1
|
Burghardt M, Tuller T. Modeling coding sequence design for virus-based expression in tobacco. Synth Syst Biotechnol 2025; 10:337-345. [PMID: 39802156 PMCID: PMC11718241 DOI: 10.1016/j.synbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Transient expression in Tobacco is a popular way to produce recombinant proteins in plants. The design of various expression vectors, delivered into the plant by Agrobacterium, has enabled high production levels of some proteins. To further enhance expression, researchers often adapt the coding sequence of heterologous genes to the host, but this strategy has produced mixed results in Tobacco. To study the effects of different sequence features on protein yield, we compile a dataset of the yields and coding sequences of previously published expression studies of more than 200 coding sequences. We evaluate various established gene expression models on a subset of the expression studies. We find that use of tobacco codons is only moderately predictive of protein yield as informative sequence features likely extend over multiple codons. Additionally, we show that codon usage of organisms that use tobacco as a host for expression of their proteins in a similar way as the synthetic system, like viruses and agrobacteria, can be used to predict heterologous expression. Other predictive features are related to tRNA supply and demand, the inclusion of a translational ramp of codons with lower adaptation to the tRNA pool at the beginning of the coding region, and the amino acid composition of the recombinant protein. A model based on all the features achieved a correlation of 0.57 with protein yield. We believe that our study provides a practical guideline for coding sequence design for efficient expression in tobacco.
Collapse
Affiliation(s)
- Moritz Burghardt
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
- The Segol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Israel
| |
Collapse
|
2
|
Trujillo E, Angulo C. Perspectives on the use of the CRISPR system in plants to improve recombinant therapeutic protein production. J Biotechnol 2025; 405:111-123. [PMID: 40373829 DOI: 10.1016/j.jbiotec.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/29/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
The plant-based system is a promising platform for producing biotherapeutics due to its scalability, cost-effectiveness, and lower risk of contamination by human pathogens. However, several challenges remain, including optimizing yield, stability, functionality, and the immunogenic properties of recombinant proteins. In this context, this review explores the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology to improve the production of recombinant therapeutic proteins in plants. Traditional tools and strategies for plant-based recombinant protein production are discussed, highlighting their limitations and the potential of CRISPR to overcome these boundaries. It delves into the components of the CRISPR-Cas system and its application in optimizing therapeutic protein function and yield. Major strategies include modifying glycosylation patterns to humanize plant-produced proteins, metabolic pathway engineering to increase protein accumulation, and the precise integration of transgenes into specific genomic loci to enhance expression stability and productivity. These advancements demonstrate how CRISPR system can overcome bottlenecks in plant molecular farming and enable the production of high-quality therapeutic proteins. Lastly, future trends and perspectives are examined, emphasizing ongoing innovations and challenges in the field. The review underscores the potential of CRISPR to reshape plant biotechnology and support the growing demand for recombinant therapeutics, offering new avenues for sustainable and efficient protein production systems. KEY MESSAGE: CRISPR technology has the potential to improve plant-based therapeutic protein production by optimizing yield, stability, and humanization, overcoming bottlenecks, and enabling sustainable, efficient systems for recombinant biotherapeutics.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. C.P. 23096, Mexico.
| |
Collapse
|
3
|
Bargoti T, Nain DP, Kumar R, Awasthi AK, Singh D, Nain V. Scaled codon usage similarity index: A comprehensive resource for crop plants. J Genet Eng Biotechnol 2024; 22:100441. [PMID: 39674652 PMCID: PMC11600778 DOI: 10.1016/j.jgeb.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024]
Abstract
Over the past three decades species-specific codon usage bias has been used to optimize heterologous gene expression in the target host. However, synthesizing codon optimized gene for multiple species is not achievable due to the prohibitive expense of DNA synthesis. To address this challenge, grouping species with similar codon usage can reduce the need for species-specific codon optimised gene synthesis. We introduced Scaled Codon Usage Similarity (SCUS) index to standardize species similarity assessments based on codon usage profiles. By analysing the SCUS index of 77 plant nuclear genomes from 13 families, we identified codon usage patterns and similarities. We developed an online SCUS index database and a Consensus Relative Synonymous Codon Usage (CRSCU) calculator, available at https://pcud.plantcodon.info. The CRSCU calculator helps determine the most suitable codon usage pattern among two or more species. The SCUS index and CRSCU calculator will facilitate the development of multi-species expression systems, enabling the efficient expression of a single synthetic gene across various crop species. This innovation paves the way for cost-effective and efficient heterologous gene expression across diverse crop species.
Collapse
Affiliation(s)
- Taniya Bargoti
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Divya Pratap Nain
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Rajesh Kumar
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Amit Kumar Awasthi
- University School of Vocational Studies and Applied Sciences, Department of Mathematical Science, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Deepali Singh
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Vikrant Nain
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India.
| |
Collapse
|
4
|
Lee J, Lee KR, Kim NS, Lee J, Lee SK, Lee S. High-Level Production of a Recombinant Protein in Nicotiana benthamiana Leaves Through Transient Expression Using a Double Terminator. Int J Mol Sci 2024; 25:11573. [PMID: 39519125 PMCID: PMC11547012 DOI: 10.3390/ijms252111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant systems is crucial. In particular, selecting and combining strong terminators is essential because the expression of target genes can be substantially enhanced. Here, we aimed to quantify the enhancement in the fluorescence intensity of the turbo green fluorescence protein (tGFP) caused by the best double-terminator combinations compared to that of the control vector using agroinfiltration in Nicotiana benthamiana leaves. tGFP fluorescence increased by 4.1-fold in leaf samples infiltrated with a vector containing a double terminator and markedly increased by a maximum of 23.7-fold when co-infiltrated with the geminiviral vector and P19 compared to that in constructs containing an octopine synthase terminator. Polyadenylation site analysis in leaf tissues expressing single or dual terminators showed that the first terminator influenced the polyadenylation site determination of the second terminator, resulting in different polyadenylation sites compared with when the terminator is located first. The combination of the high-expression terminators and geminiviral vectors can increase the production of target proteins.
Collapse
|
5
|
Tse SW, Annese D, Romani F, Guzman-Chavez F, Bonter I, Forestier E, Frangedakis E, Haseloff J. Optimizing Promoters and Subcellular Localization for Constitutive Transgene Expression in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1298-1309. [PMID: 38822700 PMCID: PMC11369823 DOI: 10.1093/pcp/pcae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Marchantia polymorpha has become an important model system for comparative studies and synthetic biology. The systematic characterization of genetic elements would make heterologous gene expression more predictable in this test bed for gene circuit assembly and bioproduction. Yet, the toolbox of genetic parts for Marchantia includes only a few constitutive promoters that need benchmarking to assess their utility. We compared the expression patterns of previously characterized and new constitutive promoters. We found that driving expression with the double enhancer version of the cauliflower mosaic virus 35S promoter (pro35S × 2) provided the highest yield of proteins, although it also inhibits the growth of transformants. In contrast, promoters derived from the Marchantia genes for ETHYLENE RESPONSE FACTOR 1 and the CLASS II HOMEODOMAIN-LEUCINE ZIPPER protein drove expression to higher levels across all tissues without a growth penalty and can provide intermediate levels of gene expression. In addition, we showed that the cytosol is the best subcellular compartment to target heterologous proteins for higher levels of expression without a significant growth burden. To demonstrate the potential of these promoters in Marchantia, we expressed RUBY, a polycistronic betalain synthesis cassette linked by P2A sequences, to demonstrate coordinated expression of metabolic enzymes. A heat-shock-inducible promoter was used to further mitigate growth burdens associated with high amounts of betalain accumulation. We have expanded the existing tool kit for gene expression in Marchantia and provided new resources for the Marchantia research community.
Collapse
Affiliation(s)
- Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Fernando Guzman-Chavez
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, México
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Edith Forestier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
6
|
Li S, Moayedpour S, Li R, Bailey M, Riahi S, Kogler-Anele L, Miladi M, Miner J, Pertuy F, Zheng D, Wang J, Balsubramani A, Tran K, Zacharia M, Wu M, Gu X, Clinton R, Asquith C, Skaleski J, Boeglin L, Chivukula S, Dias A, Strugnell T, Montoya FU, Agarwal V, Bar-Joseph Z, Jager S. CodonBERT large language model for mRNA vaccines. Genome Res 2024; 34:1027-1035. [PMID: 38951026 PMCID: PMC11368176 DOI: 10.1101/gr.278870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
mRNA-based vaccines and therapeutics are gaining popularity and usage across a wide range of conditions. One of the critical issues when designing such mRNAs is sequence optimization. Even small proteins or peptides can be encoded by an enormously large number of mRNAs. The actual mRNA sequence can have a large impact on several properties, including expression, stability, immunogenicity, and more. To enable the selection of an optimal sequence, we developed CodonBERT, a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT uses codons as inputs, which enables it to learn better representations. CodonBERT was trained using more than 10 million mRNA sequences from a diverse set of organisms. The resulting model captures important biological concepts. CodonBERT can also be extended to perform prediction tasks for various mRNA properties. CodonBERT outperforms previous mRNA prediction methods, including on a new flu vaccine data set.
Collapse
Affiliation(s)
- Sizhen Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Ruijiang Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Michael Bailey
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Saleh Riahi
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Milad Miladi
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jacob Miner
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Fabien Pertuy
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Khang Tran
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Minnie Zacharia
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Monica Wu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Xiaobo Gu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ryan Clinton
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Carla Asquith
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Joseph Skaleski
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Lianne Boeglin
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Sudha Chivukula
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Anusha Dias
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Tod Strugnell
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ziv Bar-Joseph
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA;
| | - Sven Jager
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
7
|
Opdensteinen P, Buyel JF. Optimizing interleukin-6 and 8 expression, clarification and purification in plant cell packs and plants for application in advanced therapy medicinal products and cellular agriculture. J Biotechnol 2024; 390:1-12. [PMID: 38740307 DOI: 10.1016/j.jbiotec.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Healthcare and nutrition are facing a paradigm shift in light of advanced therapy medicinal products (ATMPs) and cellular agriculture options respectively. Both options heavily rely on some sort of animal cell culture, e.g. autologous stem cells. These cultures require various growth factors, such as interleukin-6 and 8 (IL-6/8), in a pure, safe and sustainable form that can be provided in a scalable manner. Plants seem well suited for this task because purification of small proteins can be readily achieved by membrane separation, human/animal pathogens do not replicate in plants and production can be scaled up using in-door farming or agricultural practices. Here, we illustrate this capacity by first optimizing the codon usage of IL-6/8 for translation in Nicotiana spp., as well as testing the effect of untranslated regions and product targeting to different sub-cellular compartments on expression in a high-throughput plant cell pack (PCP) assay. In the chloroplast, IL-6 accumulated up to 6.9±3.8 (SD, n=2) and 14.4±7.4 mg kg-1 (SD, n=5) were observed in case of IL-8. When transferring IL-8 expression into whole plants, accumulation was 12.3±1.5 mg kg-1 (SD, n=3). After extraction and clarification, IL-8 was purified using a two-stage process consisting of an ultrafiltration/diafiltration step with 100 kDa and 10 kDa cut off membranes followed by an IMAC polishing step. The purity, yield and recovery were 97.8%, 6.6 mg kg-1 and 38%, respectively. We evaluated the ability of the proposed purification process to remove endotoxins to ensure the compatibility of plant-made growth factors with cell culture.
Collapse
Affiliation(s)
- P Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, Aachen 52074, Germany
| | - J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
8
|
Arbib C, D'ascenzo A, Rossi F, Santoni D. An Integer Linear Programming Model to Optimize Coding DNA Sequences By Joint Control of Transcript Indicators. J Comput Biol 2024; 31:416-428. [PMID: 38687334 DOI: 10.1089/cmb.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A Coding DNA Sequence (CDS) is a fraction of DNA whose nucleotides are grouped into consecutive triplets called codons, each one encoding an amino acid. Because most amino acids can be encoded by more than one codon, the same amino acid chain can be obtained by a very large number of different CDSs. These synonymous CDSs show different features that, also depending on the organism the transcript is expressed in, could affect translational efficiency and yield. The identification of optimal CDSs with respect to given transcript indicators is in general a challenging task, but it has been observed in recent literature that integer linear programming (ILP) can be a very flexible and efficient way to achieve it. In this article, we add evidence to this observation by proposing a new ILP model that simultaneously optimizes different well-grounded indicators. With this model, we efficiently find solutions that dominate those returned by six existing codon optimization heuristics.
Collapse
Affiliation(s)
- Claudio Arbib
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Andrea D'ascenzo
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Fabrizio Rossi
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Daniele Santoni
- Institute for System Analysis and Computer Science Antonio Ruberti National Research Council of Italy, Rome, Italy
| |
Collapse
|
9
|
Ding Y, Gao Y, Chen R, Zhang Z, Li Q, Jia T, Zhang T, Xu R, Shi W, Chen L, Song Y, Han Q, Xia X, Song J, Zhang J. Development of a novel multi-epitope oral DNA vaccine for rabies based on a food-borne microbial vector. Int J Biol Macromol 2024; 255:128085. [PMID: 37977454 DOI: 10.1016/j.ijbiomac.2023.128085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Rabies has been with humans for a long time, and its special transmission route and almost 100 % lethality rate made it once a nightmare for humans. In this study, by predicting the rabies virus glycoprotein outer membrane region and nucleoprotein B-cell antigenic epitopes, the coding sequence of the predicted highly antigenic polypeptide region obtained was assembled using the eukaryotic expression vector pcDNA3.1(-), and then E. coli was used as the delivery vector. The immunogenicity and protective properties of the vaccine were verified by in vivo and in vitro experiments, which demonstrated that the vaccine could produce antibodies in mice and prolong the survival time of mice exposed to the strong virus without any side effects. This study demonstrated that the preparation of an oral rabies DNA vaccine using food-borne microorganisms as a transport vehicle is feasible and could be a new strategy to eradicate rabies starting with wild animals.
Collapse
Affiliation(s)
- Yi Ding
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China; Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yuanyuan Gao
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Rui Chen
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Zhenxing Zhang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Qiang Li
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ting Jia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Taoping Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Wengang Shi
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Lu Chen
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
10
|
Sun L, Kallolimath S, Palt R, Eminger F, Strasser R, Steinkellner H. Codon optimization regulates IgG3 and IgM expression and glycosylation in N. benthamiana. Front Bioeng Biotechnol 2023; 11:1320586. [PMID: 38125307 PMCID: PMC10731585 DOI: 10.3389/fbioe.2023.1320586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Plants are being increasingly recognized for the production of complex human proteins, including monoclonal antibodies (mAbs). Various methods have been applied to boost recombinant expression, with DNA codon usage being an important approach. Here, we transiently expressed three complex human mAbs in Nicotiana benthamiana, namely one IgG3 and two IgM directed against SARS-CoV-2 as codon optimized(CO) and non-codon optimized (NCO) variants. qRT-PCR exhibited significantly increased mRNA levels of all CO variants compared to the non-codon optimized orthologues, in line with increased protein expression. Purified CO and NCO mAbs did not exhibit obvious biochemical differences, as determined by SDS-PAGE and antigen binding activities. By contrast, enhanced production selectively impacts on glycosite occupancy and N-glycan processing, with increased mannosidic structures. The results point to a careful monitoring of recombinant proteins upon enhancing expression. Especially if it comes to therapeutic application even subtle modifications might alter product efficacy or increase immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Spirgel R, Comolli J, Guido NJ. A Machine Learning Method for Genome Engineering Design Tool Attribution. Health Secur 2023; 21:407-414. [PMID: 37594776 DOI: 10.1089/hs.2022.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
As the ability to engineer biological systems improves with increasingly advanced technology, the risk of accidental or intentional release of a dangerous genetically modified organism becomes greater. It is important that authorities can carry out attribution for the source of a genetically modified biological agent release. In the absence of evidence that ties a release directly to the individuals responsible, attribution can be carried out in part by discovering the in silico tools used to design the engineered genetic components, which can leave a signature in the DNA of the organism. Previous attribution methods have focused on identifying the laboratory of origin of an engineered organism using machine learning on plasmid signatures. The next logical step is to address attribution using signatures from the tools that are used to create the engineered modifications. A random forest classifier was developed that discriminates between design tools used to optimize coding regions for incorporation into the genome of another organism. To this end, tens of thousands of genes were optimized with 4 different codon optimization methods and relevant features from these sequences were generated for a machine learning classifier. This method achieves more than 97% accuracy in predicting which tools were used to design codon optimized genes for expression in other organisms. The methods presented here lay the groundwork for the creation of effective organism engineering attribution techniques. Such methods can act both as deterrents for future attempts at creating dangerous organisms as well as tools for forensic science.
Collapse
Affiliation(s)
- Rebecca Spirgel
- Rebecca Spirgel, MS, is Associate Technical Staff, Group 23, MIT Lincoln Laboratory, Lexington, MA
| | - James Comolli
- James Comolli, PhD, Group 23, MIT Lincoln Laboratory, Lexington, MA
| | - Nicholas J Guido
- Nicholas J. Guido, PhD, are Technical Staff, Group 23, MIT Lincoln Laboratory, Lexington, MA
| |
Collapse
|
13
|
Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab Eng 2023; 75:153-169. [PMID: 36563956 DOI: 10.1016/j.ymben.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.
Collapse
|
14
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Kulshreshtha A, Sharma S, Padilla CS, Mandadi KK. Plant-based expression platforms to produce high-value metabolites and proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:1043478. [PMID: 36426139 PMCID: PMC9679013 DOI: 10.3389/fpls.2022.1043478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Plant-based heterologous expression systems can be leveraged to produce high-value therapeutics, industrially important proteins, metabolites, and bioproducts. The production can be scaled up, free from pathogen contamination, and offer post-translational modifications to synthesize complex proteins. With advancements in molecular techniques, transgenics, CRISPR/Cas9 system, plant cell, tissue, and organ culture, significant progress has been made to increase the expression of recombinant proteins and important metabolites in plants. Methods are also available to stabilize RNA transcripts, optimize protein translation, engineer proteins for their stability, and target proteins to subcellular locations best suited for their accumulation. This mini-review focuses on recent advancements to enhance the production of high-value metabolites and proteins necessary for therapeutic applications using plants as bio-factories.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Shweta Sharma
- Department of Veterinary Pathology, Dr. GCN College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
16
|
Matsuo K. CRISPR/Cas9-mediated knockout of the DCL2 and DCL4 genes in Nicotiana benthamiana and its productivity of recombinant proteins. PLANT CELL REPORTS 2022; 41:307-317. [PMID: 34783883 DOI: 10.1007/s00299-021-02809-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE DCL2 and DCL4 genes in Nicotiana benthamiana plants were successfully edited using the CRISPR/Cas9 system. Recently, plants have been utilized for recombinant protein production similar to other expression systems, i.e., bacteria, yeast, insect, and mammal cells. However, insufficient amounts of recombinant proteins are often produced in plant cells. The repression of RNA silencing within plant cells could improve production levels of recombinant protein because RNA silencing frequently decomposes mRNAs from transgenes. In this study, the genes dicer-like protein 2 and 4 (NbDCL2 and NbDCL4) were successfully edited to produce double-knockout transgenic Nicotiana benthamiana plants (dcl2dcl4 plants) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. A transient green fluorescent protein (GFP) gene expression assay revealed that the dcl2dcl4 plants accumulated higher amounts of GFP and GFP mRNA than wild type (WT) and RNA-dependent RNA polymerase 6-knockout N. benthamiana plants (ΔRDR6 plants). Small RNA sequencing also showed that dcl2dcl4 plants accumulated lower amounts of small interfering RNAs (siRNAs) against the GFP gene than WT plants. The dcl2dcl4 plants might also produce higher amounts of human fibroblast growth factor 1 (FGF1) than WT and ΔRDR6 plants. These observations appear to reflect differences between DCLs and RDR6 in plant cell biological mechanisms. These results reveal that dcl2dcl4 plants would be suitable as platform plants for recombinant protein production.
Collapse
Affiliation(s)
- Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
17
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
18
|
Abstract
Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has evolved through mutation, natural selection, and genetic drift in various organisms. Genome composition, GC content, expression level and length of genes, position and context of codons in the genes, recombination rates, mRNA folding, and tRNA abundance and interactions are some factors influencing codon bias. The factors shaping codon bias may also be involved in evolution of the universal genetic code. Codon-usage bias is critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding. Codon usage bias reflects the origin, mutation patterns and evolution of the species or genes. Investigations of codon bias patterns in genomes can reveal phylogenetic relationships between organisms, horizontal gene transfers, molecular evolution of genes and identify selective forces that drive their evolution. Most important application of codon bias analysis is in the design of transgenes, to increase gene expression levels through codon optimization, for development of transgenic crops. The review gives an overview of deviations of genetic code, factors influencing codon usage or bias, codon usage bias of nuclear and organellar genes, computational methods to determine codon usage and the significance as well as applications of codon usage analysis in biological research, with emphasis on plants.
Collapse
Affiliation(s)
| | - Varatharajalu Udayasuriyan
- Department of Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vijaipal Bhadana
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| |
Collapse
|
19
|
Singh AA, Pillay P, Tsekoa TL. Engineering Approaches in Plant Molecular Farming for Global Health. Vaccines (Basel) 2021; 9:vaccines9111270. [PMID: 34835201 PMCID: PMC8623924 DOI: 10.3390/vaccines9111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Since the demonstration of the first plant-produced proteins of medical interest, there has been significant growth and interest in the field of plant molecular farming, with plants now being considered a viable production platform for vaccines. Despite this interest and development by a few biopharmaceutical companies, plant molecular farming is yet to be embraced by ‘big pharma’. The plant system offers a faster alternative, which is a potentially more cost-effective and scalable platform for the mass production of highly complex protein vaccines, owing to the high degree of similarity between the plant and mammalian secretory pathway. Here, we identify and address bottlenecks in the use of plants for vaccine manufacturing and discuss engineering approaches that demonstrate both the utility and versatility of the plant production system as a viable biomanufacturing platform for global health. Strategies for improving the yields and quality of plant-produced vaccines, as well as the incorporation of authentic posttranslational modifications that are essential to the functionality of these highly complex protein vaccines, will also be discussed. Case-by-case examples are considered for improving the production of functional protein-based vaccines. The combination of all these strategies provides a basis for the use of cutting-edge genome editing technology to create a general plant chassis with reduced host cell proteins, which is optimised for high-level protein production of vaccines with the correct posttranslational modifications.
Collapse
|
20
|
Castillo-Esparza JF, Gómez-Lim MA. Transient Expression in Cytoplasm and Apoplast of Rotavirus VP6 Protein Fused to Anti-DEC205 Antibody in Nicotiana benthamiana and Nicotiana sylvestris. Mol Biotechnol 2021; 63:973-982. [PMID: 34146324 PMCID: PMC8214057 DOI: 10.1007/s12033-021-00359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Collapse
Affiliation(s)
- J Francisco Castillo-Esparza
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
21
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
22
|
Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, Laurent E, Grünwald-Gruber C, Vierlinger K, Hofner M, Margolin E, Weinhäusel A, Stöger E, Mach L, Strasser R. N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689104. [PMID: 34211491 PMCID: PMC8239413 DOI: 10.3389/fpls.2021.689104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Jennifer Schwestka
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Nikolaus F. Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
23
|
Rattanapisit K, Kitisripanya T, Konyanee A, Sae-Foo W, Burapapiruin A, Putalun W, Sakamoto S, Phoolcharoen W, Yusakul G. Plant-made antibody against miroestrol: a new platform for expression of full-length immunoglobulin G against small-molecule targets in immunoassays. PLANT CELL REPORTS 2021; 40:723-733. [PMID: 33582859 DOI: 10.1007/s00299-021-02670-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Plant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody. Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBY3R) occupying chimeric anti-miroestrol IgG genes. The appropriate assembly between heavy and light chains was achieved, and the yield of expression was 0.57 µg/g fresh N. benthamiana leaves. The binding characteristics of the IgG to miroestrol and binding specificity to related compounds, such as isomiroestrol and deoxymiroestrol, were similar to those of hybridoma-produced IgG (monoclonal antibody, mAb). The plant-based mAbs exhibited high sensitivity for miroestrol (IC50, 23.2 ± 2.1 ng/mL), precision (relative standard deviation ≤ 5.01%), and accuracy (97.8-103% recovery), as determined using quantitative enzyme-linked immunosorbent assay. The validated enzyme-linked immunosorbent assay was applicable to determine miroestrol in plant samples. Overall, the plant-produced functional IgG conserved the binding activity and specificity of the parent IgG derived from mammalian cells. Therefore, the plant expression system may be an efficient and affordable platform for the production of antibodies against low-molecular-weight targets in immunoassays.
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences and Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | | | - Atthaphon Konyanee
- School of Medicine, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | - Worapol Sae-Foo
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Burapapiruin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences and Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences and Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
24
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
25
|
Biosynthesis of myo-inositol in Escherichia coli by engineering myo-inositol-1-phosphate pathway. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Li HZ, Xu FL, Ansari AR, Yang WJ, Zhang ZW, Dong L, Niu XY, Song H. Optimization and bioactivity verification of porcine recombinant visfatin with high expression and low endotoxin content using pig liver as template. Protein Expr Purif 2020; 178:105776. [PMID: 33065262 DOI: 10.1016/j.pep.2020.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
In order to obtain the porcine recombinant visfatin protein with high expression and low endotoxin content, the current study aims to express and verify the biological activity of the purified porcine recombinant visfatin protein. Firstly, four different expression strains were successfully constructed. Then they were simultaneously induced at 37 °C for 4 h and 16 °C for 16 h. The results showed that Visfatin-pET28a-Transetta was the best strain with high protein expression and purity at 16 °C induction for 16 h. After that, endotoxin was reduced from the recombinant visfatin until the residual endotoxin was less than one endotoxin units per milliliter (EU/mL). Finally, the purified porcine recombinant visfatin protein was incubated with RAW264.7 cells. The results of cell counting kit-8 (CCK-8) showed the survival rate of the cells first increased and then decreased with the increase in visfatin concentration. When the concentration of visfatin was 700 ng/mL, the survival rate of the cells was the highest. Thereafter, control (PBS), Visfatin and Visfatin + PolymyxinB (Ploy.B) groups were incubated with the RAW264.7 cells for 6 h. Real-time quantitative polymerase chain reaction (RT-qPCR) and Enzyme Linked Immuno-Sorbent Assay (ELISA) results showed that, as compared to the control group, the expressions of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in Visfatin group were significantly increased (P < 0.05). However, there was no significant difference between the Visfatin and Visfatin + Poly.B groups, indicating that porcine recombinant visfatin protein promoted the inflammatory activity of RAW264.7 cells while the residual endotoxin did not play a role, suggesting biological activity of porcine recombinant visfatin protein.
Collapse
Affiliation(s)
- Hui Zhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen Liang Xu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan; University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Wen Jie Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Wei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Dong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Yu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Eseverri Á, López‐Torrejón G, Jiang X, Burén S, Rubio LM, Caro E. Use of synthetic biology tools to optimize the production of active nitrogenase Fe protein in chloroplasts of tobacco leaf cells. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1882-1896. [PMID: 31985876 PMCID: PMC7415783 DOI: 10.1111/pbi.13347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 05/07/2023]
Abstract
The generation of nitrogen fixing crops is considered a challenge that could lead to a new agricultural 'green' revolution. Here, we report the use of synthetic biology tools to achieve and optimize the production of active nitrogenase Fe protein (NifH) in the chloroplasts of tobacco plants. Azotobacter vinelandii nitrogen fixation genes, nifH, M, U and S, were re-designed for protein accumulation in tobacco cells. Targeting to the chloroplast was optimized by screening and identifying minimal length transit peptides performing properly for each specific Nif protein. Putative peptidyl-prolyl cis-trans isomerase NifM proved necessary for NifH solubility in the stroma. Purified NifU, a protein involved in the biogenesis of NifH [4Fe-4S] cluster, was found functional in NifH reconstitution assays. Importantly, NifH purified from tobacco chloroplasts was active in the reduction of acetylene to ethylene, with the requirement of nifU and nifS co-expression. These results support the suitability of chloroplasts to host functional nitrogenase proteins, paving the way for future studies in the engineering of nitrogen fixation in higher plant plastids and describing an optimization pipeline that could also be used in other organisms and in the engineering of new metabolic pathways in plastids.
Collapse
Affiliation(s)
- Álvaro Eseverri
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Gema López‐Torrejón
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Biotecnología-Biología Ve ge talEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Xi Jiang
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Stefan Burén
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Luis M. Rubio
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Biotecnología-Biología Ve ge talEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Elena Caro
- Centre for Plant Biotechnology and GenomicsInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Biotecnología-Biología Ve ge talEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
28
|
Tan SI, Yu PJ, Ng IS. CRISPRi-mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system. Biotechnol Bioeng 2020; 117:2842-2851. [PMID: 32458463 DOI: 10.1002/bit.27443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2 , has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Jui Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Şen A, Kargar K, Akgün E, Pınar MÇ. Codon optimization: a mathematical programing approach. Bioinformatics 2020; 36:4012-4020. [DOI: 10.1093/bioinformatics/btaa248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 11/25/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
AbstractMotivationSynthesizing proteins in heterologous hosts is an important tool in biotechnology. However, the genetic code is degenerate and the codon usage is biased in many organisms. Synonymous codon changes that are customized for each host organism may have a significant effect on the level of protein expression. This effect can be measured by using metrics, such as codon adaptation index, codon pair bias, relative codon bias and relative codon pair bias. Codon optimization is designing codons that improve one or more of these objectives. Currently available algorithms and software solutions either rely on heuristics without providing optimality guarantees or are very rigid in modeling different objective functions and restrictions.ResultsWe develop an effective mixed integer linear programing (MILP) formulation, which considers multiple objectives. Our numerical study shows that this formulation can be effectively used to generate (Pareto) optimal codon designs even for very long amino acid sequences using a standard commercial solver. We also show that one can obtain designs in the efficient frontier in reasonable solution times and incorporate other complex objectives, such as mRNA secondary structures in codon design using MILP formulations.Availability and implementationhttp://alpersen.bilkent.edu.tr/codonoptimization/CodonOptimization.zip.
Collapse
Affiliation(s)
- Alper Şen
- Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey
| | - Kamyar Kargar
- Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey
| | - Esma Akgün
- Department of Management Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mustafa Ç Pınar
- Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
30
|
Lewis CJ, Dixit B, Batiuk E, Hall CJ, O'Connor MS, Boominathan A. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol 2020; 30:101429. [PMID: 31981894 PMCID: PMC6976934 DOI: 10.1016/j.redox.2020.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Elizabeth Batiuk
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Carter J Hall
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| |
Collapse
|
31
|
Tusé D, Nandi S, McDonald KA, Buyel JF. The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. FRONTIERS IN PLANT SCIENCE 2020; 11:594019. [PMID: 33193552 PMCID: PMC7606873 DOI: 10.3389/fpls.2020.594019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 05/12/2023]
Abstract
Several epidemic and pandemic diseases have emerged over the last 20 years with increasing reach and severity. The current COVID-19 pandemic has affected most of the world's population, causing millions of infections, hundreds of thousands of deaths, and economic disruption on a vast scale. The increasing number of casualties underlines an urgent need for the rapid delivery of therapeutics, prophylactics such as vaccines, and diagnostic reagents. Here, we review the potential of molecular farming in plants from a manufacturing perspective, focusing on the speed, capacity, safety, and potential costs of transient expression systems. We highlight current limitations in terms of the regulatory framework, as well as future opportunities to establish plant molecular farming as a global, de-centralized emergency response platform for the rapid production of biopharmaceuticals. The implications of public health emergencies on process design and costs, regulatory approval, and production speed and scale compared to conventional manufacturing platforms based on mammalian cell culture are discussed as a forward-looking strategy for future pandemic responses.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group and GROW Biomedicine, LLC, Sacramento, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ; orcid.org/0000-0003-2361-143X
| |
Collapse
|
32
|
Hammond RW, Swift SM, Foster-Frey JA, Kovalskaya NY, Donovan DM. Optimized production of a biologically active Clostridium perfringens glycosyl hydrolase phage endolysin PlyCP41 in plants using virus-based systemic expression. BMC Biotechnol 2019; 19:101. [PMID: 31864319 PMCID: PMC6925876 DOI: 10.1186/s12896-019-0594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Clostridium perfringens, a gram-positive, anaerobic, rod-shaped bacterium, is the third leading cause of human foodborne bacterial disease and a cause of necrotic enteritis in poultry. It is controlled using antibiotics, widespread use of which may lead to development of drug-resistant bacteria. Bacteriophage-encoded endolysins that degrade peptidoglycans in the bacterial cell wall are potential replacements for antibiotics. Phage endolysins have been identified that exhibit antibacterial activities against several Clostridium strains. RESULTS An Escherichia coli codon-optimized gene encoding the glycosyl hydrolase endolysin (PlyCP41) containing a polyhistidine tag was expressed in E. coli. In addition, The E. coli optimized endolysin gene was engineered for expression in plants (PlyCP41p) and a plant codon-optimized gene (PlyCP41pc), both containing a polyhistidine tag, were expressed in Nicotiana benthamiana plants using a potato virus X (PVX)-based transient expression vector. PlyCP41p accumulated to ~ 1% total soluble protein (100μg/gm f. wt. leaf tissue) without any obvious toxic effects on plant cells, and both the purified protein and plant sap containing the protein lysed C. perfringens strain Cp39 in a plate lysis assay. Optimal systemic expression of PlyCP41p was achieved at 2 weeks-post-infection. PlyCP41pc did not accumulate to higher levels than PlyCP41p in infected tissue. CONCLUSION We demonstrated that functionally active bacteriophage PlyCP41 endolysin can be produced in systemically infected plant tissue with potential for use of crude plant sap as an effective antimicrobial agent against C. perfringens.
Collapse
Affiliation(s)
- Rosemarie W Hammond
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA.
| | - Steven M Swift
- USDA ARS NEA BARC Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, 20705, USA
| | - Juli A Foster-Frey
- USDA ARS NEA BARC Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, 20705, USA
| | - Natalia Y Kovalskaya
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA
- Oak Ridge Institute for Science and Education, ORISE, Beltsville, MD, 20705, USA
| | - David M Donovan
- USDA ARS NEA BARC Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
33
|
Feike D, Korolev AV, Soumpourou E, Murakami E, Reid D, Breakspear A, Rogers C, Radutoiu S, Stougaard J, Harwood WA, Oldroyd GED, Miller J. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2234-2245. [PMID: 31022324 PMCID: PMC6835126 DOI: 10.1111/pbi.13135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 05/20/2023]
Abstract
Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.
Collapse
Affiliation(s)
- Doreen Feike
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
EMBL HeidelbergMeyerhofstraße 169117HeidelbergGermany
| | | | - Eleni Soumpourou
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Present address:
GRA&GREEN Inc., Incubation Center 106Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐0814Japan
| | - Dugald Reid
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Christian Rogers
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Giles E. D. Oldroyd
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - J. Benjamin Miller
- John Innes CentreNorwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
34
|
Gonzalez-Sanchez B, Vega-Rodríguez MA, Santander-Jiménez S. Multi-objective protein encoding: Redefinition of the problem, new problem-aware operators, and approach based on Variable Neighborhood Search. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2019.05.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Bertrand RL, Sorensen JL. Lost in Translation: Challenges with Heterologous Expression of Lichen Polyketide Synthases. ChemistrySelect 2019. [DOI: 10.1002/slct.201901762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Laurin-Lemay S, Philippe H, Rodrigue N. Multiple Factors Confounding Phylogenetic Detection of Selection on Codon Usage. Mol Biol Evol 2019; 35:1463-1472. [PMID: 29596640 DOI: 10.1093/molbev/msy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Detecting selection on codon usage (CU) is a difficult task, since CU can be shaped by both the mutational process and selective constraints operating at the DNA, RNA, and protein levels. Yang and Nielsen (2008) developed a test (which we call CUYN) for detecting selection on CU using two competing mutation-selection models of codon substitution. The null model assumes that CU is determined by the mutation bias alone, whereas the alternative model assumes that both mutation bias and/or selection act on CU. In applications on mammalian-scale alignments, the CUYN test detects selection on CU for numerous genes. This is surprising, given the small effective population size of mammals, and prompted us to use simulations to evaluate the robustness of the test to model violations. Simulations using a modest level of CpG hypermutability completely mislead the test, with 100% false positives. Surprisingly, a high level of false positives (56.1%) resulted simply from using the HKY mutation-level parameterization within the CUYN test on simulations conducted with a GTR mutation-level parameterization. Finally, by using a crude optimization procedure on a parameter controlling the CpG hypermutability rate, we find that this mutational property could explain a very large part of the observed mammalian CU. Altogether, our work emphasizes the need to evaluate the potential impact of model violations on statistical tests in the field of molecular phylogenetic analysis. The source code of the simulator and the mammalian genes used are available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).
Collapse
Affiliation(s)
- Simon Laurin-Lemay
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Center for Bioinformatics and Genomics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hervé Philippe
- Department of Biochemistry and Molecular Medicine, Robert-Cedergren Center for Bioinformatics and Genomics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Écologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, Ariège, France
| | - Nicolas Rodrigue
- Department of Biology, Institute of Biochemistry, and School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
37
|
Sivamani E, Nalapalli S, Prairie A, Bradley D, Richbourg L, Strebe T, Liebler T, Wang D, Que Q. A study on optimization of pat gene expression cassette for maize transformation. Mol Biol Rep 2019; 46:3009-3017. [PMID: 30859449 DOI: 10.1007/s11033-019-04737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
Phosphinothricin acetyltransferase gene (pat) is an important selectable marker and also a key herbicide trait gene in several commercial products. In maize, the transformation frequency (TF) using pat as a selectable marker is the lowest among the commonly used marker options including epsps, pmi or ppo. Low pat transformation efficiency can become a major bottleneck in our ability to efficiently produce large numbers of events, especially for large molecular stack vectors with multiple trait gene cassettes. The root cause of the lower efficiency of pat in maize is not well understood and it is possible that the causes are multifaceted, including maize genotype, pat marker cassette, trait gene combinations and selection system. In this work we have identified a new variant of pat gene through codon optimization that consistently produced a higher transformation frequency (> 2x) than an old version of the pat gene that has codons optimized for expression in dicot plants. The level of PAT protein in all 16 constructs was also found multifold higher (up to 40 fold) over that of the controls. All of the T0 low copy transgenic plants generated from the 16 different constructs showed excellent tolerance to ammonium glufosinate herbicide spray tests at 4x and 8x recommended field application rates (1x = 595 g active ingredient (ai)/hectare of ammonium glufosinate) in the greenhouse.
Collapse
Affiliation(s)
| | | | - Anna Prairie
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - David Bradley
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Lee Richbourg
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Tim Strebe
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Tara Liebler
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Daolong Wang
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
38
|
Cripwell RA, Rose SH, Viljoen-Bloom M, van Zyl WH. Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strategies. FEMS Yeast Res 2019; 19:5237704. [PMID: 30535120 DOI: 10.1093/femsyr/foy127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
Amylases are used in a variety of industries that have a specific need for alternative enzymes capable of hydrolysing raw starch. Five α-amylase and five glucoamylase-encoding genes were expressed in the Saccharomyces cerevisiae Y294 laboratory strain to select for recombinant strains that best hydrolysed raw corn starch. Gene variants of four amylases were designed using codon optimisation and different secretion signals. The significant difference in activity levels among the gene variants confirms that codon optimisation of fungal genes for expression in S. cerevisiae does not guarantee improved recombinant protein production. The codon-optimised glucoamylase variant from Talaromyces emersonii (temG_Opt) yielded 3.3-fold higher extracellular activity relative to the native temG, whereas the codon-optimised T. emersonii α-amylase (temA_Opt) yielded 1.6-fold more extracellular activity than the native temA. The effect of four terminator sequences was also investigated using temG and temG_Opt as reporter genes, with the ALY2T terminator resulting in a 14% increase in glucoamylase activity relative to the gene cassettes containing the ENO1T terminator. This is the first report of engineered S. cerevisiae strains to express T. emersonii amylase variants, and these enzymes may have potential applications in the industrial conversion of raw starch under fermentation conditions.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, JC Smuts Building, De Beer Street, Stellenbosch, 7600, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, JC Smuts Building, De Beer Street, Stellenbosch, 7600, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, JC Smuts Building, De Beer Street, Stellenbosch, 7600, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, JC Smuts Building, De Beer Street, Stellenbosch, 7600, South Africa
| |
Collapse
|
39
|
Multi-Objective Artificial Bee Colony for designing multiple genes encoding the same protein. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Genomic integration and ligand-dependent activation of the human estrogen receptor α in the crustacean Daphnia magna. PLoS One 2018; 13:e0198023. [PMID: 29883470 PMCID: PMC5993276 DOI: 10.1371/journal.pone.0198023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
The freshwater crustacean Daphnia have a long history in water quality assessments and now lend themselves to detection of targeted chemicals using genetically encoded reporter gene due to recent progress in the development of genome editing tools. By introducing human genes into Daphnia, we may be able to detect chemicals that affect the human system, or even apply it to screening potentially useful chemicals. Here, we aimed to develop a transgenic line of Daphnia magna that contains the human estrogen receptor alpha (hERα) and shows a fluorescence response to exposure of estrogens. We designed plasmids to express hERα in Daphnia (EF1α1:esr1) and to report estrogenic activity via red fluorescence (ERE:mcherry) under the control of estrogen response element (ERE). After confirmation of functionality of the plasmids by microinjection into embryos, the two plasmids were joined, a TALE site was added and integrated into the D. magna genome using TALEN. When the resulting transgenic Daphnia named the ES line was exposed to Diethylstilbestrol (DES) or 17β-Estradiol (E2), the ES line could reliably expressed red fluorescence derived from mCherry in a ligand-dependent manner, indicating that an estrogen-responsive line of D. magna was established. This is the first time a human gene was expressed in Daphnia, showcasing potential for further research.
Collapse
|
41
|
Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, Chenavas S, Perot C, Sodoyer R, Werle B. Codon harmonization - going beyond the speed limit for protein expression. FEBS Lett 2018; 592:1554-1564. [PMID: 29624661 DOI: 10.1002/1873-3468.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Codon usage distribution has been soundly used by nature to fine tune protein biogenesis. Alteration of the mRNA structure or sequential scheduling of codons can profoundly affect translation, thus altering protein yield, functionality, solubility, and proper folding. Building on these observations, here, we present an evaluation of different recently designed algorithms of sequence adaptation based on Codon Adaptation Index (CAI) profiling. The first algorithm globally harmonizes synonymous codons in the original sequence in full respect to the heterologous expression host codon usage. The second recodes the sequence in accordance with the native sequence CAI profile. Our data, generated on three model proteins, highlights the importance to consider gene recoding as a parameter itself for recombinant protein expression improvement.
Collapse
Affiliation(s)
- Charlotte Mignon
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | - Natacha Mariano
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Adrien Lugari
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Stéphanie Donnat
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | | | | | - Bettina Werle
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| |
Collapse
|
42
|
Escudero JA, Nivina A, Cambray G, López-Igual R, Loot C, Mazel D. Recoding of synonymous genes to expand evolutionary landscapes requires control of secondary structure affecting translation. Biotechnol Bioeng 2018; 115:184-191. [DOI: 10.1002/bit.26450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jose A. Escudero
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid Spain
- VISAVET Health Surveillance Centre; Universidad Complutense Madrid; Madrid Spain
| | - Aleksandra Nivina
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | | | - Rocío López-Igual
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| | - Celine Loot
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| | - Didier Mazel
- Institut Pasteur; Unité de Plasticité du Génome Bactérien; Département Génomes et Génétique; Paris France
- CNRS; UMR3525; Paris France
| |
Collapse
|
43
|
Pegoraro M, Matić S, Pergolizzi B, Iannarelli L, Rossi AM, Morra M, Noris E. Cloning and Expression Analysis of Human Amelogenin in Nicotiana benthamiana Plants by Means of a Transient Expression System. Mol Biotechnol 2017; 59:425-434. [PMID: 28801830 DOI: 10.1007/s12033-017-0030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enamel is the covering tissue of teeth, made of regularly arranged hydroxyapatite crystals deposited on an organic matrix composed of 90% amelogenin that is completely degraded at the end of the enamel formation process. Amelogenin has a biomineralizing activity, forming nanoparticles or nanoribbons that guide hydroxyapatite deposit, and regenerative functions in bone and vascular tissue and in wound healing. Biotechnological products containing amelogenin seem to facilitate these processes. Here, we describe the production of human amelogenin in plants by transient transformation of Nicotiana benthamiana with constructs carrying synthetic genes with optimized human or plant codons. Both genes yielded approximately 500 µg of total amelogenin per gram of fresh leaf tissue. Two purification procedures based on affinity chromatography or on intrinsic solubility properties of the protein were followed, yielding from 12 to 150 µg of amelogenin per gram of fresh leaf tissue, respectively, at different purity. The identity of the plant-made human amelogenin was confirmed by MALDI-TOF-MS analysis of peptides generated following chymotrypsin digestion. Using dynamic light scattering, we showed that plant extracts made in acetic acid containing human amelogenin have a bimodal distribution of agglomerates, with hydrodynamic diameters of 22.8 ± 3.8 and 389.5 ± 86.6 nm. To the best of our knowledge, this is the first report of expression of human amelogenin in plants, offering the possibility to use this plant-made protein for nanotechnological applications.
Collapse
Affiliation(s)
- Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Entomologia, University of Torino, Grugliasco (TO), Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy
- AGROINNOVA, University of Torino, Grugliasco (TO), Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU San Luigi, 10043, Orbassano (TO), Italy
| | - Luca Iannarelli
- Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135, Turin, Italy
| | - Andrea M Rossi
- Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135, Turin, Italy
| | - Marco Morra
- NobilBio Ricerche s.r.l, Via Valcastellana, 28, 14037, Portacomaro (AT), Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy.
| |
Collapse
|
44
|
Matsuo K, Matsumura T. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins. J Biosci Bioeng 2017; 124:215-220. [PMID: 28336416 DOI: 10.1016/j.jbiosc.2017.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/26/2017] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production.
Collapse
Affiliation(s)
- Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| |
Collapse
|
45
|
You C, Shi T, Li Y, Han P, Zhou X, Zhang YHP. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol Bioeng 2017; 114:1855-1864. [PMID: 28409846 DOI: 10.1002/bit.26314] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
Myo-Inositol (vitamin B8) is widely used in the drug, cosmetic, and food & feed industries. Here, we present an in vitro non-fermentative enzymatic pathway that converts starch to inositol in one vessel. This in vitro pathway is comprised of four enzymes that operate without ATP or NAD+ supplementation. All enzyme BioBricks are carefully selected from hyperthermophilic microorganisms, that is, alpha-glucan phosphorylase from Thermotoga maritima, phosphoglucomutase from Thermococcus kodakarensis, inositol 1-phosphate synthase from Archaeoglobus fulgidus, and inositol monophosphatase from T. maritima. They were expressed efficiently in high-density fermentation of Escherichia coli BL21(DE3) and easily purified by heat treatment. The four-enzyme pathway supplemented with two other hyperthermophilic enzymes (i.e., 4-α-glucanotransferase from Thermococcus litoralis and isoamylase from Sulfolobus tokodaii) converts branched or linear starch to inositol, accomplishing a very high product yield of 98.9 ± 1.8% wt./wt. This in vitro (aeration-free) biomanufacturing has been successfully operated on 20,000-L reactors. Less costly inositol would be widely added in heath food, low-end soft drink, and animal feed, and may be converted to other value-added biochemicals (e.g., glucarate). This biochemical is the first product manufactured by the in vitro synthetic biology platform on an industrial scale. Biotechnol. Bioeng. 2017;114: 1855-1864. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Pingping Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xigui Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|