1
|
Limjirawatthana S, Ploypradith P, Ruchirawat S, Theppitak C, Ieawsuwan W. Hypervalent Iodine(III)-Mediated Oxidative Cyclization of Exo-Cyclic Ene-Carbamate to Tetrahydroisoquinoline-Oxazol-2(3H)-one Derivatives. Chem Asian J 2025:e202401754. [PMID: 39989257 DOI: 10.1002/asia.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
The new development of a transition-metal-free method for the synthesis of THIQ-oxazol-2(3H)-one motif from exo-cyclic ene-carbamates by using hypervalent iodine as an oxidant is reported. Various functional groups substituted on the aryl rings of the ene-carbamate substrates as well as the N- and S-heterocyclic substrates afforded the corresponding THIQ-oxazol-2(3H)-one products in up to 91 % yield. Moreover, the synthetic utility was highlighted for the synthesis of phthalide-THIQ natural product, (±)-corlumine.
Collapse
Affiliation(s)
- Suphaporn Limjirawatthana
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Winai Ieawsuwan
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Pastuch-Gawołek G, Szreder J. Effect of Glycoconjugation on Cytotoxicity and Selectivity of 8-Aminoquinoline Derivatives Compared to 8-Hydroxyquinoline. Molecules 2025; 30:427. [PMID: 39860296 PMCID: PMC11767929 DOI: 10.3390/molecules30020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Numerous emerging chemotherapeutic agents incorporate N-heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short in selectivity. In this study, our objective was to improve the selectivity of glycoconjugates by replacing the oxygen atom with nitrogen by substituting the 8-HQ moiety with 8-aminoquinoline (8-AQ). The 8-AQ derivatives were functionalized through the amino group and linked to sugar derivatives (D-glucose or D-galactose) that were modified with an azide, alkylazide, or propargyl group at the anomeric position by copper(I)-catalyzed 1,3-dipolar azido-alkyne cycloaddition (CuAAC). The resulting glycoconjugates, as well as their potential metabolites, were evaluated for their ability to inhibit the proliferation of cancer cell lines (including HCT 116 and MCF-7) and a healthy cell line (NHDF-Neo). Two of the synthesized glycoconjugates (17 and 18) demonstrated higher cytotoxicity than their oxygen-containing counterparts and showed improved selectivity for cancer cells, thus enhancing their anticancer potential. Furthermore, it was found that glycoconjugates exhibited greater cytotoxicity in comparison to their potential metabolites.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
3
|
Mushtaq A, Ahmad MN, Zahoor AF, Kamal S, Ali KG, Javid J, Parveen B, Nazeer U, Bhat MA. Design, CTAB-catalyzed ultrasound-assisted synthesis and tyrosinase inhibition potential of naphthofuran-triazole conjugates. RSC Adv 2024; 14:37521-37538. [PMID: 39582937 PMCID: PMC11583631 DOI: 10.1039/d4ra05649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
The development of novel and efficient tyrosinase inhibitors is a critical necessity of agricultural, cosmetic and medicinal chemistry. Bearing in mind the therapeutical potential of naphthofuran-containing organic compounds, we carried out the CTAB-catalyzed ultrasound-assisted synthesis of a library of novel naphthofuran-triazole joined N-aryl/alkyl acetamides 20(a-j) in 74-92% yield, which were further assessed for their tyrosinase inhibitory potential by taking kojic acid and ascorbic acid as standard inhibitors. The tyrosinase inhibitory assay demonstrated the promising tyrosinase inhibiting tendency of all prepared derivatives 20(a-h) as they all were found to be more efficient in comparison to the standard kojic acid. Similarly, most of the derivatives also exhibited tyrosinase inhibition potency in juxtaposition to ascorbic acid. More specifically, among the catalog of compounds, 20f and 20i exhibited potent inhibition results with IC50 = 0.51 ± 0.12 and 1.99 ± 0.07, respectively. Overall, 20f was shown to be the most efficacious tyrosinase inhibitor, owing to the presence of an electronegative group, i.e., 2-chloro substitution on the phenyl ring. The tyrosinase inhibition activity results of 20f and 20i were further supplemented with molecular docking analysis to validate experimental studies. In silico modelling findings revealed their significant interactions with the tyrosinase protein (PDB ID: 5OAE), thereby illustrating the efficient docking score of -7.10 kcal mol-1 and -6.95 kcal mol-1 in comparison to kojic acid (-5.03 kcal mol-1).
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Mirza Nadeem Ahmad
- Department of Applied Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Jamila Javid
- Department of Chemistry, University of Sialkot Sialkot Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Maurya MR, Maurya SK, Kumar N, Avecilla F. Nonoxidovanadium(IV) Complex-Catalyzed Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes, Biscoumarins, and Xanthenes under Green Conditions. J Org Chem 2024; 89:12143-12158. [PMID: 39177312 DOI: 10.1021/acs.joc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Reaction of [VIVO(acac)2] (Hacac = acetylacetone) with a Mannich base, N,N,N',N'-tetrakis(2-hydroxy-3,5-di-tert-butyl benzyl)-1,2-diaminoethane (H4L, I) in a 1:1 molar ratio in MeOH, leads to the formation of the nonoxidovanadium(IV) complex [VIVL] (1). Air stable complex 1 has been characterized using various spectroscopic techniques, DFT calculations, and single-crystal X-ray studies. 1 adopts distorted octahedral geometry where ligand coordinates through all coordination functionalities available. This complex has been used as a catalyst in the one-pot, three-component synthesis of 2-amino-3-cyano-4H-pyrans using 1,3-dicarbonyls (1,3-cyclohexanedione, dimedone, barbituric acid, and 4-hydroxycoumarin), malononitrile, and various substituted aromatic aldehydes in equimolar amounts employing ethanol as a green solvent. The catalytic reaction revealed that the multicomponent synthesis of 4H-pyrans and chromenes is greatly influenced by both types of 1,3-dicarbonyl compound employed and the nature of the substituent on the aromatic ring of the aldehyde. Synthesized catalyst has also been used in the synthesis of pharmacologically relevant oxygen-containing heterocycles, specifically, 1,8-dioxo-octahydro-1H-xanthenes and biscoumarins. The possible mechanism for the synthesized one-pot, multicomponent product has been proposed by isolating intermediate(s) generated during synthesis.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailendra K Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruna, A Coruna 15071, Spain
| |
Collapse
|
5
|
Saleem Naz Babari I, Islam M, Saeed H, Nadeem H, Imtiaz F, Ali A, Shafiq N, Alamri A, Zahid R, Ahmad I. Design, synthesis,
in-vitro
biological profiling and molecular docking of some novel oxazolones and imidazolones exhibiting good inhibitory potential against acetylcholine esterase. J Biomol Struct Dyn 2024:1-18. [DOI: https:/doi.org/10.1080/07391102.2024.2306496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/10/2024] [Indexed: 01/06/2025]
Affiliation(s)
| | - Muhammad Islam
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Fariha Imtiaz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rabia Zahid
- Department of Eastern Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Ahmad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
6
|
Saleem Naz Babari I, Islam M, Saeed H, Nadeem H, Imtiaz F, Ali A, Shafiq N, Alamri A, Zahid R, Ahmad I. Design, synthesis, in-vitro biological profiling and molecular docking of some novel oxazolones and imidazolones exhibiting good inhibitory potential against acetylcholine esterase. J Biomol Struct Dyn 2024:1-18. [PMID: 38351577 DOI: 10.1080/07391102.2024.2306496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/10/2024] [Indexed: 09/02/2024]
Abstract
Heterocyclic compounds with oxazole and imidazole rings in their structure have disclosed momentous biological aptitudes. Taking into account their superlative attributes, the present study was designed to introduce a new synthetic scheme to make new derivatives with tremendous futuristic pharmacological potentialities. Series of Oxazolones were synthesized by using substituted benzaldehyde with benzyl halides to produce respective benzaldehyde derivatives 1 (a-d) which further reacted with hippuric acid to yield oxazolones 2 (a-e). Newly synthesized oxazolones then reacted with 4-chloroaniline to yield corresponding imidazolones 3 (a-e). All the compounds were characterized by using FTIR and NMR spectroscopic techniques. Docking studies of Compounds were conducted using AutoDock Vina and analyzed with PYMOL. All synthesized oxazolone and imidazolone derivatives exhibited antioxidant potential, demonstrated by their IC50 values compared to ascorbic acid standard. Oxazolone derivatives (2a-2e) exhibited good acetyl cholinesterase inhibitory potential whereas Imidazolone series did not show significant inhibition as shown by their IC50 values compared to donepezil as a standard. Docking studies of all compounds against acetylcholinesterase demonstrated favorable binding affinity, indicating their potential for further in-vivo studies. It is notable that novel compounds of both oxazolones and Imidazolone series exhibited antioxidant potential with maximum percentage inhibition of 75.9 (IC50 12.9 ± 0.0573 µM/mL) by compound 2d while compound 2a showed AChE inhibitory potential with maximum %age inhibition of 75.49 (IC50 7.8 ± 0.0218 µM/mL).
Collapse
Affiliation(s)
| | - Muhammad Islam
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Fariha Imtiaz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rabia Zahid
- Department of Eastern Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Ahmad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
7
|
Intano J, Riel LP, Lim J, Robinson JR, Howell AR. 1,6-Dioxo-2-azaspiro[3.4]oct-2-enes and Related Spirocycles: Heterocycles from [3 + 2] Nitrile Oxide Cycloadditions with 2-Methyleneoxetanes, -Thietanes, and -Azetidines. J Org Chem 2023. [PMID: 38016079 DOI: 10.1021/acs.joc.3c01624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Isoxazolines and 4-membered heterocycles are significant structural motifs in numerous synthetic intermediates and natural products. [3 + 2] Cycloadditions between enol ethers and nitrile oxides have been well studied; however, nitrile oxide cycloadditions with 4-membered heterocycles to give spiroisoxazolines are unreported. Here, we showcase the regio- and diastereoselective [3 + 2] nitrile oxide cycloadditions of 2-methyleneoxetanes, -azetidines, and -thietanes to give an array of 1,6-dioxo-2-azaspiro[3.4]oct-2-enes and related spirocycles. 2D NMR experiments suggested that most of the observed diastereoselectivities were dictated by steric interactions; however, dipolarophiles with H bonding donors reversed the stereochemical outcome. X-ray crystallography confirmed the structural assignments.
Collapse
Affiliation(s)
- Jose Intano
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Louis P Riel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jacky Lim
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
8
|
Cho HJ, Kim JH. Pd-catalyzed oxa-[4 + n] dipolar cycloaddition using 1,4-O/C dipole synthons for the synthesis of O-heterocycles. Org Biomol Chem 2023. [PMID: 38009204 DOI: 10.1039/d3ob01619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Transition metal-catalyzed dipolar cycloaddition is one of the most efficient and powerful synthetic strategies to produce diverse heterocycles. In particular, for the construction of oxygen-containing heterocycles, which are valuable structural motifs found in pharmaceuticals and natural compounds, transition metal-catalyzed oxa-dipolar cycloaddition using an oxygen-containing dipole has emerged as a promising method. In recent years, the 1,4-O/C dipole synthons 2-alkylidenetrimethylene carbonate and 2-hydroxymethylallyl carbonate have been developed and successfully applied to palladium-catalyzed oxa-[4 + n] dipolar cycloadditions with diverse dipolarophiles. In this review, we summarize recent advances in palladium-catalyzed oxa-[4 + n] dipolar cycloadditions using 1,4-O/C dipoles including asymmetric catalysis and divergent catalysis toward five- to nine-membered O-heterocycles.
Collapse
Affiliation(s)
- Ho-Jun Cho
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
9
|
Saroha B, Kumar G, Arya P, Raghav N, Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg Chem 2023; 140:106805. [PMID: 37634269 DOI: 10.1016/j.bioorg.2023.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Enzymes are the biological macromolecules that have emerged as an important drug target as their upregulation/imbalance leads to various pathological conditions, such as inflammation, parasitic infection, Alzheimer's, cancer, and many others. Here, we designed and synthesized some morpholine tethered novel aurones and evaluated them as potential inhibitors for CTSB, α-amylase, lipase and activator for trypsin. All the newly synthesized compounds were fully characterized by various spectroscopic techniques (1H NMR, 13C NMR, HRMS) and the Z-configuration to them was assigned based on single crystal XRD data and 1H NMR chemical shift values. Further, the hybrids were evaluated for their intracellular (cathepsin B) and extracellular (trypsin, lipase, amylase) enzyme inhibition potencies. The in-vitro inhibition screening against cathepsin B revealed that most of the synthesized compounds are good competitive inhibitors (% inhibition = 22.91-75.04), with 6q (% inhibition = 75.04) and 6r (% inhibition = 71.13) as the eminent inhibitors of the series. At the same time, they exhibited weak to moderate inhibition towards amylase (% inhibition = 7.22-22.48) and lipase (% inhibition = 16.29-54.83). A significant trypsin activation (% activation = 107.42-196.47) was observed even at the micromolar concentration of the compounds. Furthermore, the drug-modeling studies showed a good correlation between the in-vitro experimental results and the calculated binding affinity of the screened compounds with all the tested enzymes. These findings are expected to provide a new lead in drug development for different pathological disorders wherever these enzymes are involved.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Department of Biomedical Engineering, Oregon Health & Science University (OHSU), 2730 S Moody Ave., Portland, OR 97201
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
10
|
Zhong B, Chen F, Ge Y, Liu D. Developing a fast and catalyst-free protocol to form C=N double bond with high functional group tolerance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231263. [PMID: 37800155 PMCID: PMC10548102 DOI: 10.1098/rsos.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The carbon-nitrogen double bond (C=N) is a fundamentally important functional group in organic chemistry. This is largely due to the fact that C=N acts as electrophilic synthon to give nitrogen-containing compounds. Here, we report the condensation of primary amine or hydrazine with very electron-deficient aldehyde to form C=N bond in the absence of any catalysts (metals and acids). The protocol performs at room temperature and applies water as co-solvent. Two hundred examples are presented here. With its intrinsic advantages of wide substrate scopes, excellent efficiency (high yields and short reaction time), operational simplicity, mild condition (room temperature as reaction temperature, no catalysts, no additions, water as co-solvent and opening to air) and available starting materials, the protocol can be compatible with various drugs, prodrugs, dyes and pharmacophores containing primary amino group. In addition, we also successfully apply this protocol to rapidly synthesize the core scaffolds of bioactive molecules.
Collapse
Affiliation(s)
- Bin Zhong
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Feng Chen
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yushu Ge
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dan Liu
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
11
|
Steparuk EV, Meshcheryakova EA, Viktorova VV, Ulitko MV, Obydennov DL, Sosnovskikh VY. Oxidative Ring-Opening Transformation of 5-Acyl-4-pyrones as an Approach for the Tunable Synthesis of Hydroxylated Pyrones and Furans. J Org Chem 2023; 88:11590-11602. [PMID: 37504952 DOI: 10.1021/acs.joc.3c00907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A selective and tunable approach for oxidation of 4-pyrones has been developed via ring-opening transformations leading to various hydroxylated oxaheterocycles. The first step of the strategy includes the base-catalyzed epoxidation of 5-acyl-4-pyrones in the presence of hydrogen peroxide for the effective synthesis of pyrone epoxides in high yields. The epoxides bearing the CO2Et group are reactive molecules that can undergo both pyrone and oxirane ring-opening via deformylation to produce hydroxylated 2-pyrones or 4-pyrones. The acid-promoted transformation led to 3-hydroxy-4-pyrones (24-76% yields), whereas the K2CO3-catalyzed ring-opening process of 2-carbethoxy-4-pyrone epoxides proceeded as an attack of alcohol at the C-3 position bearing the CO2Et group to give functionalized 6-acyl-5-hydroxy-2-pyrones (27-87% yields). The base-catalyzed reaction of 2-aryl-4-pyrone epoxides was followed by ring contraction and the dearoylation process to produce 3-hydroxyfuran-2-carbaldehydes in 42-80% yields. The transformation of 3-aroylchromone epoxides led to flavonols and 3-hydroxybenzofuran-2-carbaldehyde in the acidic and basic conditions, respectively. The prepared hydroxylated heterocycles demonstrated high reactivity for further transformations and low cytotoxicity and are promising fluorophores or UV filters.
Collapse
Affiliation(s)
- Elena V Steparuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Ekaterina A Meshcheryakova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Maria V Ulitko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
12
|
Wang ZH, You Y, Zhao JQ, Zhang YP, Yin JQ, Yuan WC. Recent Progress in Heterocycle Synthesis: Cyclization Reaction with Pyridinium and Quinolinium 1,4-Zwitterions. Molecules 2023; 28:molecules28073059. [PMID: 37049822 PMCID: PMC10095670 DOI: 10.3390/molecules28073059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Heteroarene 1, n-zwitterions are powerful and versatile building blocks in the construction of heterocycles and have received increasing attention in recent years. In particular, pyridinium and quinolinium 1,4-zwitterions have been widely studied and used in a variety of cyclization reactions due to their air stability, ease of use, and high efficiency. Sulfur- and nitrogen-based pyridinium and quinolinium 1,4-zwitterions, types of emerging heteroatom-containing synthons, have attracted much attention from chemists. These 1,4-zwitterions, which contain multiple reaction sites, have been successfully used in the synthesis of three- to eight-membered cyclic compounds over the last decade. In this review, we present the exciting progress made in the field of cyclization reactions of sulfur- and nitrogen-based pyridinium and quinolinium 1,4-zwitterions. Moreover, the mechanistic insights, the transition states, some synthetic applications, and the challenges and opportunities are also discussed. We hope to provide an overview for synthetic chemists who are interested in the heterocycle synthesis from cyclization reaction with pyridinium and quinolinium 1,4-zwitterions pyridinium and quinolinium 1,4-zwitterions.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Aleksiev M, García Mancheño O. Enantioselective dearomatization reactions of heteroarenes by anion-binding organocatalysis. Chem Commun (Camb) 2023; 59:3360-3372. [PMID: 36790499 PMCID: PMC10019134 DOI: 10.1039/d2cc07101k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Catalytic asymmetric dearomatization of heteroaromatic compounds has received considerable attention in the last few years, since it allows for a fast expansion of the chemical space by converting relatively simple, flat molecules into complex, three dimensional structures with added value. Among different approaches, remarkable progress has been recently achieved by the development of organocatalytic dearomatization methods. In particular, the anion-binding catalysis technology has emerged as a potent alternative to metal catalysis, which together with the design of novel, tunable anion-receptor motifs, has provided new entries for the enantioselective dearomatization of heteroarenes through a chiral contact ion pair formation by activation of the electrophilic reaction partner. In this feature, we provide an overview of the different methodologies and advances in anion-binding catalyzed dearomatization reactions of different heteroarenes.
Collapse
Affiliation(s)
- Martin Aleksiev
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| |
Collapse
|
14
|
Abstract
Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Popovics-Tóth N, Bao TDT, Tajti Á, Mátravölgyi B, Kelemen Z, Perdih F, Hackler L, Puskás LG, Bálint E. Three-Component Reaction of 3-Formyl-6-Methylchromone, Primary Amines, and Secondary Phosphine Oxides: A Synthetic and Mechanistic Study. ACS OMEGA 2023; 8:2698-2711. [PMID: 36687078 PMCID: PMC9850473 DOI: 10.1021/acsomega.2c07333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A fast, mild, and efficient catalyst-free approach has been developed for the synthesis of chromonyl-substituted α-aminophosphine oxides by the three-component reaction of 3-formyl-6-methylchromone, primary amines, and secondary phosphine oxides at ambient temperature. Carrying out the reaction with aliphatic amines or aminoalcohols at a higher temperature (80 °C), phosphinoyl-functionalized 3-aminomethylene chromanones were formed instead of the corresponding chromonyl-substituted α-aminophosphine oxides. No reaction occurred when 3-formyl-6-methylchromone and secondary phosphine oxides were reacted with aromatic amines in the absence of any catalyst. Applying a basic catalyst, the formation of the phosphinoyl-functionalized 3-aminomethylene chromanones was observed; however, the reaction was not complete. Detailed experimental and quantum chemical studies were performed to study the transformation. Moreover, the in vitro cytotoxicity of phosphinoyl-functionalized 3-aminomethylene chromanones was also investigated in three different cell lines, such as human lung adenocarcinoma (A549), mouse fibroblast (NIH/3T3), and human promyelocytic leukemia (HL60) cells. Several derivatives showed modest activity against the human promyelocytic leukemia (HL60) cell line.
Collapse
Affiliation(s)
- Nóra Popovics-Tóth
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - Trinh Dang Tran Bao
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - Ádám Tajti
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - Béla Mátravölgyi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - Zsolt Kelemen
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Franc Perdih
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - László Hackler
- Anthelos
Ltd., Alsó kikötő
sor 11/D, H-6726 Szeged, Hungary
| | | | - Erika Bálint
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| |
Collapse
|
16
|
Tandel SN, Mistry P, Patel PN. Novel chalcone scaffolds of benzothiophene as an efficient real time hydrazine sensor: Synthesis and single crystal XRD studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Arya C, Chandrakanth M, Fabitha K, Thomas NM, Pramod RN, Gondru R, Banothu J. Coumarin – Benzimidazole hybrids: A review on Diverse synthetic strategies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Recent Developments in Nanocatalyzed Green Synthetic Protocols of Biologically Potent Diverse O-Heterocycles—A Review. Catalysts 2022. [DOI: 10.3390/catal12060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dynamic growth in green organic synthetic methodologies for diverse heterocyclic scaffolds has substantially contributed to the field of medicinal chemistry over the last few decades. The use of hybrid metal nanocatalysts (NCs) is one such benign strategy for ensuring the advancement of modern synthetic chemistry by adhering to the principles of green chemistry, which call for a sustainable catalytic system that converts reacting species into profitable chemicals at a faster rate and tends to reduce waste generation. The metal nanoparticles (NPs) enhance the exposed surface area of the catalytic active sites, thereby making it easier for reactants and metal NCs to have an effective interaction. Several review articles have been published on the preparation of metal NCs and their uses for various catalytic heterocyclic transformations. This review will summarize different metal NCs for the efficient green synthesis of various O-heterocycles. Furthermore, the review will provide a concise overview of the role of metal NCs in the synthesis of O-heterocycles and will be extremely useful to researchers working on developing novel green and simple synthetic pathways to various O-heterocyclic-derived molecules.
Collapse
|
19
|
Caballero MP, Carrascosa F, Cruz‐Martínez F, Castro‐Osma JA, Rodríguez AM, North M, Lara‐Sánchez A, Tejeda J. [4‐(2‐Hydroxyphenyl)imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidin‐2‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202103977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- María P. Caballero
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Fernando Carrascosa
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Felipe Cruz‐Martínez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - José A. Castro‐Osma
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Farmacia 02071 -Albacete Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Michael North
- Green Chemistry Centre of Excellence Department of Chemistry The University of York Heslington York YO10 5DD UK
| | - Agustín Lara‐Sánchez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Juan Tejeda
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| |
Collapse
|
20
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
21
|
Dawoud NTA, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci Rep 2022; 12:3424. [PMID: 35236889 PMCID: PMC8891364 DOI: 10.1038/s41598-022-07456-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively.
Collapse
Affiliation(s)
- Nadia T A Dawoud
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Doaa R Lotfy
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
22
|
Srdič M, Fessner ND, Yildiz D, Glieder A, Spiertz M, Schwaneberg U. Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules 2022; 12:biom12020153. [PMID: 35204652 PMCID: PMC8961652 DOI: 10.3390/biom12020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their N- and O-containing derivatives (N-/O-PAHs) are environmental pollutants and synthetically attractive building blocks in pharmaceuticals. Functionalization of PAHs can be achieved via C-H activation by cytochrome P450 enzymes (e.g., P450 CYP3A4) in an environmentally friendly manner. Despite its broad substrate scope, the contribution of CYP3A4 to metabolize common PAHs in humans was found to be small. We recently showcased the potential of CYP3A4 in whole-cell biocatalysis with recombinant yeast Komagataella phaffii (Pichia pastoris) catalysts for the preparative-scale synthesis of naturally occurring metabolites in humans. In this study, we aimed at exploring the substrate scope of CYP3A4 towards (N-/O)-PAHs and conducted a bioconversion experiment at 10 L scale to validate the synthetic potential of CYP3A4 for the preparative-scale production of functionalized PAH metabolites. Hydroxylated products were purified and characterized using HPLC and NMR analysis. In total, 237 mg of fluorenol and 48 mg of fluorenone were produced from 498 mg of fluorene, with peak productivities of 27.7 μmol/L/h for fluorenol and 5.9 μmol/L/h for fluorenone; the latter confirmed that CYP3A4 is an excellent whole-cell biocatalyst for producing authentic human metabolites.
Collapse
Affiliation(s)
- Matic Srdič
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Deniz Yildiz
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Markus Spiertz
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| |
Collapse
|
23
|
Mishra R, Kumar N, Sachan N. Synthesis, Biological Evaluation and Docking Analysis of Novel Tetrahydrobenzothiophene Derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220117123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
The role of Retinoic acid receptor-related orphan receptors in cancer development has raised the interest to develop multi-functional agents.
Objective:
The main purpose of this work was in silico design and synthesis of potential anticancer candidates with antioxidant effect.
Methods:
The compounds were designed based on their docking studies with respect to the RORγt receptor. Using the Gewald protocol, a series of new tetrahydrobenzothiophene derivatives was synthesized. The physicochemical and spectroanalytical findings including FTIR, 1H-NMR, 13C-NMR, and mass spectroscopic techniques, verified the molecular structures of the synthesized derivatives. The anticancer and antioxidant potential of the synthesized compounds was assessed in vitro. The compounds were tested by the National Cancer Institute, USA for anti-cancer action towards different cell lines representing nine cancerous conditions. The antioxidant activity of compounds was assessed in vitro using the DPPH free radical scavenging method.
Results:
Docking analysis on RORγt receptors revealed that the test compounds could have anticancer potential. Within the binding pocket of the chosen PDB ID (6q7a), RCA3 and RCA5 showed good docking scores in molecular docking studies, validating their capability of being used in rational drug design as lead compounds. Compounds showed diversified ratios of anti-cancer activity. RCA5 and RCA7 showed excellent antioxidant activity in reference to ascorbic acid with IC50 values of 18.71μg/mL and 20.88μg/mL.
Conclusion:
Cytotoxicity results very well complemented the docking scores. Compounds RCA3 and RCA5 displayed higher anticancer activity in the subpanels of leukemia, breast cancer, and lung cancer. Compounds RCA5 and RCA7 displayed potent antioxidant action comparable to ascorbic acid while other compounds presented mild to good antioxidant behavior.
Collapse
Affiliation(s)
- Raghav Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Nitin Kumar
- Saraswathi College of Pharmacy, Anwarpur, Uttar Pradesh, 245304, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| |
Collapse
|
24
|
Maračić S, Grbčić P, Shammugam S, Radić Stojković M, Pavelić K, Sedić M, Kraljević Pavelić S, Raić-Malić S. Amidine- and Amidoxime-Substituted Heterocycles: Synthesis, Antiproliferative Evaluations and DNA Binding. Molecules 2021; 26:molecules26227060. [PMID: 34834151 PMCID: PMC8625065 DOI: 10.3390/molecules26227060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
The novel 1,2,3-triazolyl-appended N- and O-heterocycles containing amidine 4–11 and amidoxime 12–22 moiety were prepared and evaluated for their antiproliferative activities in vitro. Among the series of amidine-substituted heterocycles, aromatic diamidine 5 and coumarine amidine 11 had the most potent growth-inhibitory effect on cervical carcinoma (HeLa), hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (SW620), with IC50 values in the nM range. Although compound 5 was toxic to non-tumor HFF cells, compound 11 showed certain selectivity. From the amidoxime series, quinoline amidoximes 18 and 20 showed antiproliferative effects on lung adenocarcinoma (A549), HeLa and SW620 cells emphasizing compound 20 that exhibited no cytostatic effect on normal HFF fibroblasts. Results of CD titrations and thermal melting experiments indicated that compounds 5 and 10 most likely bind inside the minor groove of AT-DNA and intercalate into AU-RNA. Compounds 6, 9 and 11 bind to AT-DNA with mixed binding mode, most probably minor groove binding accompanied with aggregate binding along the DNA backbone.
Collapse
Affiliation(s)
- Silvija Maračić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
| | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Ulica Radmile Matejčić 2, HR-51000 Rijeka, Croatia;
| | - Suresh Shammugam
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, HR-10000 Zagreb, Croatia;
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, HR-51000 Rijeka, Croatia;
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| |
Collapse
|
25
|
Qin Y, Li L, Liang JY, Li K, Zhao D. Silacyclization through palladium-catalyzed intermolecular silicon-based C(sp 2)-C(sp 3) cross-coupling. Chem Sci 2021; 12:14224-14229. [PMID: 34760208 PMCID: PMC8565370 DOI: 10.1039/d1sc04180k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Silicon-based cross-coupling has been recognized as one of the most reliable alternatives for constructing carbon–carbon bonds. However, the employment of such reaction as an efficient ring expansion strategy for silacycle synthesis is comparatively little known. Herein, we develop the first intermolecular silacyclization strategy involving Pd-catalyzed silicon-based C(sp2)–C(sp3) cross-coupling. This method allows the modular assembly of a vast array of structurally novel and interesting sila-benzo[b]oxepines with good functional group tolerance. The key to success for this reaction is that silicon atoms have a stronger affinity for oxygen nucleophiles than carbon nucleophiles, and silacyclobutanes (SCBs) have inherent ring-strain-release Lewis acidity. Herein, we develop the first silacyclization between 2-halophenols and SCBs, which allows the modular assembly of sila-benzo[b]oxepines with good functional group tolerance and can be applied for the late-stage modification of biologically active molecules.![]()
Collapse
Affiliation(s)
- Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lianghui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jin-Yuan Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Kailong Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
26
|
Sharma B, Singh VJ, Chawla PA. Epidermal growth factor receptor inhibitors as potential anticancer agents: An update of recent progress. Bioorg Chem 2021; 116:105393. [PMID: 34628226 DOI: 10.1016/j.bioorg.2021.105393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a vital intermediate in cell signaling pathway including cell proliferation, angiogenesis, apoptosis, and metastatic spread and also having four divergent members with similar structural features, such as EGFR (HER1/ErbB1), ErbB2 (HER2/neu), ErbB3 (HER3), and ErbB4 (HER4). Despite this, clinically exploited inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific thus provoking unenviable adverse effects. Some of the paramount obstacles to generate and develop new lead molecules of EGFR inhibitors are drug resistance, mutation, and also selectivity which inspire medicinal chemists to generate novel chemotypes. The discovery of therapeutic agents that inhibit the precise stage in tumorous cells such as EGFR is one of the chief successful targets in many cancer therapies, including lung and breast cancers. This review aims to compile the various recent progressions (2016-2021) in the discovery and development of diverse epidermal growth factor receptor (EGFR) inhibitors belonging to distinct structural classes like pyrazoline, pyrazole, imidazole, pyrimidine, coumarin, benzothiazole, etc. We have summarized preclinical and clinical data, structure-activity relationships (SAR) containing mechanistic and in silico studies to provide proposals for the design and invention of new EGFR inhibitors with therapeutic significance. The detailed progress of the work in the field will provide inexorable scope for the development of novel drug candidates with greater selectivity and efficacy.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
27
|
Singh PP, Singh PK, Beg MZ, Kashyap A, Srivastava V. Recent applications of photoredox catalysis in O-heterocycles: A short review. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Praveen P. Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, India
| | - Pravin K. Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, India
| | - Mohd. Zaheeruddin Beg
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, India
| | - Akanksha Kashyap
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, India
| |
Collapse
|
28
|
Rasooll MM, Zarei M, Zolfigol MA, Sepehrmansourie H, Omidi A, Hasani M, Gu Y. Novel nano-architectured carbon quantum dots (CQDs) with phosphorous acid tags as an efficient catalyst for the synthesis of multisubstituted 4 H-pyran with indole moieties under mild conditions. RSC Adv 2021; 11:25995-26007. [PMID: 35479474 PMCID: PMC9037214 DOI: 10.1039/d1ra02515e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
In this work, a new nano-structured catalyst with phosphorus acid moieties, synthesized by the reaction of carbon quantum dots (CQDs) and phosphorus acid under refluxing EtOH. The structure and morphology of CQDs–N(CH2PO3H2)2 were fully characterized using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric (TG) analysis, fluorescence and X-ray diffraction (XRD) measurements. The new CQDs–N(CH2PO3H2)2 catalyst was successfully used for the synthesis of 2-amino-6-(2-methyl-1H-indol-3-yl)-4-phenyl-4H-pyran-3,5-dicarbonitriles by the one-pot reaction of various aromatic aldehydes, 3-(1H-indol-3-yl)-3-oxopropanenitrile derivatives and malononitrile in refluxing EtOH and/or ultrasonic irradiation conditions. A new nano-structured catalyst with phosphorus acid moieties, synthesized by the reaction of carbon quantum dots (CQDs) and phosphorus acid under refluxing EtOH.![]()
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Afsaneh Omidi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 1037 Luoyu Road, Hongshan District Wuhan 430074 China
| |
Collapse
|
29
|
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Jaipur, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Jaipur, India
| | - Komal Poonia
- Department of Chemistry, Banasthali Vidyapith, Jaipur, India
| |
Collapse
|
30
|
Imran M, Mehmood R, Hussain R, Irfan A, Sumrra SH, Abbas S, Assiri MA, Khalid N, Fareed A, Saleem M, Al-Sehemi AG. Meteloxetin (1) Novel Phenolic Amino-Oxetane Cholinesterase Inhibitors from Datura metel Linn and First-Principle Investigations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Dong Y, Wrobel AT, Porter GJ, Kim JJ, Essman JZ, Zheng SL, Betley TA. O-Heterocycle Synthesis via Intramolecular C-H Alkoxylation Catalyzed by Iron Acetylacetonate. J Am Chem Soc 2021; 143:7480-7489. [PMID: 33949855 DOI: 10.1021/jacs.1c02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intramolecular alkoxylation of C-H bonds can rapidly introduce structural and functional group complexities into seemingly simple or inert precursors. The transformation is particularly important due to the ubiquitous presence of tetrahydrofuran (THF) motifs as fundamental building blocks in a wide range of pharmaceuticals, agrochemicals, and natural products. Despite the various synthetic methodologies known for generating functionalized THFs, most show limited functional group tolerance and lack demonstration for the preparation of spiro or fused bi- and tricyclic ether units prevalent in molecules for pharmacological purposes. Herein we report an intramolecular C-H alkoxylation to furnish oxacycles from easily prepared α-diazo-β-ketoesters using commercially available iron acetylacetonate (Fe(acac)2) as a catalyst. The reaction is proposed to proceed through the formation of a vinylic carboradical arising from N2 extrusion, which mediates a proximal H-atom abstraction followed by a rapid C-O bond forming radical recombination step. The radical mechanism is probed using an isotopic labeling study (vinyl C-D incorporation), ring opening of a radical clock substrate, and Hammett analysis and is further corroborated by density functional theory (DFT) calculations. Heightened reactivity is observed for electron-rich C-H bonds (tertiary, ethereal), while greater catalyst loadings or elevated reaction temperatures are required to fully convert substrates with benzylic, secondary, and primary C-H bonds. The transformation is highly functional group tolerant and operates under mild reaction conditions to provide rapid access to complex structures such as spiro and fused bi-/tricyclic O-heterocycles from readily available precursors.
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alexandra T Wrobel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Gerard J Porter
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jessica J Kim
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jake Z Essman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
32
|
Cortes Vazquez J, Davis J, Nesterov VN, Wang H, Luo W. Sc(OTf) 3-Catalyzed Formal [3 + 3] Cycloaddition Reaction of Diaziridines and Quinones for the Synthesis of Benzo[ e][1,3,4]oxadiazines. Org Lett 2021; 23:3136-3140. [PMID: 33819425 DOI: 10.1021/acs.orglett.1c00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A formal [3 + 3] cyclization reaction of diaziridines and quinones has been developed offering 1,3,4-oxadiazinanes in generally high yields (up to 96%). The reaction was catalyzed by Sc(OTf)3 with a large substrate scope for both diaziridines and quinones. The synergistic activation of 1,3-dipolar diaziridines and the dipolar quinones was found to be essential to enable this reaction.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Weiwei Luo
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
33
|
Sandvoß A, Wiest JM. Recent Advances in Enantioselective Desymmetrizations of Prochiral Oxetanes. Chemistry 2021; 27:5871-5879. [PMID: 33274788 PMCID: PMC8049043 DOI: 10.1002/chem.202004923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Strain relief of oxetanes offers a plethora of opportunities for the synthesis of chiral alcohols and ethers. In this context, enantioselective desymmetrization has been identified as a powerful tool to construct molecular complexity and this has led to the development of elegant strategies on the basis of transition metal, Lewis acid, and Brønsted acid catalysis. This review highlights recent examples that harness the inherent reactivity of prochiral oxetanes and offers an outlook on the immense possibilities for synthetic application.
Collapse
Affiliation(s)
- Alexander Sandvoß
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Johannes M. Wiest
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
34
|
Roy T, Boateng ST, Banang-Mbeumi S, Singh PK, Basnet P, Chamcheu RCN, Ladu F, Chauvin I, Spiegelman VS, Hill RA, Kousoulas KG, Nagalo BM, Walker AL, Fotie J, Murru S, Sechi M, Chamcheu JC. Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers. Bioorg Chem 2021; 107:104595. [PMID: 33450548 PMCID: PMC7870562 DOI: 10.1016/j.bioorg.2020.104595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to < 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Pankaj K Singh
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Pratik Basnet
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA; Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Federico Ladu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Isabel Chauvin
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Bolni Marius Nagalo
- Division of Hematology and Medical Oncology, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Anthony L Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SELU, Hammond, LA 70402-0878, USA
| | - Siva Murru
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA.
| |
Collapse
|
35
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
36
|
Thorat SS, Kontham R. Strategies for the synthesis of furo-pyranones and their application in the total synthesis of related natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01421d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The furo-pyranone framework is widely present in the molecular structure of various biologically potent natural products and un-natural small molecules, and it represents a valuable target in synthetic organic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Sagar S. Thorat
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ravindar Kontham
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
37
|
Song L, Tian X, Han C, Amanpur M, Rominger F, Hashmi ASK. Catalyst-free synthesis of oxazol-2(3 H)-ones from sulfilimines and diazo compounds through a tandem rearrangement/aziridination/ring-expansion reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo00473e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxazol-2(3H)-ones play a significant role in the fields of organic synthesis and drug development.
Collapse
Affiliation(s)
- Lina Song
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Xianhai Tian
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Chunyu Han
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Mehran Amanpur
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Frank Rominger
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - A. Stephen K. Hashmi
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
- Chemistry Department
| |
Collapse
|
38
|
Archna, Pathania S, Chawla PA. Thiophene-based derivatives as anticancer agents: An overview on decade's work. Bioorg Chem 2020; 101:104026. [PMID: 32599369 DOI: 10.1016/j.bioorg.2020.104026] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022]
Abstract
Heterocyclic compounds hold a pivotal place in medicinal chemistry due to their wide range of biological activities and thus, are exhaustively explored in the field of drug design and development. Continuous efforts are being carried out for the development of medicinal agents especially, for dreadful diseases like cancer. Thiophene, a sulfur containing heterocyclic scaffold, has emerged as one of the relatively well-explored scaffold for the development of library of molecules having potential anticancer profile. Thiophene analogs have been reported to bind with a wide range of cancer-specific protein targets, depending on the nature and position of substitutions. Accordingly, thiophene analogs have been reported to cause their biological action through inhibition of different signaling pathways involved in cancer. Functionally, different anticancer targets require different structural features, so researchers have tried to synthesize new thiophene derivatives with varied substitutions. In the present review, authors have presented the information available on thiophene-based molecules as anticancer agents with special focus on synthetic methodologies, biological profile and structure activity relationship (SAR) studies. Various patents granted for thiophene containing molecules as anticancer have also been included.
Collapse
Affiliation(s)
- Archna
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
39
|
|
40
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020; 59:4869-4872. [PMID: 31912947 PMCID: PMC7079103 DOI: 10.1002/anie.201914877] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Flavoprotein oxidases can catalyze oxidations of alcohols and amines by merely using molecular oxygen as the oxidant, making this class of enzymes appealing for biocatalysis. The FAD-containing (FAD=flavin adenine dinucleotide) alcohol oxidase from P. chrysosporium facilitated double and triple oxidations for a range of aliphatic diols. Interestingly, depending on the diol substrate, these reactions result in formation of either lactones or hydroxy acids. For example, diethylene glycol could be selectively and fully converted into 2-(2-hydroxyethoxy)acetic acid. Such a facile cofactor-independent biocatalytic route towards hydroxy acids opens up new avenues for the preparation of polyester building blocks.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|
41
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| |
Collapse
|
42
|
Del Vecchio A, Talbot A, Caillé F, Chevalier A, Sallustrau A, Loreau O, Destro G, Taran F, Audisio D. Carbon isotope labeling of carbamates by late-stage [11C], [13C] and [14C]carbon dioxide incorporation. Chem Commun (Camb) 2020; 56:11677-11680. [DOI: 10.1039/d0cc05031h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A procedure which allows labelling cyclic carbamates with all carbon isotopes has been developed. This protocol valorizes carbon dioxide, the universal building block for radiolabeling. A series of pharmaceuticals were obtained and a disconnection/reconnection strategy was implemented.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Alex Talbot
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Fabien Caillé
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot
- CEA
- Inserm
- Université Paris Sud
| | - Arnaud Chevalier
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Antoine Sallustrau
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Olivier Loreau
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Gianluca Destro
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Frédéric Taran
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| | - Davide Audisio
- Université Paris-Saclay
- Service de Chimie Bio-organique et Marquage (SCBM)
- CEA/DRF/JOLIOT
- Gif sur Yvette
- France
| |
Collapse
|
43
|
Zhang M, Chen MN, Li JM, Liu N, Zhang ZH. Visible-Light-Initiated One-Pot, Three-Component Synthesis of 2-Amino-4 H-pyran-3,5-dicarbonitrile Derivatives. ACS COMBINATORIAL SCIENCE 2019; 21:685-691. [PMID: 31433619 DOI: 10.1021/acscombsci.9b00124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel approach for the visible-light-initiated synthesis of 2-amino-4H-pyran-3,5-dicarbonitrile derivatives via a one-pot, three-component reaction of aldehydes or isatins, malononitrile, and α-cyano ketones has been developed. The reaction was carried out at room temperature in ethanol/water to give the corresponding products with a wide range of functional groups in high yields. This process did not require any additives or chromatographic separation and could be applied for gram-scale synthesis.
Collapse
Affiliation(s)
- Mo Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20 South Second Ring East Road, Shijiazhuang 050024, P. R. China
| | - Meng-Nan Chen
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20 South Second Ring East Road, Shijiazhuang 050024, P. R. China
| | - Jiao-Mian Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20 South Second Ring East Road, Shijiazhuang 050024, P. R. China
| | - Nan Liu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20 South Second Ring East Road, Shijiazhuang 050024, P. R. China
| | - Zhan-Hui Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20 South Second Ring East Road, Shijiazhuang 050024, P. R. China
| |
Collapse
|
44
|
Devleshova NA, Lozovskiy SV, Vasilyev AV. Reactions of alkyl 4-hydroxybut-2-ynoates with arenes under superelectrophilic activation with triflic acid or HUSY zeolite: Alternative propargylation or allenylation of arenes, and synthesis of furan-2-ones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Santos GDA, Dhoke GV, Davari MD, Ruff AJ, Schwaneberg U. Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles. Int J Mol Sci 2019; 20:E3353. [PMID: 31288417 PMCID: PMC6651506 DOI: 10.3390/ijms20133353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/04/2023] Open
Abstract
The O-heterocycles, benzo-1,4-dioxane, phthalan, isochroman, 2,3-dihydrobenzofuran, benzofuran, and dibenzofuran are important building blocks with considerable medical application for the production of pharmaceuticals. Cytochrome P450 monooxygenase (P450) Bacillus megaterium 3 (BM3) wild type (WT) from Bacillus megaterium has low to no conversion of the six O-heterocycles. Screening of in-house libraries for active variants yielded P450 BM3 CM1 (R255P/P329H), which was subjected to directed evolution and site saturation mutagenesis of four positions. The latter led to the identification of position R255, which when introduced in the P450 BM3 WT, outperformed all other variants. The initial oxidation rate of nicotinamide adenine dinucleotide phosphate (NADPH) consumption increased ≈140-fold (WT: 8.3 ± 1.3 min-1; R255L: 1168 ± 163 min-1), total turnover number (TTN) increased ≈21-fold (WT: 40 ± 3; R255L: 860 ± 15), and coupling efficiency, ≈2.9-fold (WT: 8.8 ± 0.1%; R255L: 25.7 ± 1.0%). Computational analysis showed that substitution R255L (distant from the heme-cofactor) does not have the salt bridge formed with D217 in WT, which introduces flexibility into the I-helix and leads to a heme rearrangement allowing for efficient hydroxylation.
Collapse
Affiliation(s)
| | - Gaurao V Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52074 Aachen, Germany.
| |
Collapse
|
46
|
Zhang Y, Xie S, Yan M, Ramström O. Enzyme- and ruthenium-catalyzed dynamic kinetic resolution involving cascade alkoxycarbonylations for asymmetric synthesis of 5-Substituted N-Aryloxazolidinones. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Zhou J, Wang B, He XH, Liu L, Wu J, Lu J, Peng C, Rao CL, Han B. Asymmetric Construction of 4H-Pyrano[3,2-b]indoles via Cinchonine-Catalyzed 1,4-Addition of 2-Ylideneoxindole with Malononitrile. J Org Chem 2019; 84:5450-5459. [DOI: 10.1021/acs.joc.9b00430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Zhou
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Biao Wang
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xiang-Hong He
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Li Liu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jun Wu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Lu
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chao-Long Rao
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
48
|
Barba F, Quirós I, Salgado A, Batanero B. Electrosynthesis of Oxazol‐2(3
H
)‐Ones and Diaroylhydrazines from 1,2‐Dicarbonyl Compounds and Arenediazonium Salts. ChemElectroChem 2019. [DOI: 10.1002/celc.201900299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fructuoso Barba
- Department of Organic and Inorganic ChemistryUniversity of Alcala Campus, km 33,6 A2 28805 Alcalá de Henares (Madrid Spain
| | - Irene Quirós
- Department of Organic and Inorganic ChemistryUniversity of Alcala Campus, km 33,6 A2 28805 Alcalá de Henares (Madrid Spain
| | - Antonio Salgado
- Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN) CAI QuímicasUniversity of Alcala 28805 Alcalá de Henares Madrid Spain
| | - Belen Batanero
- Department of Organic and Inorganic ChemistryUniversity of Alcala Campus, km 33,6 A2 28805 Alcalá de Henares (Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)University of Alcala 28805 Alcalá de Henares Madrid Spain
| |
Collapse
|
49
|
Kapil S, Singh PK, Silakari O. An update on small molecule strategies targeting leishmaniasis. Eur J Med Chem 2018; 157:339-367. [DOI: 10.1016/j.ejmech.2018.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 02/08/2023]
|