1
|
Ecke M, Prassler J, Gerisch G. Genetic Instability Due to Spindle Anomalies Visualized in Mutants of Dictyostelium. Cells 2021; 10:cells10092240. [PMID: 34571889 PMCID: PMC8469108 DOI: 10.3390/cells10092240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Aberrant centrosome activities in mutants of Dictyostelium discoideum result in anomalies of mitotic spindles that affect the reliability of chromosome segregation. Genetic instabilities caused by these deficiencies are tolerated in multinucleate cells, which can be produced by electric-pulse induced cell fusion as a source for aberrations in the mitotic apparatus of the mutant cells. Dual-color fluorescence labeling of the microtubule system and the chromosomes in live cells revealed the variability of spindle arrangements, of centrosome-nuclear interactions, and of chromosome segregation in the atypical mitoses observed.
Collapse
|
2
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
3
|
Plak K, Keizer-Gunnink I, van Haastert PJM, Kortholt A. Rap1-dependent pathways coordinate cytokinesis in Dictyostelium. Mol Biol Cell 2014; 25:4195-204. [PMID: 25298405 PMCID: PMC4263460 DOI: 10.1091/mbc.e14-08-1285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium Rap1 is dynamically activated during cytokinesis and drives cytokinesis progression by coordinating the three major cytoskeletal components: microtubules, actin, and myosin II. Importantly, mutated forms of Rap also affect cytokinesis in other organisms, suggesting a conserved role for Rap in cell division. Cytokinesis is the final step of mitosis when a mother cell is separated into two daughter cells. Major cytoskeletal changes are essential for cytokinesis; it is, however, not well understood how the microtubules and actomyosin cytoskeleton are exactly regulated in time and space. In this paper, we show that during the early stages of cytokinesis, in rounded-up Dictyostelium discoideum cells, the small G-protein Rap1 is activated uniformly at the cell cortex. When cells begin to elongate, active Rap1 becomes restricted from the furrow region, where the myosin contractile ring is subsequently formed. In the final stages of cytokinesis, active Rap1 is only present at the cell poles. Mutant cells with decreased Rap1 activation at the poles showed strongly decreased growth rates. Hyperactivation of Rap1 results in severe growth delays and defective spindle formation in adherent cells and cell death in suspension. Furthermore, Rap mutants show aberrant regulation of the actomyosin cytoskeleton, resulting in extended furrow ingression times and asymmetrical cell division. We propose that Rap1 drives cytokinesis progression by coordinating the three major cytoskeletal components: microtubules, actin, and myosin II. Importantly, mutated forms of Rap also affect cytokinesis in other organisms, suggesting a conserved role for Rap in cell division.
Collapse
Affiliation(s)
- Katarzyna Plak
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Peter J M van Haastert
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
4
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, Yang Q, Huang S. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:747-60. [PMID: 23134061 DOI: 10.1111/tpj.12065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Rapid actin turnover is essential for numerous actin-based processes. However, how it is precisely regulated remains poorly understood. Actin-interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin-depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate-limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down-regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over-expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF-mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real-time visualization of single filament dynamics showed that OsAIP1 enhanced ADF-mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off-rate were enhanced in OsAIP1 over-expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F-actin levels in plants.
Collapse
Affiliation(s)
- Meng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Gemoll T, Roblick UJ, Szymczak S, Braunschweig T, Becker S, Igl BW, Bruch HP, Ziegler A, Hellman U, Difilippantonio MJ, Ried T, Jörnvall H, Auer G, Habermann JK. HDAC2 and TXNL1 distinguish aneuploid from diploid colorectal cancers. Cell Mol Life Sci 2011; 68:3261-74. [PMID: 21290163 PMCID: PMC4721677 DOI: 10.1007/s00018-011-0628-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/21/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
DNA aneuploidy has been identified as a prognostic factor for epithelial malignancies. Further understanding of the translation of DNA aneuploidy into protein expression will help to define novel biomarkers to improve therapies and prognosis. DNA ploidy was assessed by image cytometry. Comparison of gel-electrophoresis-based protein expression patterns of three diploid and four aneuploid colorectal cancer cell lines detected 64 ploidy-associated proteins. Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in two overlapping high-ranked networks maintaining Cellular Assembly and Organization, Cell Cycle, and Cellular Growth and Proliferation. CAPZA1, TXNL1, and HDAC2 were significantly validated by Western blotting in cell lines and the latter two showed expression differences also in clinical samples using a tissue microarray of normal mucosa (n=19), diploid (n=31), and aneuploid (n=47) carcinomas. The results suggest that distinct protein expression patterns, affecting TXNL1 and HDAC2, distinguish aneuploid with poor prognosis from diploid colorectal cancers.
Collapse
Affiliation(s)
- Timo Gemoll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Laboratory for Surgical Research, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Karolinska Biomic Center, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Uwe J. Roblick
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Laboratory for Surgical Research, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Silke Szymczak
- Institute for Medical Biometry and Statistics, University of Lübeck, 23538 Lübeck, Germany
| | - Till Braunschweig
- Institute for Pathology, University Clinic RWTH Aachen, 52074 Aachen, Germany
| | - Susanne Becker
- Karolinska Biomic Center, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Bernd-Wolfgang Igl
- Institute for Medical Biometry and Statistics, University of Lübeck, 23538 Lübeck, Germany
| | - Hans-Peter Bruch
- Laboratory for Surgical Research, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Andreas Ziegler
- Institute for Medical Biometry and Statistics, University of Lübeck, 23538 Lübeck, Germany
| | - Ulf Hellman
- Ludwig Institute for Cancer Research Ltd., 75124 Uppsala, Sweden
| | | | - Thomas Ried
- Department of Genetics, Center for Cancer Research, NCI/NIH, Bethesda, MD 20814 USA
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gert Auer
- Karolinska Biomic Center, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jens K. Habermann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Laboratory for Surgical Research, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
6
|
Ishikawa-Ankerhold HC, Gerisch G, Müller-Taubenberger A. Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by coronin and Aip1. Cytoskeleton (Hoboken) 2010; 67:442-55. [PMID: 20506401 DOI: 10.1002/cm.20456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coronin and actin-interacting protein 1 (Aip1) are actin-binding proteins that by different mechanisms inhibit actin polymerization or enhance the disassembly of actin filaments. Cells of Dictyostelium discoideum lacking both proteins are retarded in growth and early development and often fail to proceed to fruiting body formation. Coronin/Aip1-null cells show numerous surface protrusions enriched in filamentous actin and cofilin. We show that the double-null cells are characterized by an increase in filamentous actin that causes a thickening of the cell cortex. This imbalance has severe consequences for processes that rely on the dynamic reorganization of the actin cytoskeleton, such as cell motility, cytokinesis and endocytosis. Although cell motility is considerably slowed down, the double-mutant cells are still capable of orientating in a gradient of chemoattractant. The cytokinesis defect is caused by the lack of proper cleavage furrow formation, a defect that is partially rescued by low concentrations of latrunculin A, an inhibitor of actin polymerization. Furthermore, we demonstrate that the disassembly of the actin coat after phagocytic or macropinocytic uptake is significantly delayed in the double-mutant cells. Our results prove that coronin and Aip1 are important effectors that act together in maintaining the balance of actin polymerization and depolymerization in living cells.
Collapse
|
7
|
Molli PR, Li DQ, Bagheri-Yarmand R, Pakala SB, Katayama H, Sen S, Iyer J, Chernoff J, Tsai MY, Nair SS, Kumar R. Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. ACTA ACUST UNITED AC 2010; 190:101-14. [PMID: 20603326 PMCID: PMC2911675 DOI: 10.1083/jcb.200908050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In addition to its function as an Arp2/3 complex subunit, Arp1cb interacts with and stimulates Aurora A at centrosomes, functioning in cell cycle progression. Here we provide evidence in support of an inherent role for Arpc1b, a component of the Arp2/3 complex, in regulation of mitosis and demonstrate that its depletion inhibits Aurora A activation at the centrosome and impairs the ability of mammalian cells to enter mitosis. We discovered that Arpc1b colocalizes with γ-tubulin at centrosomes and stimulates Aurora A activity. Aurora A phosphorylates Arpc1b on threonine 21, and expression of Arpc1b but not a nonphosphorylatable Arpc1b mutant in mammalian cells leads to Aurora A kinase activation and abnormal centrosome amplification in a Pak1-independent manner. Together, these findings reveal a new function for Arpc1b in centrosomal homeostasis. Arpc1b is both a physiological activator and substrate of Aurora A kinase and these interactions help to maintain mitotic integrity in mammalian cells.
Collapse
Affiliation(s)
- Poonam R Molli
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC, Kastner PM, Burghardt E, Gerisch G. The STE group kinase SepA controls cleavage furrow formation in Dictyostelium. ACTA ACUST UNITED AC 2010; 66:929-39. [PMID: 19479821 DOI: 10.1002/cm.20386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During a REMI screen for proteins regulating cytokinesis in Dictyostelium discoideum we isolated a mutant forming multinucleate cells. The gene affected in this mutant encoded a kinase, SepA, which is an ortholog of Cdc7, a serine-threonine kinase essential for septum formation in Schizosaccharomyces pombe. Localization of SepA-GFP in live cells and its presence in isolated centrosomes indicated that SepA, like its upstream regulator Spg1, is associated with centrosomes. Knockout mutants of SepA showed a severe cytokinesis defect and a delay in development. In multinucleate SepA-null cells nuclear division proceeded normally and synchronously. However, often cleavage furrows were either missing or atypical: they were extremely asymmetric and constriction was impaired. Cortexillin-I, a marker localizing strictly to the furrow in wild-type cells, demonstrated that large, crescent-shaped furrows expanded and persisted long after the spindle regressed and nuclei returned to the interphase state. Outside the furrow the filamentous actin system of the cell cortex showed strong ruffling activity. These data suggest that SepA is involved in the spatial and temporal control system organizing cortical activities in mitotic and postmitotic cells.
Collapse
|
9
|
Sahota VK, Grau BF, Mansilla A, Ferrús A. Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci 2009; 122:2623-31. [DOI: 10.1242/jcs.050880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Troponin-Tropomyosin (Tn-Tm) complex regulates muscle contraction through a series of Ca2+-dependent conformational changes that control actin-myosin interactions. Members of this complex in Drosophila include the actin-binding protein Troponin I (TnI), and two Tropomyosins (Tm1 and Tm2), which are thought to form heterodimers. We show here that pre-cellular embryos of TnI, Tm1 and Tm2 mutants exhibit abnormal nuclear divisions with frequent loss of chromosome fragments. During cellularization, apico-basal polarity is also disrupted as revealed by the defective location of Discs large (Dlg) and its ligand Rapsynoid (Raps; also known as Partner of Inscuteable, Pins). In agreement with these phenotypes in early development, on the basis of RT-PCR assays of unfertilized eggs and germ line mosaics of TnI mutants, we also show that TnI is part of the maternal deposit during oogenesis. In cultures of the S2 cell line, native TnI is immunodetected within the nucleus and immunoprecipitated from nuclear extracts. SUMOylation at an identified site is required for the nuclear translocation. These data illustrate, for the first time, a role for TnI in the nucleus and/or the cytoskeleton of non-muscle cells. We propose that the Tn-Tm complex plays a novel function as regulator of motor systems required to maintain nuclear integrity and apico-basal polarity during early Drosophila embryogenesis.
Collapse
|
10
|
Kunda P, Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 2009; 19:174-9. [PMID: 19285869 DOI: 10.1016/j.tcb.2009.01.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 12/30/2022]
Abstract
The most dramatic changes in eukaryotic cytoskeletal organization and dynamics occur during passage through mitosis. Although both spindle self-organization and actin-dependent cytokinesis have long been the subject of intense investigation, it has only recently become apparent that the actin cortex also has a key role during early mitosis. This is most striking in animal cells, in which changes in the actin cytoskeleton drive mitotic cell rounding and cortical stiffening. This mitotic cortex then functions as a foundation for spindle assembly and to guide spindle orientation with respect to extracellular chemical and mechanical cues. Here, we discuss this recent work and the possible role of crosstalk between the mitotic actin cortex and the plus ends of astral microtubules in this process.
Collapse
Affiliation(s)
- Patricia Kunda
- Department of Cell and Developmental Biology, University College London, UK.
| | | |
Collapse
|
11
|
Adler HJ, Sanovich E, Brittan-Powell EF, Yan K, Dooling RJ. WDR1 presence in the songbird basilar papilla. Hear Res 2008; 240:102-11. [PMID: 18514449 PMCID: PMC4497556 DOI: 10.1016/j.heares.2008.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/26/2008] [Accepted: 03/21/2008] [Indexed: 11/16/2022]
Abstract
WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1.
Collapse
Affiliation(s)
- Henry J Adler
- Department of Biology, University of Maryland, Biology Psychology Building, College Park, MD 20742-0001, USA. <>
| | | | | | | | | |
Collapse
|
12
|
Ren N, Charlton J, Adler PN. The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics 2007; 176:2223-34. [PMID: 17565945 PMCID: PMC1950627 DOI: 10.1534/genetics.107.072959] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Institute for Morphogenesis and Regenerative Medicine and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
13
|
Clark MG, Amberg DC. Biochemical and genetic analyses provide insight into the structural and mechanistic properties of actin filament disassembly by the Aip1p cofilin complex in Saccharomyces cerevisiae. Genetics 2007; 176:1527-39. [PMID: 17483419 PMCID: PMC1931519 DOI: 10.1534/genetics.107.072066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explication of the Aip1p/cofilin/actin filament complex may lead to a more detailed understanding of the mechanisms by which Aip1p and cofilin collaborate to rapidly disassemble filaments. We further characterized the actin-Aip1p interface through a random mutagenic screen of ACT1, identifying a novel Aip1p interaction site on actin. This finding is consistent with our current ternary complex model and offers insights into how Aip1p may disturb intersubunit contacts within an actin filament. In addition, site-directed mutagenesis aimed at interfering with salt bridge interactions at the predicted Aip1p-cofilin interface revealed hyperactive alleles of cof1 and aip1 that support the ternary complex model and suggest that conformational changes in cofilin structure may be transmitted to actin filaments, causing increased destabilization. Furthermore, these data support an active role for Aip1p in promoting actin filament turnover.
Collapse
Affiliation(s)
- Michael G Clark
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
14
|
Effler JC, Iglesias PA, Robinson DN. A mechanosensory system controls cell shape changes during mitosis. Cell Cycle 2007; 6:30-5. [PMID: 17245114 PMCID: PMC4638380 DOI: 10.4161/cc.6.1.3674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Essential life processes are heavily controlled by a variety of positive and negative feedback systems. Cytokinesis failure, ultimately leading to aneuploidy, is appreciated as an early step in tumor formation in mammals and is deleterious for all cells. Further, the growing list of cancer predisposition mutations includes a number of genes whose proteins control mitosis and/or cytokinesis. Cytokinesis shape control is also an important part of pattern formation and cell-type specialization during multi-cellular development. Inherently mechanical, we hypothesized that mechanosensing and mechanical feedback are fundamental for cytokinesis shape regulation. Using mechanical perturbation, we identified a mechanosensory control system that monitors shape progression during cytokinesis. In this review, we summarize these findings and their implications for cytokinesis regulation and for understanding the cytoskeletal system architecture that governs shape control.
Collapse
Affiliation(s)
- Janet C. Effler
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
| |
Collapse
|
15
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Williams RSB, Boeckeler K, Gräf R, Müller-Taubenberger A, Li Z, Isberg RR, Wessels D, Soll DR, Alexander H, Alexander S. Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 2006; 12:415-24. [PMID: 16890490 DOI: 10.1016/j.molmed.2006.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/23/2006] [Accepted: 07/21/2006] [Indexed: 12/29/2022]
Abstract
The social amoeba Dictyostelium discoideum is increasingly being used as a simple model for the investigation of problems that are relevant to human health. This article focuses on several recent examples of Dictyostelium-based biomedical research, including the analysis of immune-cell disease and chemotaxis, centrosomal abnormalities and lissencephaly, bacterial intracellular pathogenesis, and mechanisms of neuroprotective and anti-cancer drug action. The combination of cellular, genetic and molecular biology techniques that are available in Dictyostelium often makes the analysis of these problems more amenable to study in this system than in mammalian cell culture. Findings that have been made in these areas using Dictyostelium have driven research in mammalian systems and have established Dictyostelium as a powerful model for human-disease analysis.
Collapse
Affiliation(s)
- Robin S B Williams
- Department of Biology and the Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clark MG, Teply J, Haarer BK, Viggiano SC, Sept D, Amberg DC. A genetic dissection of Aip1p's interactions leads to a model for Aip1p-cofilin cooperative activities. Mol Biol Cell 2006; 17:1971-84. [PMID: 16421248 PMCID: PMC1415301 DOI: 10.1091/mbc.e05-10-0956] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin interacting protein 1 (Aip1p) and cofilin cooperate to disassemble actin filaments in vitro and are thought to promote rapid turnover of actin networks in vivo. The precise method by which Aip1p participates in these activities has not been defined, although severing and barbed-end capping of actin filaments have been proposed. To better describe the mechanisms and biological consequences of Aip1p activities, we undertook an extensive mutagenesis of AIP1 aimed at disrupting and mapping Aip1p interactions. Site-directed mutagenesis suggested that Aip1p has two actin binding sites, the primary actin binding site lies on the edge of its N-terminal beta-propeller and a secondary actin binding site lies in a comparable location on its C-terminal beta-propeller. Random mutagenesis followed by screening for separation of function mutants led to the identification of several mutants specifically defective for interacting with cofilin but still able to interact with actin. These mutants suggested that cofilin binds across the cleft between the two propeller domains, leaving the actin binding sites exposed and flanking the cofilin binding site. Biochemical, genetic, and cell biological analyses confirmed that the actin binding- and cofilin binding-specific mutants are functionally defective, whereas the genetic analyses further suggested a role for Aip1p in an early, internalization step of endocytosis. A complementary, unbiased molecular modeling approach was used to derive putative structures for the Aip1p-cofilin complex, the most stable of which is completely consistent with the mutagenesis data. We theorize that Aip1p-severing activity may involve simultaneous binding to two actin subunits with cofilin wedged between the two actin binding sites of the N- and C-terminal propeller domains.
Collapse
Affiliation(s)
- Michael G Clark
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fujibuchi T, Abe Y, Takeuchi T, Imai Y, Kamei Y, Murase R, Ueda N, Shigemoto K, Yamamoto H, Kito K. AIP1/WDR1 supports mitotic cell rounding. Biochem Biophys Res Commun 2005; 327:268-75. [PMID: 15629458 DOI: 10.1016/j.bbrc.2004.11.156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Indexed: 11/30/2022]
Abstract
The actin cytoskeleton plays a fundamental role in configuring cell shapes and movements. Actin interacting protein 1 (AIP1)/tryptophan-aspartate-repeat protein 1 (WDR1) induces actin severing and disassembly cooperating with ADF/cofilin. We found that mitotic cell flattening but not rounding was manifested by suppression of AIP1/WDR1 in cells. This mitotic cell flattening was not due to any changes in phosphorylation and distribution of cofilin in cells. We carried out a direct observation of actin filament severing/disassembly assay and found that phosphorylated cofilin still somewhat severs/disassembles actin filaments and that AIP1/WDR1 effaces this in vitro. We suggest that the phosphorylation of ADF/cofilin will be insufficient to completely inhibit actin turnover during mitosis, and that AIP1/WDR1 could abort the severing/disassembly activity somewhat still carried out due to phosphorylated ADF/cofilin. This mechanism could be required to induce cell morphologic changes, especially mitotic cell rounding.
Collapse
Affiliation(s)
- Taketsugu Fujibuchi
- Division of Molecular Pathology, Department of Pathology, National University Corporation, Ehime University School of Medicine, Toh-on, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mohri K, Vorobiev S, Fedorov AA, Almo SC, Ono S. Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J Biol Chem 2004; 279:31697-707. [PMID: 15150269 DOI: 10.1074/jbc.m403351200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin-interacting protein 1 (AIP1) is a WD40 repeat protein that enhances actin filament disassembly in the presence of actin-depolymerizing factor (ADF)/cofilin. AIP1 also caps the barbed end of ADF/cofilin-bound actin filament. However, the mechanism by which AIP1 interacts with ADF/cofilin and actin is not clearly understood. We determined the crystal structure of Caenorhabditis elegans AIP1 (UNC-78), which revealed 14 WD40 modules arranged in two seven-bladed beta-propeller domains. The structure allowed for the mapping of conserved surface residues, and mutagenesis studies identified five residues that affected the ADF/cofilin-dependent actin filament disassembly activity. Mutations of these residues, which reside in blades 3 and 4 in the N-terminal propeller domain, had significant effects on the disassembly activity but did not alter the barbed end capping activity. These data support a model in which this conserved surface of AIP1 plays a direct role in enhancing fragmentation/depolymerization of ADF/cofilin-bound actin filaments but not in barbed end capping.
Collapse
Affiliation(s)
- Kurato Mohri
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
20
|
Gräf R, Daunderer C, Schulz I. Molecular and functional analysis of the dictyostelium centrosome. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:155-202. [PMID: 15548420 DOI: 10.1016/s0074-7696(04)41003-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The centrosome is a nonmembranous, nucleus-associated organelle that functions not only as the main microtubule-organizing center but also as a cell cycle control unit. How the approximately 100 different proteins that make up a centrosome contribute to centrosome function is still largely unknown. Considerable progress in the understanding of centrosomal functions can be expected from comparative cell biology of morphologically different centrosomal structures fulfilling conserved functions. Dictyostelium is an alternative model organism for centrosome research in addition to yeast and animal cells. With the elucidation of morphological changes and dynamics of centrosome duplication, the establishment of a centrosome isolation protocol, and the identification of many centrosomal components, there is a solid basis for understanding the biogenesis and function of this fascinating organelle. Here we give an overview of the prospective protein inventory of the Dictyostelium centrosome based on database searches. Moreover, we focus on the comparative cell biology of known components of the Dictyostelium centrosome including the gamma-tubulin complex and the homologues of centrin, Nek2, XMAP215, and EB1.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut?Zellbiologie, Universität München, D-80336 München, Germany
| | | | | |
Collapse
|