1
|
Scott NR, Kang S, Parekh SH. Mechanosensitive nuclear uptake of chemotherapy. SCIENCE ADVANCES 2024; 10:eadr5947. [PMID: 39693448 DOI: 10.1126/sciadv.adr5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX). Rapid changes in cell strain by disruption of cytoskeletal and nuclear filaments sensitize nuclei to DOX, whereas chronic reduction of cell strain desensitize nuclei to DOX. Extracted nuclei from invasive cancer cells lines from different tissues have distinct nuclear permeability to DOX. Last, we show that mechano-priming of cells by paclitaxel markedly improves DOX nuclear internalization, rationalizing the observed drug synergies. Our findings reveal that nuclear uptake is a critical, previously unquantified aspect of drug resistance. With nuclear permeability to chemotherapy being tunable via modulation of nuclear mechanotransduction, mechano-priming may be useful to help overcome drug resistance in the future.
Collapse
Affiliation(s)
- Nicholas R Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sowon Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Timalsina B, Choi HJ, Moon IS. N-Acetylglucosamine Kinase-Small Nuclear Ribonucleoprotein Polypeptide N Interaction Promotes Axodendritic Branching in Neurons via Dynein-Mediated Microtubule Transport. Int J Mol Sci 2023; 24:11672. [PMID: 37511433 PMCID: PMC10380243 DOI: 10.3390/ijms241411672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylglucosamine kinase (NAGK) has been identified as an anchor protein that facilitates neurodevelopment with its non-canonical structural role. Similarly, small nuclear ribonucleoprotein polypeptide N (SNRPN) regulates neurodevelopment and cognitive ability. In our previous study, we revealed the interaction between NAGK and SNRPN in the neuron. However, the precise role in neurodevelopment is elusive. In this study, we investigate the role of NAGK and SNRPN in the axodendritic development of neurons. NAGK and SNRPN interaction is significantly increased in neurons at the crucial stages of neurodevelopment. Furthermore, overexpression of the NAGK and SNRPN proteins increases axodendritic branching and neuronal complexity, whereas the knockdown inhibits neurodevelopment. We also observe the interaction of NAGK and SNRPN with the dynein light-chain roadblock type 1 (DYNLRB1) protein variably during neurodevelopment, revealing the microtubule-associated delivery of the complex. Interestingly, NAGK and SNRPN proteins rescued impaired axodendritic development in an SNRPN depletion model of Prader-Willi syndrome (PWS) patient-derived induced pluripotent stem cell neurons. Taken together, these findings are crucial in developing therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
3
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
4
|
Fanali LZ, De Oliveira C, Sturve J. Enzymatic, morphological, and genotoxic effects of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53926-53935. [PMID: 34036510 DOI: 10.1007/s11356-021-14583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Fish have defense systems that are capable of repairing damages caused by xenobiotics like benzo[a]pyrene (BaP), so the aims of this study were to identify BaP toxicity in melanomacrophages (MMs) cytoskeleton, evaluate the melanin area in MMs, and analyze genotoxicity. Rainbow trout juveniles (n = 24) were split in 48h and 7d treatments that received 2 mg/kg of BaP. After the experiment, blood samples were collected and liver was removed, to proceed with the analysis: EROD activity, MMs melanin area quantification, melanosomes movements, and a genotoxicity test. The results revealed increased in EROD activity after 48-h and 7-day BaP exposure. The group 7d displayed a reduction in MMs pigmented area, melanosomes aggregation, in addition to an increased frequency of micronucleus. By means of the EROD assay, it was possible to confirm the activation of BaP biotransformation system. The impairment of the melanosomes' movements possibly by an inactivation of the protein responsible for the pigment dispersion consequently affects the melanin area and thus might negatively impact the MMs detoxification capacity. In addition to this cytotoxicity, the increased frequency of micronucleus might also indicate the genotoxicity of BaP in this important fish species.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Classius De Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
5
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
6
|
Keeling MC, Gavara N. Withaferin-A Can Be Used to Modulate the Keratin Network of Intermediate Filaments in Human Epidermal Keratinocytes. Int J Mol Sci 2020; 21:ijms21124450. [PMID: 32585813 PMCID: PMC7352337 DOI: 10.3390/ijms21124450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanical state of cells is a critical part of their healthy functioning and it is controlled primarily by cytoskeletal networks (actin, microtubules and intermediate filaments). Drug-based strategies targeting the assembly of a given cytoskeletal network are often used to pinpoint their role in cellular function. Unlike actin and microtubules, there has been limited interest in the role of intermediate filaments, and fewer drugs have thus been identified and characterised as modulators of its assembly. Here, we evaluate whether Withaferin-A (WFA), an established disruptor of vimentin filaments, can also be used to modulate keratin filament assembly. Our results show that in keratinocytes, which are keratin-rich but vimentin-absent, Withaferin-A disrupts keratin filaments. Importantly, the dosages required are similar to those previously reported to disrupt vimentin in other cell types. Furthermore, Withaferin-A-induced keratin disassembly is accompanied by changes in cell stiffness and migration. Therefore, we propose that WFA can be repurposed as a useful drug to disrupt the keratin cytoskeleton in epithelial cells.
Collapse
|
7
|
Wilton KM, Billadeau DD. VASP Regulates NK Cell Lytic Granule Convergence. THE JOURNAL OF IMMUNOLOGY 2018; 201:2899-2909. [PMID: 30282752 DOI: 10.4049/jimmunol.1800254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
NK cells eliminate viral-infected and malignant cells through a highly orchestrated series of cytoskeletal rearrangements, resulting in the release of cytolytic granule contents toward the target cell. Central to this process is the convergence of cytolytic granules to a common point, the microtubule-organizing center (MTOC), before delivery to the synapse. In this study, we show that vasodialator-stimulated phosphoprotein (VASP), an actin regulatory protein, localizes to the cytolytic synapse, but surprisingly, shows no impact on conjugate formation or synaptic actin accumulation despite being required for human NK cell-mediated killing. Interestingly, we also find that a pool of VASP copurifies with lytic granules and localizes with lytic granules at the MTOC. Significantly, depletion of VASP decreased lytic granule convergence without impacting MTOC polarization. Using the KHYG-1 cell line in which lytic granules are in a constitutively converged state, we find that either VASP depletion or F-actin destabilization promoted spreading of formerly converged granules. Our results demonstrate a novel requirement for VASP and actin polymerization in maintaining lytic granule convergence during NK cell-mediated killing.
Collapse
Affiliation(s)
- Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905.,Medical Scientist Training Program, College of Medicine, Mayo Clinic, Rochester, MN 55905; and
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905; .,Division of Oncology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
8
|
Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice. Microb Pathog 2017; 103:87-93. [DOI: 10.1016/j.micpath.2016.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|
9
|
Frost R, Norström E, Bodin L, Langhammer C, Sturve J, Wallin M, Svedhem S. Acoustic detection of melanosome transport in Xenopus laevis melanophores. Anal Biochem 2012; 435:10-8. [PMID: 23262280 DOI: 10.1016/j.ab.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022]
Abstract
Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.
Collapse
Affiliation(s)
- Rickard Frost
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Nilsson Sköld H, Aspengren S, Wallin M. Rapid color change in fish and amphibians - function, regulation, and emerging applications. Pigment Cell Melanoma Res 2012; 26:29-38. [PMID: 23082932 DOI: 10.1111/pcmr.12040] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/17/2012] [Indexed: 01/01/2023]
Abstract
Physiological color change is important for background matching, thermoregulation as well as signaling and is in vertebrates mediated by synchronous intracellular transport of pigmented organelles in chromatophores. We describe functions of and animal situations where color change occurs. A summary of endogenous and external factors that regulate this color change in fish and amphibians is provided, with special emphasis on extracellular stimuli. We describe not only color change in skin, but also highlight studies on color change that occurs using chromatophores in other areas such as iris and on the inside of the body. In addition, we discuss the growing field that applies melanophores and skin color in toxicology and as biosensors, and point out research areas with future potential.
Collapse
Affiliation(s)
- Helen Nilsson Sköld
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
11
|
Wassmur B, Gräns J, Norström E, Wallin M, Celander MC. Interactions of pharmaceuticals and other xenobiotics on key detoxification mechanisms and cytoskeleton in Poeciliopsis lucida hepatocellular carcinoma, PLHC-1 cell line. Toxicol In Vitro 2012; 27:111-20. [PMID: 23064032 DOI: 10.1016/j.tiv.2012.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/03/2012] [Accepted: 10/03/2012] [Indexed: 01/15/2023]
Abstract
Fish are exposed to chemicals, including pharmaceuticals, in their natural habitat. This study focuses on effects of chemicals, including nine classes of pharmaceuticals, on key detoxification mechanisms in a fish liver cell-line (PLHC-1). Chemical interactions were investigated on efflux pumps, P-glycoprotein (Pgp) and multidrug resistance associated proteins (MRP1/MRP2), and on biotransformation enzymes, cytochrome P450 (CYP1A/CYP3A). Diclofenac and troleandomycin inhibited efflux activities, whereas ethinylestradiol activated efflux function. Exposure to troleandomycin and β-naphthoflavone induced MRP2 mRNA levels, but no effects were seen on MRP1 or Pgp expressions. Inhibition of CYP1A activities were seen in cells exposed to α-naphthoflavone, β-naphthoflavone, clotrimazole, nocodazole, ketoconazole, omeprazole, ethinylestradiol, lithocholic acid, rifampicin and troleandomycin. Exposure to fulvestrant, clotrimazole and nocodazole resulted in induction of CYP1A mRNA levels. Although, exposure to nocodazole resulted in disassembled microtubules. A CYP3A-like cDNA sequence was isolated from PLHC-1, but basal expression and activities were low and the gene was not responsive to prototypical CYP3A inducers. Exposure to ibuprofen, lithocholic acid and omeprazole resulted in fragmentation of microtubules. This study revealed multiple interactions on key detoxification systems, which illustrates the importance of study effects on regulation combined with functional studies to provide a better picture of the dynamics of the chemical defense system.
Collapse
Affiliation(s)
- Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
12
|
Aspengren S, Norström E, Wallin M. Effects of Hydroquinone on Cytoskeletal Organization and Intracellular Transport in Cultured Xenopus laevis Melanophores and Fibroblasts. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/524781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hydroquinone is used as a skin-lightening agent, it is also present in different chemical products and cigarette smoke. It is believed to inhibit melanin production in melanocytes by inhibiting the key enzyme tyrosinase. In the present study, we show that hydroquinone had severe effects on microtubules and actin filaments in cultured Xenopus laevis melanophores as studied by immunohistochemistry. It affected the intracellular transport of melanosomes, induced bundling of microtubules and disassembly of actin filaments at 10 and 50 μM, and at 100 μM proper adhesion to the substrate was lost. Effects occurred at lower concentrations than what previously has been stated to be cytotoxic, and the results show that tyrosinase is not the only cellular target. The cytoskeleton is of utmost importance for the function of all cells and across species. Our data has therefore to be considered in the discussions about the use of hydroquinone for bleaching of skin.
Collapse
Affiliation(s)
- Sara Aspengren
- Cellectricon AB, Flöjelbergsgatan 8C, 431 37 Mölndal, Sweden
| | - Elisabeth Norström
- Department of Zoology/Zoophysiology, Göteborg University, P.O. Box 463, 405 30 Göteborg, Sweden
| | - Margareta Wallin
- Department of Zoology/Zoophysiology, Göteborg University, P.O. Box 463, 405 30 Göteborg, Sweden
| |
Collapse
|
13
|
Hedberg D, Wallin M. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol In Vitro 2010; 24:795-802. [PMID: 20036731 DOI: 10.1016/j.tiv.2009.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/17/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
Abstract
Glyphosate containing herbicides, such as Roundup, are commonly used and generally considered to be safe. However, some toxic effects are found on amphibians in vivo and human and mouse cells in vitro. In this study the effects of Roundup, glyphosate, glyphosateisopropylamine and isopropylamine were studied on intracellular transport by measuring aggregation capacity in Xenopus laevis melanophores. The chemicals inhibited retrograde transport of melanosomes in the range of 0.5-5mM. Cellular morphology and localization of microtubules and actin filaments were affected as determined by immunocytochemistry. Both glyphosate and Roundup decreased pH in the media. Acidic pH inhibited melanosome transport and altered microtubule and actin morphology in the absence of chemicals, while transport inhibiting concentrations of glyphosate, Roundup and glyphosateisopropylamine disassembled both microtubules and actin filaments. At physiological pH the effects of Roundup decreased whereas glyphosate failed to inhibit transport. Physiological pH decreases glyphosate lipophilicity and its diffusion into the cytoplasm. The Roundup formulation contains surfactants, such as POEA (polyetylated tallow amine) that increases membrane permeability allowing cellular uptake at physiological pH. Our results show that the effects of glyphosate containing compounds are pH-dependent and that they inhibit intracellular transport through disassembly of the cytoskeleton possibly by interfering with intracellular Ca(2+)-balance.
Collapse
Affiliation(s)
- Daniel Hedberg
- Department of Zoology, University of Gothenburg, PO Box 463, SE-405 30 Göteborg, Sweden
| | | |
Collapse
|
14
|
Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol 2008; 87:709-20. [DOI: 10.1016/j.ejcb.2008.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 12/18/2022] Open
|
15
|
Chapter 6 New Insights into Melanosome Transport in Vertebrate Pigment Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:245-302. [DOI: 10.1016/s1937-6448(08)01606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Aspengren S, Hedberg D, Wallin M. Melanophores: A model system for neuronal transport and exocytosis? J Neurosci Res 2007; 85:2591-600. [PMID: 17149749 DOI: 10.1002/jnr.21132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black pigment cells, melanophores, from lower vertebrates are specialized in bidirectional and coordinated translocation of pigment granules, melanosomes, in the cytoplasm. Melanophores develop from the neuronal crest and are most abundant in the dermal and epidermal layers of the skin, where the intracellular distribution of the pigment significantly influences the color of the animal. The transport of pigment is dependent on an intact cytoskeleton and motor proteins associated with cytoskeletal components. The easily cultured melanophores have proved to be excellent models for organelle transport because the intracellular movements of pigment can be visualized via light microscopy, and the granules move in response to defined chemical signals. The ease of achieving a combination of morphological and functional transport studies is the advantage of the melanophore system, and studies on pigment cells have revealed new components of the transport machinery, including molecular motors, their adapters, and transfer of vesicles to other cells. Many cellular components are transported with a combination of the actin- and microtubule-based transport systems, and, since all eukaryotic organisms rely on functional intracellular transport and an intact cytoskeleton, studies on melanophores are important for many aspects of cell biology, including axonal transport. In this review, we present an overview of the research on the pigment transport system and the potential use of pigment cells as a model system.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology/Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|