1
|
Suri J, Gilmour R. Expediting Glycospace Exploration: Therapeutic Glycans via Automated Synthesis. Angew Chem Int Ed Engl 2025; 64:e202422766. [PMID: 39936247 PMCID: PMC11933530 DOI: 10.1002/anie.202422766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Glycans regulate a vast spectrum of disease-related processes, yet effectively leveraging these important mediators in a therapeutic context remains a frontier in contemporary medicine. Unlike many other classes of clinically important biopolymers, carbohydrates derive from discrete biosynthetic pathways and are not produced directly from genes. The conspicuous absence of a biological blueprint to achieve amplification creates a persistent challenge in obtaining well-defined glycostructures for therapeutic translation. Isolating purified sugars from biological sources is not without challenge, rendering synthetic organic chemistry the nexus of this advancing field. Chemical synthesis has proven to be an unfaltering pillar in the production of complex glycans, but laborious syntheses coupled with purification challenges frequently introduce reproducibility issues. In an effort to reconcile these preparative challenges with the societal importance of glycans, automated glycan synthesis was conceptualised at the start of the 21st century. This rapidly expanding, multifaceted field of scientific endeavor has effectively merged synthetic chemistry with technology and engineering to expedite the precision synthesis of target glycans. This minireview describes the structural diversity and function of glycans generated by automated glycan synthesis platforms over the last five years. The translational impact of these advances is discussed together with current limitations and future directions.
Collapse
Affiliation(s)
- James Suri
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| | - Ryan Gilmour
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| |
Collapse
|
2
|
Gast D, Neidig S, Reindl M, Hoffmann-Röder A. Synthesis of Fluorinated Glycotope Mimetics Derived from Streptococcus pneumoniae Serotype 8 CPS. Int J Mol Sci 2025; 26:1535. [PMID: 40004000 PMCID: PMC11855009 DOI: 10.3390/ijms26041535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic vaccine candidates for cancer, HIV and bacterial infections. Despite their attractiveness, the synthesis of fluorinated oligosaccharides is still challenging, emphasizing the need for efficient protocols that allow for the site-specific incorporation of fluorine atoms (especially at late stages of the synthesis). This is particularly true for the development of fully synthetic vaccine candidates, whose (modified) carbohydrate antigen structures (glycotopes) per se comprise multistep synthesis routes. Based on a known minimal protective epitope from the capsular polysaccharide of S. pneumoniae serotype 8, a panel of six novel F-glycotope mimetics was synthesized, equipped with amine linkers for subsequent conjugation to immunogens. Next to the stepwise assembly via fluorinated building blocks, the corresponding 6F-substituted derivatives could be obtained by microwave-assisted, nucleophilic late-stage fluorination of tri- and tetrasaccharidic precursors in high yields. The described synthetic strategy allowed for preparation of the targeted fluorinated oligosaccharides in sufficient quantities for future immunological studies.
Collapse
Affiliation(s)
| | | | | | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
3
|
Van De Velde J, Calderón Rodríguez A, Wang Z, Wheatley DE, Linclau B. In pursuit of larger lipophilicity enhancement: an investigation of sugar deoxychlorination. Org Biomol Chem 2025. [PMID: 39930814 PMCID: PMC11811696 DOI: 10.1039/d5ob00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
The excessive hydrophilicity of carbohydrates hampers their application in drug discovery. Deoxyfluorination is one of the strategies to increase sugar lipophilicity. However, lipophilicities of dideoxy-difluorinated monosaccharides are still well below the desired range for oral drug candidates. Here we investigate the power of deoxychlorination to increase sugar lipophilicities. A series of dideoxygenated chloro-fluorosugars was synthesized and for these substrates it was shown that deoxychlorination increased the log P by an average of 1.37 log P units, compared to 0.83 log P units for analogous deoxyfluorination. This shows the potential of deoxychlorination of carbohydrates to increase lipophilicity while limiting the number of potentially important hydrogen bond donating groups to be sacrificed, and will be of interest for glycomimetic development.
Collapse
Affiliation(s)
- Jonas Van De Velde
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
| | | | - Zhong Wang
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - David E Wheatley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
4
|
Huang L, Wang C, Chen Z, Jin Q, Song S, Zhou J, Li J. Photoinduced EDA Complex-Initiated Synthesis of Fluoroalkylated Isoquinolinonediones. Chemistry 2025; 31:e202403286. [PMID: 39503535 DOI: 10.1002/chem.202403286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 11/21/2024]
Abstract
A visible-light-induced radical tandem difluoroalkylation/cyclization to construct CF2-containing isoquinolinonedione skeletons with methacryloyl benzamides is developed. Broad substrate scopes are compatible with metal-, oxidant- and photocatalyst-free conditions under room temperature in good-to-excellent yields. Mechanistic analysis revealed that the transformation is initiated by photoinduced electron donor-acceptor (EDA) complexes formation.
Collapse
Affiliation(s)
- Lei Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Chaodong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Zhi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Qianxi Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Jiadi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, 310014, Hangzhou, Zhejiang, China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, No. 788 Xueyuan Road, Jiaojiang District, 318014, Taizhou City, Zhejiang, China
| |
Collapse
|
5
|
Caprifico AE, Vaghi L, Spearman P, Calabrese G, Papagni A. In vitro detection of cancer cells using a novel fluorescent choline derivative. BMC Med Imaging 2024; 24:316. [PMID: 39567942 PMCID: PMC11580358 DOI: 10.1186/s12880-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION The treatment of preinvasive lesions is more effective than treating invasive disease, hence detecting cancer at its early stages is crucial. However, currently, available screening methods show various limitations in terms of sensitivity, specificity, and practicality, thus novel markers complementing traditional cyto/histopathological assessments are needed. Alteration in choline metabolism is a hallmark of many malignancies, including cervical and breast cancers. Choline radiotracers are widely used for imaging purposes, even though many risks are associated with their radioactivity. Therefore, this work aimed to synthesise and characterise a non-radioactive choline tracer based on a fluorinated acridine scaffold (CFA) for the in vitro detection of cervical and breast cancer cells by fluorescence imaging. METHODS CFA was fully characterised and tested for its cytotoxicity on breast (MCF-7), cervical (HeLa), glioblastoma (U-87 MG) and hepatoblastoma (HepG2) cancer cell lines and in normal cell lines (epithelial, HEK-293 and human dermal fibroblasts, HDFs). The cellular uptake of CFA was investigated by a confocal microscope and its accumulation was quantified over time. The specificity of CFA over mesenchymal origin cells (HDFs), as a model of cancer-associated fibroblasts was investigated by fluorescence microscopy. RESULTS CFA was toxic at much higher concentrations (HeLa IC50 = 200 ± 18 µM and MCF-7 IC50 = 105 ± 3 µM) than needed for its detection in cancer cells (5 µM). CFA was not toxic in the other cell lines tested. The intensity of CFA in breast and cervical cancer cells was not significantly different at any time point, yet it was greater than HepG2 and U-87 MG (p ≤ 0.01 and p ≤ 0.0001, respectively) after 24 h incubation. A very weak signal intensity was recorded in HEK-293 and HDFs (p ≤ 0.001 and p ≤ 0.0001, respectively). A selective ability of CFA to accumulate in HeLa and MCF-7 was recorded upon co-culture with fibroblasts. CONCLUSIONS The results showed that CFA preferentially accumulated in cancer cells rather than in normal cells. These findings suggest that CFA may be a potential diagnostic probe for discriminating healthy tissues from malignant tissues due to its specific and highly sensitive features; CFA may also represent a useful tool for in vitro/ex vivo investigations of choline metabolism in patients with cervical and breast cancers.
Collapse
Affiliation(s)
- Anna E Caprifico
- School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| | - Luca Vaghi
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| | - Peter Spearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Gianpiero Calabrese
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Antonio Papagni
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| |
Collapse
|
6
|
Song S, Luo C, Wang G, Guo J, Chen Z, Li J. Photo-induced difluoroalkylation/cyclization of alkyne ketones: a novel strategy to access difluoroalkyl thiofavones. Chem Commun (Camb) 2024; 60:11323-11326. [PMID: 39297505 DOI: 10.1039/d4cc03843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A photo-induced electron donor-acceptor (EDA) complex enabled tandem reaction of alkyne ketones via a radical difluoroalkylation/cyclization cascade sequence is reported. The EDA complex plays a key role, and the C-Br bond homolysis process may also be involved for this transformation. Varieties of difluoroalkyl-substituted thiofavones can be smoothly assembled in moderate to good yields under photocatalyst-, metal- and oxidant-free conditions, thus offering potential applications for pharmaceutical research.
Collapse
Affiliation(s)
- Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Can Luo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Guan Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Jingjing Guo
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
7
|
Kurfiřt M, Št’astná LČ, Dračínský M, Pohl R, Císařová I, Sýkora J, Balouch M, Baka M, Hamala V, Cañada FJ, Ardá A, Jiménez-Barbero J, Karban J. Influence of Selective Deoxyfluorination on the Molecular Structure of Type-2 N-Acetyllactosamine. J Org Chem 2024; 89:11875-11890. [PMID: 39178339 PMCID: PMC11382267 DOI: 10.1021/acs.joc.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
N-Acetyllactosamine is a common saccharide motif found in various biologically active glycans. This motif usually works as a backbone for additional modifications and thus significantly influences glycan conformational behavior and biological activity. In this work, we have investigated the type-2 N-acetyllactosamine scaffold using the complete series of its monodeoxyfluorinated analogs. These glycomimetics have been studied by molecular mechanics, quantum mechanics, X-ray crystallography, and various NMR techniques, which have provided a comprehensive and complete insight into the role of individual hydroxyl groups in the conformational behavior and lipophilicity of N-acetyllactosamine.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Institute
of Chemical Process Fundamentals, Czech
Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
- Department of Organic
Chemistry, Department
of Analytical Chemistry, Department of Chemical Engineering,
and Department of
Food Analysis and Nutrition, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lucie Červenková Št’astná
- Institute
of Chemical Process Fundamentals, Czech
Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo náměstí 542/2, CZ-160 00 Praha 6, Czech Republic
| | - Radek Pohl
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo náměstí 542/2, CZ-160 00 Praha 6, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Jan Sýkora
- Department of Organic
Chemistry, Department
of Analytical Chemistry, Department of Chemical Engineering,
and Department of
Food Analysis and Nutrition, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Balouch
- Department of Organic
Chemistry, Department
of Analytical Chemistry, Department of Chemical Engineering,
and Department of
Food Analysis and Nutrition, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Baka
- Institute
of Entomology, Biology Centre of the Czech
Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Department of Organic
Chemistry, Department
of Analytical Chemistry, Department of Chemical Engineering,
and Department of
Food Analysis and Nutrition, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vojtěch Hamala
- Institute
of Chemical Process Fundamentals, Czech
Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
- Department of Organic
Chemistry, Department
of Analytical Chemistry, Department of Chemical Engineering,
and Department of
Food Analysis and Nutrition, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - F. Javier Cañada
- Centro
de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIBER de Enfermedades
Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Ardá
- CICbioGUNE, Basque
Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48162 Derio
Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 2, 48013 Bilbao Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque
Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48162 Derio
Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 2, 48013 Bilbao Bizkaia, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- CIBER de Enfermedades
Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Jindřich Karban
- Institute
of Chemical Process Fundamentals, Czech
Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| |
Collapse
|
8
|
Zhang YY, Zhang Y, Xue XS, Qing FL. Reversal of the Regioselectivity of Iron-Promoted Hydrogenation and Hydrohalogenation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2024; 63:e202406324. [PMID: 38637292 DOI: 10.1002/anie.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The reaction regioselectivity of gem-difluoroalkenes is dependent on the intrinsic polarity. Thus, the reversal of the regioselectivity of the addition reaction of gem-difluoroalkenes remains a formidable challenge. Herein, we described an unprecedented reversal of regioselectivity of hydrogen atom transfer (HAT) to gem-difluoroalkenes triggered by Fe-H species for the formation of difluoroalkyl radicals. Hydrogenation of the in situ generated radicals gave difluoromethylated products. Mechanism experiments and theoretical studies revealed that the kinetic effect of the irreversible HAT process resulted in the reversal of the regioselectivity of this scenario, leading to the formation of a less stable α-difluoroalkyl radical regioisomer. On basis of this new reaction of gem-difluoroalkene, the iron-promoted hydrohalogenation of gem-difluoroalkenes for the efficient synthesis of aliphatic chlorodifluoromethyl-, bromodifluoromethyl- and iododifluoromethyl-containing compounds was developed. Particularly, this novel hydrohalogenation of gem-difluoroalkenes provided an effect and large-scale access to various iododifluoromethylated compounds of high value for synthetic application.
Collapse
Affiliation(s)
- Yu-Yang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Kurfiřt M, Hamala V, Beránek J, Červenková Šťastná L, Červený J, Dračínský M, Bernášková J, Spiwok V, Bosáková Z, Bojarová P, Karban J. Synthesis and unexpected binding of monofluorinated N,N'-diacetylchitobiose and LacdiNAc to wheat germ agglutinin. Bioorg Chem 2024; 147:107395. [PMID: 38705105 DOI: 10.1016/j.bioorg.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Fluorination of carbohydrate ligands of lectins is a useful approach to examine their binding profile, improve their metabolic stability and lipophilicity, and convert them into 19F NMR-active probes. However, monofluorination of monovalent carbohydrate ligands often leads to a decreased or completely lost affinity. By chemical glycosylation, we synthesized the full series of methyl β-glycosides of N,N'-diacetylchitobiose (GlcNAcβ(1-4)GlcNAcβ1-OMe) and LacdiNAc (GalNAcβ(1-4)GlcNAcβ1-OMe) systematically monofluorinated at all hydroxyl positions. A competitive enzyme-linked lectin assay revealed that the fluorination at the 6'-position of chitobioside resulted in an unprecedented increase in affinity to wheat germ agglutinin (WGA) by one order of magnitude. For the first time, we have characterized the binding profile of a previously underexplored WGA ligand LacdiNAc. Surprisingly, 4'-fluoro-LacdiNAc bound WGA even stronger than unmodified LacdiNAc. These observations were interpreted using molecular dynamic calculations along with STD and transferred NOESY NMR techniques, which gave evidence for the strengthening of CH/π interactions after deoxyfluorination of the side chain of the non-reducing GlcNAc. These results highlight the potential of fluorinated glycomimetics as high-affinity ligands of lectins and 19F NMR-active probes.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Jan Beránek
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, CZ-160 00 Praha 6, Czech Republic
| | - Jana Bernášková
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Vojtěch Spiwok
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic.
| |
Collapse
|
10
|
Chaloupecká E, Kurfiřt M, Červenková Šťastná L, Karban J, Dračínský M. Exploring long-range fluorine-carbon J-coupling for conformational analysis of deoxyfluorinated disaccharides: A combined computational and NMR study. Bioorg Chem 2024; 147:107388. [PMID: 38678775 DOI: 10.1016/j.bioorg.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
In this study, we investigated the potential of long-range fluorine-carbon J-coupling for determining the structures of deoxyfluorinated disaccharides. Three disaccharides, previously synthesized as potential galectin inhibitors, exhibited through-space fluorine-carbon J-couplings. In our independent conformational analysis of these disaccharide derivatives, we employed a combination of density functional theory (DFT) calculations and nuclear magnetic resonance (NMR) experiments. By comparing the calculated nuclear shieldings with the experimental carbon chemical shifts, we were able to identify the most probable conformers for each compound. A model comprising fluoromethane and methane molecules was used to study the relationship between molecular arrangements and intermolecular through-space J-coupling. Our study demonstrates the important effect of internuclear distance and molecular orientation on the magnitude of fluorine-carbon coupling. The experimental values for the fluorine-carbon through-space couplings (TSCs) of the disaccharides corresponded with values calculated for the most probable conformers identified by the conformational analysis. These results unlock the broader application of fluorine-carbon TSCs as powerful tools for conformational analysis of flexible molecules, offering valuable insights for future structural investigations.
Collapse
Affiliation(s)
- Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic; University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic.
| |
Collapse
|
11
|
Kothapalli Y, Jones RA, Chu CK, Singh US. Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties. Molecules 2024; 29:2390. [PMID: 38792251 PMCID: PMC11124531 DOI: 10.3390/molecules29102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials.
Collapse
Affiliation(s)
| | | | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| | - Uma S. Singh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| |
Collapse
|
12
|
Shishmarev D, Fontenelle CQ, Linclau B, Kuprov I, Kuchel PW. Quantitative Analysis of 2D EXSY NMR Spectra of Strongly Coupled Spin Systems in Transmembrane Exchange. Chembiochem 2024; 25:e202300597. [PMID: 37984465 PMCID: PMC10952724 DOI: 10.1002/cbic.202300597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Solute translocation by membrane transport proteins is a vital biological process that can be tracked, on the sub-second timescale, using nuclear magnetic resonance (NMR). Fluorinated substrate analogues facilitate such studies because of high sensitivity of 19 F NMR and absence of background signals. Accurate extraction of translocation rate constants requires precise quantification of NMR signal intensities. This becomes complicated in the presence of J-couplings, cross-correlations, and nuclear Overhauser effects (NOE) that alter signal integrals through mechanisms unrelated to translocation. Geminal difluorinated motifs introduce strong and hard-to-quantify contributions from non-exchange effects, the nuanced nature of which makes them hard to integrate into data analysis methodologies. With analytical expressions not being available, numerical least squares fitting of theoretical models to 2D spectra emerges as the preferred quantification approach. For large spin systems with simultaneous coherent evolution, cross-relaxation, cross-correlation, conformational exchange, and membrane translocation between compartments with different viscosities, the only available simulation framework is Spinach. In this study, we demonstrate GLUT-1 dependent membrane transport of two model sugars featuring CF2 and CF2 CF2 fluorination motifs, with precise determination of translocation rate constants enabled by numerical fitting of 2D EXSY spectra. For spin systems and kinetic networks of this complexity, this was not previously tractable.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- The Australian National UniversityJohn Curtin School of Medical Research2601CanberraACTAustralia
- The Australian National UniversityResearch School of Biology2601CanberraACTAustralia
| | | | - Bruno Linclau
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
- Department of Organic and Macromolecular ChemistryGhent UniversityCampus Sterre, Krijgslaan 281-S49000GhentBelgium
| | - Ilya Kuprov
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
| | - Philip W. Kuchel
- The University of SydneySchool of Life and Environmental Sciences2006SydneyNSWAustralia
| |
Collapse
|
13
|
Rai GP, Shanker A. Coevolution-based computational approach to detect resistance mechanism of epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119592. [PMID: 37730130 DOI: 10.1016/j.bbamcr.2023.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Tyrosine kinase epidermal growth factor receptor (EGFR) correlates the neoplastic cell metastasis, angiogenesis, neoplastic incursion, and apoptosis. Due to the involvement of EGFR in these biological processes, it becomes a most potent target for treating non-small cell lung cancer (NSCLC). The tyrosine kinase inhibitors (TKI) have endorsed high efficacy and anticipation to patients but unfortunately, within a year of treatment, drug targets develop resistance due to mutations. The present study detected the compensatory mutations in EGFR to know the evolutionary mechanism of drug resistance. The results of this study demonstrate that compensatory mutations enlarge the drug-binding pocket which may lead to the altered orientation of the ligand (gefitinib and erlotinib) causing drug resistance. This indicates that coevolutionary forces play a significant role in fine-tuning the structure of EGFR protein against the drugs. The analysis provides insight into the evolution-induced structural aspects of drug resistance changes in EGFR which in turn be useful in designing drugs with better efficacy.
Collapse
Affiliation(s)
- Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India.
| |
Collapse
|
14
|
Poškaitė G, Wheatley DE, Wells N, Linclau B, Sinnaeve D. Obtaining Pure 1H NMR Spectra of Individual Pyranose and Furanose Anomers of Reducing Deoxyfluorinated Sugars. J Org Chem 2023; 88:13908-13925. [PMID: 37754916 PMCID: PMC10563139 DOI: 10.1021/acs.joc.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/28/2023]
Abstract
Due to tautomeric equilibria, NMR spectra of reducing sugars can be complex with many overlapping resonances. This hampers coupling constant determination, which is required for conformational analysis and configurational assignment of substituents. Given that mixtures of interconverting species are physically inseparable, easy-to-use techniques that enable facile full 1H NMR characterization of sugars are of interest. Here, we show that individual spectra of both pyranoside and furanoside forms of reducing fluorosugars can be obtained using 1D FESTA. We discuss the unique opportunities offered by FESTA over standard sel-TOCSY and show how it allows a more complete characterization. We illustrate the power of FESTA by presenting the first full NMR characterization of many fluorosugars, including of the important fluorosugar 2-deoxy-2-fluoroglucose. We discuss in detail all practical considerations for setting up FESTA experiments for fluorosugars, which can be extended to any mixture of fluorine-containing species interconverting slowly on the NMR frequency-time scale.
Collapse
Affiliation(s)
- Gabija Poškaitė
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - David E. Wheatley
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Neil Wells
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus
Sterre, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Davy Sinnaeve
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France
| |
Collapse
|
15
|
Wei X, Wang P, Liu F, Ye X, Xiong D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023; 28:6641. [PMID: 37764416 PMCID: PMC10536126 DOI: 10.3390/molecules28186641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycomimetics, which are synthetic molecules designed to mimic the structures and functions of natural carbohydrates, have been developed to overcome the limitations associated with natural carbohydrates. The fluorination of carbohydrates has emerged as a promising solution to dramatically enhance the metabolic stability, bioavailability, and protein-binding affinity of natural carbohydrates. In this review, the fluorination methods used to prepare the fluorinated carbohydrates, the effects of fluorination on the physical, chemical, and biological characteristics of natural sugars, and the biological activities of fluorinated sugars are presented.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Pharmacy, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi 046012, China
| | - Pengyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| |
Collapse
|
16
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
17
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
18
|
Dada L, Colomer JP, Manzano VE, Varela O. Synthesis of thiodisaccharides related to 4-thiolactose. Specific structural modifications increase the inhibitory activity against E. coli β-galactosidase. Org Biomol Chem 2023; 21:2188-2203. [PMID: 36806338 DOI: 10.1039/d2ob02301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the search for new glycosidase inhibitors, a set of benzyl β-D-Gal-S-(1→4)-3-deoxy-4-thio-α-D-hexopyranosides was synthesized. Diverse configurations were installed at C-2 and C-4 of the glucose residue. The benzyl glycosidic group was kept intact or substituted by an electron-donating or electron-withdrawing group that could also participate in hydrogen bonding. All thiodisaccharides were found to be inhibitors of E. coli β-galactosidase. In general, benzyl thiodisaccharides were better inhibitors than those substituted (NO2 or NH2) on the benzyl ring. Thiodisaccharides containing a hexopyranoside, instead of a pentopyranoside, showed a weaker inhibitory activity, except for those having the α-D-xylo configuration, which exhibited inhibition constants of the same order of magnitude. These and previous results indicated that the inhibition process by thiodisaccharides is strongly dependent on the configuration of the 3-deoxy-4-thiopyranoside, as well as its substitution pattern (such as the presence of a benzyl glycoside). The enzyme-inhibitor interaction during the hydrolysis process involves a conformational selection resulting from rotation around the thioglycosidic bond and the flexibility of the terminal six-membered ring. Thus, the mentioned structural features of the inhibitor could give rise to favorable ground state conformations for the interaction with the enzyme, similar to those found for selected thiodisaccharides in the bound state. These studies demonstrated that the performance of thiodisaccharides as enzyme inhibitors could be increased by selecting the appropriate configuration and substitution of the hexopyranoside replacing the glucose moiety of 4-thiolactose.
Collapse
Affiliation(s)
- Lucas Dada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Juan Pablo Colomer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UNC, Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC).,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Edificio de Ciencias II, Córdoba, Argentina
| | - Verónica E Manzano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Oscar Varela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| |
Collapse
|
19
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
20
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Tien Anh D, Hai Nam N, Kircher B, Baecker D. The Impact of Fluorination on the Design of Histone Deacetylase Inhibitors. Molecules 2023; 28:molecules28041973. [PMID: 36838960 PMCID: PMC9965134 DOI: 10.3390/molecules28041973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, histone deacetylases (HDACs) have emerged as promising targets in the treatment of cancer. The approach is to inhibit HDACs with drugs known as HDAC inhibitors (HDACis). Such HDACis are broadly classified according to their chemical structure, e.g., hydroxamic acids, benzamides, thiols, short-chain fatty acids, and cyclic peptides. Fluorination plays an important role in the medicinal-chemical design of new active representatives. As a result of the introduction of fluorine into the chemical structure, parameters such as potency or selectivity towards isoforms of HDACs can be increased. However, the impact of fluorination cannot always be clearly deduced. Nevertheless, a change in lipophilicity and, hence, solubility, as well as permeability, can influence the potency. The selectivity towards certain HDACs isoforms can be explained by special interactions of fluorinated compounds with the structure of the slightly different enzymes. Another aspect is that for a more detailed investigation of newly synthesized fluorine-containing active compounds, fluorination is often used for the purpose of labeling. Aside from the isotope 19F, which can be detected by nuclear magnetic resonance spectroscopy, the positron emission tomography of 18F plays a major role. However, to our best knowledge, a survey of the general effects of fluorination on HDACis development is lacking in the literature to date. Therefore, the aim of this review is to highlight the introduction of fluorine in the course of chemical synthesis and the impact on biological activity, using selected examples of recently developed fluorinated HDACis.
Collapse
Affiliation(s)
- Duong Tien Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Nguyen Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Correspondence: (B.K.); (D.B.)
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
- Correspondence: (B.K.); (D.B.)
| |
Collapse
|
22
|
Teschers CS, Gilmour R. Fluorine-Directed Automated Mannoside Assembly. Angew Chem Int Ed Engl 2023; 62:e202213304. [PMID: 36331042 PMCID: PMC10108063 DOI: 10.1002/anie.202213304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Automated glycan assembly (AGA) on solid support has become invaluable in reconciling the biological importance of complex carbohydrates with the persistent challenges associated with reproducible synthesis. Whilst AGA platforms have transformed the construction of many natural sugars, validation in the construction of well-defined (site-selectively modified) glycomimetics is in its infancy. Motivated by the importance of fluorination in drug discovery, the biomedical prominence of 2-fluoro sugars and the remarkable selectivities observed in fluorine-directed glycosylation, fluorine-directed automated glycan assembly (FDAGA) is disclosed. This strategy leverages the fluorine atom for stereocontrolled glycosylation on solid support, thereby eliminating the reliance on O-based directing groups. The logical design of C2-fluorinated mannose building blocks, and their application in the fully (α-)stereocontrolled automated assembly of linear and branched fluorinated oligomannosides, is disclosed. This operationally simple strategy can be integrated into existing AGA and post-AGA protocols to augment the scope of programmed carbohydrate synthesis.
Collapse
Affiliation(s)
- Charlotte S. Teschers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| |
Collapse
|
23
|
Lal J, Ramalingam K, Meena R, Ansari SB, Saxena D, Chopra S, Goyal N, Reddy DN. Design and synthesis of novel halogen rich salicylanilides as potential antileishmanial agents. Eur J Med Chem 2023; 246:114996. [PMID: 36565533 DOI: 10.1016/j.ejmech.2022.114996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The available therapeutic treatment for leishmaniasis is inadequate and toxic due to side effects, expensive and emergence of drug resistance. Affordable and safe antileishmanial agents are urgently needed and toward this objective, we synthesized a series of 32 novel halogen rich salicylanilides including niclosamide and oxyclozanide and investigated their antileishmanial activity against amastigotes of Leishmania donovani. In vitro data showed fifteen compounds inhibited intracellular amastigotes with an IC50 of below 5 μM and selectivity index above 10. Among 15 active compounds, 14 and 24 demonstrated better activity with an IC50 of 2.89 μM and 2.09 μM respectively and selectivity index is 18. Compound 24 exhibited significant in vivo antileishmanial efficacy and reduced 65% of the splenic parasite load on day 28th post-treatment in the experimental visceral leishmaniasis golden hamster model. The data suggest that 24 can be a promising lead candidate possessing potential to be developed into a leishmanial drug candidate.
Collapse
Affiliation(s)
- Jhajan Lal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rachana Meena
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shabina B Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Zhang Y, Yang K, Ye S, Tang W, Chang X, Wang Y, Wang C, Wang Y, Wu Y, Miao Z. Application of a fluorine strategy in the lead optimization of betulinic acid to the discovery of potent CD73 inhibitors. Steroids 2022; 188:109112. [PMID: 36150476 DOI: 10.1016/j.steroids.2022.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
The ecto-5'-nucleotidase (CD73) is an important enzyme in the adenosine pathway and catalyzes the extracellular hydrolysis of adenosine monophosphate (AMP) yielding adenosine which is involved in the inflammation and immunosuppression. Inhibitors of CD73 have potential as novel immunotherapy agents for the treatment of cancer and infection. In this study, we discovered a series of fluorinated betulinic acid derivatives as potent CD73 inhibitors by a fluorine scanning strategy. Among these, three compounds ZM522, ZM553 and ZM557 exhibited inhibitory activity with IC50 values of 0.56 uM, 0.74 uM and 0.47 uM, respectively. In addition, these compounds showed a 7-fold, 5-fold and 8-fold increase in activity compared to the positive control drug α, β-methylene adenosine diphosphate (APCP) against the human CD73 enzyme. Two of these (ZM522 and ZM553) also exhibited effective interferon gamma (INF-γ) elevation and indicated the regulation of rescued T cell activation. Therefore, our study provides both a lead optimization strategy and potential compounds for further development of small molecule CD73 inhibitors.
Collapse
Affiliation(s)
- Yanming Zhang
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Shuang Ye
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wenmin Tang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Xuliang Chang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Ying Wang
- Department of Dermatology, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China.
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
| | - Zhenyuan Miao
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
25
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
26
|
Salehi SM, Käser S, Töpfer K, Diamantis P, Pfister R, Hamm P, Rothlisberger U, Meuwly M. Hydration dynamics and IR spectroscopy of 4-fluorophenol. Phys Chem Chem Phys 2022; 24:26046-26060. [PMID: 36268728 PMCID: PMC9627945 DOI: 10.1039/d2cp02857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Halogenated groups are relevant in pharmaceutical applications and potentially useful spectroscopic probes for infrared spectroscopy. In this work, the structural dynamics and infrared spectroscopy of para-fluorophenol (F-PhOH) and phenol (PhOH) is investigated in the gas phase and in water using a combination of experiment and molecular dynamics (MD) simulations. The gas phase and solvent dynamics around F-PhOH and PhOH is characterized from atomistic simulations using empirical energy functions with point charges or multipoles for the electrostatics, Machine Learning (ML) based parametrizations and with full ab initio (QM) and mixed Quantum Mechanical/Molecular Mechanics (QM/MM) simulations with a particular focus on the CF- and OH-stretch region. The CF-stretch band is heavily mixed with other modes whereas the OH-stretch in solution displays a characteristic high-frequency peak around 3600 cm-1 most likely associated with the -OH group of PhOH and F-PhOH together with a characteristic progression below 3000 cm-1 due to coupling with water modes which is also reproduced by several of the simulations. Solvent and radial distribution functions indicate that the CF-site is largely hydrophobic except for simulations using point charges which renders them unsuited for correctly describing hydration and dynamics around fluorinated sites. The hydrophobic character of the CF-group is particularly relevant for applications in pharmaceutical chemistry with a focus on local hydration and interaction with the surrounding protein.
Collapse
Affiliation(s)
- Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Polydefkis Diamantis
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rolf Pfister
- Department of Chemistry, University of Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
27
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
28
|
Liu H, Laporte AG, Tardieu D, Hazelard D, Compain P. Formal Glycosylation of Quinones with exo-Glycals Enabled by Iron-Mediated Oxidative Radical-Polar Crossover. J Org Chem 2022; 87:13178-13194. [PMID: 36095170 DOI: 10.1021/acs.joc.2c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular C-O coupling reaction of 1,4-quinones with exo-glycals under iron hydride hydrogen atom transfer (HAT) conditions is described. This method provides a direct and regioselective access to a wide range of phenolic O-ketosides related to biologically relevant natural products in diastereomeric ratios up to >98:2 in the furanose and pyranose series. No trace of the corresponding C-glycosylated products that might have resulted from the radical alkylation of 1,4-quinones was observed. The results of mechanistic experiments suggest that the key C-O bond-forming event proceeds through an oxidative radical-polar crossover process involving a single-electron transfer between the HAT-generated glycosyl radical and the electron-acceptor quinone.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
29
|
Choutka J, Kratochvíl M, Císařová I, Pohl R, Kaminský J, Parkan K. Silicon-bridged (1→1)-disaccharides: an umpoled glycomimetic scaffold. Org Biomol Chem 2022; 20:7613-7621. [PMID: 35861668 DOI: 10.1039/d2ob01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modification of the carbohydrate scaffold is an important theme in drug and vaccine discovery. Therefore, the preparation of novel types of glycomimetics is of interest in synthetic carbohydrate chemistry. In this manuscript, we present an early investigation of the synthesis, structure, and conformational behaviour of (1→1)-Si-disaccharides as a novel type of glycomimetics arising from the replacement of interglycosidic oxygen with a dimethyl-, methylpropyl-, or diisopropylsilyl linkage. We accomplished the preparation of this unusual group of umpoled compounds by the reaction of lithiated glycal or 2-oxyglycal units with dialkyldichlorosilanes. We demonstrated the good stability of the "Si-glycosidic" linkage under acidic conditions even at elevated temperatures. Next, we described the conformational landscape of these compounds by the combination of in silico modelling with spectroscopic and crystallographic methods. Finally, we explained the observed conformational flexibility of these compounds by the absence of gauche stabilizing effects that are typically at play in natural carbohydrates.
Collapse
Affiliation(s)
- Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - Michal Kratochvíl
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
30
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
31
|
Greis K, Kirschbaum C, Fittolani G, Mucha E, Chang R, von Helden G, Meijer G, Delbianco M, Seeberger PH, Pagel K. Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose. European J Org Chem 2022; 2022:e202200255. [PMID: 35915640 PMCID: PMC9321577 DOI: 10.1002/ejoc.202200255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the β-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.
Collapse
Affiliation(s)
- Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Giulio Fittolani
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Eike Mucha
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Rayoon Chang
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Martina Delbianco
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| |
Collapse
|
32
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
33
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
34
|
Fittolani G, Djalali S, Chaube MA, Tyrikos-Ergas T, Dal Colle MCS, Grafmüller A, Seeberger PH, Delbianco M. Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process. Org Biomol Chem 2022; 20:8228-8235. [DOI: 10.1039/d2ob01601j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using synthetic oligosaccharides, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of cellulose and chitin oligomers.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Surusch Djalali
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Manishkumar A. Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Marlene C. S. Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Andrea Grafmüller
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Expanding 1,2,4-triketone toolbox for use as fluorinated building blocks in the synthesis of pyrazoles, pyridazinones and β-diketohydrazones. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Zhang M, Chen HW, Liu QQ, Gao FT, Li YX, Hu XG, Yu CY. De Novo Synthesis of Orthogonally-Protected C2-Fluoro Digitoxoses and Cymaroses: Development and Application for the Synthesis of Fluorinated Digoxin. J Org Chem 2021; 87:1272-1284. [PMID: 34964642 DOI: 10.1021/acs.joc.1c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Wei Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Quan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Feng-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
37
|
St-Gelais J, Leclerc C, Giguère D. Synthesis of fluorinated thiodigalactoside analogues. Carbohydr Res 2021; 511:108481. [PMID: 34837848 DOI: 10.1016/j.carres.2021.108481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
In this work, we report the first synthesis of fluorinated thiodigalactoside analogues. We used tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the elaboration of two monofluorinated heterodimers, one difluorinated homodimer, and one difluorinated heterodimer. Moreover, we also present an alternative synthesis of 3-deoxy-3-fluorogalactose and 4-deoxy-4-fluorogalactose from a common precursor. Finally, this small set of more stable thiodigalactoside analogues could be interesting inhibitors of galactose-specific lectins.
Collapse
Affiliation(s)
- Jacob St-Gelais
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada
| | - Christina Leclerc
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada.
| |
Collapse
|
38
|
Clark JL, Neyyappadath RM, Yu C, Slawin AMZ, Cordes DB, O'Hagan D. Janus All-Cis 2,3,4,5,6-Pentafluorocyclohexyl Building Blocks Applied to Medicinal Chemistry and Bioactives Discovery Chemistry. Chemistry 2021; 27:16000-16005. [PMID: 34486192 PMCID: PMC9292521 DOI: 10.1002/chem.202102819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Monoalkylated derivatives of the unusually polar all-cis 2,3,4,5,6- pentafluorocyclohexyl (Janus face) motif are prepared starting from an aryl hydrogenation of 2,3,4,5,6- pentafluorophenylacetate methyl ester 15. The method used Zeng's Rh(CAAC) carbene catalyst 4 in the hydrogenation following the protocol developed by Glorius. The resultant Janus pentafluorocyclohexylacetate methyl ester 16 was converted to the corresponding alcohol 18, aldehyde 13, bromide 29 and azide 14 through functional group manipulations, and some of these building blocks were used in Ugi-multicomponent and Cu-catalysed click reactions. NBoc protected pentafluoroarylphenylalanine methyl ester 35 was also subject to an aryl hydrogenation, and then deprotection to generate the Janus face β-pentafluorocyclohexyl-alanine amino acid 15, which was incorporated into representative members of an emerging class of candidate antiviral compounds. Log P measurements demonstrate that the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring system is more polar than a phenyl ring. In overview the paper introduces new building blocks containing this Janus ring and demonstrates their progression to molecules typically used in bioactives discovery programmes.
Collapse
Affiliation(s)
- Joshua L. Clark
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - Cihang Yu
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - David B. Cordes
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | - David O'Hagan
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| |
Collapse
|
39
|
Yu Y, Liu A, Dhawan G, Mei H, Zhang W, Izawa K, Soloshonok VA, Han J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Bio-evaluation of fluoro and trifluoromethyl-substituted salicylanilides against multidrug-resistant S. aureus. Med Chem Res 2021; 30:2301-2315. [PMID: 34720564 PMCID: PMC8548355 DOI: 10.1007/s00044-021-02808-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) are primary causes of skin and soft tissue infections worldwide. To address the emergency caused due to increasing multidrug-resistant (MDR) bacterial infections, a series of novel fluoro and trifluoromethyl-substituted salicylanilide derivatives were synthesized and their antimicrobial activity was investigated. MIC data reveal that the compounds inhibited S. aureus specifically (MIC 0.25–64 µg/mL). The in vitro cytotoxicity of compounds with MIC < 1 µg/mL against Vero cells led to identification of four compounds (20, 22, 24 and 25) with selectivity index above 10. These four compounds were tested against MDR S. aureus panel. Remarkably, 5-chloro-N-(4’-bromo-3’-trifluoromethylphenyl)-2-hydroxybenzamide (22) demonstrated excellent activity against nine MRSA and three VRSA strains with MIC 0.031–0.062 µg/mL, which is significantly better than the control drugs methicillin and vancomycin. The comparative time–kill kinetic experiment revealed that the effect of bacterial killing of 22 is comparable with vancomycin. Compound 22 did not synergize with or antagonize any FDA-approved antibiotic and reduced pre-formed S. aureus biofilm better than vancomycin. Overall, study suggested that 22 could be further developed as a potent anti-staphylococcal therapeutic. ![]()
Collapse
|
41
|
Butcher TW, Amberg WM, Hartwig JF. Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C-C Bond Formation. Angew Chem Int Ed Engl 2021; 61:e202112251. [PMID: 34658121 DOI: 10.1002/anie.202112251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/09/2022]
Abstract
Alkyl fluorides modulate the conformation, lipophilicity, metabolic stability, and p K a of compounds containing aliphatic motifs and, therefore, have been valuable for medicinal chemistry. Despite significant research in organofluorine chemistry, the synthesis of alkyl fluorides, especially chiral alkyl fluorides, remains a challenge. Most commonly, alkyl fluorides are prepared by the formation of C-F bonds (fluorination), and numerous strategies for nucleophilic, electrophilic, and radical fluorination have been reported in recent years. Although strategies to access alkyl fluorides by C-C bond formation (monofluoroalkylation) are inherently convergent and complexity-generating, they have studied less than methods based on fluorination. This Review provides an overview of recent developments in the synthesis of chiral (enantioenriched or racemic) secondary and tertiary alkyl fluorides by monofluoroalkylation catalyzed by transition-metal complexes. We expect this contribution will illuminate the potential of monofluoroalkylations to simplify the synthesis of complex alkyl fluorides and suggest further research directions in this growing field.
Collapse
Affiliation(s)
| | - Willi M Amberg
- University of California Berkeley, Chemistry, UNITED STATES
| | - John F Hartwig
- University of California, Department of Chemistry, 718 LATIMER HALL #1460, 94720-1460, Berkeley, UNITED STATES
| |
Collapse
|
42
|
Lasso JD, Castillo-Pazos DJ, Li CJ. Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chem Soc Rev 2021; 50:10955-10982. [PMID: 34382989 DOI: 10.1039/d1cs00380a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progress of drug discovery and development is paced by milestones reached in organic synthesis. In the last decade, the advent of late-stage functionalization (LSF) reactions has represented a valuable breakthrough. Recent literature has defined these reactions as the chemoselective modification of complex molecules by means of C-H functionalization or the manipulation of endogenous functional groups. Traditionally, these diversifications have been accomplished by organometallic means. However, the presence of metals carries disadvantages related to their cost, environmental hazard and health risks. Fundamentally, green chemistry directives can help minimize such hazards through the development of metal-free LSF methodologies. In this review, we expand the current discussion on metal-free LSF reactions by providing an overview of C(sp2)-H, and C(sp3)-H functionalizations, as well as the utilization of heteroatom-containing functional groups as chemical handles. Selected topics such as metal-free cross-dehydrogenative coupling (CDC) reactions, organocatalysis, electrochemistry and photochemistry are also discussed. By writing the first review on metal-free LSF methodologies, we aim to highlight current advances in the field with examples that reveal specific challenges and solutions, as well as future research opportunities.
Collapse
Affiliation(s)
- Juan D Lasso
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Durbis J Castillo-Pazos
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
43
|
Hazelard D, Compain P. Nucleophilic Ring‐Opening of 1,6‐Anhydrosugars: Recent Advances and Applications in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| |
Collapse
|
44
|
Uhrig ML, Mora Flores EW, Postigo A. Approaches to the Synthesis of Perfluoroalkyl-Modified Carbohydrates and Derivatives: Thiosugars, Iminosugars, and Tetrahydro(thio)pyrans. Chemistry 2021; 27:7813-7825. [PMID: 33462910 DOI: 10.1002/chem.202005229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Fluoroalkyl-substituted carbohydrates play relevant roles in diverse areas such as supramolecular chemistry, glycoconjugation, liquid crystals, and surfactants, with direct applications as wetting, antifreeze, and coating agents. In light of these promising applications, new methodologies for the late-stage incorporation of fluoroalkyl RF groups into carbohydrates and derivatives are herein presented as they are relevant to the synthetic carbohydrate community. Previously reviewed protocols for the installation of RF groups onto carbohydrates and derivatives will be succinctly summarized in the light of the new achievements. Fluoroalkyl-substituted iminosugars, on the other hand, are also interesting glycomimetic derivatives with prominent roles as glycosidases and glycosyltransferases inhibitors, as has recently been demonstrated. Also, they positively contribute to the study of sugar-protein interactions and enzyme mechanisms. New advances in the syntheses of fluoroalkyl-substituted iminosugars will also be presented here.
Collapse
Affiliation(s)
- María Laura Uhrig
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias ExactasyNaturales, Pabellón 2, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, CP1428, Buenos Aires, Argentina
| | - Erwin W Mora Flores
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| | - Al Postigo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| |
Collapse
|
45
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
46
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
47
|
Kurfiřt M, Lucie ČŠ, Cuřínová P, Hamala V, Karban J. Development of α-Selective Glycosylation for the Synthesis of Deoxyfluorinated TN Antigen Analogues. J Org Chem 2021; 86:5073-5090. [DOI: 10.1021/acs.joc.0c03015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Červenková Št’astná Lucie
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| |
Collapse
|
48
|
Lainé D, Denavit V, Lessard O, Carrier L, Fecteau CÉ, Johnson PA, Giguère D. Fluorine effect in nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-D-hexopyranose. Beilstein J Org Chem 2020; 16:2880-2887. [PMID: 33299486 PMCID: PMC7705882 DOI: 10.3762/bjoc.16.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we have developed a simple synthetic approach using Et3N·3HF as an alternative to the DAST reagent. We controlled the stereochemistry of the nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-4-O-triflate-β-ᴅ-talopyranose using Et3N·3HF or in situ generated Et3N·1HF. The influence of the fluorine atom at C2 on reactivity at C4 could contribute to a new fluorine effect in nucleophilic substitution. Finally, with the continuous objective of synthesizing novel multi-vicinal fluorosugars, we prepared one difluorinated and one trifluorinated alditol analogue.
Collapse
Affiliation(s)
- Danny Lainé
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Vincent Denavit
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Olivier Lessard
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Laurie Carrier
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Paul A Johnson
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| |
Collapse
|