1
|
Szyszka TN, Siddiquee R, Loustau A, Adamson LSR, Rennie C, Huang T, Young R, Care A, Lau YH. High-Fidelity In Vitro Packaging of Diverse Synthetic Cargo into Encapsulin Protein Cages. Angew Chem Int Ed Engl 2025; 64:e202422459. [PMID: 40139971 PMCID: PMC12124451 DOI: 10.1002/anie.202422459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Cargo-filled protein cages are powerful tools in biotechnology with demonstrated potential as catalytic nanoreactors and vehicles for targeted drug delivery. While endogenous biomolecules can be packaged into protein cages during their expression and self-assembly inside cells, synthetic cargo molecules are typically incompatible with live cells and must be packaged in vitro. Here, we report a fusion-based in vitro assembly method for packaging diverse synthetic cargo into encapsulin protein cages that outperforms standard in cellulo assembly, producing cages with superior uniformity and thermal stability. Fluorescent dyes, proteins and cytotoxic drug molecules can all be selectively packaged with high efficiency via a peptide-mediated targeting process. The exceptional fidelity and broad compatibility of our in vitro assembly platform enables generalisable access to cargo-filled protein cages that host novel synthetic functionality for diverse biotechnological applications.
Collapse
Affiliation(s)
- Taylor N. Szyszka
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence in Synthetic BiologyThe University of SydneyCamperdownNSW2006Australia
| | - Rezwan Siddiquee
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence in Synthetic BiologyThe University of SydneyCamperdownNSW2006Australia
| | - Alex Loustau
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
| | - Lachlan S. R. Adamson
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence in Synthetic BiologyThe University of SydneyCamperdownNSW2006Australia
| | - Claire Rennie
- School of Life SciencesUniversity of Technology SydneySydneyNSW2007Australia
- Australian Institute for Microbiology and InfectionSydneyNSW2007Australia
| | - Tiancheng Huang
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
| | - Reginald Young
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
| | - Andrew Care
- ARC Centre of Excellence in Synthetic BiologyThe University of SydneyCamperdownNSW2006Australia
- School of Life SciencesUniversity of Technology SydneySydneyNSW2007Australia
| | - Yu Heng Lau
- School of ChemistryThe University of SydneyCamperdownNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence in Synthetic BiologyThe University of SydneyCamperdownNSW2006Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneyCamperdownNSW2006Australia
| |
Collapse
|
2
|
Fatema K, Snowden JS, Watson A, Sherry L, Ranson NA, Stonehouse NJ, Rowlands DJ. A VLP vaccine platform comprising the core protein of hepatitis B virus with N-terminal antigen capture. Int J Biol Macromol 2025; 305:141152. [PMID: 39961558 DOI: 10.1016/j.ijbiomac.2025.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Nanoparticle presentation systems offer the potential to develop new vaccines rapidly in response to emerging diseases, a public health need that has become increasingly evident in the wake of the COVID-19 pandemic. Previously, we reported a nanoparticle scaffold system termed VelcroVax. This was constructed by insertion of a high affinity SUMO binding protein (Affimer), able to recognise a SUMO peptide tag, into the major immunodominant region of VLPs assembled from a tandem (fused dimer) form of hepatitis B virus (HBV) core protein (HBc). Here we describe an alternative form, termed N-VelcroVax, a VLP vaccine platform assembled from a monomeric HBc protein (N-anti-SUMO Affimer HBc 190) with the Affimer inserted at the N-terminus. In contrast to the tandem form of VelcroVax, N-VelcroVax VLPs were expressed well in E. coli. The VLPs effectively bound SUMO-tagged Junín virus glycoprotein, gp1 as assessed by structural and serological analyses. Cryo-EM characterisation of N-VelcroVax complexed with a SUMO-Junín gp1 showed continuous density attributable to the fused Affimer, in addition to evidence of target antigen capture. Collectively, these data suggest that N-VelcroVax has potential as a versatile next generation vaccine scaffold.
Collapse
Affiliation(s)
- Kaniz Fatema
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alexander Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
3
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and Biochemical Characterization of a Widespread Enterobacterial Peroxidase Encapsulin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415827. [PMID: 40167211 DOI: 10.1002/advs.202415827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. This work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
Affiliation(s)
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Soppela S, Plavec Z, Gröhn S, Mustonen I, Jartti M, Oikarinen S, Laajala M, Marjomäki V, Butcher SJ, Hankaniemi MM. Immunological and structural evaluation of the intranasally administrated CVB1 whole-virus and VLP vaccines. Sci Rep 2025; 15:10198. [PMID: 40133550 PMCID: PMC11937443 DOI: 10.1038/s41598-025-94656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, cardiomyopathy, and meningitis. CVBs replicate in mucosal membranes. Therefore, vaccines inducing robust mucosal immune responses are needed. We investigated the immunogenicity of virus-like particles (VLP) and inactivated virus vaccines for CVB1, administered to mice either subcutaneously or intranasally, formulated with and without commercial and an experimental adjuvant. In this study, epigallocatechin-3-gallate (EGCG) was used both as a potential adjuvant and as an inactivating agent. EGCG adjuvanted CVB1-VLP enhanced immunogenicity via the parenteral route, but not intranasally. EGCG-adjuvanted and non-adjuvanted CVB1-VLPs triggered an immune response after intranasal administration, although the response remained weak. Intranasal administration of formalin-inactivated virus elicited robust CVB1-specific humoral, cellular, and mucosal immune responses, but after EGCG-inactivation, the mucosal antibody response was lower than after formalin-inactivation. To identify the link between structure and mucosal immunogenicity, we solved the structures of CVB1-VLP and formalin-inactivated CVB1 virus at resolutions ranging from 2.15 to 4.1 Å. The structural difference between VLP and formalin-inactivated CVB1 was the presence of the genome and cross-linked amino acid residues in the formalin-inactivated virus. Formalin-inactivated CVB1 vaccine shows promise for mucosal immunizations and the structural data supports the development of next-generation VLP-vaccines in the future.
Collapse
MESH Headings
- Animals
- Mice
- Administration, Intranasal
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/chemistry
- Enterovirus B, Human/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Immunity, Mucosal
- Antibodies, Viral/immunology
- Female
- Mice, Inbred BALB C
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Catechin/analogs & derivatives
- Catechin/administration & dosage
- Coxsackievirus Infections/prevention & control
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/virology
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Saana Soppela
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Zlatka Plavec
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Stina Gröhn
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Iiris Mustonen
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Medical Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
6
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and biochemical characterization of a widespread enterobacterial peroxidase encapsulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625667. [PMID: 39651212 PMCID: PMC11623594 DOI: 10.1101/2024.11.27.625667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. Our work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
|
7
|
Luo H, Ma Y, Bi J, Li Z, Wang Y, Su Z, Gerstweiler L, Ren Y, Zhang S. Experimental and molecular dynamics simulation studies on the physical properties of three HBc-VLP derivatives as nanoparticle protein vaccine candidates. Vaccine 2024; 42:125992. [PMID: 38811268 DOI: 10.1016/j.vaccine.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Self-assembling virus-like particles (VLPs) are promising platforms for vaccine development. However, the unpredictability of the physical properties, such as self-assembly capability, hydrophobicity, and overall stability in engineered protein particles fused with antigens, presents substantial challenges in their downstream processing. We envision that these challenges can be addressed by combining more precise computer-aided molecular dynamics (MD) simulations with experimental studies on the modified products, with more to-date forcefield descriptions and larger models closely resembling real assemblies, realized by rapid advancement in computing technology. In this study, three chimeric designs based on the hepatitis B core (HBc) protein as model vaccine candidates were constructed to study and compare the influence of inserted epitopes as well as insertion strategy on HBc modifications. Large partial VLP models containing 17 chains for the HBc chimeric model vaccines were constructed based on the wild-type (wt) HBc assembly template. The findings from our simulation analysis have demonstrated good consistency with experimental results, pertaining to the surface hydrophobicity and overall stability of the chimeric vaccine candidates. Furthermore, the different impact of foreign antigen insertions on the HBc scaffold was investigated through simulations. It was found that separately inserting two epitopes into the HBc platform at the N-terminal and the major immunogenic regions (MIR) yields better results compared to a serial insertion at MIR in terms of protein structural stability. This study substantiates that an MD-guided design approach can facilitate vaccine development and improve its manufacturing efficiency by predicting products with extreme surface hydrophobicity or structural instability.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lukas Gerstweiler
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia.
| | - Ying Ren
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
8
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
10
|
Zhang YN, Gomes KB, Lee YZ, Ward G, Xie B, Auclair S, He L, Zhu J. A Single-Component Multilayered Self-Assembling Protein Nanoparticle Vaccine Based on Extracellular Domains of Matrix Protein 2 against Both Influenza A and B. Vaccines (Basel) 2024; 12:975. [PMID: 39340007 PMCID: PMC11435909 DOI: 10.3390/vaccines12090975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The development of an effective and broadly protective influenza vaccine against circulating and emerging strains remains elusive. In this study, we evaluated a potentially universal influenza vaccine based on single-component self-assembling protein nanoparticles (1c-SApNPs) presenting the conserved matrix protein 2 ectodomain (M2e) from influenza A and B viruses (IAV and IBV, respectively). We previously designed a tandem antigen comprising three IAV M2e domains of human, avian/swine, and human/swine origins (termed M2ex3). The M2ex3-presenting 1c-SApNPs conferred complete protection in mice against sequential lethal challenges with H1N1 and H3N2. To broaden this protection to cover IBVs, we designed a series of antigens incorporating different arrangements of three IAV M2e domains and three copies of IBV M2e. Tandem repeats of IAV and IBV (termed influenza A-B) M2e arrayed on the I3-01v9a 60-mer 1c-SApNP, when formulated with an oil-in-water emulsion adjuvant, generated greater M2e-specific immunogenicity and protective efficacy than the soluble influenza A-B M2e trimer, indicated by higher survival rates and reduced weight loss post-challenge. Importantly, one of the influenza A-B M2e SApNP constructs elicited 100% protection against a lethal influenza A/Puerto Rico/8/1934 (H1N1) challenge in mice and 70% protection against a lethal influenza B/Florida/4/2006 (Yamagata lineage) challenge, the latter of which has not been reported in the literature to date. Our study thus provides a promising M2e-based single-component universal vaccine candidate against the two major types of influenza virus circulating in humans.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | | | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Bomin Xie
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-N.Z.); (Y.-Z.L.); (G.W.); (B.X.); (S.A.); (L.H.)
- Uvax Bio, LLC, Newark, DE 19702, USA;
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
12
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Soppela S, Plavec Z, Gröhn S, Jartti M, Oikarinen S, Laajala M, Marjomaki V, Butcher SJ, Hankaniemi MM. Comparison of structure and immunogenicity of CVB1-VLP and inactivated CVB1 vaccine candidates. RESEARCH SQUARE 2024:rs.3.rs-4545395. [PMID: 38978565 PMCID: PMC11230480 DOI: 10.21203/rs.3.rs-4545395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. In this study, we investigated the immunogenicity of virus-like particle (VLP) and inactivated whole-virus vaccines for CVB1 when administrated to mice via either subcutaneous or intranasal routes formulated with and without commercial and experimental adjuvants. Here, the potential of utilizing epigallocatechin-3-gallate (EGCG) as a mucosal adjuvant synergistically with its ability to inactivate the virus were investigated. EGCG had promising adjuvant properties for CVB1-VLP when administered via the parenteral route but limited efficacy via intranasal administration. However, intranasal administration of the formalin-inactivated virus induced high CVB1-specific humoral, cellular, and mucosal immune responses. Also, based on CVB1-specific IgG-antibody responses, we conclude that CVB1-VLP can be taken up by immune cells when administrated intranasally and further structural engineering for the VLP may increase the mucosal immunogenicity. The preparations contained mixtures of compact and expanded A particles with 85% expanded in the formalin-inactivated virus, but only 52% in the VLP observed by cryogenic electron microscopy. To correlate the structure to immunogenicity, we solved the structures of the CVB1-VLP and the formalin-inactivated CVB1 virus at resolutions ranging from 2.15 A to 4.1 A for the expanded and compact VLP and virus particles by image reconstruction. These structures can be used in designing mutations increasing the stability and immunogenicity of CVB1-VLP in the future. Overall, our results highlight the potential of using formalin inactivated CVB1 vaccine in mucosal immunization programs and provide important information for future development of VLP-based vaccines against all enteroviruses.
Collapse
|
14
|
McCormick RA, Ralbovsky NM, Gilbraith W, Smith JP, Booksh KS. Analyzing atomic force microscopy images of virus-like particles by expectation-maximization. NPJ Vaccines 2024; 9:112. [PMID: 38902288 PMCID: PMC11190231 DOI: 10.1038/s41541-024-00871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/28/2024] [Indexed: 06/22/2024] Open
Abstract
Analysis of virus-like particles (VLPs) is an essential task in optimizing their implementation as vaccine antigens for virus-initiated diseases. Interrogating VLP collections for elasticity by probing with a rigid atomic force microscopy (AFM) tip is a potential method for determining VLP morphological changes. During VLP morphological change, it is not expected that all VLPs would be in the same state. This leads to the open question of whether VLPs may change in a continuous or stepwise fashion. For continuous change, the statistical distribution of observed VLP properties would be expected as a single distribution, while stepwise change would lead to a multimodal distribution of properties. This study presents the application of a Gaussian mixture model (GMM), fit by the Expectation-Maximization (EM) algorithm, to identify different states of VLP morphological change observed by AFM imaging.
Collapse
Affiliation(s)
- Rachel A McCormick
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA, 19486, USA
| | - William Gilbraith
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Joseph P Smith
- Process Research & Development, MRL, Merck & Co., Inc, West Point, PA, 19486, USA.
| | - Karl S Booksh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
15
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
16
|
Wu X, Wang Q, Lu W, Wang Y, Han Z, Liang L, Gao S, Ma H, Luo X. The PCV3 Cap Virus-like Particle Vaccine with the Chimeric PCV2-Neutralizing Epitope Gene Is Effective in Mice. Vet Sci 2024; 11:264. [PMID: 38922011 PMCID: PMC11209062 DOI: 10.3390/vetsci11060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine circovirus infections. In this study, we used both E. coli and mammalian expression systems to express PCV3 Cap (Cap3) and a chimeric gene containing the PCV2-neutralizing epitope within the PCV3 Cap (Cap3-Cap2E), which were assembled into virus-like particle (VLP) vaccines. We found that Cap3 lacking nuclear localization signal (NLS) could not form VLPs, while Cap3 with a His-tag successfully assembled into VLPs. Additionally, the chimeric of PCV2-neutralizing epitopes did not interfere with the assembly process of VLPs. Various immunization approaches revealed that pCap3-Cap2E VLP vaccines were capable of activating high PCV3 Cap-specific antibody levels and effectively neutralizing both PCV3 and PCV2. Furthermore, pCap3-Cap2E VLPs demonstrated a potent ability to activate cellular immunity, protecting against PCV3 infection and preventing lung damage in mice. In conclusion, this study successfully developed a PCV3 Cap VLP vaccine incorporating chimeric PCV2-neutralizing epitope genes, providing new perspectives for PCV3 vaccine development.
Collapse
Affiliation(s)
- Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Qikai Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Wang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Zehao Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Shimin Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| |
Collapse
|
17
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
19
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nat Commun 2024; 15:2558. [PMID: 38519509 PMCID: PMC10960027 DOI: 10.1038/s41467-024-46880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Sun L, Zhang J, Shi L, Peng Y, Feng X, Huang F, Yang F, Li J, Wang S, Niu J, Liu J, Li Y, Li S, Chen Z. Development and Immunological Evaluation of a Multiantigen Thermostable Nanovaccine Adjuvanted with T-Cell-Activating Scaffold for African Swine Fever. ACS APPLIED BIO MATERIALS 2024; 7:1547-1557. [PMID: 38346262 DOI: 10.1021/acsabm.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
African swine fever is an acute and highly contagious infectious disease with a mortality rate of up to 100%. The lack of commercial vaccines and drugs is a serious economic threat to the global pig industry. Cell-mediated immunity plays an essential role in protection against viral infection. We previously reported the rational design of a T-cell-activating thermostable scaffold (RPT) for antigen delivery and improved cellular immunity. We conjugated antigens P30, P54, P72, CD2 V, and CP312R to RPT, using a SpyCatcher/SpyTag covalent attachment strategy to construct nanovaccines (multiantigens-RPT). Multiantigens-RPT exhibited significantly higher thermal, storage, and freeze-thaw stability. The specific antibodies IgG and IgG2a of the multiantigen-RPT-immunized were higher than the antigens cocktail-immunized by approximately 10-100 times. ELISpot demonstrated that more IFN-γ-secreting cells were produced by the multiantigen-RPT-immunized than by the antigens cocktail-immunized. Delivery of the multiantigen nanovaccine by a T-cell-activating scaffold induced strong humoral and cellular immune responses in mice and pigs and is a potentially useful candidate vaccine for the African swine fever virus.
Collapse
Affiliation(s)
- Lidan Sun
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
| | - Jinsong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lijun Shi
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanli Peng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangning Feng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Feixia Yang
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
| | - Jinyu Li
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
| | - Shuo Wang
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
| | - Jingqi Niu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
| | - Yingjun Li
- Beijing Tonghe Litai Biotechnology Co., Ltd. Beijing 100080, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
21
|
Ru J, Chen Y, Tao S, Du S, Liang C, Teng Z, Gao Y. Exploring Hollow Mesoporous Silica Nanoparticles as a Nanocarrier in the Delivery of Foot-And-Mouth Disease Virus-like Particle Vaccines. ACS APPLIED BIO MATERIALS 2024; 7:1064-1072. [PMID: 38286026 DOI: 10.1021/acsabm.3c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Virus-like particle (VLP) vaccine is considered to be the most promising candidate alternative to the traditional inactivated vaccine for foot-and-mouth disease (FMD). To elicit a desired immune response, hollow mesoporous silica nanoparticles (HMSNs) have been synthesized and utilized as a nanocarrier for FMD VLP vaccine delivery. The as-prepared HMSNs displayed a relatively small particle size (∼260 nm), large cavity (∼150 nm), and thin wall (∼55 nm). The inherent structural superiorities make them ideal nanocarriers for the FMD VLP vaccine, which exhibited good biocompatibility, great protein-loading capacity, high antibody-response level, and protective efficiency, even comparable to commercial adjuvant ISA 206. All the results suggested that HMSNs may be a valid nanocarrier in VLP-based vaccines.
Collapse
Affiliation(s)
- Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Yu Chen
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Siyi Tao
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| |
Collapse
|
22
|
Barajas A, Amengual-Rigo P, Pons-Grífols A, Ortiz R, Gracia Carmona O, Urrea V, de la Iglesia N, Blanco-Heredia J, Anjos-Souza C, Varela I, Trinité B, Tarrés-Freixas F, Rovirosa C, Lepore R, Vázquez M, de Mattos-Arruda L, Valencia A, Clotet B, Aguilar-Gurrieri C, Guallar V, Carrillo J, Blanco J. Virus-like particle-mediated delivery of structure-selected neoantigens demonstrates immunogenicity and antitumoral activity in mice. J Transl Med 2024; 22:14. [PMID: 38172991 PMCID: PMC10763263 DOI: 10.1186/s12967-023-04843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They stand as promising targets for personalized therapeutic cancer vaccines. The identification process for neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in tumor genomics. However, in-silico strategies for selecting immunogenic neoantigens still have very low accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex (MHC) molecules, which is key but not the sole determinant for immunogenicity. Moreover, the therapeutic potential of neoantigen-based vaccines may be enhanced using an optimal delivery platform that elicits robust de novo immune responses. METHODS We developed a novel neoantigen selection pipeline based on existing software combined with a novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural features of the peptide/MHC-I interaction, as well as the interaction between the peptide/MHC-I complex and the TCR, in its prediction strategy. Moreover, to maximize neoantigens' therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform that elicits robust de novo immune responses and bypasses central and peripheral tolerance. RESULTS We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-Like Particles (VLPs) expressing a high copy number of each in silico selected neoantigen. We tested different neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to generate new immunogenic specificities. NeoVLPs were used in in vivo immunogenicity and tumor challenge experiments. CONCLUSIONS Our results indicate the relevance of incorporating other immunogenic determinants beyond the binding of neoantigens to MHC-I. Thus, neoVLPs loaded with neoantigens enhancing the interaction with the TCR can promote the generation of de novo antitumor-specific immune responses, resulting in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.
Collapse
Affiliation(s)
- Ana Barajas
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- Univeritat Autónoma de Barcelona (UAB), Cerdanyola, Spain
| | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- Univeritat Autónoma de Barcelona (UAB), Cerdanyola, Spain
| | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Juan Blanco-Heredia
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Carla Anjos-Souza
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Ismael Varela
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | | | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, Badalona, Spain
| | | | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
23
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
24
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
25
|
Akdeniz M, Al-Shaebi Z, Altunbek M, Bayraktar C, Kayabolen A, Bagci-Onder T, Aydin O. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy. Biotechnol J 2024; 19:e2300191. [PMID: 37750467 DOI: 10.1002/biot.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Non-infectious virus-like particles (VLPs) are excellent structures for development of many biomedical applications such as drug delivery systems, vaccine production platforms, and detection techniques for infectious diseases including SARS-CoV-2 VLPs. The characterization of biochemical and biophysical properties of purified VLPs is crucial for development of detection methods and therapeutics. The presence of spike (S) protein in their structure is especially important since S protein induces immunological response. In this study, development of a rapid, low-cost, and easy-to-use technique for both characterization and detection of S protein in the two VLPs, which are SARS-CoV-2 VLPs and HIV-based VLPs was achieved using surface-enhanced Raman spectroscopy (SERS). To analyze and classify datasets of SERS spectra obtained from the VLP groups, machine learning classification techniques including support vector machine (SVM), k-nearest neighbors (kNN), and random forest (RF) were utilized. Among them, the SVM classification algorithm demonstrated the best classification performance for SARS-CoV-2 VLPs and HIV-based VLPs groups with 87.5% and 92.5% accuracy, respectively. This study could be valuable for the rapid characterization of VLPs for the development of novel therapeutics or detection of structural proteins of viruses leading to a variety of infectious diseases.
Collapse
Affiliation(s)
- Munevver Akdeniz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Zakarya Al-Shaebi
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
26
|
Bárcena J, Zamora-Ceballos M, Blanco E. Design of Novel Vaccines Based on Virus-Like Particles. Subcell Biochem 2024; 105:785-821. [PMID: 39738963 DOI: 10.1007/978-3-031-65187-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Virus-like particles (VLPs) are formed by viral proteins that, when overexpressed, spontaneously self-assemble into particles that structurally are similar to infectious virus or subviral particles (e.g. the viral capsid). VLPs are appealing as vaccine candidates because their inherent properties (i.e. virus-sized, multimeric antigens, highly organised and repetitive structure, not infectious) are suitable for the induction of safe and efficient humoral and cellular immune responses. VLP-based vaccines have already been licensed for human and veterinary use, and many more vaccine candidates are currently in late stages of evaluation. Moreover, the development of VLPs as platforms for foreign antigen display has further broadened their potential applicability both as prophylactic and therapeutic vaccines. This chapter provides an overview on the design and use of VLPs for the development of new-generation vaccines.
Collapse
Affiliation(s)
- Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain.
| | | | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| |
Collapse
|
27
|
Braz Gomes K, Zhang YN, Lee YZ, Eldad M, Lim A, Ward G, Auclair S, He L, Zhu J. Single-Component Multilayered Self-Assembling Protein Nanoparticles Displaying Extracellular Domains of Matrix Protein 2 as a Pan-influenza A Vaccine. ACS NANO 2023; 17:23545-23567. [PMID: 37988765 PMCID: PMC10722606 DOI: 10.1021/acsnano.3c06526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3). Vaccination with M2ex3 displayed on SApNPs demonstrated higher survival rates and less weight loss compared to the soluble M2ex3 antigen against the lethal challenges of H1N1 and H3N2 in mice. M2ex3 I3-01v9a SApNPs formulated with a squalene-based adjuvant were retained in the lymph node follicles over 8 weeks and induced long-lived germinal center reactions. Notably, a single low dose of M2ex3 I3-01v9a SApNP formulated with a potent adjuvant, either a Toll-like receptor 9 (TLR9) agonist or a stimulator of interferon genes (STING) agonist, conferred 90% protection against a lethal H1N1 challenge in mice. With the ability to induce robust and durable M2e-specific functional antibody and T cell responses, the M2ex3-presenting I3-01v9a SApNP provides a promising pan-influenza A vaccine candidate.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Nan Zhang
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Zong Lee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mor Eldad
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Lim
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Garrett Ward
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sarah Auclair
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Linling He
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiang Zhu
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Luo H, Ma Y, Ren Y, Li Z, Sheng Y, Wang Y, Su Z, Bi J, Zhang S. Study of self-assembling properties of HBc-VLP derivatives aided by molecular dynamic simulations from a thermodynamic perspective. J Biomol Struct Dyn 2023; 42:12822-12835. [PMID: 37908124 DOI: 10.1080/07391102.2023.2273438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Self-assembling protein nanoparticles showed promise for vaccine design due to efficient antigen presentations and safety. However, the unpredictable formations of epitopes-fused protein assemblies remain challenging in the upstream design. This study suggests employing molecular dynamic (MD) simulations to investigate the assembly properties of Hepatitis B core protein (HBc) from thermodynamic perspectives. Eight HBc derivatives were expressed in E. coli, with their self-assembly properties characterised by high-performance liquid chromatography and transmission electron microscopy. MD simulations on the dimers, based on AlphaFold-predicted 3D structures, analysed the derivative at the atomic level. Results revealed that HBc derivatives can form dissociative polymers or large multi-subunit structures due to assembly failures. The instability of the dimer in aqueous solvents or inappropriate intradimer distances could cause major assembly failures. Polar solvation energies played a vital role too in forming assemble-incompetent dimers. Importantly, our study demonstrated that MD simulations on dimers can provide preliminary predictions on the assembly properties of HBc derivatives, thus aiding vaccine design by lowering the risk of self-assembling failures in engineered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
29
|
Setyo Utomo DI, Suhaimi H, Muhammad Azami NA, Azmi F, Mohd Amin MCI, Xu J. An Overview of Recent Developments in the Application of Antigen Displaying Vaccine Platforms: Hints for Future SARS-CoV-2 VLP Vaccines. Vaccines (Basel) 2023; 11:1506. [PMID: 37766182 PMCID: PMC10536610 DOI: 10.3390/vaccines11091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.
Collapse
Affiliation(s)
- Doddy Irawan Setyo Utomo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Gedung 611, LAPTIAB, KST Habibie, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Hamizah Suhaimi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fazren Azmi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Mohd Cairul Iqbal Mohd Amin
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
30
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation in a protein nanocompartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558302. [PMID: 37790520 PMCID: PMC10542125 DOI: 10.1101/2023.09.18.558302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Zhang J, Yang J, Li Q, Peng R, Fan S, Yi H, Lu Y, Peng Y, Yan H, Sun L, Lu J, Chen Z. T Cell Activating Thermostable Self-Assembly Nanoscaffold Tailored for Cellular Immunity Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303049. [PMID: 37395451 PMCID: PMC10502629 DOI: 10.1002/advs.202303049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Antigen delivery based on non-virus-like particle self-associating protein nanoscffolds, such as Aquifex aeolicus lumazine synthase (AaLS), is limited due to the immunotoxicity and/or premature clearance of antigen-scaffold complex resulted from triggering unregulated innate immune responses. Here, using rational immunoinformatics prediction and computational modeling, we screen the T epitope peptides from thermophilic nanoproteins with the same spatial structure as hyperthermophilic icosahedral AaLS, and reassemble them into a novel thermostable self-assembling nanoscaffold RPT that can specifically activate T cell-mediated immunity. Tumor model antigen ovalbumin T epitopes and the severe acute respiratory syndrome coronavirus 2 receptor-binding domain are loaded onto the scaffold surface through the SpyCather/SpyTag system to construct nanovaccines. Compared to AaLS, RPT -constructed nanovaccines elicit more potent cytotoxic T cell and CD4+ T helper 1 (Th1)-biased immune responses, and generate less anti-scaffold antibody. Moreover, RPT significantly upregulate the expression of transcription factors and cytokines related to the differentiation of type-1 conventional dendritic cells, promoting the cross-presentation of antigens to CD8+ T cells and Th1 polarization of CD4+ T cells. RPT confers antigens with increased stability against heating, freeze-thawing, and lyophilization with almost no antigenicity loss. This novel nanoscaffold offers a simple, safe, and robust strategy for boosting T-cell immunity-dependent vaccine development.
Collapse
Affiliation(s)
- Jinsong Zhang
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Jianghua Yang
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Qianlin Li
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Ruihao Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Shoudong Fan
- Liaoning Technology Innovation Center of Nanomaterials for Antibiotics Reduction and ReplacementFengcheng118199China
| | - Huaimin Yi
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuying Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuanli Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Haozhen Yan
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Lidan Sun
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Jiahai Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518057China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”Haikou571199China
| | - Zeliang Chen
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous RegionMedical CollegeInner Mongolia Minzu UniversityTongliao028000China
| |
Collapse
|
32
|
Ruzzi F, Semprini MS, Scalambra L, Palladini A, Angelicola S, Cappello C, Pittino OM, Nanni P, Lollini PL. Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. Int J Mol Sci 2023; 24:12963. [PMID: 37629147 PMCID: PMC10454695 DOI: 10.3390/ijms241612963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer vaccines are increasingly being studied as a possible strategy to prevent and treat cancers. While several prophylactic vaccines for virus-caused cancers are approved and efficiently used worldwide, the development of therapeutic cancer vaccines needs to be further implemented. Virus-like particles (VLPs) are self-assembled protein structures that mimic native viruses or bacteriophages but lack the replicative material. VLP platforms are designed to display single or multiple antigens with a high-density pattern, which can trigger both cellular and humoral responses. The aim of this review is to provide a comprehensive overview of preventive VLP-based vaccines currently approved worldwide against HBV and HPV infections or under evaluation to prevent virus-caused cancers. Furthermore, preclinical and early clinical data on prophylactic and therapeutic VLP-based cancer vaccines were summarized with a focus on HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| |
Collapse
|
33
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
34
|
Hillebrandt N, Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front Bioeng Biotechnol 2023; 11:1192050. [PMID: 37304136 PMCID: PMC10248422 DOI: 10.3389/fbioe.2023.1192050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
35
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
36
|
Abstract
Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Cardona M, Ferrer L, Clotet B, Carrillo J, Aguilar-Gurrieri C, Blanco J. Exploring FeLV-Gag-Based VLPs as a New Vaccine Platform-Analysis of Production and Immunogenicity. Int J Mol Sci 2023; 24:ijms24109025. [PMID: 37240371 DOI: 10.3390/ijms24109025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 Gag-based VLPs that induce a potent and functional immune response against the HIV-1 transmembrane protein gp41. Here, we propose to use this concept to generate FeLV-Gag-based VLPs as a novel vaccine strategy against this retrovirus. By analogy to our HIV-1 platform, a fragment of the FeLV transmembrane p15E protein was exposed on FeLV-Gag-based VLPs. After optimization of Gag sequences, the immunogenicity of the selected candidates was evaluated in C57BL/6 and BALB/c mice, showing strong cellular and humoral responses to Gag but failing to generate anti-p15E antibodies. Altogether, this study not only tests the versatility of the enveloped VLP-based vaccine platform but also sheds light on FeLV vaccine research.
Collapse
Affiliation(s)
- Raquel Ortiz
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Barajas
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Anna Pons-Grífols
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Benjamin Trinité
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | | | - Carla Rovirosa
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | - Victor Urrea
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | | | | | | | | | - Bonaventura Clotet
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, 08916 Badalona, Spain
| | - Jorge Carrillo
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
| | | | - Julià Blanco
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
38
|
Trashi I, Durbacz MZ, Trashi O, Wijesundara YH, Ehrman RN, Chiev AC, Darwin CB, Herbert FC, Gadhvi J, De Nisco NJ, Nielsen SO, Gassensmith JJ. Self-assembly of a fluorescent virus-like particle for imaging in tissues with high autofluorescence. J Mater Chem B 2023; 11:4445-4452. [PMID: 37144595 DOI: 10.1039/d3tb00469d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qβ, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid. It is possible to usurp the native way infectious Qβ self-assembles to encapsidate its RNA to place enzymes inside the VLP's lumen as a protease-resistant cage. Further, using RNA templates that mimic the natural self-assembly of the native capsid, fluorescent proteins (FPs) have been placed inside VLPs in a "one pot" expression system. Autofluorescence in tissues can lead to misinterpretation of results and unreliable science, so we created a single-pot expression system that uses the fluorescent protein smURFP, which avoids autofluorescence and has spectral properties compatible with standard commercial filter sets on confocal microscopes. In this work, we were able to simplify the existing "one-pot" expression system while creating high-yielding fluorescent VLP nanoparticles that could easily be imaged inside lung epithelial tissue.
Collapse
Affiliation(s)
- Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Mateusz Z Durbacz
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Jashkaran Gadhvi
- Department of Biological Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Nicole J De Nisco
- Department of Biological Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
39
|
Wang J, Xie T, Ullah I, Mi Y, Li X, Gong Y, He P, Liu Y, Li F, Li J, Lu Z, Zhu B. A VLP-Based Vaccine Displaying HBHA and MTP Antigens of Mycobacterium tuberculosis Induces Protective Immune Responses in M. tuberculosis H37Ra Infected Mice. Vaccines (Basel) 2023; 11:941. [PMID: 37243045 PMCID: PMC10224509 DOI: 10.3390/vaccines11050941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heparin-binding hemagglutinin (HBHA) and M. tuberculosis pili (MTP) are important antigens on the surface of Mycobacterium tuberculosis. To display these antigens effectively, the fusion protein HBHA-MTP with a molecular weight of 20 kD (L20) was inserted into the receptor-binding hemagglutinin (HA) fragment of influenza virus and was expressed along with matrix protein M1 in Sf9 insect cells to generate influenza virus-like particles (LV20 in short). The results showed that the insertion of L20 into the envelope of the influenza virus did not affect the self-assembly and morphology of LV20 VLPs. The expression of L20 was successfully verified by transmission electron microscopy. Importantly, it did not interfere with the immunogenicity reactivity of LV20 VLPs. We demonstrated that LV20 combined with the adjuvant composed of DDA and Poly I: C (DP) elicited significantly higher antigen-specific antibodies and CD4+/CD8+ T cell responses than PBS and BCG vaccination in mice. It suggests that the insect cell expression system is an excellent protein production system, and LV20 VLPs could be a novel tuberculosis vaccine candidate for further evaluation.
Collapse
Affiliation(s)
- Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Inayat Ullah
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Li
- Respiratory Department of Lanzhou Pulmonary Hospital, Lanzhou 730000, China
| | - Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Yuqi Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zengjun Lu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
40
|
Garay E, Fontana D, Villarraza J, Fuselli A, Gugliotta A, Antuña S, Tardivo B, Rodríguez MC, Gastaldi V, Battagliotti JM, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. Design and characterization of chimeric Rabies-SARS-CoV-2 virus-like particles for vaccine purposes. Appl Microbiol Biotechnol 2023; 107:3495-3508. [PMID: 37126083 PMCID: PMC10150342 DOI: 10.1007/s00253-023-12545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative. In order to produce these structures using mammal cells, it has been established that all four structural proteins must be expressed. Here we report the generation and characterization of a novel chimeric virus-like particle (VLP) that can be produced by the expression of a single novel fusion protein that contains SARS-CoV-2 spike (S) ectodomain fused to rabies glycoprotein membrane anchoring region in HEK293 cells. This protein is structurally similar to native S and can autonomously bud forming enveloped VLPs that resemble native virions both in size and in morphology, displaying S ectodomain and receptor binding domain (RBD) on their surface. As a proof of concept, we analyzed the immunogenicity of this vaccine candidate in mice and confirmed the generation of anti-S, anti-RBD, and neutralizing antibodies. KEY POINTS: • A novel fusion rabies glycoprotein containing S ectodomain was designed. • Fusion protein formed cVLPs that were morphologically similar to SARS-CoV-2 virions. • cVLPs induced anti-S, anti-RBD, and neutralizing antibodies in mice.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina.
| | - Javier Villarraza
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Sebastián Antuña
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Belén Tardivo
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - María Celeste Rodríguez
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Victoria Gastaldi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Juan Manuel Battagliotti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Cellargen Biotech SRL, FBCB (School of Biochemistry and Biological Sciences) Biotechnological Development Laboratory, Ciudad Universitaria UNL, (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
41
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
42
|
Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release 2023; 355:760-778. [PMID: 36822241 DOI: 10.1016/j.jconrel.2023.02.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The successful clinical application of immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapeutics has attracted extensive attention to immunotherapy, however, their drawbacks such as limited specificity, persistence and toxicity haven't met the high expectations on efficient cancer treatments. Therapeutic cancer vaccines which instruct the immune system to capture tumor specific antigens, generate long-term immune memory and specifically eliminate cancer cells gradually become the most promising strategies to eradicate tumor. However, the disadvantages of some existing vaccines such as weak immunogenicity and in vivo instability have restricted their development. Nanotechnology has been recently incorporated into vaccine fabrication and exhibited promising results for cancer immunotherapy. Nanoparticles promote the stability of vaccines, as well as enhance antigen recognition and presentation owing to their nanometer size which promotes internalization of antigens by phagocytic cells. The surface modification with targeting units further permits the delivery of vaccines to specific cells. Meanwhile, nanocarriers with adjuvant effect can improve the efficacy of vaccines. In addition to classic vaccines composed of antigens and adjuvants, the nanoparticle-mediated chemotherapy, radiotherapy and certain other therapeutics could induce the release of tumor antigens in situ, which therefore effectively simulate antitumor immune responses. Such vaccine-like nanomedicine not only kills primary tumors, but also prevents tumor recurrence and helps eliminate metastatic tumors. Herein, we introduce recent developments in nanoparticle-based delivery systems for antigen delivery and in situ antitumor vaccination. We will also discuss the remaining opportunities and challenges of nanovaccine in clinical translation towards cancer treatment.
Collapse
Affiliation(s)
- Yunfei Yi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
43
|
Sazegari S, Akbarzadeh Niaki M, Afsharifar A, Niazi A, Derakhshandeh A, Moradi Vahdat M, Hemmati F, Eskandari MH. Chimeric Hepatitis B core virus-like particles harboring SARS-CoV2 epitope elicit a humoral immune response in mice. Microb Cell Fact 2023; 22:39. [PMID: 36841778 PMCID: PMC9958315 DOI: 10.1186/s12934-023-02043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.
Collapse
Affiliation(s)
- Sima Sazegari
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Malihe Akbarzadeh Niaki
- grid.412573.60000 0001 0745 1259Department of Food Science and Technology, Shiraz University, Shiraz, Fars Iran
| | - Alireza Afsharifar
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Abdollah Derakhshandeh
- grid.412573.60000 0001 0745 1259Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Moradi Vahdat
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Farshad Hemmati
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
44
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
45
|
Protease-Independent Production of Poliovirus Virus-like Particles in Pichia pastoris: Implications for Efficient Vaccine Development and Insights into Capsid Assembly. Microbiol Spectr 2023; 11:e0430022. [PMID: 36507670 PMCID: PMC9927490 DOI: 10.1128/spectrum.04300-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The production of enterovirus virus-like particles (VLPs) that lack the viral genome have great potential as vaccines for a number of diseases, such as poliomyelitis and hand, foot, and mouth disease. These VLPs can mimic empty capsids, which are antigenically indistinguishable from mature virions, produced naturally during viral infection. Both in infection and in vitro, capsids and VLPs are generated by the cleavage of the P1 precursor protein by a viral protease. Here, using a stabilized poliovirus 1 (PV-1) P1 sequence as an exemplar, we show the production of PV-1 VLPs in Pichia pastoris in the absence of the potentially cytotoxic protease, 3CD, instead using the porcine teschovirus 2A (P2A) peptide sequence to terminate translation between individual capsid proteins. We compare this to protease-dependent production of PV-1 VLPs. Analysis of all permutations of the order of the capsid protein sequences revealed that only VP3 could be tagged with P2A and maintain native antigenicity. Transmission electron microscopy of these VLPs reveals the classic picornaviral icosahedral structure. Furthermore, these particles were thermostable above 37°C, demonstrating their potential as next generation vaccine candidates for PV. Finally, we believe the demonstration that native antigenic VLPs can be produced using protease-independent methods opens the possibility for future enteroviral vaccines to take advantage of recent vaccine technological advances, such as adenovirus-vectored vaccines and mRNA vaccines, circumventing the potential problems of cytotoxicity associated with 3CD, allowing for the production of immunogenic enterovirus VLPs in vivo. IMPORTANCE The widespread use of vaccines has dramatically reduced global incidence of poliovirus infections over a period of several decades and now the wild-type virus is only endemic in Pakistan and Afghanistan. However, current vaccines require the culture of large quantities of replication-competent virus for their manufacture, thus presenting a potential risk of reintroduction into the environment. It is now widely accepted that vaccination will need to be extended posteradication into the foreseeable future to prevent the potentially catastrophic reintroduction of poliovirus into an immunologically naive population. It is, therefore, imperative that novel vaccines are developed which are not dependent on the growth of live virus for their manufacture. We have expressed stabilized virus-like particles in yeast, from constructs that do not require coexpression of the protease. This is an important step in the development of environmentally safe and commercially viable vaccines against polio, which also provides some intriguing insights into the viral assembly process.
Collapse
|
46
|
Bruder MR, Aucoin MG. Evaluation of Virus-Free Manufacture of Recombinant Proteins Using CRISPR-Mediated Gene Disruption in Baculovirus-Infected Insect Cells. Vaccines (Basel) 2023; 11:vaccines11020225. [PMID: 36851104 PMCID: PMC9966935 DOI: 10.3390/vaccines11020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The manufacture and downstream processing of virus-like particles (VLPs) using the baculovirus expression vector system (BEVS) is complicated by the presence of large concentrations of baculovirus particles, which are similar in size and density to VLPs, and consequently are difficult to separate. To reduce the burden of downstream processing, CRISPR-Cas9 technology was used to introduce insertion-deletion (indel) mutations within the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp64 open reading frame, which encodes the major envelope protein of AcMNPV. After comfirming the site-specific targeting of gp64 leading to reduced budded virus (BV) release, the gag gene of human immunodeficiency virus type 1 was expressed to produce Gag VLPs. This approach was effective for producing VLPs using the BEVS whilst simultaneously obstructing BV release.
Collapse
|
47
|
Kim SA, Lee Y, Ko Y, Kim S, Kim GB, Lee NK, Ahn W, Kim N, Nam GH, Lee EJ, Kim IS. Protein-based nanocages for vaccine development. J Control Release 2023; 353:767-791. [PMID: 36516900 DOI: 10.1016/j.jconrel.2022.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Protein nanocages have attracted considerable attention in various fields of nanomedicine due to their intrinsic properties, including biocompatibility, biodegradability, high structural stability, and ease of modification of their surfaces and inner cavities. In vaccine development, these protein nanocages are suited for efficient targeting to and retention in the lymph nodes and can enhance immunogenicity through various mechanisms, including excellent uptake by antigen-presenting cells and crosslinking with multiple B cell receptors. This review highlights the superiority of protein nanocages as antigen delivery carriers based on their physiological and immunological properties such as biodistribution, immunogenicity, stability, and multifunctionality. With a focus on design, we discuss the utilization and efficacy of protein nanocages such as virus-like particles, caged proteins, and artificial caged proteins against cancer and infectious diseases such as coronavirus disease 2019 (COVID-19). In addition, we summarize available knowledge on the protein nanocages that are currently used in clinical trials and provide a general outlook on conventional distribution techniques and hurdles faced, particularly for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yeju Ko
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Seohyun Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Gi Beom Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Na Kyeong Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonkyung Ahn
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
48
|
Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol 2023; 14:1125253. [PMID: 36895553 PMCID: PMC9988954 DOI: 10.3389/fimmu.2023.1125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Collapse
Affiliation(s)
- Tianyu Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengna Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
49
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
50
|
Zimna M, Brzuska G, Salát J, Svoboda P, Baranska K, Szewczyk B, Růžek D, Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antiviral Res 2023; 209:105511. [PMID: 36581050 DOI: 10.1016/j.antiviral.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic.
| | - Pavel Svoboda
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 61242, Brno, Czech Republic.
| | - Klaudia Baranska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|