1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Zhou J, Liu X, Xu Y, Wang J, Qian T, Sang X, Hasan MN, Warshel A, An J, Saha A, Huang Z. Computational and Experimental Study of the Conformational Variation of the Catalytic Residue His41 of the SARS-CoV-2 Main Protease. J Phys Chem B 2025. [PMID: 40387138 DOI: 10.1021/acs.jpcb.5c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The main protease (Mpro) is essential for the replication of SARS-CoV-2, making it one of the major therapeutic targets for COVID-19 treatment. Here, we explored the conformational dynamics and energetics of the catalytic residue His41 in Mpro, as revealed by a rare conformational shift observed in the cocrystal structures of Mpro bound by certain inhibitors. Using steered molecular dynamics combined with umbrella sampling, we demonstrated that π-cation interactions between these inhibitors and the ionized catalytic dyad significantly reduced the energy barrier for the conformational flip of the His41 side chain. To further investigate the structure-activity relationship linked to this conformational change, we designed and synthesized a series of covalent inhibitors that control His41 flipping. Among these, compound H102-7 exhibited remarkable inhibitory activity with an IC50 of 5 nM. Drug resistance studies revealed that these inhibitors displayed improved resistance profiles compared to the clinically approved Mpro covalent inhibitor, Nirmatrelvir. This study integrates computational simulations, medicinal chemistry, and molecular biology to uncover an interesting allosteric effect of a key catalytic residue of SARS-CoV-2 Mpro and yields new promising molecules for the further development of Mpro-targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Yan Xu
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Juan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tingli Qian
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Md Nazmul Hasan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53213, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Arjun Saha
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53213, United States
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Delgado C, Nogara PA, Miranda MD, Rosa AS, Ferreira VNS, Batista LT, Oliveira TKF, Omage FB, Motta F, Bastos IM, Orian L, Rocha JBT. In Silico and In Vitro Studies of the Approved Antibiotic Ceftaroline Fosamil and Its Metabolites as Inhibitors of SARS-CoV-2 Replication. Viruses 2025; 17:491. [PMID: 40284934 PMCID: PMC12031345 DOI: 10.3390/v17040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
The SARS-CoV-2 proteases Mpro and PLpro are critical targets for antiviral drug development for the treatment of COVID-19. The 1,2,4-thiadiazole functional group is an inhibitor of cysteine proteases, such as papain and cathepsins. This chemical moiety is also present in ceftaroline fosamil (CF), an FDA-approved fifth-generation cephalosporin antibiotic. This study investigates the interactions between CF, its primary metabolites (M1 is dephosphorylated CF and M2 is an opened β-lactam ring) and derivatives (protonated M1H and M2H), and its open 1,2,4-thiadiazole rings derivatives (open-M1H and open-M2H) with SARS-CoV-2 proteases and evaluates CF's effects on in vitro viral replication. In silico analyses (molecular docking and molecular dynamics (MD) simulations) demonstrated that CF and its metabolites are potential inhibitors of PLpro and Mpro. Docking analysis indicated that the majority of the ligands were more stable with Mpro than PLpro; however, in vitro biochemical analysis indicated PLpro as the preferred target for CF. CF inhibited viral replication in the human Calu-3 cell model at submicromolar concentrations when added to cell culture medium at 12 h. Our results suggest that CF should be evaluated as a potential repurposing agent for COVID-19, considering not only viral proteases but also other viral targets and relevant cellular pathways. Additionally, the reactivity of sulfur in the 1,2,4-thiadiazole moiety warrants further exploration for the development of viral protease inhibitors.
Collapse
Affiliation(s)
- Cássia Delgado
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Bagé 96400-000, RS, Brazil
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alice Santos Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza Santos Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
| | - Luisa Tozatto Batista
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
| | - Thamara Kelcya Fonseca Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13000-000, SP, Brazil;
| | - Flávia Motta
- Laboratório de interface patógeno-hospedeiro, Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (F.M.); (I.M.B.)
| | - Izabela Marques Bastos
- Laboratório de interface patógeno-hospedeiro, Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (F.M.); (I.M.B.)
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35129 Padova, Italy;
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90000-000, RS, Brazil
| |
Collapse
|
4
|
Spinelli R, Sanchis I, Rietmann Á, Húmpola MV, Siano Á. Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (M pro): A Combined In Vitro and In Silico Approach. Chem Biodivers 2025:e202403202. [PMID: 39854653 DOI: 10.1002/cbdv.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM. Among these, peptides Hp-1081 and Hp-1971, derived from Boana pulchella, exhibited the strongest activity, comparable to the natural Mpro inhibitor quercetin. The binding mechanism of the most potent peptide, Hp-1081, was further investigated through docking and molecular dynamics (MDs) simulations and energetic analysis, which revealed key Mpro residues involved in the binding process. Moreover, because SARS-CoV-2 infection can induce ROS overproduction, the antioxidant activity of Hp-1081 was assessed, reaching 48% of DPPH radical scavenging activity at 100 µM. The most potent peptides also showed no toxicity against human erythrocytes and Artemia salina. This study provides insight into the antiviral potential of amphibian-derived peptides and highlights their applicability as natural templates for drug development targeting coronaviruses.
Collapse
Affiliation(s)
- Roque Spinelli
- Laboratorio de Péptidos Bioactivos, Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Iván Sanchis
- Laboratorio de Péptidos Bioactivos, Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Álvaro Rietmann
- Laboratorio de Péptidos Bioactivos, Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Verónica Húmpola
- Laboratorio de Péptidos Bioactivos, Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Álvaro Siano
- Laboratorio de Péptidos Bioactivos, Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
6
|
London N. Covalent Proximity Inducers. Chem Rev 2025; 125:326-368. [PMID: 39692621 PMCID: PMC11719315 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
8
|
Kovalevsky A, Aniana A, Ghirlando R, Coates L, Drago VN, Wear L, Gerlits O, Nashed NT, Louis JM. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors. J Med Chem 2024; 67:18478-18490. [PMID: 39370853 DOI: 10.1021/acs.jmedchem.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 propagation under nirmatrelvir and ensitrelvir pressure selects for main protease (MPro) drug-resistant mutations E166V (DRM2), L50F/E166V (DRM3), E166A/L167F (DRM4), and L50F/E166A/L167F (DRM5). DRM2-DRM5 undergoes N-terminal autoprocessing to produce mature MPro with dimer dissociation constants (Kdimer) 2-3 times larger than that of the wildtype. Co-selection of L50F restores catalytic activity of DRM2 and DRM4 from ∼10 to 30%, relative to that of the wild-type enzyme, without altering Kdimer. Binding affinities and thermodynamic profiles that parallel the drug selection pressure, exhibiting significant decreases in affinity through entropy/enthalpy compensation, were compared with GC373. Reorganization of the active sites due to mutations observed in the inhibitor-free DRM3 and DRM4 structures as compared to MProWT may account for the reduced binding affinities, although DRM2 and DRM3 complexes with ensitrelvir are almost identical to MProWT-ensitrelvir. Chemical reactivity changes of the mutant active sites due to differences in electrostatic and protein dynamics effects likely contribute to losses in binding affinities.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0540, United States
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Lauren Wear
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
9
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Fomina AD, Uvarova VI, Kozlovskaya LI, Palyulin VA, Osolodkin DI, Ishmukhametov AA. Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. Mol Inform 2024; 43:e202300279. [PMID: 38973780 DOI: 10.1002/minf.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/09/2024]
Abstract
During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.
Collapse
Affiliation(s)
- Anastasia D Fomina
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
11
|
Gao Q, Liu S, Zhou Y, Fan J, Ke S, Zhou Y, Fan K, Wang Y, Zhou Y, Xia Z, Deng X. Discovery of meisoindigo derivatives as noncovalent and orally available M pro inhibitors: their therapeutic implications in the treatment of COVID-19. Eur J Med Chem 2024; 273:116498. [PMID: 38762916 DOI: 10.1016/j.ejmech.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
The progressive emergence of SARS-CoV-2 variants has necessitated the urgent exploration of novel therapeutic strategies to combat the COVID-19 pandemic. The SARS-CoV-2 main protease (Mpro) represents an evolutionarily conserved therapeutic target for drug discovery. This study highlights the discovery of meisoindigo (Mei), derived from the traditional Chinese medicine (TCM) Indigo naturalis, as a novel non-covalent and nonpeptidic Mpro inhibitor. Substantial optimizations and structure-activity relationship (SAR) studies, guided by a structure-based drug design approach, led to the identification of several Mei derivatives, including S5-27 and S5-28, exhibiting low micromolar inhibition against SARS-CoV-2 Mpro with high binding affinity. Notably, S5-28 provided significant protection against wild-type SARS-CoV-2 in HeLa-hACE2 cells, with EC50 up to 2.66 μM. Furthermore, it displayed favorable physiochemical properties and remarkable gastrointestinal and metabolic stability, demonstrating its potential as an orally bioavailable drug for anti-COVID-19 therapy. This research presents a promising avenue for the development of new antiviral agents, offering hope in the ongoing battle against COVID-19.
Collapse
Affiliation(s)
- Qingtian Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Sixu Liu
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shufen Ke
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuqing Zhou
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kaiqiang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuxuan Wang
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Zhang Y, Tian Y, Yan A. A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:531-563. [PMID: 39077983 DOI: 10.1080/1062936x.2024.2375513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024]
Abstract
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively characterize 889 compounds in our dataset. We constructed 24 classification models using machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN). Among these models, the DNN- and ECFP_4-based Model 1D_2 achieved the most promising results, with a remarkable Matthews correlation coefficient (MCC) value of 0.796 in the 5-fold cross-validation and 0.722 on the test set. The application domains of the models were analysed using dSTD-PRO calculations. The collected 889 compounds were clustered by K-means algorithm, and the relationships between structural fragments and inhibitory activities of the highly active compounds were analysed for the 10 obtained subsets. In addition, based on 464 3CLpro inhibitors, 27 QSAR models were constructed using three machine learning algorithms with a minimum root mean square error (RMSE) of 0.509 on the test set. The applicability domains of the models and the structure-activity relationships responded from the descriptors were also analysed.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
13
|
Altangerel N, Neuman BW, Hemmer PR, Yakovlev VV, Sokolov AV, Scully MO. A Novel Non-Destructive Rapid Tool for Estimating Amino Acid Composition and Secondary Structures of Proteins in Solution. SMALL METHODS 2024; 8:e2301191. [PMID: 38485686 PMCID: PMC11260246 DOI: 10.1002/smtd.202301191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Indexed: 05/04/2024]
Abstract
Amino-acid protein composition plays an important role in biology, medicine, and nutrition. Here, a groundbreaking protein analysis technique that quickly estimates amino acid composition and secondary structure across various protein sizes, while maintaining their natural states is introduced and validated. This method combines multivariate statistics and the thermostable Raman interaction profiling (TRIP) technique, eliminating the need for complex preparations. In order to validate the approach, the Raman spectra are constructed of seven proteins of varying sizes by utilizing their amino acid frequencies and the Raman spectra of individual amino acids. These constructed spectra exhibit a close resemblance to the actual measured Raman spectra. Specific vibrational modes tied to free amino and carboxyl termini of the amino acids disappear as signals linked to secondary structures emerged under TRIP conditions. Furthermore, the technique is used inversely to successfully estimate amino acid compositions and secondary structures of unknown proteins across a range of sizes, achieving impressive accuracy ranging between 1.47% and 5.77% of root mean square errors (RMSE). These results extend the uses for TRIP beyond interaction profiling, to probe amino acid composition and structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Marlan O Scully
- Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76798, USA
- Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
14
|
Blankenship L, Yang KS, Vulupala VR, Alugubelli YR, Khatua K, Coleman D, Ma XR, Sankaran B, Cho CCD, Ma Y, Neuman BW, Xu S, Liu WR. SARS-CoV-2 Main Protease Inhibitors That Leverage Unique Interactions with the Solvent Exposed S3 Site of the Enzyme. ACS Med Chem Lett 2024; 15:950-957. [PMID: 38894905 PMCID: PMC11181478 DOI: 10.1021/acsmedchemlett.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
The main protease (MPro) of SARS-CoV-2 is crucial for the virus's replication and pathogenicity. Its active site is characterized by four distinct pockets (S1, S2, S4, and S1-3') and a solvent-exposed S3 site for accommodating a protein substrate. During X-ray crystallographic analyses of MPro bound with dipeptide inhibitors containing a flexible N-terminal group, we often observed an unexpected binding mode. Contrary to the anticipated engagement with the deeper S4 pocket, the N-terminal group frequently assumed a twisted conformation, positioning it for interactions with the S3 site and the inhibitor component bound at the S1 pocket. Capitalizing on this observation, we engineered novel inhibitors to engage both S3 and S4 sites or to adopt a rigid conformation for selective S3 site binding. Several new inhibitors demonstrated high efficacy in MPro inhibition. Our findings underscore the importance of the S3 site's unique interactions in the design of future MPro inhibitors as potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Lauren
R. Blankenship
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Kai S. Yang
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Yugendar R. Alugubelli
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Laurence Berkeley National National
Laboratory, Berkeley, California 94720, United States
| | - Chia-Chuan D. Cho
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin W. Neuman
- Department
of Biology, College of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College Station, Texas 77843, United States
- Department
of Molecular Pathogenesis and Immunology, School of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, School of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Khatua K, Alugubelli YR, Yang KS, Vulupala VR, Blankenship LR, Coleman D, Atla S, Chaki SP, Geng ZZ, Ma XR, Xiao J, Chen PH, Cho CCD, Sharma S, Vatansever EC, Ma Y, Yu G, Neuman BW, Xu S, Liu WR. Azapeptides with unique covalent warheads as SARS-CoV-2 main protease inhibitors. Antiviral Res 2024; 225:105874. [PMID: 38555023 PMCID: PMC11070182 DOI: 10.1016/j.antiviral.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
The main protease (MPro) of SARS-CoV-2, the causative agent of COVID-19, is a pivotal nonstructural protein critical for viral replication and pathogenesis. Its protease function relies on three active site pockets for substrate recognition and a catalytic cysteine for enzymatic activity. To develop potential SARS-CoV-2 antivirals, we successfully synthesized a diverse range of azapeptide inhibitors with various covalent warheads to target MPro's catalytic cysteine. Our characterization identified potent MPro inhibitors, including MPI89 that features an aza-2,2-dichloroacetyl warhead with a remarkable EC50 value of 10 nM against SARS-CoV-2 infection in ACE2+ A549 cells and a selective index of 875. MPI89 is also remarkably selective and shows no potency against SARS-CoV-2 papain-like protease and several human proteases. Crystallography analyses demonstrated that these inhibitors covalently engaged the catalytic cysteine and used the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 stands as one of the most potent MPro inhibitors, suggesting the potential for further exploration of azapeptides and the aza-2,2-dichloroacetyl warhead for developing effective therapeutics against COVID-19.
Collapse
Affiliation(s)
- Kaustav Khatua
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Yugendar R Alugubelli
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Kai S Yang
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Veerabhadra R Vulupala
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Demonta Coleman
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Sandeep Atla
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Sankar P Chaki
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Xinyu R Ma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Jing Xiao
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Peng-Hsun Chen
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Chia-Chuan D Cho
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Shivangi Sharma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Erol C Vatansever
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Yuying Ma
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Ge Yu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA
| | - Benjamin W Neuman
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Global Health Research Complex, Texas A&M University, College Station, TX 77843, USA; Health Science Centre, Department of Molecular Pathogenesis and Immunology, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA.
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, TX 77854, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Voget R, Breidenbach J, Claff T, Hingst A, Sylvester K, Steinebach C, Vu LP, Weiße RH, Bartz U, Sträter N, Müller CE, Gütschow M. Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics. Acta Pharm Sin B 2024; 14:2349-2357. [PMID: 38799620 PMCID: PMC11121168 DOI: 10.1016/j.apsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024] Open
Abstract
A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.
Collapse
Affiliation(s)
- Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Lan Phuong Vu
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Renato H. Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach 53359, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
17
|
Alugubelli Y, Xiao J, Khatua K, Kumar S, Sun L, Ma Y, Ma XR, Vulupala VR, Atla S, Blankenship LR, Coleman D, Xie X, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J Med Chem 2024; 67:6495-6507. [PMID: 38608245 PMCID: PMC11056980 DOI: 10.1021/acs.jmedchem.3c02416] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.
Collapse
Affiliation(s)
- Yugendar
R. Alugubelli
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Xiao
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sathish Kumar
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Long Sun
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren R. Blankenship
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuping Xie
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Benjamin W. Neuman
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College
Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Mahgoub RE, Mohamed FE, Ali BR, Ferreira J, Rabeh WM, Atatreh N, Ghattas MA. Discovery of pyrimidoindol and benzylpyrrolyl inhibitors targeting SARS-CoV-2 main protease (M pro) through pharmacophore modelling, covalent docking, and biological evaluation. J Mol Graph Model 2024; 127:108672. [PMID: 37992552 DOI: 10.1016/j.jmgm.2023.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The main protease (Mpro) enzyme has an imperative function in disease progression and the life cycle of the SARS-CoV-2 virus. Although the orally active drug nirmatrelvir (co-administered with ritonavir as paxlovid) has been approved for emergency use as the frontline antiviral agent, there are a number of limitations that necessitate the discovery of new drug scaffolds, such as poor pharmacokinetics and susceptibility to proteolytic degradation due to its peptidomimetic nature. This study utilized a novel virtual screening workflow that combines pharmacophore modelling, multiple-receptor covalent docking, and biological evaluation in order to find new Mpro inhibitors. After filtering and analysing ∼66,000 ligands from three different electrophilic libraries, 29 compounds were shortlisted for experimental testing, and two of them exhibited ≥20% inhibition at 100 μM. Our top candidate, GF04, is a benzylpyrrolyl compound that exhibited the highest inhibition activity of 38.3%, with a relatively small size (<350 Da) and leadlike character. Interestingly, our approach also identified another hit, DR07, a pyrimidoindol with a non-peptide character, and a molecular weight of 438.9 Da, reporting an inhibition of 26.3%. The established approach detailed in this study, in conjunction with the discovered inhibitors, has the capacity to yield novel perspectives for devising covalent inhibitors targeting the COVID-19 Mpro enzyme and other comparable targets.
Collapse
Affiliation(s)
- Radwa E Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, 112612, United Arab Emirates; AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Juliana Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, 112612, United Arab Emirates; AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, 112612, United Arab Emirates; AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, 112612, United Arab Emirates.
| |
Collapse
|
19
|
Sheng YJ, Kuo STA, Yang T, Russell DH, Yan X, Xu S, Liu WR, Fierke CA. BRD4354 Is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease. Biochemistry 2024:10.1021/acs.biochem.3c00685. [PMID: 38329238 PMCID: PMC11306412 DOI: 10.1021/acs.biochem.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Numerous organic molecules are known to inhibit the main protease (MPro) of SARS-CoV-2, the pathogen of Coronavirus Disease 2019 (COVID-19). Guided by previous research on zinc-ligand inhibitors of MPro and zinc-dependent histone deacetylases (HDACs), we identified BRD4354 as a potent inhibitor of MPro. The in vitro protease activity assays show that BRD4354 displays time-dependent inhibition against MPro with an IC50 (concentration that inhibits activity by 50%) of 0.72 ± 0.04 μM after 60 min of incubation. Inactivation follows a two-step process with an initial rapid binding step with a KI of 1.9 ± 0.5 μM followed by a second slow inactivation step, kinact,max of 0.040 ± 0.002 min-1. Native mass spectrometry studies indicate that a covalent intermediate is formed where the ortho-quinone methide fragment of BRD4354 forms a covalent bond with the catalytic cysteine C145 of MPro. Based on these data, a Michael-addition reaction mechanism between MPro C145 and BRD4354 was proposed. These results suggest that both preclinical testing of BRD4354 and structure-activity relationship studies based on BRD4354 are warranted to develop more effective anti-COVID therapeutics.
Collapse
Affiliation(s)
- Yan J. Sheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Syuan-Ting Alex Kuo
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Carol A. Fierke
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
20
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
21
|
Liu X, Ren X, Hua M, Liu F, Ren X, Sui C, Li Q, Luo F, Jiang Z, Xia Z, Chen J, Yang B. Progress of SARS-CoV-2 Main protease peptide-like inhibitors. Chem Biol Drug Des 2024; 103:e14425. [PMID: 38082476 DOI: 10.1111/cbdd.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (Mpro ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication. It is encoded by peptides and is responsible for processing peptides into functional proteins, making it an important drug target. The paper reviews the structure and peptide-like inhibitors of SARS-CoV-2 Mpro , also the binding mode and structure-activity relationship between the inhibitors and Mpro are introduced in detail. It is hoped that this review can provide ideas and help for the development of anti-coronavirus drugs such as COVID-19, and help to develop broad-spectrum antiviral drug for the treatment of coronavirus diseases as soon as possible.
Collapse
Affiliation(s)
- Xiaoyong Liu
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoli Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Miao Hua
- Chongqing Experimental School, Chongqing, China
| | - Fang Liu
- Biomedical Analysis and Testing Center, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Xiaoping Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Chaoya Sui
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Qing Li
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Fen Luo
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Zhiyong Jiang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Ziqiao Xia
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Jingxia Chen
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Bing Yang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| |
Collapse
|
22
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
23
|
Wu Y, Li K, Li M, Pu X, Guo Y. Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy. J Chem Inf Model 2023; 63:7011-7031. [PMID: 37960886 DOI: 10.1021/acs.jcim.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Compared to de novo drug discovery, drug repurposing provides a time-efficient way to treat coronavirus disease 19 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 main protease (Mpro) has been proved to be an attractive drug target due to its pivotal involvement in viral replication and transcription. Here, we present a graph neural network-based deep-learning (DL) strategy to prioritize the existing drugs for their potential therapeutic effects against SARS-CoV-2 Mpro. Mpro inhibitors were represented as molecular graphs ready for graph attention network (GAT) and graph isomorphism network (GIN) modeling for predicting the inhibitory activities. The result shows that the GAT model outperforms the GIN and other competitive models and yields satisfactory predictions for unseen Mpro inhibitors, confirming its robustness and generalization. The attention mechanism of GAT enables to capture the dominant substructures and thus to realize the interpretability of the model. Finally, we applied the optimal GAT model in conjunction with molecular docking simulations to screen the Drug Repurposing Hub (DRH) database. As a result, 18 drug hits with best consensus prediction scores and binding affinity values were identified as the potential therapeutics against COVID-19. Both the extensive literature searching and evaluations on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) illustrate the premium drug-likeness and pharmacokinetic properties of the drug candidates. Overall, our work not only provides an effective GAT-based DL prediction tool for inhibitory activity of SARS-CoV-2 Mpro inhibitors but also provides theoretical guidelines for drug discovery in the COVID-19 treatment.
Collapse
Affiliation(s)
- Yanling Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kun Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Dakpa G, Kumar KJS, Nelen J, Pérez-Sánchez H, Wang SY. Antcin-B, a phytosterol-like compound from Taiwanofungus camphoratus inhibits SARS-CoV-2 3-chymotrypsin-like protease (3CL Pro) activity in silico and in vitro. Sci Rep 2023; 13:17106. [PMID: 37816832 PMCID: PMC10564890 DOI: 10.1038/s41598-023-44476-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
Despite the remarkable development of highly effective vaccines, including mRNA-based vaccines, within a limited timeframe, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not been entirely eradicated. Thus, it is crucial to identify new effective anti-3CLPro compounds, pivotal for the replication of SARS-CoV-2. Here, we identified an antcin-B phytosterol-like compound from Taiwanofungus camphoratus that targets 3CLPro activity. MTT assay and ADMET prediction are employed for assessing potential cytotoxicity. Computational molecular modeling was used to screen various antcins and non-antcins for binding affinity and interaction type with 3CLPro. Further, these compounds were subjected to study their inhibitory effects on 3CLPro activity in vitro. Our results indicate that antcin-B has the best binding affinity by contacting residues like Leu141, Asn142, Glu166, and His163 via hydrogen bond and salt bridge and significantly inhibits 3CLPro activity, surpassing the positive control compound (GC376). The 100 ns molecular dynamics simulation studies showed that antcin-B formed consistent, long-lasting water bridges with Glu166 for their inhibitory activity. In summary, antcin-B could be useful to develop therapeutically viable drugs to inhibit SARS-CoV-2 replication alone or in combination with medications specific to other SARS-CoV-2 viral targets.
Collapse
Affiliation(s)
- Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 108, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jochem Nelen
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
| | - Sheng-Yang Wang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 108, Taiwan.
- Department of Forestry, National Chung Hsing University, Taichung, 402, Taiwan.
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, 402, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 108, Taiwan.
| |
Collapse
|
26
|
Alugubelli YR, Xiao J, Khatua K, Kumar S, Ma Y, Ma XR, Vulupala VR, Atla SR, Blankenship L, Coleman D, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560163. [PMID: 37808777 PMCID: PMC10557696 DOI: 10.1101/2023.09.29.560163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (M Pro ) is a highly conserved and essential protease that plays key roles in viral replication and pathogenesis among various CoVs, representing one of the most attractive drug targets for antiviral drug development. Traditional antiviral drug development strategies focus on the pursuit of high-affinity binding inhibitors against M Pro . However, this approach often suffers from issues such as toxicity, drug resistance, and a lack of broad-spectrum efficacy. Targeted protein degradation represents a promising strategy for developing next-generation antiviral drugs to combat infectious diseases. Here we leverage the proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 M Pro . Our previously developed M Pro inhibitors MPI8 and MPI29 were used as M Pro ligands to conjugate a CRBN E3 ligand, leading to compounds that can both inhibit and degrade SARS-CoV-2 M Pro . Among them, MDP2 was demonstrated to effectively reduce M Pro protein levels in 293T cells (DC 50 = 296 nM), relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing M Pro protein levels in SARS-CoV-2-infected A549-ACE2 cells, concurrently demonstrating potent anti-SARS-CoV-2 activity (EC 50 = 492 nM). This proof-of-concept study highlights the potential of PROTAC-mediated targeted protein degradation of M Pro as an innovative and promising approach for COVID-19 drug discovery.
Collapse
|
27
|
Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules 2023; 13:1339. [PMID: 37759739 PMCID: PMC10647625 DOI: 10.3390/biom13091339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Alessandro Dimasi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 CA, 09042 Cagliari, Italy;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| |
Collapse
|
28
|
Geng ZZ, Atla S, Shaabani N, Vulupala V, Yang KS, Alugubelli YR, Khatua K, Chen PH, Xiao J, Blankenship LR, Ma XR, Vatansever EC, Cho CCD, Ma Y, Allen R, Ji H, Xu S, Liu WR. A Systematic Survey of Reversibly Covalent Dipeptidyl Inhibitors of the SARS-CoV-2 Main Protease. J Med Chem 2023; 66:11040-11055. [PMID: 37561993 PMCID: PMC10861299 DOI: 10.1021/acs.jmedchem.3c00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 08/12/2023]
Abstract
SARS-CoV-2, the COVID-19 pathogen, relies on its main protease (MPro) for replication and pathogenesis. MPro is a demonstrated target for the development of antivirals for SARS-CoV-2. Past studies have systematically explored tripeptidyl inhibitors such as nirmatrelvir as MPro inhibitors. However, dipeptidyl inhibitors especially those with a spiro residue at their P2 position have not been systematically investigated. In this work, we synthesized about 30 dipeptidyl MPro inhibitors and characterized them on enzymatic inhibition potency, structures of their complexes with MPro, cellular MPro inhibition potency, antiviral potency, cytotoxicity, and in vitro metabolic stability. Our results indicated that MPro has a flexible S2 pocket to accommodate inhibitors with a large P2 residue and revealed that dipeptidyl inhibitors with a large P2 spiro residue such as (S)-2-azaspiro [4,4]nonane-3-carboxylate and (S)-2-azaspiro[4,5]decane-3-carboxylate have favorable characteristics. One compound, MPI60, containing a P2 (S)-2-azaspiro[4,4]nonane-3-carboxylate displayed high antiviral potency, low cellular cytotoxicity, and high in vitro metabolic stability.
Collapse
Affiliation(s)
- Zhi Zachary Geng
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Namir Shaabani
- Sorrento
Therapeutics, Inc. San Diego, California 92121, United States
| | - Veerabhadra Vulupala
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Kai S. Yang
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Yugendar R. Alugubelli
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Peng-Hsun Chen
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Xiao
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren R. Blankenship
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Erol C. Vatansever
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Chia-Chuan D. Cho
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Yuying Ma
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
| | - Robert Allen
- Sorrento
Therapeutics, Inc. San Diego, California 92121, United States
| | - Henry Ji
- Sorrento
Therapeutics, Inc. San Diego, California 92121, United States
| | - Shiqing Xu
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Department
of Chemistry, Texas A&M Drug Discovery Laboratory, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo‐Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García‐Sastre A, Shoichet BK, Craik CS. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Protein Sci 2023; 32:e4712. [PMID: 37354015 PMCID: PMC10364469 DOI: 10.1002/pro.4712] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.
Collapse
Affiliation(s)
- Elissa A. Fink
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in BiophysicsUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Conner Bardine
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in Chemistry and Chemical BiologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Stefan Gahbauer
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isha Singh
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Tyler C. Detomasi
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Kris White
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shuo Gu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Xiaobo Wan
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Jun Chen
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Beatrice Ary
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isabella Glenn
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Joseph O'Connell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Henry O'Donnell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Jiankun Lyu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Seth Vigneron
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Nicholas J. Young
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Ivan S. Kondratov
- Enamine Ltd.KyïvUkraine
- V.P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyïvUkraine
| | - Arghavan Alisoltani
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ramon Lorenzo‐Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Egon A. Ozer
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Yurii S. Moroz
- National Taras Shevchenko University of KyïvKyïvUkraine
- Chemspace LLCKyïvUkraine
| | - Jack Taunton
- Department of Cellular and Molecular PharmacologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Renslo
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - John J. Irwin
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Division of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| |
Collapse
|
30
|
Yang H, You M, Shu X, Zhen J, Zhu M, Fu T, Zhang Y, Jiang X, Zhang L, Xu Y, Zhang Y, Su H, Zhang Q, Shen J. Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CL pro inhibitors against SARS-CoV-2. Eur J Med Chem 2023; 257:115512. [PMID: 37253309 DOI: 10.1016/j.ejmech.2023.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 μM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 μM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 μM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 μM) and low cytotoxicity (CC50 > 50 μM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.
Collapse
Affiliation(s)
- Hanxi Yang
- College of Chemistry, Zhengzhou University, 100 Kexuedadao Road, Zhengzhou, 450001, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mengyuan You
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyang Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jingyao Zhen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Mengwei Zhu
- College of Pharmacy, An Hui University of Traditional Chinese Medicine, Hefei, 230012, China; Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong, 226133, China
| | - Tiantian Fu
- College of Pharmacy, An Hui University of Traditional Chinese Medicine, Hefei, 230012, China; Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong, 226133, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qiumeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
31
|
Ng R, Zhang G, Li JJ. An update on the discovery and development of reversible covalent inhibitors. Med Chem Res 2023; 32:1039-1062. [PMID: 37305209 PMCID: PMC10148018 DOI: 10.1007/s00044-023-03065-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023]
Abstract
Small molecule drugs that covalently bind irreversibly to their target proteins have several advantages over conventional reversible inhibitors. They include increased duration of action, less-frequent drug dosing, reduced pharmacokinetic sensitivity, and the potential to target intractable shallow binding sites. Despite these advantages, the key challenges of irreversible covalent drugs are their potential for off-target toxicities and immunogenicity risks. Incorporating reversibility into covalent drugs would lead to less off-target toxicity by forming reversible adducts with off-target proteins and thus reducing the risk of idiosyncratic toxicities caused by the permanent modification of proteins, which leads to higher levels of potential haptens. Herein, we systematically review electrophilic warheads employed during the development of reversible covalent drugs. We hope the structural insights of electrophilic warheads would provide helpful information to medicinal chemists and aid in designing covalent drugs with better on-target selectivity and improved safety. Graphical Abstract
Collapse
Affiliation(s)
- Raymond Ng
- Olema Oncology, 512 2nd St., 4th Floor, San Francisco, 94107 CA USA
| | - Guiping Zhang
- Genhouse Bio, No.1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 PR China
| | - Jie Jack Li
- Genhouse Bio, No.1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 PR China
| |
Collapse
|
32
|
Khatua K, Alugubelli YR, Yang KS, Vulupala VR, Blankenship LR, Coleman DD, Atla S, Chaki SP, Geng ZZ, Ma XR, Xiao J, Chen PHC, Cho CCD, Vatansever EC, Ma Y, Yu G, Neuman BW, Xu S, Liu WR. An Azapeptide Platform in Conjunction with Covalent Warheads to Uncover High-Potency Inhibitors for SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536467. [PMID: 37090597 PMCID: PMC10120698 DOI: 10.1101/2023.04.11.536467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Main protease (M Pro ) of SARS-CoV-2, the viral pathogen of COVID-19, is a crucial nonstructural protein that plays a vital role in the replication and pathogenesis of the virus. Its protease function relies on three active site pockets to recognize P1, P2, and P4 amino acid residues in a substrate and a catalytic cysteine residue for catalysis. By converting the P1 Cα atom in an M Pro substrate to nitrogen, we showed that a large variety of azapeptide inhibitors with covalent warheads targeting the M Pro catalytic cysteine could be easily synthesized. Through the characterization of these inhibitors, we identified several highly potent M Pro inhibitors. Specifically, one inhibitor, MPI89 that contained an aza-2,2-dichloroacetyl warhead, displayed a 10 nM EC 50 value in inhibiting SARS-CoV-2 from infecting ACE2 + A549 cells and a selectivity index of 875. The crystallography analyses of M Pro bound with 6 inhibitors, including MPI89, revealed that inhibitors used their covalent warheads to covalently engage the catalytic cysteine and the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 represents one of the most potent M Pro inhibitors developed so far, suggesting that further exploration of the azapeptide platform and the aza-2,2-dichloroacetyl warhead is needed for the development of potent inhibitors for the SARS-CoV-2 M Pro as therapeutics for COVID-19.
Collapse
|
33
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
34
|
Yousaf N, Jabeen Y, Imran M, Saleem M, Rahman M, Maqbool A, Iqbal M, Muddassar M. Exploiting the co-crystal ligands shape, features and structure-based approaches for identification of SARS-CoV-2 Mpro inhibitors. J Biomol Struct Dyn 2023; 41:14325-14338. [PMID: 36946192 DOI: 10.1080/07391102.2023.2189478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 03/23/2023]
Abstract
SARS-CoV-2 enters the host cell through the ACE2 receptor and replicates its genome using an RNA-Dependent RNA Polymerase (RDRP). The functional RDRP is released from pro-protein pp1ab by the proteolytic activity of Main protease (Mpro) which is encoded within the viral genome. Due to its vital role in proteolysis of viral polyprotein chains, it has become an attractive potential drug target. We employed a hierarchical virtual screening approach to identify small synthetic protease inhibitors. Statistically optimized molecular shape and color-based features (various functional groups) from co-crystal ligands were used to screen different databases through various scoring schemes. Then, the electrostatic complementarity of screened compounds was matched with the most active molecule to further reduce the hit molecules' size. Finally, five hundred eighty-seven molecules were docked in Mpro catalytic binding site, out of which 29 common best hits were selected based on Glide and FRED scores. Five best-fitting compounds in complex with Mpro were subjected to MD simulations to analyze their structural stability and binding affinities with Mpro using MM/GB(PB)SA models. Modeling results suggest that identified hits can act as the lead compounds for designing better active Mpro inhibitors to enhance the chemical space to combat COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Yaruq Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Imran
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Abbas Maqbool
- Department of Biochemistry and Metabolism John Innes Centre, Norwich Research Park, Norwich, UK
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
35
|
Yang KS, Blankenship LR, Kuo STA, Sheng YJ, Li P, Fierke CA, Russell DH, Yan X, Xu S, Liu WR. A Novel Y-Shaped, S-O-N-O-S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease. ACS Chem Biol 2023; 18:449-455. [PMID: 36629751 PMCID: PMC10023456 DOI: 10.1021/acschembio.2c00695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As the COVID-19 pathogen, SARS-CoV-2 relies on its main protease (MPro) for pathogenesis and replication. During crystallographic analyses of MPro crystals that were exposed to the air, a uniquely Y-shaped, S-O-N-O-S-bridged post-translational cross-link that connects three residues C22, C44, and K61 at their side chains was frequently observed. As a novel covalent modification, this cross-link serves potentially as a redox switch to regulate the catalytic activity of MPro, a demonstrated drug target of COVID-19. The formation of this linkage leads to a much more open active site that can potentially be targeted for the development of novel SARS-CoV-2 antivirals. The structural rearrangement of MPro by this cross-link indicates that small molecules that lock MPro in the cross-linked form can potentially be used with other active-site-targeting molecules such as paxlovid for synergistic effects in inhibiting SARS-CoV-2 viral replication.
Collapse
Affiliation(s)
- Kai S. Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | - Syuan-Ting Alex Kuo
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yan J. Sheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Carol A. Fierke
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
36
|
Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. J Med Chem 2023; 66:2663-2680. [PMID: 36757959 PMCID: PMC9924091 DOI: 10.1021/acs.jmedchem.2c01627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/10/2023]
Abstract
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leo Dumjahn
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yilin Zhao
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C. David Owen
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Stephen M. Laidlaw
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tika R. Malla
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dung Nguyen
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Petra Lukacik
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Adam D. Crawshaw
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Anna J. Warren
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jose Trincao
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Claire Strain-Damerell
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Miles W. Carroll
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Martin A. Walsh
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
37
|
Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, Yu Y, Zhang W, Tan Q, Zhong G, Wen Z, Wang C, He X, Huo H, Gao H, Xu Y, Xue J, Peng C, Zou J, Schindewolf C, Menachery V, Su W, Yuan Y, Shen Z, Zhang R, Yuan S, Yu H, Shi PY, Bu Z, Huang J, Hu Q. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. ACS CENTRAL SCIENCE 2023; 9:217-227. [PMID: 36844503 PMCID: PMC9885526 DOI: 10.1021/acscentsci.2c01359] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 05/31/2023]
Abstract
The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, noncovalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment.
Collapse
Affiliation(s)
- Ningke Hou
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Westlake University; Center for Infectious Disease Research, Westlake
Laboratory of Life Sciences and Biomedicine; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Lei Shuai
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Lijing Zhang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
- Zhejiang
University, 866 Yuhangtang
Rd, Hangzhou 310058, Zhejiang, China
| | - Xuping Xie
- Department
of Biochemistry and Molecular Biology, Institute for Human Infection
and Immunity, University of Texas Medical
Branch, Galveston, Texas 77555, United States
| | - Kaiming Tang
- State Key
Laboratory of Emerging Infectious Diseases, Department of Microbiology,
Li Ka Shing Faculty of Medicine, The University
of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yunkai Zhu
- Key Laboratory
of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical
Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory,
Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yin Yu
- Key Laboratory
of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical
Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory,
Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Wenyi Zhang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Qiaozhu Tan
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Gongxun Zhong
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Zhiyuan Wen
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Chong Wang
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Xijun He
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Hong Huo
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haishan Gao
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - You Xu
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Jing Xue
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Chen Peng
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Jing Zou
- Department
of Biochemistry and Molecular Biology, Institute for Human Infection
and Immunity, University of Texas Medical
Branch, Galveston, Texas 77555, United States
| | - Craig Schindewolf
- Department
of Microbiology and Immunology, University
of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Vineet Menachery
- Department
of Microbiology and Immunology, University
of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Wenji Su
- WuXi AppTec
(Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Youlang Yuan
- WuXi AppTec
(Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Zuyuan Shen
- WuXi AppTec
(Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Rong Zhang
- Key Laboratory
of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical
Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory,
Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shuofeng Yuan
- State Key
Laboratory of Emerging Infectious Diseases, Department of Microbiology,
Li Ka Shing Faculty of Medicine, The University
of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongtao Yu
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Pei-Yong Shi
- Department
of Biochemistry and Molecular Biology, Institute for Human Infection
and Immunity, University of Texas Medical
Branch, Galveston, Texas 77555, United States
| | - Zhigao Bu
- State
Key
Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, No.678 Haping Road, Xiangfang District, Harbin 150069, China
- National
High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| | - Qi Hu
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences,
Center for Infectious Disease Research, Westlake Laboratory of Life
Sciences and Biomedicine, Institute of Biology, Westlake Institute
for Advanced Study, Westlake University, No.18 Shilongshan Road Cloud Town,
Xihu District, Hangzhou 310024, Zhejiang China
| |
Collapse
|
38
|
Allais C, Bernhardson D, Brown AR, Chinigo GM, Desrosiers JN, DiRico KJ, Hotham I, Jones BP, Kulkarni SA, Lewis CA, Lira R, Loach RP, Morse PD, Mousseau JJ, Perry MA, Peng Z, Place DW, Rane AM, Samp L, Singer RA, Wang Z, Weisenburger GA, Yayla HG, Zanghi JM. Early Clinical Development of Lufotrelvir as a Potential Therapy for COVID-19. Org Process Res Dev 2023:acs.oprd.2c00375. [PMID: 37552749 PMCID: PMC9924092 DOI: 10.1021/acs.oprd.2c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/05/2023]
Abstract
Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage. As a new approach to preparing the indole fragment, a Cu-catalyzed C-O coupling using oxalamide ligands was demonstrated. The control of process-related impurities was essential to accommodate the parenteral formulation. Isolation of an MEK solvate followed by the DMSO solvate ensured that all impurities were controlled appropriately.
Collapse
Affiliation(s)
- Christophe Allais
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - David Bernhardson
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Adam R. Brown
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Gary M. Chinigo
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | | | - Kenneth J. DiRico
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Ian Hotham
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Brian P. Jones
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Samir A. Kulkarni
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Chad A. Lewis
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Ricardo Lira
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Richard P. Loach
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Peter D. Morse
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - James J. Mousseau
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Matthew A. Perry
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Zhihui Peng
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - David W. Place
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Anil M. Rane
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Lacey Samp
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Robert A. Singer
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Zheng Wang
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| | | | - Hatice G. Yayla
- Medicine Design, Pfizer
Inc., Groton, Connecticut06340, United States
| | - Joseph M. Zanghi
- Chemical Research and Development, Pfizer
Inc., Groton, Connecticut06340, United States
| |
Collapse
|
39
|
Geng ZZ, Atla S, Shaabani N, Vulupala VR, Yang KS, Alugubelli YR, Khatua K, Chen PHC, Xiao J, Blankenship LR, Ma XR, Vatansever EC, Cho CC, Ma Y, Allen R, Ji H, Xu S, Liu WR. A Systematic Survey of Reversibly Covalent Dipeptidyl Inhibitors of the SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524469. [PMID: 36711580 PMCID: PMC9882326 DOI: 10.1101/2023.01.17.524469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 is the coronavirus pathogen of the currently prevailing COVID-19 pandemic. It relies on its main protease (M Pro ) for replication and pathogenesis. M Pro is a demonstrated target for the development of antivirals for SARS-CoV-2. Past studies have systematically explored tripeptidyl inhibitors such as nirmatrelvir as M Pro inhibitors. However, dipeptidyl inhibitors especially those with a spiro residue at their P2 position have not been systematically investigated. In this work, we synthesized about 30 reversibly covalent dipeptidyl M Pro inhibitors and characterized them on in vitro enzymatic inhibition potency, structures of their complexes with M Pro , cellular M Pro inhibition potency, antiviral potency, cytotoxicity, and in vitro metabolic stability. Our results indicated that M Pro has a flexible S2 pocket that accommodates dipeptidyl inhibitors with a large P2 residue and revealed that dipeptidyl inhibitors with a large P2 spiro residue such as ( S )-2-azaspiro[4,4]nonane-3-carboxylate and ( S )-2-azaspiro[4,5]decane-3-carboxylate have optimal characteristics. One compound MPI60 containing a P2 ( S )-2-azaspiro[4,4]nonane-3-carboxylate displayed high antiviral potency, low cellular cytotoxicity, and high in vitro metabolic stability and can be potentially advanced to further preclinical tests.
Collapse
|
40
|
Abstract
In the design and development of therapeutic agents, macromolecules with restricted structures have stronger competitive edges than linear biological entities since cyclization can overcome the limitations of linear structures. The common issues of linear peptides include susceptibility to degradation of the peptidase enzyme, off-target effects, and necessity of routine dosing, leading to instability and ineffectiveness. The unique conformational constraint of cyclic peptides provides a larger surface area to interact with the target at the same time, improving the membrane permeability and in vivo stability compared to their linear counterparts. Currently, cyclic peptides have been reported to possess various activities, such as antifungal, antiviral and antimicrobial activities. To date, there is emerging interest in cyclic peptide therapeutics, and increasing numbers of clinically approved cyclic peptide drugs are available on the market. In this review, the medical significance of cyclic peptides in the defence against viral infections will be highlighted. Except for chikungunya virus, which lacks specific antiviral treatment, all the viral diseases targeted in this review are those with effective treatments yet with certain limitations to date. Thus, strategies and approaches to optimise the antiviral effect of cyclic peptides will be discussed along with their respective outcomes. Apart from isolated naturally occurring cyclic peptides, chemically synthesized or modified cyclic peptides with antiviral activities targeting coronavirus, herpes simplex viruses, human immunodeficiency virus, Ebola virus, influenza virus, dengue virus, five main hepatitis viruses, termed as type A, B, C, D and E and chikungunya virus will be reviewed herein. Graphical Abstract
Collapse
|
41
|
Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor. J Mol Biol 2022; 434:167876. [PMID: 36334779 PMCID: PMC9628131 DOI: 10.1016/j.jmb.2022.167876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (Tm) of C145A mutant, unlike H41A, increases by 6.8 °C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [(-6)MProH41A and (-6*)MProH41A, respectively], and its corresponding mature MProH41A were systematically examined. While the H41A mutation exerts negligible effect on Tm and dimer dissociation constant (Kdimer) of MProH41A, relative to the wild type MPro, both miniprecursors show a 4-5 °C decrease in Tm and > 85-fold increase in Kdimer as compared to MProH41A. The Kd for the binding of the covalent inhibitor GC373 to (-6*)MProH41A increases ∼12-fold, relative to MProH41A, concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.
Collapse
|
42
|
Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophys Chem 2022; 291:106908. [DOI: 10.1016/j.bpc.2022.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
|
43
|
Belal A, Elsayed A, Gharib AF, Ali Alqarni MA, Soliman AM, Mehany ABM, Elanany MA. Toward the Discovery of SARS-CoV-2 Main Protease Inhibitors: Exploring Therapeutic Potentials of Evodiamine and Its Derivatives, Virtual Screening, Molecular Docking, and Molecular Dynamic Studies. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Continuous scientific research is necessary to help in the discovery of new promising remedies for the treatment of COVID-19, caused by the SARS-CoV-2 virus. This current research was aimed at identifying potential novel inhibitors of the SARS-CoV-2 main protease, which represents one of the most important targets in the viral life cycle. Protein data bank file ID: 7JQ2 was used containing the co-crystallized inhibitor MPI5 with the Main protease. A virtual screening process for natural evodiamine compounds was performed through absorption, distribution, metabolism, elimination, and toxicity studies, and the promising hits were docked into the binding site of the enzyme. 13-(4-Chlorobenzoyl)-10-hydroxy-14-methyl-8,13,13 b,14-tetrahydroindolo[2′,3′:3,4]pyrido[2,1- b]-quinazolin-5(7 H)-one (29) interacted favorably with the enzyme; it showed high similarity to MPI5. Molecular dynamic simulations for 29 proved the stability of its binding to SARS-CoV-2 protease over 100 ns; subsequent MMGBSA analysis also supported this principle. Furthermore, 29 elucidated higher limiting action on enzymatic behavior throughout the whole process when compared to MPI5. This provides sufficient evidence for the potential of evodiamine compounds in modern antiviral research, especially compound 29, against the modern COVID-19 pandemic.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amani Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Aiten M. Soliman
- Drug Radiation Research, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Elanany
- School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo, Cairo, Egypt
| |
Collapse
|
44
|
Mondal S, Chen Y, Lockbaum GJ, Sen S, Chaudhuri S, Reyes AC, Lee JM, Kaur AN, Sultana N, Cameron MD, Shaffer SA, Schiffer CA, Fitzgerald KA, Thompson PR. Dual Inhibitors of Main Protease (M Pro) and Cathepsin L as Potent Antivirals against SARS-CoV2. J Am Chem Soc 2022; 144:21035-21045. [PMID: 36356199 PMCID: PMC9662648 DOI: 10.1021/jacs.2c04626] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/12/2022]
Abstract
Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.
Collapse
Affiliation(s)
- Santanu Mondal
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Sudeshna Sen
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Sauradip Chaudhuri
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Archie C. Reyes
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arshia N. Kaur
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Nadia Sultana
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R. Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
45
|
Hirose Y, Shindo N, Mori M, Onitsuka S, Isogai H, Hamada R, Hiramoto T, Ochi J, Takahashi D, Ueda T, Caaveiro JMM, Yoshida Y, Ohdo S, Matsunaga N, Toba S, Sasaki M, Orba Y, Sawa H, Sato A, Kawanishi E, Ojida A. Discovery of Chlorofluoroacetamide-Based Covalent Inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 3CL Protease. J Med Chem 2022; 65:13852-13865. [PMID: 36229406 DOI: 10.1021/acs.jmedchem.2c01081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yuya Hirose
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Makiko Mori
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Satsuki Onitsuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Hikaru Isogai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Rui Hamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Tadanari Hiramoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Jinta Ochi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Daisuke Takahashi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Jose M M Caaveiro
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Yuya Yoshida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Shigehiro Ohdo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Shinsuke Toba
- International Institute for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo001-0020, Japan.,Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka561-0825, Japan
| | - Michihito Sasaki
- International Institute for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo001-0020, Japan
| | - Yasuko Orba
- International Institute for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo001-0020, Japan
| | - Hirofumi Sawa
- International Institute for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo001-0020, Japan.,One Health Research Center, Hokkaido University, North 18, West 9 Kita-ku, Sapporo060-0818, Japan.,Global Virus Network, 725 West Lombard St. Room S413, Baltimore, Maryland21201, United States
| | - Akihiko Sato
- International Institute for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo001-0020, Japan.,Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka561-0825, Japan
| | - Eiji Kawanishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka812-8582, Japan
| |
Collapse
|
46
|
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022; 65:12500-12534. [PMID: 36169610 PMCID: PMC9528073 DOI: 10.1021/acs.jmedchem.2c01005] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.
Collapse
Affiliation(s)
| | | | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| |
Collapse
|
47
|
Ma Y, Yang KS, Geng ZZ, Alugubelli YR, Shaabani N, Vatansever EC, Ma XR, Cho CC, Khatua K, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Eur J Med Chem 2022; 240:114570. [PMID: 35779291 PMCID: PMC9235293 DOI: 10.1016/j.ejmech.2022.114570] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
As an essential enzyme of SARS-CoV-2, the COVID-19 pathogen, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 positions and the N-terminal protection group, we synthesized 18 tripeptidyl MPro inhibitors that contained also an aldehyde warhead and β-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 position. Systematic characterizations of these inhibitors were conducted, including their in vitro enzymatic inhibition potency, X-ray crystal structures of their complexes with MPro, their inhibition of MPro transiently expressed in 293T cells, and cellular toxicity and SARS-CoV-2 antiviral potency of selected inhibitors. These inhibitors have a large variation of determined in vitro enzymatic inhibition IC50 values that range from 4.8 to 650 nM. The determined in vitro enzymatic inhibition IC50 values reveal that relatively small side chains at both P2 and P3 positions are favorable for achieving high in vitro MPro inhibition potency, the P3 position is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. In all structures, the MPro active site cysteine interacts covalently with the aldehyde warhead of the bound inhibitor to form a hemithioacetal that takes an S configuration. For all inhibitors, election density around the N-terminal protection group is weak indicating possible flexible binding of this group to MPro. In MPro, large structural variations were observed on residues N142 and Q189. Unlike their high in vitro enzymatic inhibition potency, most inhibitors showed low potency to inhibit MPro that was transiently expressed in 293T cells. Inhibitors that showed high potency to inhibit MPro transiently expressed in 293T cells all contain O-tert-butyl-threonine at the P3 position. These inhibitors also exhibited relatively low cytotoxicity and high antiviral potency. Overall, our current and previous studies indicate that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for tripeptidyl aldehyde inhibitors of MPro.
Collapse
Affiliation(s)
- Yuying Ma
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Kai S Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yugendar R Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Erol C Vatansever
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu R Ma
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Chia-Chuan Cho
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Kaustav Khatua
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Xiao
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ge Yu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Laurence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Robert Allen
- Sorrento Therapeutics, Inc. San Diego, CA, 92121, USA
| | - Henry Ji
- Sorrento Therapeutics, Inc. San Diego, CA, 92121, USA.
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
48
|
Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Eur J Med Chem 2022; 240:114596. [PMID: 35839690 PMCID: PMC9264725 DOI: 10.1016/j.ejmech.2022.114596] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Boceprevir is an HCV NSP3 inhibitor that was explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (MPro) and contains an α-ketoamide warhead, a P1 β-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert-butylglycine, and a P4 N-terminal tert-butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based MPro inhibitors including PF-07321332 and characterized their MPro inhibition potency in test tubes (in vitro) and 293T cells (in cellulo). Crystal structures of MPro bound with 10 inhibitors and cytotoxicity and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a β-(S-2-oxopyrrolidin-3-yl)-alanyl (Opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N-terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the MPro active site cysteine. The P1 Opal residue, P2 dimethylcyclopropylproline and P4 N-terminal tert-butylcarbamide make strong hydrophobic interactions with MPro, explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains a P4 N-terminal isovaleramide. In its MPro complex structure, the P4 N-terminal isovaleramide is tucked deep in a small pocket of MPro that originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency to inhibit ectopically expressed MPro in human 293T cells. In general, inhibitors with a P4 N-terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N-terminal cap is changed to a carbamate. The installation of a P3 O-tert-butyl-threonine improves in cellulo potency. Three molecules that contain a P4 N-terminal carbamate were advanced to cytotoxicity tests on 293T cells and antiviral potency tests on three SARS-CoV-2 variants. They all have relatively low cytotoxicity and high antiviral potency with EC50 values around 1 μM. A control compound with a nitrile warhead and a P4 N-terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N-terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.
Collapse
Affiliation(s)
- Yugendar R Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Kai S Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Kaustav Khatua
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu R Ma
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Erol C Vatansever
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Chia-Chuan Cho
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yuying Ma
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Xiao
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ge Yu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Laurence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Robert Allen
- Sorrento Therapeutics, Inc. San Diego, CA, 92121, USA
| | - Henry Ji
- Sorrento Therapeutics, Inc. San Diego, CA, 92121, USA.
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
49
|
Duan X, Lacko LA, Chen S. Druggable targets and therapeutic development for COVID-19. Front Chem 2022; 10:963701. [PMID: 36277347 PMCID: PMC9581228 DOI: 10.3389/fchem.2022.963701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, is the biggest challenge to the global public health and economy in recent years. Until now, only limited therapeutic regimens have been available for COVID-19 patients, sparking unprecedented efforts to study coronavirus biology. The genome of SARS-CoV-2 encodes 16 non-structural, four structural, and nine accessory proteins, which mediate the viral life cycle, including viral entry, RNA replication and transcription, virion assembly and release. These processes depend on the interactions between viral polypeptides and host proteins, both of which could be potential therapeutic targets for COVID-19. Here, we will discuss the potential medicinal value of essential proteins of SARS-CoV-2 and key host factors. We summarize the most updated therapeutic interventions for COVID-19 patients, including those approved clinically or in clinical trials.
Collapse
|
50
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|