1
|
Thota VN, Fers-Lidou A, Nodwell M, McDonagh AW, Gilormini PA, Wang Y, Leung C, Vocadlo DJ, Britton R. A gram-scale synthesis of β-L-carbafucose for engineering antibody glycans. Commun Chem 2025; 8:139. [PMID: 40329042 PMCID: PMC12056183 DOI: 10.1038/s42004-025-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Afucosylated antibodies often exhibit superior properties compared to their fucosylated counterparts including, among others, enhanced antibody-dependent cell cytotoxicity (ADCC). While several recombinant and biochemical strategies have been identified for generating afucosylated antibodies, small molecule metabolic inhibitors provide a potentially more straightforward option. We recently reported that β-L-carbafucose is an inhibitor of antibody fucosylation and is not incorporated into the antibody glycans. To support the further study of β-L-carbafucose, a gram-scale synthesis was needed. Here, we report our investigation of three distinct synthetic routes, including a highly efficient chromatography-free synthesis. Further, we demonstrate multi-gram production of afucosylated Herceptin (Trastuzumab®) in 10 L bioreactors using β-L-carbafucose. We expect this new synthetic process will support the widespread adoption of β-L-carbafucose for producing afucosylated antibodies for discovery and development purposes.
Collapse
Affiliation(s)
| | - Anthony Fers-Lidou
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | - Yang Wang
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Carolyn Leung
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
Gangwar N, Dixit N, Rathore AS. N-Glycosylation modulators for targeted manipulation of glycosylation for monoclonal antibodies. Appl Microbiol Biotechnol 2025; 109:16. [PMID: 39841264 PMCID: PMC11754368 DOI: 10.1007/s00253-025-13405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile. In this study, we have evaluated 20 media additives (metal ions, vitamins, sugars, nucleosides). Six of the additives were shortlisted for their impact and then used to modulate the glycosylation profile of an in-house produced mAb (G0 2.38 ± 0.08%, G0F 75.58 ± 0.45%, G1F 10.07 ± 0.04%, G2F 0.54 ± 0.01%, G0F-N 5.84 ± 0.32%, sialylation 1.60 ± 0.33%, mannosylation 1.56 ± 0.39%) to achieve the glycan profile of a commercially available reference product (G0 2.49 ± 0.07%, G0F 37.83 ± 0.37%, G1F 34.77 ± 0.03%, G2F 4.87 ± 0.01%, G0F-N 2.34 ± 0.12%, sialylation 9.84 ± 0.30%, mannosylation 2.86 ± 0.29%). The proposed approach yielded us a glycan profile (G0 2.10 ± 0.07%, G0F 38.00 ± 0.49%, G1F 31.92 ± 0.09%, G2F 5.26 ± 0.54%, G0F-N 1.92 ± 0.02%, sialylation 10.28 ± 1.68%, mannosylation 3.12 ± 0.29%) that was near identical to that of the reference product. Equally importantly, other quality attributes including charge variants, aggregates, titer, and viability were not found to be significantly impacted by the addition of the additives under consideration. KEY POINTS: • Screened 20 media additives to evaluate their effect on glycosylation of mAbs. • Developed glycosylation indices models to evaluate the effect of various additives. • Additive concentrations were optimized to target the reference product profile.
Collapse
Affiliation(s)
- Neelesh Gangwar
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Dixit
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Skurska E, Olczak M. Interplay between de novo and salvage pathways of GDP-fucose synthesis. PLoS One 2024; 19:e0309450. [PMID: 39446915 PMCID: PMC11501016 DOI: 10.1371/journal.pone.0309450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
GDP-fucose is synthesised via two pathways: de novo and salvage. The first uses GDP-mannose as a substrate, and the second uses free fucose. To date, these pathways have been considered to work separately and not to have an influence on each other. We report the mutual response of the de novo and salvage pathways to the lack of enzymes from a particular route of GDP-fucose synthesis. We detected different efficiencies of GDP-fucose and fucosylated structure synthesis after a single inactivation of enzymes of the de novo pathway. Our study demonstrated the unequal influence of the salvage enzymes on the production of GDP-fucose by enzymes of the de novo biosynthesis pathway. Simultaneously, we detected an elevated level of one of the enzymes of the de novo pathway in the cell line lacking the enzyme of the salvage biosynthesis pathway. Additionally, we identified dissimilarities in fucose uptake between cells lacking TSTA3 and GMDS proteins.
Collapse
Affiliation(s)
- Edyta Skurska
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
4
|
Gilormini PA, Thota VN, Fers-Lidou A, Ashmus RA, Nodwell M, Brockerman J, Kuo CW, Wang Y, Gray TE, Nitin, McDonagh AW, Guu SY, Ertunc N, Yeo D, Zandberg WF, Khoo KH, Britton R, Vocadlo DJ. A metabolic inhibitor blocks cellular fucosylation and enables production of afucosylated antibodies. Proc Natl Acad Sci U S A 2024; 121:e2314026121. [PMID: 38917011 PMCID: PMC11228515 DOI: 10.1073/pnas.2314026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe β-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. β-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. β-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that β-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that β-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Anthony Fers-Lidou
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Roger A. Ashmus
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Jacob Brockerman
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Yang Wang
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Taylor E. Gray
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Nitin
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Anthony W. McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Nursah Ertunc
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | | | - Wesley F. Zandberg
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| |
Collapse
|
5
|
Gampa G, Spinosa P, Getz J, Zhong Y, Halpern W, Esen E, Davies J, Chou C, Kwong M, Wang Y, Arenzana TL, Shivva V, Huseni M, Hsieh R, Schartner J, Koerber JT, Rutz S, Hosseini I. Preclinical and translational pharmacology of afucosylated anti-CCR8 antibody for depletion of tumour-infiltrating regulatory T cells. Br J Pharmacol 2024; 181:2033-2052. [PMID: 38486310 DOI: 10.1111/bph.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND PURPOSE RO7502175 is an afucosylated antibody designed to eliminate C-C motif chemokine receptor 8 (CCR8)+ Treg cells in the tumour microenvironment through enhanced antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL APPROACH We report findings from preclinical studies characterizing pharmacology, pharmacokinetics (PK)/pharmacodynamics (PD) and safety profile of RO7502175 and discuss the translational PK/PD approach used to inform first-in-human (FiH) dosing strategy and clinical development in solid tumour indications. KEY RESULTS RO7502175 demonstrated selective ADCC against human CCR8+ Treg cells from dissociated tumours in vitro. In cynomolgus monkeys, RO7502175 exhibited a biphasic concentration-time profile consistent with immunoglobulin G1 (IgG1) antibodies, reduced CCR8+ Treg cells in the blood, induced minimal and transient cytokine secretion, and was well tolerated with a no-observed-adverse-effect level (NOAEL) of 100 mg·kg-1. Moreover, RO7502175 caused minimal cytokine release from peripheral blood mononuclear cells (PBMCs) in vitro. A quantitative model was developed to capture surrogate anti-murine CCR8 antibody PK/PD and tumour dynamics in mice and RO7502175 PK/PD in cynomolgus monkeys. Subsequently, the model was used to project RO7502175 human PK and receptor occupancy (RO) in patients. Because traditional approaches resulted in a low FiH dose for this molecule, even with its superior preclinical safety profile, an integrated approach based on the totality of preclinical data and modelling insights was used for starting dose selection. CONCLUSION AND IMPLICATIONS This work demonstrates a translational research strategy for collecting and utilizing relevant nonclinical data, developing a mechanistic PK/PD model and using a comprehensive approach to inform clinical study design for RO7502175.
Collapse
Affiliation(s)
- Gautham Gampa
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Phillip Spinosa
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Jennifer Getz
- Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Yu Zhong
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Wendy Halpern
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Emel Esen
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Cassie Chou
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Mandy Kwong
- Department of Biochemical Cellular Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Yingyun Wang
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Teresita L Arenzana
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Vittal Shivva
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Mahrukh Huseni
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Robert Hsieh
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jill Schartner
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California, USA
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
6
|
Schlossbauer P, Naumann L, Klingler F, Burkhart M, Handrick R, Korff K, Neusüß C, Otte K, Hesse F. Stable overexpression of native and artificial miRNAs for the production of differentially fucosylated antibodies in CHO cells. Eng Life Sci 2024; 24:2300234. [PMID: 38845814 PMCID: PMC11151017 DOI: 10.1002/elsc.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Cell engineering strategies typically rely on energy-consuming overexpression of genes or radical gene-knock out. Both strategies are not particularly convenient for the generation of slightly modulated phenotypes, as needed in biosimilar development of for example differentially fucosylated monoclonal antibodies (mAbs). Recently, transiently transfected small noncoding microRNAs (miRNAs), known to be regulators of entire gene networks, have emerged as potent fucosylation modulators in Chinese hamster ovary (CHO) production cells. Here, we demonstrate the applicability of stable miRNA overexpression in CHO production cells to adjust the fucosylation pattern of mAbs as a model phenotype. For this purpose, we applied a miRNA chaining strategy to achieve adjustability of fucosylation in stable cell pools. In addition, we were able to implement recently developed artificial miRNAs (amiRNAs) based on native miRNA sequences into a stable CHO expression system to even further fine-tune fucosylation regulation. Our results demonstrate the potential of miRNAs as a versatile tool to control mAb fucosylation in CHO production cells without adverse side effects on important process parameters.
Collapse
Affiliation(s)
- Patrick Schlossbauer
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | - Florian Klingler
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Madina Burkhart
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - René Handrick
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | | | - Kerstin Otte
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Friedemann Hesse
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| |
Collapse
|
7
|
Xu P, Ou YC, Smith M, Paulson J, Schmidt MA, Kandari L, Parsons R, Khetan A. Application of fucosylation inhibitors for production of afucosylated antibody. Biotechnol Prog 2024; 40:e3438. [PMID: 38415431 DOI: 10.1002/btpr.3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.
Collapse
Affiliation(s)
- Ping Xu
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Yu Chuan Ou
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Michael Smith
- Chemical Process Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Jim Paulson
- Chemical Process Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Michael A Schmidt
- Chemical Process Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Lakshmi Kandari
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Rodney Parsons
- Chemical Process Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| |
Collapse
|
8
|
Zhu X, Gong L, Qin Q. Development, methodological evaluation and application of a cell-based TRF assay for analysis of ADCC activity. J Pharm Biomed Anal 2023; 235:115655. [PMID: 37647793 DOI: 10.1016/j.jpba.2023.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Interaction of an antibody with its FcγR plays an important role in effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC). Nowadays altered ADCC activity of an antibody can be achieved by utilizing an effective glyco-engineering strategy, which often involves changes of sugar moieties in Fc part of the antibody, thereby affecting its receptor binding with effector cells. We aimed to construct a cell-based time-resolved fluorescence (TRF) assay for the evaluation of ADCC activity triggered by the antibody drug Trastuzumab (anti-HER2) and T-DM1. The assay was initiated by incubating 2,2':6',2 "-Terpyridine-6,6"-dicarboxylic acid (TDA)-labeled target SK-BR3 cells with the testing antibodies and engineered NK-92 effector cells. After incubation, the target cells were lysed to detect TDA released into the supernatant. Together with added Eu, the TDA in the supernatant formed a stable chelate of EuTDA with high-intensity fluorescence. The ADCC activity was then determined by measuring the fluorescence of EuTDA. Consequently, the method demonstrated good accuracy, precision, linearity, and specificity over methodological assessment and compared well with the Luciferase release assay in terms of the agreement of the achieved results. Using the developed assay, we evaluated the ADCC activity of two glyco-engineered anti-HER-2 antibody-drug conjugates (ADCs) and the results showed that antibody Fc glycosylation modifications influenced antibody ADCC activity to varying degrees. In conclusion, the present assay is able to accurately assess the ADCC activity induced by Trastuzumab (anti-HER2) and T-DM1, and a similar methodology can be applied to other therapeutic antibodies during drug development to help screen for antibodies with desirable ADCC activity.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Likun Gong
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China.
| | - Qiuping Qin
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China.
| |
Collapse
|
9
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
10
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
11
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
12
|
Amiri S, Adibzadeh S, Ghanbari S, Rahmani B, Kheirandish MH, Farokhi-Fard A, Dastjerdeh MS, Davami F. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng 2023; 120:865-902. [PMID: 36597180 DOI: 10.1002/bit.28329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
For industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high-quality biologics with human-like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long-term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR-Cas systems, the use of CRISPR-Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast-track product development process with consistent, improved product yield and quality.
Collapse
Affiliation(s)
- Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad H Kheirandish
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Farokhi-Fard
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansoureh S Dastjerdeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Matsumoto Y, Jia N, Heimburg-Molinaro J, Cummings RD. Targeting Tn-positive tumors with an afucosylated recombinant anti-Tn IgG. Sci Rep 2023; 13:5027. [PMID: 36977722 PMCID: PMC10050417 DOI: 10.1038/s41598-023-31195-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The aberrant expression of the Tn antigen (CD175) on surface glycoproteins of human carcinomas is associated with tumorigenesis, metastasis, and poor survival. To target this antigen, we developed Remab6, a recombinant, human chimeric anti-Tn-specific monoclonal IgG. However, this antibody lacks antibody-dependent cell cytotoxicity (ADCC) effector activity, due to core fucosylation of its N-glycans. Here we describe the generation of an afucosylated Remab6 (Remab6-AF) in HEK293 cells in which the FX gene is deleted (FXKO). These cells cannot synthesize GDP-fucose through the de novo pathway, and lack fucosylated glycans, although they can incorporate extracellularly-supplied fucose through their intact salvage pathway. Remab6-AF has strong ADCC activity against Tn+ colorectal and breast cancer cell lines in vitro, and is effective in reducing tumor size in an in vivo xenotransplant mouse model. Thus, Remab6-AF should be considered as a potential therapeutic anti-tumor antibody against Tn+ tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA.
- Department of Surgery, Surgical Sciences, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Zhong X, Schenk J, Sakorafas P, Chamberland J, Tam A, Thomas LM, Yan G, D' Antona AM, Lin L, Nocula-Lugowska M, Zhang Y, Sousa E, Cohen J, Gu L, Abel M, Donahue J, Lim S, Meade C, Zhou J, Riegel L, Birch A, Fennell BJ, Franklin E, Gomes JM, Tzvetkova B, Scarcelli JJ. Impacts of fast production of afucosylated antibodies and Fc mutants in ExpiCHO-S™ for enhancing FcγRIIIa binding and NK cell activation. J Biotechnol 2022; 360:79-91. [PMID: 36341973 DOI: 10.1016/j.jbiotec.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA.
| | - Jennifer Schenk
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Paul Sakorafas
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John Chamberland
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Amy Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - L Michael Thomas
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Grace Yan
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Aaron M D' Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | | | - Yan Zhang
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Eric Sousa
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Justin Cohen
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Ling Gu
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Molica Abel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jacob Donahue
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Sean Lim
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Caryl Meade
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jing Zhou
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Logan Riegel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Alex Birch
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Brian J Fennell
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Edward Franklin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Jose M Gomes
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Boriana Tzvetkova
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John J Scarcelli
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA.
| |
Collapse
|
15
|
Qiao Y, Zhan Y, Zhang Y, Deng J, Chen A, Liu B, Zhang Y, Pan T, Zhang W, Zhang H, He X. Pam2CSK4-adjuvanted SARS-CoV-2 RBD nanoparticle vaccine induces robust humoral and cellular immune responses. Front Immunol 2022; 13:992062. [PMID: 36569949 PMCID: PMC9780597 DOI: 10.3389/fimmu.2022.992062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.
Collapse
Affiliation(s)
- Yidan Qiao
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yikang Zhan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangzhou National Laboratory, Guangzhou, Guangdong, China,*Correspondence: Xin He, ; Hui Zhang,
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xin He, ; Hui Zhang,
| |
Collapse
|
16
|
Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells. Metab Eng 2022; 74:61-71. [PMID: 36152932 DOI: 10.1016/j.ymben.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.
Collapse
|
17
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Adhikari E, Liu Q, Burton C, Mockabee-Macias A, Lester DK, Lau E. l-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol Carcinog 2022; 61:439-453. [PMID: 35107186 DOI: 10.1002/mc.23394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
19
|
Misaki R, Iwasaki M, Takechi H, Yamano-Adachi N, Ohashi T, Kajiura H, Fujiyama K. Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter. Cytotechnology 2022; 74:163-179. [PMID: 35185292 PMCID: PMC8817005 DOI: 10.1007/s10616-021-00501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/11/2021] [Indexed: 02/03/2023] Open
Abstract
Although antibodies have attracted attention as next-generation biopharmaceuticals, the costs of purifying the products and of arranging the environment for cell cultivation are high. Therefore, there is a need to increase antibody efficacy and improve product quality as much as possible. Since antibodies are glycoproteins, their glycan structures have been found to affect the function of antibodies. Especially, afucosylation of the N-linked glycan in the Fc region is known to significantly increase antibody-dependent cellular cytotoxicity. In this study, we established a double-mutant ΔGMDΔGFT in which GDP-mannose 4,6-dehydratase and GDP-fucose transporter were knocked out in Chinese hamster ovary cells, a platform for biopharmaceutical protein production. By adapting ΔGMDΔGFT cells to serum-free medium and constructing suspension-cultured cells, we established host CHO cells with no detected fucosylated glycans and succeeded in production of afucosylated antibodies. We also demonstrated that, in culture in the presence of serum, fucosylation occurs due to contamination from serum components. Furthermore, we found that afucosylation of glycans does not affect cell growth after adaptation to serum-free medium as compared to wild-type CHO cells growth and does not significantly affect the expression levels of other endogenous fucose metabolism-related enzyme genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00501-3.
Collapse
Affiliation(s)
- Ryo Misaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Masashi Iwasaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroki Takechi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
- MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors. Antibodies (Basel) 2021; 10:antib10040044. [PMID: 34842612 PMCID: PMC8628514 DOI: 10.3390/antib10040044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.
Collapse
|
21
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
23
|
Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem 2021; 297:100826. [PMID: 34044019 PMCID: PMC8214220 DOI: 10.1016/j.jbc.2021.100826] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody–receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting–MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab–receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab–receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc–polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG–Fc receptor biology.
Collapse
Affiliation(s)
- Yue Sun
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, California, USA
| | - Matthew Callahan
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
24
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Liu W, Padmashali R, Monzon OQ, Lundberg D, Jin S, Dwyer B, Lee YJ, Korde A, Park S, Pan C, Zhang B. Generation of FX -/- and Gmds -/- CHOZN host cell lines for the production of afucosylated therapeutic antibodies. Biotechnol Prog 2020; 37:e3061. [PMID: 32748555 PMCID: PMC7988551 DOI: 10.1002/btpr.3061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Antibody‐dependent cellular cytotoxicity (ADCC) is the primary mechanism of actions for several marketed therapeutic antibodies (mAbs) and for many more in clinical trials. The ADCC efficacy is highly dependent on the ability of therapeutic mAbs to recruit effector cells such as natural killer cells, which induce the apoptosis of targeted cells. The recruitment of effector cells by mAbs is negatively affected by fucose modification of N‐Glycans on the Fc; thus, utilization of afucosylated mAbs has been a trend for enhanced ADCC therapeutics. Most of afucosylated mAbs in clinical or commercial manufacturing were produced from Fut8−/− Chinese hamster ovary cells (CHO) host cells, generally generating low yields compared to wildtype CHO host. This study details the generation and characterization of two engineered CHOZN® cell lines, in which the enzyme involved in guanosine diphosphate (GDP)‐fucose synthesis, GDP mannose‐4,6‐dehydratase (Gmds) and GDP‐L‐fucose synthase (FX), was knocked out. The top host cell lines for each of the knockouts, FX−/− and Gmds−/−, were selected based on growth robustness, bulk MSX selection tolerance, production titer, fucosylation level, and cell stability. We tested the production of two proprietary IgG1 mAbs in the engineered host cells, and found that the titers were comparable to CHOZN® cells. The mAbs generated from either KO cell line exhibited loss of fucose modification, leading to significantly boosted FcγRIIIa binding and ADCC effects. Our data demonstrated that both FX−/− and Gmds−/− host cells could replace Fut8−/− CHO cells for clinical manufacturing of antibody therapeutics.
Collapse
Affiliation(s)
- Weiyi Liu
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Roshan Padmashali
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Omar Quintero Monzon
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Dianna Lundberg
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Shan Jin
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Brian Dwyer
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Yun-Jung Lee
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Anisha Korde
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Sophia Park
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Clark Pan
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Bohong Zhang
- Rare Disease Unit, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Mishra N, Spearman M, Donald L, Perreault H, Butler M. Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody. J Biotechnol 2020; 324S:100015. [DOI: 10.1016/j.btecx.2020.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/16/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
|
27
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Van Landuyt L, Lonigro C, Meuris L, Callewaert N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 2019; 60:17-28. [DOI: 10.1016/j.copbio.2018.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
|
29
|
Abstract
Antibodies are immunoglobulins that play essential roles in immune systems. All antibodies are glycoproteins that carry at least one or more conserved N-linked oligosaccharides (N-glycans) at the Fc domain. Many studies have demonstrated that both the presence and fine structures of the attached glycans can exert a profound impact on the biological functions and therapeutic efficacy of antibodies. However, antibodies usually exist as mixtures of heterogeneous glycoforms that are difficult to separate in pure glycoforms. Recent progress in glycoengineering has provided useful methods that enable production of glycan-defined and site-selectively modified antibodies for functional studies and for improved therapeutic efficacy. This review highlights major approaches in glycoengineering of antibodies with a focus on recent advances in three areas: glycoengineering through glycan biosynthetic pathway manipulation, glycoengineering through in vitro chemoenzymatic glycan remodeling, and glycoengineering of antibodies for site-specific antibody-drug conjugation.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Tiezheng Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| |
Collapse
|
30
|
Pereira NA, Chan KF, Lin PC, Song Z. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2019; 10:693-711. [PMID: 29733746 PMCID: PMC6150623 DOI: 10.1080/19420862.2018.1466767] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.
Collapse
Affiliation(s)
- Natasha A Pereira
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Kah Fai Chan
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Pao Chun Lin
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Zhiwei Song
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| |
Collapse
|
31
|
Nguyen Dang A, Mun M, Rose CM, Ahyow P, Meier A, Sandoval W, Yuk IH. Interaction of cell culture process parameters for modulating mAb afucosylation. Biotechnol Bioeng 2019; 116:831-845. [DOI: 10.1002/bit.26908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/08/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Melissa Mun
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Christopher M. Rose
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Patrick Ahyow
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Angela Meier
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Wendy Sandoval
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Inn H. Yuk
- Cell Culture, PTD, GenentechSouth San Francisco California
| |
Collapse
|
32
|
Boosting half-life and effector functions of therapeutic antibodies by Fc-engineering: An interaction-function review. Int J Biol Macromol 2018; 119:306-311. [DOI: 10.1016/j.ijbiomac.2018.07.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
|
33
|
Metabolic engineering of CHO cells to prepare glycoproteins. Emerg Top Life Sci 2018; 2:433-442. [DOI: 10.1042/etls20180056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.
Collapse
|
34
|
Amann T, Hansen AH, Kol S, Lee GM, Andersen MR, Kildegaard HF. CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins. Biotechnol J 2018; 13:e1800111. [PMID: 29862652 DOI: 10.1002/biot.201800111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/04/2018] [Indexed: 12/16/2022]
Abstract
In production of recombinant proteins for biopharmaceuticals, N-glycosylation is often important for protein efficacy and patient safety. IgG with agalactosylated (G0)-N-glycans can improve the activation of the lectin-binding complement system and be advantageous in the therapy of lupus and virus diseases. In this study, the authors aimed to engineer CHO-S cells for the production of proteins with G0-N-glycans by targeting B4Gal-T isoform genes with CRISPR/Cas9. Indel mutations in genes encoding B4Gal-T1, -T2, and -T3 with and without a disrupted B4Gal-T4 sequence resulted in only ≈1% galactosylated N-glycans on total secreted proteins of 3-4 clones per genotype. The authors revealed that B4Gal-T4 is not active in N-glycan galactosylation in CHO-S cells. In the triple-KO clones, transiently expressed erythropoietin (EPO) and rituximab harbored only ≈6% and ≈3% galactosylated N-glycans, respectively. However, simultaneous disruption of B4Gal-T1 and -T3 may decrease cell growth. Altogether, the authors present the advantage of analyzing total secreted protein N-glycans after disrupting galactosyltransferases, followed by expressing recombinant proteins in selected clones with desired N-glycan profiles at a later stage. Furthermore, the authors provide a cell platform that prevalently glycosylates proteins with G0-N-glycans to further study the impact of agalactosylation on different in vitro and in vivo functions of recombinant proteins.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Anders Holmgaard Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.,Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
36
|
Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. MAbs 2018; 10:488-499. [PMID: 29388872 DOI: 10.1080/19420862.2018.1433978] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.
Collapse
Affiliation(s)
- Jianlin Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Matthew S Rehmann
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Xuankuo Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Chao Huang
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Jun Tian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Nan-Xin Qian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Zheng Jian Li
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| |
Collapse
|
37
|
Zhou Y, Fukuda T, Hang Q, Hou S, Isaji T, Kameyama A, Gu J. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 2017; 7:11563. [PMID: 28912543 PMCID: PMC5599613 DOI: 10.1038/s41598-017-11911-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Core fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis. Cell proliferation and integrin-mediated cell migration were significantly suppressed in cells treated with 2FF. We further analyzed cell colony formation in soft agar and tumor xenograft efficacy, and found that both were greatly suppressed in the 2FF-treated cells, compared with the control cells. Moreover, the treatment with 2FF decreased the core fucosylation levels of membrane glycoproteins such as EGF receptor and integrin β1, which in turn suppressed downstream signals that included phospho-EGFR, -AKT, -ERK, and -FAK. These results clearly described the roles of 2FF and the importance of core fucosylation in liver cancer progression, suggesting 2FF shows promise for use in the treatment of hepatoma.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|