1
|
Sun WZ, Wang X, Fu MY, Liu LF, Zhang P, Yin BC, Liu WB, Ye BC. Metabolic Engineering of Yarrowia lipolytica for Enhanced De Novo Biosynthesis of Icaritin. ACS Synth Biol 2025; 14:1142-1151. [PMID: 40106718 DOI: 10.1021/acssynbio.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Icaritin (ICT) is a naturally occurring flavonoid compound with notable anticancer properties, recently recognized for its efficacy in treating advanced hepatic carcinoma. Traditional methods of ICT production, including plant extraction and chemical synthesis, face challenges such as low yield and environmental concerns. This study leverages synthetic biology to construct a microbial cell factory using Yarrowia lipolytica for de novo ICT synthesis. We engineered the yeast by integrating the ICT synthesis pathway involving EsPT from Epimedium sagittatum and OsOMTm from Oryza sativa. By optimizing the metabolic pathways, including enhancing the supply of DMAPP via mevalonate pathway modifications, and fine-tuning the expression and catalytic efficiency of EsPT through truncation strategies, we significantly improved ICT yield to 247.02 mg/L─the highest microbial ICT titer reported to date. These findings lay a solid foundation for the large-scale industrial production of ICT and offer valuable insights into the biosynthesis of other flavonoid plant natural products.
Collapse
Affiliation(s)
- Wen-Zhuo Sun
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Wang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng-Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le-Fan Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Bing Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Celińska E, Zhou YJ. Global transcription machinery engineering in Yarrowia lipolytica. FEMS Yeast Res 2025; 25:foaf023. [PMID: 40338609 PMCID: PMC12091107 DOI: 10.1093/femsyr/foaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025] Open
Abstract
Global transcription machinery engineering (gTME) is a strategy for optimizing complex phenotypes in microbes by manipulating transcription factors (TFs) and their downstream transcriptional regulatory networks (TRN). In principle, gTME leads to a focused but comprehensive optimization of a microbe, also enabling the engineering of nonpathway functionalities, like stress resistance, protein expression, or growth rate. A link between a TF and a desired phenotype is to be established for a rationally designed gTME. For use in a high-throughput format with extensive libraries of TRN-engineered clones tested under multiple conditions, well-developed culturing and analytical protocols are needed, to reveal the pleiotropic effects of the TFs. This mini-review summarizes the gTME strategies and TFs described under different contexts in Yarrowia lipolytica. The outcomes of the gTME strategy application are also addressed, demonstrating its effectiveness in engineering complex, industrially relevant traits in Y. lipolytica.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
3
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
4
|
Gorczyca M, Białas W, Nicaud JM, Celińska E. 'Mother(Nature) knows best' - hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database. Microb Cell Fact 2024; 23:26. [PMID: 38238843 PMCID: PMC10797999 DOI: 10.1186/s12934-023-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. RESULTS Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. CONCLUSIONS All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
5
|
Zhang P, Wei W, Shang Y, Ye BC. Metabolic engineering of Yarrowia lipolytica for high-level production of scutellarin. BIORESOURCE TECHNOLOGY 2023:129421. [PMID: 37392967 DOI: 10.1016/j.biortech.2023.129421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Scutellarin drugs have been recognized as a key item in the national development of essential clinical emergency drugs for treating cardiovascular and cerebrovascular diseases; therefore, the market demand for scutellarin is growing rapidly. Microbial synthesis based on synthetic biology is a promising method for industrial production of scutellarin. In this study, the highest reported scutellarin titer in the shake flask of 703.01 ± 4.83 mg/L was achieved in Yarrowia lipolytica through the systematic metabolic engineering modifications, including screening for the optimal flavone-6-hydroxylase-cytochrome P450 reductase combination SbF6H-ATR2 to enhance P450 enzyme activity, increasing the copy numbers of rate-limiting enzyme genes, overexpressing ZWF1 and GND1 to increase NADPH supply, enhancing the supply of p-coumaric acid and uridine diphosphate glucose, and introducing the heterologous gene VHb to enhance oxygen supply. This study has significant implications for the industrial production of scutellarin and other valuable flavonoids in green economies.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
6
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
7
|
Synthesis of Secretory Proteins in Yarrowia lipolytica: Effect of Combined Stress Factors and Metabolic Load. Int J Mol Sci 2022; 23:ijms23073602. [PMID: 35408958 PMCID: PMC8998316 DOI: 10.3390/ijms23073602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
While overproduction of recombinant secretory proteins (rs-Prots) triggers multiple changes in the physiology of the producer cell, exposure to suboptimal growth conditions may further increase that biological response. The environmental conditions may modulate the efficiency of both the rs-Prot gene transcription and translation but also the polypeptide folding. Insights into responses elicited by different environmental stresses on the rs-Prots synthesis and host yeast physiology might contribute to a better understanding of fundamental biology processes, thus providing some clues to further optimise bioprocesses. Herein, a series of batch cultivations of Yarrowia lipolytica strains differentially metabolically burdened by the rs-Prots overproduction have been conducted. Combinations of different stress factors, namely pH (3/7) and oxygen availability (kLa 28/110 h-1), have been considered for their impact on cell growth and morphology, substrate consumption, metabolic activity, genes expression, and secretion of the rs-Prots. Amongst others, our data demonstrate that a highly metabolically burdened cell has a higher demand for the carbon source, although presenting a compromised cell growth. Moreover, the observed decrease in rs-Prot production under adverse environmental conditions rather results from the emergence of a less-producing cell subpopulation than from the decrease of the synthetic capacity of the whole cell population.
Collapse
|
8
|
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism. Microorganisms 2021; 10:microorganisms10010043. [PMID: 35056491 PMCID: PMC8779101 DOI: 10.3390/microorganisms10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, İstanbul 34060, Turkey;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
- Correspondence:
| |
Collapse
|
9
|
Giray A. Production of vitamin A and vitamin E: expression of vitreoscilla hemoglobin gene in Erwinia herbicola. Prep Biochem Biotechnol 2021; 52:894-902. [PMID: 34865603 DOI: 10.1080/10826068.2021.2004548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamin A prevents eye problems, blindness and skin problems by strengthening the immune system. Vitamin E is a nutrient that has important roles in many areas such as skin health, eye health and hormonal order. Vitreoscilla hemoglobin (VHb) gives an advantage in later phases of grown conditions to cells. In this study, the intracellular and extracellular production of vitamin A and E in E. herbicola and its recombinant strains (vgb- and vgb+) in the three different M9 mediums with supplemented 0.1% glucose, 0.1% fructose and 0.1% sucrose was investigated. Additionally, the viable cell number and total cell mass (OD600) were measured by the host and the recombinant bacteria in these mediums. The VHb gene expression in E. herbicola enhanced vitamin A under different carbon conditionals. Especially, in the vgb + strain (carrying vgb gene) the production of total vitamin in 0.1% glucose medium was recorded as 0.14 µg/ml, while the production in fructose and sucrose media was recorded as 0.07 µg/ml. The production of intracellular vitamin E in the host strain (0.025 µg/ml) was about 13-fold (0.002 µg/ml) higher than vgb + recombinant strain in 0.1% fructose. The vgb + strain showed about 2-fold higher extracellular vitamin E production than the host strain.
Collapse
Affiliation(s)
- Asli Giray
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya, Turkey
| |
Collapse
|
10
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. α-Farnesene production from lipid by engineered Yarrowia lipolytica. BIORESOUR BIOPROCESS 2021; 8:78. [PMID: 38650210 PMCID: PMC10991571 DOI: 10.1186/s40643-021-00431-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Producing high value-added products from waste lipid feedstock by microbial cell factory has great advantages to minimize the pollution as well as improve the economic value of wasted oils and fats. Yarrowia lipolytica is a non-conventional oleaginous yeast and can grow on a variety of hydrophobic substrates. In this study, we explored its ability to synthesize α-farnesene, an important sesquiterpene, using lipid feedstock. Based on the α-farnesene production strain, we constructed previously, we identified that Erg12 was the key limiting factor to further increase the α-farnesene production. The α-farnesene production was improved by 35.8% through increasing the copy number of ERG12 and FSERG20 on oleic acid substrate. Expression of heterologous VHb further improved α-farnesene production by 12.7%. Combining metabolic engineering with the optimization of fermentation conditions, the α-farnesene titer and yield reached 10.2 g/L and 0.1 g/g oleic acid, respectively, in fed-batch cultivation. The α-farnesene synthesis ability on waste cooking oil and other edible oils were also explored. Compared with using glucose as carbon source, using lipid substrates obtained higher α-farnesene yield and titer, but lower by-products accumulation, demonstrating the advantage of Y. lipolytica to synthesize high value-added products using lipid feedstock.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
11
|
Gorczyca M, Kaźmierczak J, Steels S, Fickers P, Celińska E. Impact of oxygen availability on heterologous geneexpression and polypeptide secretion dynamics in Yarrowia lipolytica-based protein production platforms. Yeast 2020; 37:559-568. [PMID: 32445214 DOI: 10.1002/yea.3499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 11/09/2022] Open
Abstract
Industrially relevant traits of Yarrowia lipolytica, like high growth rate, capacity to grow at high cell density or to synthesize biomolecules with high productivities, strongly rely on sufficient oxygen provision. Although the impact of oxygen availability (OA) on the physiology of Y. lipolytica has been already studied, its influence on recombinant protein (rProt) synthesis and secretion has been largely neglected to date. With the aim to fill this gap, a fluorescent reporter protein (yellow fluorescent protein [YFP]) was used herein as a proxy to follow simultaneously rProt synthesis and secretion in Y. lipolytica under different OAs. This study covers the analysis of the reporter gene expression through reverse transcription quantitative polymerase chain reaction, polypeptide synthesis and its retention-to-secretion ratio using flow cytometry and fluorymetry during shake flasks and bioreactor cultivations under different OA. The results gathered demonstrate that OA has a dramatic impact on the kinetics of intracellular and extracellular YFP accumulation. Higher rProt production and secretion were favoured under high OA, and were largely related to OA and not to cell growth. Our observations also suggest the existence of some upper limit of secretory protein accumulation inside the cells above which massive secretion is initiated. Moreover, at low OA, the first bottleneck in rProt synthesis occurs as early as at transcription level, which could results from a lower availability of transcriptional machinery elements. Finally, using flow cytometry and bioreactor cultivations, we highlighted that ovoid cells are generally more efficient in terms of rProt synthesis.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań, 60-627, Poland
| | - Jan Kaźmierczak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań, 60-627, Poland
| | - Sebastien Steels
- TERRA Teaching and Research Centre, Microbial Process and Interaction, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Process and Interaction, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań, 60-627, Poland
| |
Collapse
|
12
|
Chen X, Yi J, Song W, Liu J, Luo Q, Liu L. Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production. Microb Biotechnol 2020; 14:392-402. [PMID: 32396278 PMCID: PMC7936311 DOI: 10.1111/1751-7915.13573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Microbial production of trans-4-hydroxy-l-proline (Hyp) offers significant advantages over conventional chemical extraction. However, it is still challenging for industrial production of Hyp due to its low production efficiency. Here, chassis engineering was used for tailoring Escherichia coli cellular metabolism to enhance enzymatic production of Hyp. Specifically, four proline 4-hydroxylases (P4H) were selected to convert l-proline to Hyp, and the recombinant strain overexpressing DsP4H produced 32.5 g l-1 Hyp with α-ketoglutarate addition. To produce Hyp without α-ketoglutarate addition, α-ketoglutarate supply was enhanced by rewiring the TCA cycle and l-proline degradation pathway, and oxygen transfer was improved by fine-tuning heterologous haemoglobin expression. In a 5-l fermenter, the engineered strain E. coliΔsucCDΔputA-VHb(L) -DsP4H showed a significant increase in Hyp titre, conversion rate and productivity up to 49.8 g l-1 , 87.4% and 1.38 g l-1 h-1 respectively. This strategy described here provides an efficient method for production of Hyp, and it has a great potential in industrial application.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Juyang Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Shaoxing Baiyin Biotechnology Co. Ltd, Shaoxing, 312000, China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Bilal M, Xu S, Iqbal HMN, Cheng H. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr 2020; 61:535-552. [PMID: 32180435 DOI: 10.1080/10408398.2020.1739000] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional sugars have unique structural and physiological characteristics with applied perspectives for modern biomedical and biotechnological sectors, such as biomedicine, pharmaceutical, cosmeceuticals, green chemistry, and agro-food. They can also be used as starting matrices to produce biologically active metabolites of interests. Though numerous chemical synthesis routes have been proposed and deployed for the synthesis of rare sugars, however, many of them are limited and economically incompetent because of expensive raw starting feedstocks. Whereas, the biosynthesis by enzymatic means are often associated with high catalyst costs and low space-time yields. Microbial production of rare sugars via green routes using bio-renewable resources offers noteworthy solutions to overcome the aforementioned limitations of synthetic and enzymatic synthesis routes. From the microbial-based synthesis perspective, the lipogenic yeast Yarrowia lipolytica is rapidly evolving as the most prevalent and unique "non-model organism" in the bio-production arena. Due to high flux tendency through the tri-carboxylic acid cycle intermediates and precursors such as acetyl-CoA and malonyl-CoA, this yeast has been widely investigated to meet the increasing demand of industrially relevant fine chemicals, including functional sugars. Incredible interest in Y. lipolytica originates from its robust tolerance to unstable pH, salt levels, and organic compounds, which subsequently enable easy bioprocess optimization. Meaningfully, GRAS (generally recognized as safe) status creates Y. lipolytica as an attractive and environmentally friendly microbial host for the manufacturing of nutraceuticals, fermented food, and dietary supplements. In this review, we highlight the recent and state-of-the-art research progress on Y. lipolytica as a host to synthesize bio-based compounds of interest beyond the realm of well-known fatty acid production. The unique physicochemical properties, biotechnological applications, and biosynthesis of an array of value-added functional sugars including erythritol, threitol, fructooligosaccharides, galactooligosaccharides, isomalto-oligosaccharides, isomaltulose, trehalose, erythrulose, xylitol, and mannitol using sustainable carbon sources are thoroughly vetted. Finally, we conclude with perspectives that would be helpful to engineer Y. lipolytica in greening the twenty-first century biomedical and biotechnological sectors of the modern world.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Mirończuk AM, Kosiorowska KE, Biegalska A, Rakicka-Pustułka M, Szczepańczyk M, Dobrowolski A. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica. Microb Cell Fact 2019; 18:176. [PMID: 31615519 PMCID: PMC6794898 DOI: 10.1186/s12934-019-1231-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023] Open
Abstract
Background Yarrowia lipolytica is an unconventional yeast with a huge industrial potential. Despite many advantages for biotechnological applications, it possesses enormous demand for oxygen, which is a bottleneck in large scale production. In this study a codon optimized bacterial hemoglobin from Vitreoscilla stercoraria (VHb) was overexpressed in Y. lipolytica for efficient growth and erythritol synthesis from glycerol in low-oxygen conditions. Erythritol is a natural sweetener produced by Y. lipolytica under high osmotic pressure and at low pH, and this process requires high oxygen demand. Results Under these conditions the VHb overexpressing strain showed mostly yeast-type cells resulting in 83% higher erythritol titer in shake-flask experiments. During a bioreactor study the engineered strain showed higher erythritol productivity (QERY = 0.38 g/l h) and yield (YERY = 0.37 g/g) in comparison to the control strain (QERY = 0.30 g/l h, YERY = 0.29 g/g). Moreover, low stirring during the fermentation process resulted in modest foam formation. Conclusions This study showed that overexpression of VHb in Y. lipolytica allows for dynamic growth and efficient production of a value-added product from a low-value substrate.
Collapse
Affiliation(s)
- Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| | - Katarzyna E Kosiorowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Anna Biegalska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Mateusz Szczepańczyk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
15
|
Glutamate addition improves the activity of membrane-bound sorbitol dehydrogenase in a pyrroloquinoline quinone-dependent manner: A feasible strategy for the cost-effective fermentation of Gluconobacter oxydans. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Vandermies M, Fickers P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019; 7:E40. [PMID: 30704141 PMCID: PMC6406515 DOI: 10.3390/microorganisms7020040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Recombinant protein production represents a multibillion-dollar market. Therefore, it constitutes an important research field both in academia and industry. The use of yeast as a cell factory presents several advantages such as ease of genetic manipulation, growth at high cell density, and the possibility of post-translational modifications. Yarrowia lipolytica is considered as one of the most attractive hosts due to its ability to metabolize raw substrate, to express genes at a high level, and to secrete protein in large amounts. In recent years, several reviews have been dedicated to genetic tools developed for this purpose. Though the construction of efficient cell factories for recombinant protein synthesis is important, the development of an efficient process for recombinant protein production in a bioreactor constitutes an equally vital aspect. Indeed, a sports car cannot drive fast on a gravel road. The aim of this review is to provide a comprehensive snapshot of process tools to consider for recombinant protein production in bioreactor using Y. lipolytica as a cell factory, in order to facilitate the decision-making for future strain and process engineering.
Collapse
Affiliation(s)
- Marie Vandermies
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| |
Collapse
|
17
|
Biosynthesis of miglitol intermediate 6-( N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose by an improved d-sorbitol dehydrogenase from Gluconobacter oxydans. 3 Biotech 2018; 8:231. [PMID: 29719773 DOI: 10.1007/s13205-018-1251-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptable exploitation of the catalytic potential of membrane-bound d-sorbitol dehydrogenase (mSLDH) from Gluconobacter oxydans is desperately needed in the industrial-scale production of miglitol. In the present study, a carbonyl group-dependent colorimetric quantification method was developed for the assay of miglitol key intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose (6NSL), and a high-throughput screening process of positive mutants was processed. Combined with several rounds of ultraviolet irradiation mutagenesis and screening procedure, a positive mutant strain G. oxydans ZJB16009 was obtained with significant increase in mSLDH catalytic activity by 1.5-fold, which exhibited an extremely accelerated uptake rate of d-sorbitol, and the fermentation time was significantly shortened from 22 to 11 h. In a 5-L biotransformation system, 60 g/L substrate N-2-hydroxyethyl glucamine (NHEG) was catalyzed by the resting cells of the mutant strain within 36 h and accumulated 53.6 g/L 6NSL, showing a 33.6% increase in the product yield. Therefore, it was indicated that the established high-throughput screening method could provide a highly efficient platform for the breading of G. oxydans strain for the industrial biosynthesis of miglitol intermediate 6NSL.
Collapse
|
18
|
Lin J, Zhang X, Song B, Xue W, Su X, Chen X, Dong Z. Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei. AMB Express 2017; 7:203. [PMID: 29143239 PMCID: PMC5688050 DOI: 10.1186/s13568-017-0507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Trichoderma reesei is well known as an industrial workhorse fungus in cellulase production. The low dissolved oxygen supply in the highly viscous medium of T. reesei remains a major bottleneck that hampers growth and cellulase production in submerged fermentation. Vitreoscilla hemoglobin (VHb) has been demonstrated to improve metabolism and protein production in different heterologous hosts under hypoxic conditions, but the use of VHb in T. reesei remains uninvestigated. This study examines the effect of VHb in improving T. reesei performance in submerged fermentation. The VHb gene (vgb)-expressing cassette was successfully transformed into the TU-6 strain, integrated into the genome of T. reesei, and functionally expressed with biological activity, which was confirmed by carbon monoxide difference analysis. Compared to the parent strain, the expression of VHb increased the glucose consumption rate of the transformant. Moreover, in cellulase-inducing medium total protein secretion of the VHb expressing strain was 2.2-fold of the parental strain and the filter paper cellulase activity was increased by 58% under oxygen-limiting conditions. In summary, our results demonstrate that VHb has beneficial effects on improving total protein secretion and cellulase activity of T. reesei in submerged fermentation.
Collapse
|
19
|
Wu W, Guo X, Zhang M, Huang Q, Qi F, Huang J. Enhancement of
l
‐phenylalanine production in
Escherichia coli
by heterologous expression of
Vitreoscilla
hemoglobin. Biotechnol Appl Biochem 2017; 65:476-483. [DOI: 10.1002/bab.1605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Wei‐Bin Wu
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| | - Xiao‐Lei Guo
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| | - Ming‐Liang Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| | - Qing‐Gen Huang
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| | - Jian‐Zhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of EducationFujian Normal University Fuzhou People's Republic of China
| |
Collapse
|
20
|
Zhang H, Feng Y, Cui Q, Song X. Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnol 2017; 17:68. [PMID: 28854910 PMCID: PMC5577678 DOI: 10.1186/s12896-017-0388-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arachidonic acid (ARA, C20:4, n-6), which belongs to the omega-6 series of polyunsaturated fatty acids and has a variety of biological activities, is commercially produced in Mortierella alpina. Dissolved oxygen or oxygen utilization efficiency is a critical factor for Mortierella alpina growth and arachidonic acid production in large-scale fermentation. Overexpression of the Vitreoscilla hemoglobin gene is thought to significantly increase the oxygen utilization efficiency of the cells. RESULTS An optimized Vitreoscilla hemoglobin (VHb) gene was introduced into Mortierella alpina via Agrobacterium tumefaciens-mediated transformation. Compared with the parent strain, the VHb-expressing strain, termed VHb-20, grew faster under both limiting and non-limiting oxygen conditions and exhibited dramatic changes in cell morphology. Furthermore, VHb-20 produced 4- and 8-fold higher total lipid and ARA yields than those of the wild-type strain under a microaerobic environment. Furthermore, ARA production of VHb-20 was also 1.6-fold higher than that of the wild type under normal conditions. The results demonstrated that DO utilization was significantly increased by expressing the VHb gene in Mortierella alpina. CONCLUSIONS The expression of VHb enhances ARA and lipid production under both lower and normal dissolved oxygen conditions. This study provides a novel strategy and an engineered strain for the cost-efficient production of ARA.
Collapse
Affiliation(s)
- Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| |
Collapse
|
21
|
Han G, Hu X, Wang X. Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum. Enzyme Microb Technol 2015. [DOI: 10.1016/j.enzmictec.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). World J Microbiol Biotechnol 2013; 30:1369-76. [PMID: 24272774 DOI: 10.1007/s11274-013-1561-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Oxygen deficiency is a critical factor during the fermentation production of natamycin. In order to alleviate oxygen limitation and enhance the yield of natamycin, the vgb gene, encoding Vitreoscilla hemoglobin (VHb) was inserted into pSET152 with its native promoter and integrated into the chromosome of Streptomyces gilvosporeus (S. gilvosporeus). The expression of VHb was determined by Western blotting. The activity of expressed VHb was confirmed by the observation of VHb-specific CO-difference spectrum with a maximal absorption at 419 nm for the recombinant. Integration of the empty plasmid pSET152 did not affect natamycin production of S. gilvosporeus. While the vgb-harboring strain exhibited high natamycin productivity, reaching 3.31 g/L in shake flasks and 8.24 g/L in 1-L fermenters. Compared to the wild strain, expression of VHb, increased the natamycin yield of the strain bearing vgb by 131.3 % (jar fermenter scale) and 175 % (shake flask scale), respectively, under certain oxygen-limiting condition. Addition of an extra copy of the vgb gene in S. gilvosporeus-vgb2 did not enhance the natamycin production obviously. These results provided a superior natamycin-producing strain which can be directly used in industry and a useful strategy for increasing yields of other metabolites in industrial strains.
Collapse
|
23
|
Celińska E, Grajek W. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica. Microb Cell Fact 2013; 12:102. [PMID: 24188724 PMCID: PMC3827991 DOI: 10.1186/1475-2859-12-102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. RESULTS To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L(-1), and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L(-1)) and 2-phenylethanol (up to 1 g L(-1) in shake flask cultivation), which are industrially attractive bioproducts. CONCLUSIONS Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red-ox balance brought by the wide spectrum oxidoreductase. Our results demonstrate the potential multidirectional use of a novel Yarrowia lipolytica strain as a microbial cell factory.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań 60-627, Poland
| | - Włodzimierz Grajek
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznań 60-627, Poland
| |
Collapse
|
24
|
Ma Z, Liu J, Bechthold A, Tao L, Shentu X, Bian Y, Yu X. Development of Intergeneric Conjugal Gene Transfer System in Streptomyces diastatochromogenes 1628 and Its Application for Improvement of Toyocamycin Production. Curr Microbiol 2013; 68:180-5. [DOI: 10.1007/s00284-013-0461-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
25
|
Madzak C, Beckerich JM. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Hu X, Quinn PJ, Wang Z, Han G, Wang X. Genetic modification and bioprocess optimization for S-Adenosyl-L-methionine biosynthesis. Subcell Biochem 2012; 64:327-341. [PMID: 23080258 DOI: 10.1007/978-94-007-5055-5_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
S-Adenosyl-L-methionine is an important bioactive sulfur-containing amino acid. Large scale preparation of the amino acid is of great significance. S-Adenosyl-L-methionine can be synthesized from L-methionine and adenosine triphosphate in a reaction catalyzed by methionine adenosyltransferase. In order to enhance S-adenosyl-L-methionine biosynthesis by industrial microbial strains, various strategies have been employed to optimize the process. Genetic manipulation has largely focused on enhancement of expression and activity of methionine adenosyltransferase. This has included its overexpression in Pichia pastoris, Saccharomyces cerevisiae and Escherichia coli, molecular evolution, and fine-tuning of expression by promoter engineering. Furthermore, knocking in of Vitreoscilla hemoglobin and knocking out of cystathionine-β-synthase have also been effective strategies. Besides genetic modification, novel bioprocess strategies have also been conducted to improve S-adenosyl-L-methionine synthesis and inhibit its conversion. This has involved the optimization of feeding modes of methanol, glycerol and L-methionine substrates. Taken together considerable improvements have been achieved in S-adenosyl-L-methionine accumulation at both flask and fermenter scales. This review provides a contemporary account of these developments and identifies potential methods for further improvements in the efficiency of S-adenosyl-L-methionine biosynthesis.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | | | | | | | | |
Collapse
|
27
|
Wu X, Chen Y, Li Y, Li O, Zhu L, Qian C, Tao X, Teng Y. Constitutive expression of Vitreoscilla haemoglobin in Sphingomonas elodea to improve gellan gum production. J Appl Microbiol 2010; 110:422-30. [DOI: 10.1111/j.1365-2672.2010.04896.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X, Ling P. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. BIORESOURCE TECHNOLOGY 2010; 101:4733-4736. [PMID: 20171882 DOI: 10.1016/j.biortech.2010.01.128] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 05/28/2023]
Abstract
In order to alleviate oxygen limitation and improve the yield of poly-gamma-glutamic acid (gamma-PGA) during fermentation, the Vitreoscilla hemoglobin gene (vgb) was integrated into the chromosome of Bacillus subtilis and expressed during gamma-PGA production. The activity of the expressed Vitreoscilla hemoglobin (VHb) was confirmed by CO-difference spectrum. Expression of VHb enhanced cell growth under high viscosity fermentation conditions 1.26-fold and increased the yield of gamma-PGA 2.07-fold. These results indicate that the expression of VHb could be advantageous in high viscosity fermentation media.
Collapse
Affiliation(s)
- Yishan Su
- Shandong Academy of Pharmaceutical Science, Jinan 250101, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Li M, Wu J, Lin J, Wei D. Expression of Vitreoscilla Hemoglobin Enhances Cell Growth and Dihydroxyacetone Production in Gluconobacter oxydans. Curr Microbiol 2010; 61:370-5. [DOI: 10.1007/s00284-010-9621-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/10/2010] [Indexed: 11/24/2022]
|
30
|
Kurt AG, Aytan E, Ozer U, Ates B, Geckil H. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J 2009; 4:1077-88. [PMID: 19585534 DOI: 10.1002/biot.200900130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Given the well-established beneficial effects of Vitreoscilla hemoglobin (VHb) on heterologous organisms, the potential of this protein for the production of L-DOPA and dopamine in two bacteria, Citrobacter freundii and Erwinia herbicola, was investigated. The constructed recombinants bearing the VHb gene (vgb(+)) had substantially higher levels of cytoplasmic L-DOPA (112 mg/L for C. freundii and 97 mg/L for E. herbicola) than their respective hosts (30.4 and 33.8 mg/L) and the vgb(-) control strains (35.6 and 35.8 mg/L). Further, the vgb(+) recombinants of C. freundii and E. herbicola had 20-fold and about two orders of magnitude higher dopamine levels than their hosts, repectively. The activity of tyrosine phenol-lyase, the enzyme converting L-tyrosine to L-DOPA, was well-correlated to cytoplasmic L-DOPA levels. As cultures aged, higher tyrosine phenol-lyase activity of the vgb(+) strains was more apparent.
Collapse
|
31
|
Hofmann G, Diano A, Nielsen J. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger. Metab Eng 2009; 11:8-12. [DOI: 10.1016/j.ymben.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/27/2008] [Accepted: 07/17/2008] [Indexed: 11/17/2022]
|
32
|
Zhou J, Liu L, Du G, Chen J. Citrate protect the growth of Torulopsis glabrata CCTCC M202019 against acidic stress as additional ATP supplier. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
|
34
|
Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ. Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 2008; 77:1297-304. [DOI: 10.1007/s00253-007-1254-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/21/2007] [Accepted: 10/21/2007] [Indexed: 10/22/2022]
|
35
|
Chen H, Chu J, Zhang S, Zhuang Y, Qian J, Wang Y, Hu X. Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 2007; 74:1205-12. [PMID: 17334759 DOI: 10.1007/s00253-006-0705-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 10/23/2022]
Abstract
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.
Collapse
Affiliation(s)
- Huaxin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Kallio PT, Heidrich J, Koskenkorva T, Bollinger CJ, Farrés J, Frey AD. Analysis of novel hemoglobins during microaerobic growth of HMP-negative Escherichia coli. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Bozzi A, Coccia C, Di Giulio A, Rinaldi AC, Amadei A, Mignogna G, Bonamore A, Fais A, Aschi M. Folding propensity and biological activity of peptides: New insights from conformational properties of a novel peptide derived fromVitreoscilla haemoglobin. Biopolymers 2007; 87:85-92. [PMID: 17554783 DOI: 10.1002/bip.20792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthetic peptide Vitr-p-13 (YPIVGQELLGAIK-NH(2)), derived from the bacterial dimeric Vitreoscilla haemoglobin (VHb) in the position 95-107, is characterized by a pre-eminent "statistical coil" conformation in water as demonstrated by CD experiments and long time-scale MD simulations. In particular, Vitr-p-13 does not spontaneously adopt an alpha-helix folding in water, but it is rather preferentially found in beta-hairpin-like conformations. Long time-scale MD simulations have also shown that Vitr-p-13 displays a "topological-trigger" which initiates alpha-helix folding within residues 7-10, exactly like seen in the temporins, a group of linear, membrane-active antimicrobial peptides of similar length. At variance with temporins, in Vitr-p-13 such a process is energetically very demanding (+10 kJ/mol) in water at 300 K, and the peptide was found to be unable to bind model membranes in vitro and was devoid of antimicrobial activity. The present results, compared with previous studies on similar systems, strengthen the hypothesis of the requirement of a partial folding when still in aqueous environment to allow a peptide to interact with cell-membranes and eventually exert membrane perturbation-related antibiotic effects on target microbial cells.
Collapse
Affiliation(s)
- A Bozzi
- Dipartimento di Scienze e Tecnologie Biomediche, Università de L'Aquila, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
te Biesebeke R, Boussier A, van Biezen N, Braaksma M, van den Hondel CAMJJ, de Vos WM, Punt PJ. Expression ofAspergillus hemoglobin domain activities inAspergillus oryzae grown on solid substrates improves growth rate and enzyme production. Biotechnol J 2006; 1:822-7. [PMID: 16927259 DOI: 10.1002/biot.200600036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
DNA fragments coding for hemoglobin domains (HBD) were isolated from Aspergillus oryzae and Aspergillus niger. The HBD activities were expressed in A. oryzae by introduction of HBD gene fragments under the control of the promoter of the constitutively expressed gpdA gene. In the transformants, oxygen uptake was significantly higher, and during growth on solid substrates the developed biomass was at least 1.3 times higher than that of the untransformed wild-type strain. Growth rate of the HBD-activity-producing strains was also significantly higher compared to the wild type. During growth on solid cereal substrates, the amylase and protease activities in the extracts of the HBD-activity-producing strains were 30-150% higher and glucoamylase activities were at least 9 times higher compared to the wild-type strain. These results suggest that the Aspergillus HBD-encoding gene can be used in a self-cloning strategy to improve biomass yield and protein production of Aspergillus species.
Collapse
Affiliation(s)
- Rob te Biesebeke
- Wageningen Center for Food Sciences (WCFS), Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Suthar DH, Chattoo BB. Expression of Vitreoscilla hemoglobin enhances growth and levels of alpha-amylase in Schwanniomyces occidentalis. Appl Microbiol Biotechnol 2006; 72:94-102. [PMID: 16642333 DOI: 10.1007/s00253-005-0237-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/26/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
A metabolic engineering approach was exploited to improve growth and protein secretion in the non-conventional yeast, Schwanniomyces occidentalis. Vitreoscilla hemoglobin (VHb) gene was expressed in S. occidentalis under the control of the native alpha-amylase (AMY1) promoter. Expression of VHb was confirmed by reverse transcriptase polymerase chain reaction and Western blot hybridization analysis. Effect of VHb on growth and protein secretion was studied in synthetic medium under both limiting and non-limiting dissolved oxygen conditions. Under both conditions, VHb-expressing cells exhibited higher oxygen uptake and higher specific growth rates. Levels of extracellular alpha-amylase were also elevated in the VHb-transformed strain relative to the control strain. In amylase production medium, VHb-expressing cells showed 3-fold elevated levels of alpha-amylase and a 31% increase in the total secreted protein under oxygen-limiting environment. VHb was found to localize in the mitochondria in addition to its cytoplasmic location. Inhibition of respiration by antimycin A resulted in the loss of the growth-enhancing effects of VHb. A 2.5-fold increase in the cytochrome c oxidase (COX) activity was observed in VHb-expressing cells relative to the control. In addition to this, exogenously added VHb in the assay mixture augmented COX activity.
Collapse
Affiliation(s)
- Devesh H Suthar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The M.S. University of Baroda, Vadodara, 390 002, India
| | - Bharat B Chattoo
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The M.S. University of Baroda, Vadodara, 390 002, India.
| |
Collapse
|
40
|
Zhu H, Wang TW, Sun SJ, Shen YL, Wei DZ. Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis. Appl Microbiol Biotechnol 2006; 72:770-6. [PMID: 16501972 DOI: 10.1007/s00253-006-0322-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 12/24/2005] [Accepted: 12/29/2005] [Indexed: 11/29/2022]
Abstract
The Vitreoscilla hemoglobin (VHb) gene was expressed in yeast-like conidia (YLCs) of Tremella fuciformis (T. fuciformis) to increase cell density in submerged fermentation by enhancing oxygen uptake. With the intention of doing this, an integrated expression vector containing the VHb gene and the hygromycin B phosphotransferase (hph) gene derived from Escherichia coli (E. coli) as the selectable marker was constructed, and then transformed into protoplasts of YLCs from T. fuciformis with restriction enzyme-mediated DNA integration (REMI). Hygromycin-resistant transformants had been generated during the transformation. Molecular evidences including PCR assay, Southern blotting, and Western blot analysis indicated the VHb gene had been integrated into the genome of transgenic T. fuciformis strains and was expressed successfully. Shake-flask fermentation and bioreactor cultivation results showed that the expression of VHb in this fungus could enhance growth of YLCs. The final cell density was higher in the culture of VHb-expressing strain than that of the wild-type strain. Moreover, these results also suggested that CaMV35S promoter was capable of driving the expression of heterologous genes in T. fuciformis.
Collapse
Affiliation(s)
- Hu Zhu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Chien LJ, Chen HT, Yang PF, Lee CK. Enhancement of Cellulose Pellicle Production by Constitutively ExpressingVitreoscillaHemoglobin inAcetobacter xylinum. Biotechnol Prog 2006. [DOI: 10.1002/bp060157g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Chien LJ, Lee CK. Expression of Bacterial Hemoglobin in the Yeast, Pichia pastoris, with a Low O2-Induced Promoter. Biotechnol Lett 2005; 27:1491-7. [PMID: 16231222 DOI: 10.1007/s10529-005-1324-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
The PsADH2-promoter of Pichia stipitis alcohol dehydrogenase II (ADH II) gene was employed to control the expression of Vitreoscilla hemoglobin (VHb) gene in Pichia pastoris. As in P. stipitis, the promoter was also induced microaerobically in P. pastoris. The expression level of VHb in P. pastoris at low O2 tension (<5% air saturation) was 16 nmol/g dry cell wt, i.e. about 24-fold higher than that at 60% air saturation. The expressed VHb enhanced growth of P. pastoris under microaerobic conditions. The application of O2-regulated promoter in P. pastoris revealed that induction of high-level expression of heterologous protein is feasible without addition of supplementary compounds.
Collapse
Affiliation(s)
- Liang-Jung Chien
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 106, Taipei, Taiwan
| | | |
Collapse
|
43
|
Hu ZB. [Current research status of Vitreoscilla hemoglobin and the prospective application in traditional Chinese medicine]. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2005; 3:337-41. [PMID: 16159562 DOI: 10.3736/jcim20050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Zhi-Bi Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
44
|
Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 2005; 5:1079-96. [PMID: 16144775 DOI: 10.1016/j.femsyr.2005.06.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022] Open
Abstract
Yeasts combine the ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. Yeasts thus provide attractive platforms for the production of recombinant proteins. Here, four important species are presented and compared: the methylotrophic Hansenula polymorpha and Pichia pastoris, distinguished by an increasingly large track record as industrial platforms, and the dimorphic species Arxula adeninivorans and Yarrrowia lipolytica, not yet established as industrial platforms, but demonstrating promising technological potential, as discussed in this article.
Collapse
Affiliation(s)
- Gerd Gellissen
- PharmedArtis GmbH, Forckenbeckstr. 6, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|