular content of carotenoids using Raman spectroscopic technique; cellular stoichiometric changes and the fluorescence parameters of Chlorella vulgaris were concomitantly studied. Initially, we optimized the Raman scattering conditions and demonstrated the feasibility of unicellular carotenoid analysis by Raman spectroscopic technique. The results showed that an integration time of 10 s, laser power at 0.1mW and an accumulation time of 1 were the optimum conditions, and the peak height at 1523cm-1 scaled linearly with the carotenoid content in the range of 0.625-1440mg/L with a recovery rate of 97%~103%. In the experiment, seven different nitrogen levels ranging from 0 to 2.48×105μg/L were imposed. Samples were taken at the start, exponential phase and end of the experiment. The results showed that nitrogen stress can facilitate the synthesis of carotenoids, while at the same time, excessive nitrogen stress led to lower proliferative and photosynthetic activity. Compared with carotenoids, chlorophylls were more sensitive to nitrogen stress; it declined dramatically as stress processed. There existed no significant differences for Fv/Fm among different nitrogen levels during the exponential phase, while in the end, it declined and a significant difference appeared between cells in 2.48×105μg/L N and other experimental levels. Photosynthetic efficiency, namely the C/N mole ratio in algal cells, didnot significantly change during the exponential phase; however, apparent increases ultimately occurred, except for the stable C/N in BG11 medium. This increase matched well with the carotenoid decline, indicating that an increasing cellular C/N mole ratio can be used as an indicator of excessive stress in carotenoid production. Besides, there also existed an inverse correlation with ETRmax.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,China.
| | - Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,China
| | - Yan Xiao
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,China
| | - Jing Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| |
Collapse
|
19
|
Buckley K, Ryder AG. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. APPLIED SPECTROSCOPY 2017; 71:1085-1116. [PMID: 28534676 DOI: 10.1177/0003702817703270] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.) and have spawned a large (>€35 billion sales annually in Europe) and growing biopharmaceutical industry (BioPharma). The structural and chemical complexity of biologics, combined with the intricacy of cell-based manufacturing, imposes a huge analytical burden to correctly characterize and quantify both processes (upstream) and products (downstream). In small molecule manufacturing, advances in analytical and computational methods have been extensively exploited to generate process analytical technologies (PAT) that are now used for routine process control, leading to more efficient processes and safer medicines. In the analytical domain, biologic manufacturing is considerably behind and there is both a huge scope and need to produce relevant PAT tools with which to better control processes, and better characterize product macromolecules. Raman spectroscopy, a vibrational spectroscopy with a number of useful properties (nondestructive, non-contact, robustness) has significant potential advantages in BioPharma. Key among them are intrinsically high molecular specificity, the ability to measure in water, the requirement for minimal (or no) sample pre-treatment, the flexibility of sampling configurations, and suitability for automation. Here, we review and discuss a representative selection of the more important Raman applications in BioPharma (with particular emphasis on mammalian cell culture). The review shows that the properties of Raman have been successfully exploited to deliver unique and useful analytical solutions, particularly for online process monitoring. However, it also shows that its inherent susceptibility to fluorescence interference and the weakness of the Raman effect mean that it can never be a panacea. In particular, Raman-based methods are intrinsically limited by the chemical complexity and wide analyte-concentration-profiles of cell culture media/bioprocessing broths which limit their use for quantitative analysis. Nevertheless, with appropriate foreknowledge of these limitations and good experimental design, robust analytical methods can be produced. In addition, new technological developments such as time-resolved detectors, advanced lasers, and plasmonics offer potential of new Raman-based methods to resolve existing limitations and/or provide new analytical insights.
Collapse
Affiliation(s)
- Kevin Buckley
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland - Galway, Galway, Ireland
| | - Alan G Ryder
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland - Galway, Galway, Ireland
| |
Collapse
|
20
|
Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 2016; 409:637-649. [PMID: 27491299 PMCID: PMC5233728 DOI: 10.1007/s00216-016-9824-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 11/30/2022]
Abstract
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product’s lifecycle.
Collapse
Affiliation(s)
- Karen A Esmonde-White
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA.
- University of Michigan Medical School, Ann Arbor, MI, 48109-5624, USA.
| | - Maryann Cuellar
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA
| | - Carsten Uerpmann
- Kaiser Optical Systems SARL, 5 Allée Moulin Berger, 69130, Ecully, France
| | - Bruno Lenain
- Kaiser Optical Systems SARL, 5 Allée Moulin Berger, 69130, Ecully, France
| | - Ian R Lewis
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA
| |
Collapse
|
21
|
Biechele P, Busse C, Solle D, Scheper T, Reardon K. Sensor systems for bioprocess monitoring. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500014] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Philipp Biechele
- Institute of Technical Chemistry; Leibniz University; Hannover Germany
| | - Christoph Busse
- Institute of Technical Chemistry; Leibniz University; Hannover Germany
| | - Dörte Solle
- Institute of Technical Chemistry; Leibniz University; Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry; Leibniz University; Hannover Germany
| | - Kenneth Reardon
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| |
Collapse
|
22
|
Berry B, Moretto J, Matthews T, Smelko J, Wiltberger K. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol Prog 2014; 31:566-77. [DOI: 10.1002/btpr.2035] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Brandon Berry
- Cell Culture Development, Biogen Idec, Inc.; 14 Cambridge Center Cambridge MA 02142
| | - Justin Moretto
- Cell Culture Development, Biogen Idec, Inc.; 5000 Davis Drive Research Triangle Park NC 27709
| | - Thomas Matthews
- Cell Culture Development, Biogen Idec, Inc.; 5000 Davis Drive Research Triangle Park NC 27709
| | - John Smelko
- Cell Culture Development, Biogen Idec, Inc.; 5000 Davis Drive Research Triangle Park NC 27709
| | - Kelly Wiltberger
- Cell Culture Development, Biogen Idec, Inc.; 5000 Davis Drive Research Triangle Park NC 27709
| |
Collapse
|
23
|
Application of spectroscopic methods for monitoring of bioprocesses and the implications for the manufacture of biologics. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Abstract
Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions.
Collapse
|
25
|
Li B, Ray BH, Leister KJ, Ryder AG. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Anal Chim Acta 2013; 796:84-91. [DOI: 10.1016/j.aca.2013.07.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
|
26
|
Hakemeyer C, Strauss U, Werz S, Folque F, Menezes JC. Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: Aged media decreases cell growth. Biotechnol J 2013; 8:835-46. [DOI: 10.1002/biot.201200355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/05/2013] [Accepted: 04/15/2013] [Indexed: 11/07/2022]
|
27
|
Gray SR, Peretti SW, Lamb HH. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy. Biotechnol Bioeng 2013; 110:1654-62. [DOI: 10.1002/bit.24849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 11/06/2022]
|
28
|
Whelan J, Craven S, Glennon B. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 2012; 28:1355-62. [DOI: 10.1002/btpr.1590] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/19/2012] [Indexed: 11/09/2022]
|
29
|
Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem 2012; 404:1211-37. [DOI: 10.1007/s00216-012-6073-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/21/2012] [Indexed: 11/26/2022]
|
30
|
El-Abassy RM, Eeravuchira PJ, Donfack P, von der Kammer B, Materny A. Direct determination of unsaturation level of milk fat using Raman spectroscopy. APPLIED SPECTROSCOPY 2012; 66:538-544. [PMID: 22524959 DOI: 10.1366/11-06327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have demonstrated the potential of visible Raman spectroscopy in combination with chemometric analysis as a fast and simple tool for the determination of the unsaturation level of milk fat. The Raman measurements have been performed directly on liquid milk and on fat extracted from liquid milk. The Raman spectra taken from the extracted fat showed a higher resolution. The spectra directly obtained from the milk samples had some fluorescence background but nevertheless yielded the desired information. For calibration purposes, the iodine value (IV) was determined in all cases in order to evaluate the unsaturation level of the investigated samples. Two separate calibration models have been constructed; one for the milk samples and the second one for the extracted fat. The accuracy of these calibration models was estimated using the root mean square error of calibration and validation (RMSE) and the coefficient of determination (R(2)) between actual and predicted values.
Collapse
Affiliation(s)
- Rasha Mohamed El-Abassy
- Jacobs University Bremen, Molecular Life Science Center, Campus Ring 1 28759 Bremen, Germany
| | | | | | | | | |
Collapse
|
31
|
The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012. [DOI: 10.1007/10_2012_175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
32
|
Beutel S, Henkel S. In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol 2011; 91:1493-505. [DOI: 10.1007/s00253-011-3470-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/24/2011] [Accepted: 07/10/2011] [Indexed: 12/22/2022]
|
33
|
Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2010; 89:555-71. [PMID: 21046372 DOI: 10.1007/s00253-010-2976-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 12/18/2022]
Abstract
The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.
Collapse
|
34
|
Li B, Ryan PW, Ray BH, Leister KJ, Sirimuthu NM, Ryder AG. Rapid characterization and quality control of complex cell culture media solutions using raman spectroscopy and chemometrics. Biotechnol Bioeng 2010; 107:290-301. [DOI: 10.1002/bit.22813] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1389-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Raman spectroscopy for intracellular monitoring of carotenoid in Blakeslea trispora. Appl Biochem Biotechnol 2009; 159:478-87. [PMID: 19130307 DOI: 10.1007/s12010-008-8472-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
In the present study, we explore the feasibility of Raman spectroscopy for intracellular monitoring of carotenoid in filamentous fungi Blakeslea trispora. Although carotenoid production from this fungus has been extensively studied through various chromatographic methods and ultraviolet-visible spectroscopy, no intracellular monitoring has been demonstrated until now. The intensity of the Raman spectrum, and more conveniently that of the strongest nu(1) carotenoid band at approximately 1,519 cm(-1), exhibits a good linear correlation with the carotenoid content of the sample as determined by high-performance liquid chromatography (HPLC) and ultraviolet-visible (UV-Vis) spectroscopy. Our results suggest that Raman spectroscopy can serve as an alternative method for the study and quantification of carotenoid in batch-mated submerged cultivations of B. trispora and similar organisms. Although not as accurate as HPLC, it allows a rapid sampling and analysis, avoiding the prolonged and tedious classical isolation procedures required for carotenoid determination by HPLC and UV-Vis spectroscopy.
Collapse
|
37
|
Sandt C, Smith-Palmer T, Pink J, Pink D. A confocal Raman microscopy study of the distribution of a carotene-containing yeast in a living Pseudomonas aeruginosa biofilm. APPLIED SPECTROSCOPY 2008; 62:975-983. [PMID: 18801236 DOI: 10.1366/000370208785793245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The distribution of a carotene-containing yeast (CCY) in a biofilm formed by a small colony variant (SCV) of Pseudomonas aeruginosa PA01 was followed by confocal Raman microspectroscopy (CRM). SCV PA01 and CCY cells were distinguished by their spectral signatures, and the distribution of the overall biomass was monitored by the C-H bending or stretching signal. The distributions of total biomass, PA01, and CCY cells were compared at various times and positions within the biofilm. The distribution of the CCY was very heterogeneous. It was found in the water channels as well as in regions within biofilm colonies. Many of the yeast cells observed within the biofilm colonies under conditions of low or stopped flow were removed when medium was flowing, suggesting that the yeast was not held in the matrix as tightly as were the bacteria.
Collapse
Affiliation(s)
- Christophe Sandt
- Department of Chemistry, Centre for Applied Petroleum Sciences, St. Francis Xavier University, Antigonish, NS, Canada, B2G 2W5
| | | | | | | |
Collapse
|
38
|
Nordon A, Littlejohn D, Dann AS, Jeffkins PA, Richardson MD, Stimpson SL. In situ monitoring of the seed stage of a fermentation process using non-invasive NIR spectrometry. Analyst 2008; 133:660-6. [DOI: 10.1039/b719318a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Pons MN, Le Bonté S, Potier O. Spectral analysis and fingerprinting for biomedia characterisation. J Biotechnol 2004; 113:211-30. [PMID: 15380657 DOI: 10.1016/j.jbiotec.2004.03.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 02/23/2004] [Accepted: 03/04/2004] [Indexed: 11/23/2022]
Abstract
Classical culture media, as well as domestic and/or industrial wastewater treated by biological processes, have a complex composition. The on-line and/or in situ determination of some substances is possible, but expensive, as sample collection and pre-treatment are often necessary with strict rules of sterility. More global methods can be used to detect rapidly "accidents" such as the appearance of an undesirable by-product in a fermentation broth or of a toxic substance in wastewater. These methods combine a "hard" part, for sensing, and a "soft" part, for data treatment. Among potential "hard" candidates, spectroscopy can be the basis for non-invasive and non-destructive measuring systems. Some of them have been already tested in situ: ultra-violet-visible, infra-red (mid or near), fluorescence (mono-dimensional, two-dimensional or synchronous), dielectric, while others, more sophisticated, such as mass spectrometry, coupled or not to pyrolysis, nuclear magnetic resonance and Raman spectroscopy, have been proposed. All these methods provide spectra, i.e. large sets of data, from which meaningful information should be rapidly extracted, either for analysis or fingerprinting. The recourse to data-mining techniques (the "soft" part) such as principal components analysis, projection on latent structures or artificial neural networks, is a necessary step for that task. A review of techniques, mostly based on spectroscopy, with examples taken in the bioengineering field in general is proposed.
Collapse
Affiliation(s)
- Marie-Noëlle Pons
- Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC-INPL, 1 rue Grandville, BP 451, F-54001 Nancy cedex, France.
| | | | | |
Collapse
|
40
|
Kornmann H, Valentinotti S, Marison I, von Stockar U. Real-time update of calibration model for better monitoring of batch processes using spectroscopy. Biotechnol Bioeng 2004; 87:593-601. [PMID: 15352057 DOI: 10.1002/bit.20153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to reduce the large calibration matrix usually required for calibrating multiwavelength optical sensors, a simple algorithm based on the addition in process of new standards is proposed. A small calibration model, based on 14 standards, is periodically updated by spectra collected on-line during fermentation operation. Concentrations related to these spectra are reconciled into best-estimated values, by considering carbon and oxygen balances. Using this method, fructose, acetate, and gluconacetan were monitored during batch fermentations of Gluconacetobacter xylinus 12281 using mid-infrared spectroscopy. It is shown that this algorithm compensates for noncalibrated events such as production or consumption of by-products. The standard error of prediction (SEP) values were 0.99, 0.10, and 0.90 g/L for fructose, acetate, and gluconacetan, respectively. By contrast, without an updating of the calibration model, the SEP values were 2.46, 0.92, and 1.04 g/L for fructose, acetate, and gluconacetan, respectively. Using only 14 standards, it was therefore possible to approach the performance of an 88-standard-based calibration model having SEP values of 1.11, 0.37, and 0.79 g/L for fructose, acetate, and gluconacetan, respectively. Therefore, the proposed algorithm is a valuable approach to reduce the calibration time of multiwavelength optical sensors.
Collapse
Affiliation(s)
- Henri Kornmann
- Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
41
|
von Stockar U, Valentinotti S, Marison I, Cannizzaro C, Herwig C. Know-how and know-why in biochemical engineering. Biotechnol Adv 2003; 21:417-30. [PMID: 14499124 DOI: 10.1016/s0734-9750(03)00058-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.
Collapse
Affiliation(s)
- U von Stockar
- Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|